xref: /linux/net/rds/rdma.c (revision ba6e0e5cb5b2c2e736e16b4aead816450a8718e6)
1 /*
2  * Copyright (c) 2007, 2020 Oracle and/or its affiliates.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/pagemap.h>
34 #include <linux/slab.h>
35 #include <linux/rbtree.h>
36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
37 
38 #include "rds.h"
39 
40 /*
41  * XXX
42  *  - build with sparse
43  *  - should we detect duplicate keys on a socket?  hmm.
44  *  - an rdma is an mlock, apply rlimit?
45  */
46 
47 /*
48  * get the number of pages by looking at the page indices that the start and
49  * end addresses fall in.
50  *
51  * Returns 0 if the vec is invalid.  It is invalid if the number of bytes
52  * causes the address to wrap or overflows an unsigned int.  This comes
53  * from being stored in the 'length' member of 'struct scatterlist'.
54  */
55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
56 {
57 	if ((vec->addr + vec->bytes <= vec->addr) ||
58 	    (vec->bytes > (u64)UINT_MAX))
59 		return 0;
60 
61 	return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
62 		(vec->addr >> PAGE_SHIFT);
63 }
64 
65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
66 				       struct rds_mr *insert)
67 {
68 	struct rb_node **p = &root->rb_node;
69 	struct rb_node *parent = NULL;
70 	struct rds_mr *mr;
71 
72 	while (*p) {
73 		parent = *p;
74 		mr = rb_entry(parent, struct rds_mr, r_rb_node);
75 
76 		if (key < mr->r_key)
77 			p = &(*p)->rb_left;
78 		else if (key > mr->r_key)
79 			p = &(*p)->rb_right;
80 		else
81 			return mr;
82 	}
83 
84 	if (insert) {
85 		rb_link_node(&insert->r_rb_node, parent, p);
86 		rb_insert_color(&insert->r_rb_node, root);
87 		kref_get(&insert->r_kref);
88 	}
89 	return NULL;
90 }
91 
92 /*
93  * Destroy the transport-specific part of a MR.
94  */
95 static void rds_destroy_mr(struct rds_mr *mr)
96 {
97 	struct rds_sock *rs = mr->r_sock;
98 	void *trans_private = NULL;
99 	unsigned long flags;
100 
101 	rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
102 		 mr->r_key, kref_read(&mr->r_kref));
103 
104 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
105 	if (!RB_EMPTY_NODE(&mr->r_rb_node))
106 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
107 	trans_private = mr->r_trans_private;
108 	mr->r_trans_private = NULL;
109 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
110 
111 	if (trans_private)
112 		mr->r_trans->free_mr(trans_private, mr->r_invalidate);
113 }
114 
115 void __rds_put_mr_final(struct kref *kref)
116 {
117 	struct rds_mr *mr = container_of(kref, struct rds_mr, r_kref);
118 
119 	rds_destroy_mr(mr);
120 	kfree(mr);
121 }
122 
123 /*
124  * By the time this is called we can't have any more ioctls called on
125  * the socket so we don't need to worry about racing with others.
126  */
127 void rds_rdma_drop_keys(struct rds_sock *rs)
128 {
129 	struct rds_mr *mr;
130 	struct rb_node *node;
131 	unsigned long flags;
132 
133 	/* Release any MRs associated with this socket */
134 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
135 	while ((node = rb_first(&rs->rs_rdma_keys))) {
136 		mr = rb_entry(node, struct rds_mr, r_rb_node);
137 		if (mr->r_trans == rs->rs_transport)
138 			mr->r_invalidate = 0;
139 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
140 		RB_CLEAR_NODE(&mr->r_rb_node);
141 		spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
142 		kref_put(&mr->r_kref, __rds_put_mr_final);
143 		spin_lock_irqsave(&rs->rs_rdma_lock, flags);
144 	}
145 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
146 
147 	if (rs->rs_transport && rs->rs_transport->flush_mrs)
148 		rs->rs_transport->flush_mrs();
149 }
150 
151 /*
152  * Helper function to pin user pages.
153  */
154 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
155 			struct page **pages, int write)
156 {
157 	unsigned int gup_flags = FOLL_LONGTERM;
158 	int ret;
159 
160 	if (write)
161 		gup_flags |= FOLL_WRITE;
162 
163 	ret = pin_user_pages_fast(user_addr, nr_pages, gup_flags, pages);
164 	if (ret >= 0 && ret < nr_pages) {
165 		unpin_user_pages(pages, ret);
166 		ret = -EFAULT;
167 	}
168 
169 	return ret;
170 }
171 
172 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
173 			  u64 *cookie_ret, struct rds_mr **mr_ret,
174 			  struct rds_conn_path *cp)
175 {
176 	struct rds_mr *mr = NULL, *found;
177 	struct scatterlist *sg = NULL;
178 	unsigned int nr_pages;
179 	struct page **pages = NULL;
180 	void *trans_private;
181 	unsigned long flags;
182 	rds_rdma_cookie_t cookie;
183 	unsigned int nents = 0;
184 	int need_odp = 0;
185 	long i;
186 	int ret;
187 
188 	if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) {
189 		ret = -ENOTCONN; /* XXX not a great errno */
190 		goto out;
191 	}
192 
193 	if (!rs->rs_transport->get_mr) {
194 		ret = -EOPNOTSUPP;
195 		goto out;
196 	}
197 
198 	/* If the combination of the addr and size requested for this memory
199 	 * region causes an integer overflow, return error.
200 	 */
201 	if (((args->vec.addr + args->vec.bytes) < args->vec.addr) ||
202 	    PAGE_ALIGN(args->vec.addr + args->vec.bytes) <
203 		    (args->vec.addr + args->vec.bytes)) {
204 		ret = -EINVAL;
205 		goto out;
206 	}
207 
208 	if (!can_do_mlock()) {
209 		ret = -EPERM;
210 		goto out;
211 	}
212 
213 	nr_pages = rds_pages_in_vec(&args->vec);
214 	if (nr_pages == 0) {
215 		ret = -EINVAL;
216 		goto out;
217 	}
218 
219 	/* Restrict the size of mr irrespective of underlying transport
220 	 * To account for unaligned mr regions, subtract one from nr_pages
221 	 */
222 	if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) {
223 		ret = -EMSGSIZE;
224 		goto out;
225 	}
226 
227 	rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
228 		args->vec.addr, args->vec.bytes, nr_pages);
229 
230 	/* XXX clamp nr_pages to limit the size of this alloc? */
231 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
232 	if (!pages) {
233 		ret = -ENOMEM;
234 		goto out;
235 	}
236 
237 	mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
238 	if (!mr) {
239 		ret = -ENOMEM;
240 		goto out;
241 	}
242 
243 	kref_init(&mr->r_kref);
244 	RB_CLEAR_NODE(&mr->r_rb_node);
245 	mr->r_trans = rs->rs_transport;
246 	mr->r_sock = rs;
247 
248 	if (args->flags & RDS_RDMA_USE_ONCE)
249 		mr->r_use_once = 1;
250 	if (args->flags & RDS_RDMA_INVALIDATE)
251 		mr->r_invalidate = 1;
252 	if (args->flags & RDS_RDMA_READWRITE)
253 		mr->r_write = 1;
254 
255 	/*
256 	 * Pin the pages that make up the user buffer and transfer the page
257 	 * pointers to the mr's sg array.  We check to see if we've mapped
258 	 * the whole region after transferring the partial page references
259 	 * to the sg array so that we can have one page ref cleanup path.
260 	 *
261 	 * For now we have no flag that tells us whether the mapping is
262 	 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
263 	 * the zero page.
264 	 */
265 	ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
266 	if (ret == -EOPNOTSUPP) {
267 		need_odp = 1;
268 	} else if (ret <= 0) {
269 		goto out;
270 	} else {
271 		nents = ret;
272 		sg = kmalloc_array(nents, sizeof(*sg), GFP_KERNEL);
273 		if (!sg) {
274 			ret = -ENOMEM;
275 			goto out;
276 		}
277 		WARN_ON(!nents);
278 		sg_init_table(sg, nents);
279 
280 		/* Stick all pages into the scatterlist */
281 		for (i = 0 ; i < nents; i++)
282 			sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
283 
284 		rdsdebug("RDS: trans_private nents is %u\n", nents);
285 	}
286 	/* Obtain a transport specific MR. If this succeeds, the
287 	 * s/g list is now owned by the MR.
288 	 * Note that dma_map() implies that pending writes are
289 	 * flushed to RAM, so no dma_sync is needed here. */
290 	trans_private = rs->rs_transport->get_mr(
291 		sg, nents, rs, &mr->r_key, cp ? cp->cp_conn : NULL,
292 		args->vec.addr, args->vec.bytes,
293 		need_odp ? ODP_ZEROBASED : ODP_NOT_NEEDED);
294 
295 	if (IS_ERR(trans_private)) {
296 		/* In ODP case, we don't GUP pages, so don't need
297 		 * to release anything.
298 		 */
299 		if (!need_odp) {
300 			unpin_user_pages(pages, nr_pages);
301 			kfree(sg);
302 		}
303 		ret = PTR_ERR(trans_private);
304 		goto out;
305 	}
306 
307 	mr->r_trans_private = trans_private;
308 
309 	rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
310 	       mr->r_key, (void *)(unsigned long) args->cookie_addr);
311 
312 	/* The user may pass us an unaligned address, but we can only
313 	 * map page aligned regions. So we keep the offset, and build
314 	 * a 64bit cookie containing <R_Key, offset> and pass that
315 	 * around. */
316 	if (need_odp)
317 		cookie = rds_rdma_make_cookie(mr->r_key, 0);
318 	else
319 		cookie = rds_rdma_make_cookie(mr->r_key,
320 					      args->vec.addr & ~PAGE_MASK);
321 	if (cookie_ret)
322 		*cookie_ret = cookie;
323 
324 	if (args->cookie_addr &&
325 	    put_user(cookie, (u64 __user *)(unsigned long)args->cookie_addr)) {
326 		if (!need_odp) {
327 			unpin_user_pages(pages, nr_pages);
328 			kfree(sg);
329 		}
330 		ret = -EFAULT;
331 		goto out;
332 	}
333 
334 	/* Inserting the new MR into the rbtree bumps its
335 	 * reference count. */
336 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
337 	found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
338 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
339 
340 	BUG_ON(found && found != mr);
341 
342 	rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
343 	if (mr_ret) {
344 		kref_get(&mr->r_kref);
345 		*mr_ret = mr;
346 	}
347 
348 	ret = 0;
349 out:
350 	kfree(pages);
351 	if (mr)
352 		kref_put(&mr->r_kref, __rds_put_mr_final);
353 	return ret;
354 }
355 
356 int rds_get_mr(struct rds_sock *rs, sockptr_t optval, int optlen)
357 {
358 	struct rds_get_mr_args args;
359 
360 	if (optlen != sizeof(struct rds_get_mr_args))
361 		return -EINVAL;
362 
363 	if (copy_from_sockptr(&args, optval, sizeof(struct rds_get_mr_args)))
364 		return -EFAULT;
365 
366 	return __rds_rdma_map(rs, &args, NULL, NULL, NULL);
367 }
368 
369 int rds_get_mr_for_dest(struct rds_sock *rs, sockptr_t optval, int optlen)
370 {
371 	struct rds_get_mr_for_dest_args args;
372 	struct rds_get_mr_args new_args;
373 
374 	if (optlen != sizeof(struct rds_get_mr_for_dest_args))
375 		return -EINVAL;
376 
377 	if (copy_from_sockptr(&args, optval,
378 			   sizeof(struct rds_get_mr_for_dest_args)))
379 		return -EFAULT;
380 
381 	/*
382 	 * Initially, just behave like get_mr().
383 	 * TODO: Implement get_mr as wrapper around this
384 	 *	 and deprecate it.
385 	 */
386 	new_args.vec = args.vec;
387 	new_args.cookie_addr = args.cookie_addr;
388 	new_args.flags = args.flags;
389 
390 	return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL);
391 }
392 
393 /*
394  * Free the MR indicated by the given R_Key
395  */
396 int rds_free_mr(struct rds_sock *rs, sockptr_t optval, int optlen)
397 {
398 	struct rds_free_mr_args args;
399 	struct rds_mr *mr;
400 	unsigned long flags;
401 
402 	if (optlen != sizeof(struct rds_free_mr_args))
403 		return -EINVAL;
404 
405 	if (copy_from_sockptr(&args, optval, sizeof(struct rds_free_mr_args)))
406 		return -EFAULT;
407 
408 	/* Special case - a null cookie means flush all unused MRs */
409 	if (args.cookie == 0) {
410 		if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
411 			return -EINVAL;
412 		rs->rs_transport->flush_mrs();
413 		return 0;
414 	}
415 
416 	/* Look up the MR given its R_key and remove it from the rbtree
417 	 * so nobody else finds it.
418 	 * This should also prevent races with rds_rdma_unuse.
419 	 */
420 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
421 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
422 	if (mr) {
423 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
424 		RB_CLEAR_NODE(&mr->r_rb_node);
425 		if (args.flags & RDS_RDMA_INVALIDATE)
426 			mr->r_invalidate = 1;
427 	}
428 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
429 
430 	if (!mr)
431 		return -EINVAL;
432 
433 	kref_put(&mr->r_kref, __rds_put_mr_final);
434 	return 0;
435 }
436 
437 /*
438  * This is called when we receive an extension header that
439  * tells us this MR was used. It allows us to implement
440  * use_once semantics
441  */
442 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
443 {
444 	struct rds_mr *mr;
445 	unsigned long flags;
446 	int zot_me = 0;
447 
448 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
449 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
450 	if (!mr) {
451 		pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
452 			 r_key);
453 		spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
454 		return;
455 	}
456 
457 	/* Get a reference so that the MR won't go away before calling
458 	 * sync_mr() below.
459 	 */
460 	kref_get(&mr->r_kref);
461 
462 	/* If it is going to be freed, remove it from the tree now so
463 	 * that no other thread can find it and free it.
464 	 */
465 	if (mr->r_use_once || force) {
466 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
467 		RB_CLEAR_NODE(&mr->r_rb_node);
468 		zot_me = 1;
469 	}
470 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
471 
472 	/* May have to issue a dma_sync on this memory region.
473 	 * Note we could avoid this if the operation was a RDMA READ,
474 	 * but at this point we can't tell. */
475 	if (mr->r_trans->sync_mr)
476 		mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
477 
478 	/* Release the reference held above. */
479 	kref_put(&mr->r_kref, __rds_put_mr_final);
480 
481 	/* If the MR was marked as invalidate, this will
482 	 * trigger an async flush. */
483 	if (zot_me)
484 		kref_put(&mr->r_kref, __rds_put_mr_final);
485 }
486 
487 void rds_rdma_free_op(struct rm_rdma_op *ro)
488 {
489 	unsigned int i;
490 
491 	if (ro->op_odp_mr) {
492 		kref_put(&ro->op_odp_mr->r_kref, __rds_put_mr_final);
493 	} else {
494 		for (i = 0; i < ro->op_nents; i++) {
495 			struct page *page = sg_page(&ro->op_sg[i]);
496 
497 			/* Mark page dirty if it was possibly modified, which
498 			 * is the case for a RDMA_READ which copies from remote
499 			 * to local memory
500 			 */
501 			unpin_user_pages_dirty_lock(&page, 1, !ro->op_write);
502 		}
503 	}
504 
505 	kfree(ro->op_notifier);
506 	ro->op_notifier = NULL;
507 	ro->op_active = 0;
508 	ro->op_odp_mr = NULL;
509 }
510 
511 void rds_atomic_free_op(struct rm_atomic_op *ao)
512 {
513 	struct page *page = sg_page(ao->op_sg);
514 
515 	/* Mark page dirty if it was possibly modified, which
516 	 * is the case for a RDMA_READ which copies from remote
517 	 * to local memory */
518 	unpin_user_pages_dirty_lock(&page, 1, true);
519 
520 	kfree(ao->op_notifier);
521 	ao->op_notifier = NULL;
522 	ao->op_active = 0;
523 }
524 
525 
526 /*
527  * Count the number of pages needed to describe an incoming iovec array.
528  */
529 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
530 {
531 	int tot_pages = 0;
532 	unsigned int nr_pages;
533 	unsigned int i;
534 
535 	/* figure out the number of pages in the vector */
536 	for (i = 0; i < nr_iovecs; i++) {
537 		nr_pages = rds_pages_in_vec(&iov[i]);
538 		if (nr_pages == 0)
539 			return -EINVAL;
540 
541 		tot_pages += nr_pages;
542 
543 		/*
544 		 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
545 		 * so tot_pages cannot overflow without first going negative.
546 		 */
547 		if (tot_pages < 0)
548 			return -EINVAL;
549 	}
550 
551 	return tot_pages;
552 }
553 
554 int rds_rdma_extra_size(struct rds_rdma_args *args,
555 			struct rds_iov_vector *iov)
556 {
557 	struct rds_iovec *vec;
558 	struct rds_iovec __user *local_vec;
559 	int tot_pages = 0;
560 	unsigned int nr_pages;
561 	unsigned int i;
562 
563 	local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
564 
565 	if (args->nr_local == 0)
566 		return -EINVAL;
567 
568 	if (args->nr_local > UIO_MAXIOV)
569 		return -EMSGSIZE;
570 
571 	iov->iov = kcalloc(args->nr_local,
572 			   sizeof(struct rds_iovec),
573 			   GFP_KERNEL);
574 	if (!iov->iov)
575 		return -ENOMEM;
576 
577 	vec = &iov->iov[0];
578 
579 	if (copy_from_user(vec, local_vec, args->nr_local *
580 			   sizeof(struct rds_iovec)))
581 		return -EFAULT;
582 	iov->len = args->nr_local;
583 
584 	/* figure out the number of pages in the vector */
585 	for (i = 0; i < args->nr_local; i++, vec++) {
586 
587 		nr_pages = rds_pages_in_vec(vec);
588 		if (nr_pages == 0)
589 			return -EINVAL;
590 
591 		tot_pages += nr_pages;
592 
593 		/*
594 		 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
595 		 * so tot_pages cannot overflow without first going negative.
596 		 */
597 		if (tot_pages < 0)
598 			return -EINVAL;
599 	}
600 
601 	return tot_pages * sizeof(struct scatterlist);
602 }
603 
604 /*
605  * The application asks for a RDMA transfer.
606  * Extract all arguments and set up the rdma_op
607  */
608 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
609 		       struct cmsghdr *cmsg,
610 		       struct rds_iov_vector *vec)
611 {
612 	struct rds_rdma_args *args;
613 	struct rm_rdma_op *op = &rm->rdma;
614 	int nr_pages;
615 	unsigned int nr_bytes;
616 	struct page **pages = NULL;
617 	struct rds_iovec *iovs;
618 	unsigned int i, j;
619 	int ret = 0;
620 	bool odp_supported = true;
621 
622 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
623 	    || rm->rdma.op_active)
624 		return -EINVAL;
625 
626 	args = CMSG_DATA(cmsg);
627 
628 	if (ipv6_addr_any(&rs->rs_bound_addr)) {
629 		ret = -ENOTCONN; /* XXX not a great errno */
630 		goto out_ret;
631 	}
632 
633 	if (args->nr_local > UIO_MAXIOV) {
634 		ret = -EMSGSIZE;
635 		goto out_ret;
636 	}
637 
638 	if (vec->len != args->nr_local) {
639 		ret = -EINVAL;
640 		goto out_ret;
641 	}
642 	/* odp-mr is not supported for multiple requests within one message */
643 	if (args->nr_local != 1)
644 		odp_supported = false;
645 
646 	iovs = vec->iov;
647 
648 	nr_pages = rds_rdma_pages(iovs, args->nr_local);
649 	if (nr_pages < 0) {
650 		ret = -EINVAL;
651 		goto out_ret;
652 	}
653 
654 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
655 	if (!pages) {
656 		ret = -ENOMEM;
657 		goto out_ret;
658 	}
659 
660 	op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
661 	op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
662 	op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
663 	op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
664 	op->op_active = 1;
665 	op->op_recverr = rs->rs_recverr;
666 	op->op_odp_mr = NULL;
667 
668 	WARN_ON(!nr_pages);
669 	op->op_sg = rds_message_alloc_sgs(rm, nr_pages);
670 	if (IS_ERR(op->op_sg)) {
671 		ret = PTR_ERR(op->op_sg);
672 		goto out_pages;
673 	}
674 
675 	if (op->op_notify || op->op_recverr) {
676 		/* We allocate an uninitialized notifier here, because
677 		 * we don't want to do that in the completion handler. We
678 		 * would have to use GFP_ATOMIC there, and don't want to deal
679 		 * with failed allocations.
680 		 */
681 		op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
682 		if (!op->op_notifier) {
683 			ret = -ENOMEM;
684 			goto out_pages;
685 		}
686 		op->op_notifier->n_user_token = args->user_token;
687 		op->op_notifier->n_status = RDS_RDMA_SUCCESS;
688 	}
689 
690 	/* The cookie contains the R_Key of the remote memory region, and
691 	 * optionally an offset into it. This is how we implement RDMA into
692 	 * unaligned memory.
693 	 * When setting up the RDMA, we need to add that offset to the
694 	 * destination address (which is really an offset into the MR)
695 	 * FIXME: We may want to move this into ib_rdma.c
696 	 */
697 	op->op_rkey = rds_rdma_cookie_key(args->cookie);
698 	op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
699 
700 	nr_bytes = 0;
701 
702 	rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
703 	       (unsigned long long)args->nr_local,
704 	       (unsigned long long)args->remote_vec.addr,
705 	       op->op_rkey);
706 
707 	for (i = 0; i < args->nr_local; i++) {
708 		struct rds_iovec *iov = &iovs[i];
709 		/* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
710 		unsigned int nr = rds_pages_in_vec(iov);
711 
712 		rs->rs_user_addr = iov->addr;
713 		rs->rs_user_bytes = iov->bytes;
714 
715 		/* If it's a WRITE operation, we want to pin the pages for reading.
716 		 * If it's a READ operation, we need to pin the pages for writing.
717 		 */
718 		ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
719 		if ((!odp_supported && ret <= 0) ||
720 		    (odp_supported && ret <= 0 && ret != -EOPNOTSUPP))
721 			goto out_pages;
722 
723 		if (ret == -EOPNOTSUPP) {
724 			struct rds_mr *local_odp_mr;
725 
726 			if (!rs->rs_transport->get_mr) {
727 				ret = -EOPNOTSUPP;
728 				goto out_pages;
729 			}
730 			local_odp_mr =
731 				kzalloc(sizeof(*local_odp_mr), GFP_KERNEL);
732 			if (!local_odp_mr) {
733 				ret = -ENOMEM;
734 				goto out_pages;
735 			}
736 			RB_CLEAR_NODE(&local_odp_mr->r_rb_node);
737 			kref_init(&local_odp_mr->r_kref);
738 			local_odp_mr->r_trans = rs->rs_transport;
739 			local_odp_mr->r_sock = rs;
740 			local_odp_mr->r_trans_private =
741 				rs->rs_transport->get_mr(
742 					NULL, 0, rs, &local_odp_mr->r_key, NULL,
743 					iov->addr, iov->bytes, ODP_VIRTUAL);
744 			if (IS_ERR(local_odp_mr->r_trans_private)) {
745 				ret = PTR_ERR(local_odp_mr->r_trans_private);
746 				rdsdebug("get_mr ret %d %p\"", ret,
747 					 local_odp_mr->r_trans_private);
748 				kfree(local_odp_mr);
749 				ret = -EOPNOTSUPP;
750 				goto out_pages;
751 			}
752 			rdsdebug("Need odp; local_odp_mr %p trans_private %p\n",
753 				 local_odp_mr, local_odp_mr->r_trans_private);
754 			op->op_odp_mr = local_odp_mr;
755 			op->op_odp_addr = iov->addr;
756 		}
757 
758 		rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
759 			 nr_bytes, nr, iov->bytes, iov->addr);
760 
761 		nr_bytes += iov->bytes;
762 
763 		for (j = 0; j < nr; j++) {
764 			unsigned int offset = iov->addr & ~PAGE_MASK;
765 			struct scatterlist *sg;
766 
767 			sg = &op->op_sg[op->op_nents + j];
768 			sg_set_page(sg, pages[j],
769 					min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
770 					offset);
771 
772 			sg_dma_len(sg) = sg->length;
773 			rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
774 			       sg->offset, sg->length, iov->addr, iov->bytes);
775 
776 			iov->addr += sg->length;
777 			iov->bytes -= sg->length;
778 		}
779 
780 		op->op_nents += nr;
781 	}
782 
783 	if (nr_bytes > args->remote_vec.bytes) {
784 		rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
785 				nr_bytes,
786 				(unsigned int) args->remote_vec.bytes);
787 		ret = -EINVAL;
788 		goto out_pages;
789 	}
790 	op->op_bytes = nr_bytes;
791 	ret = 0;
792 
793 out_pages:
794 	kfree(pages);
795 out_ret:
796 	if (ret)
797 		rds_rdma_free_op(op);
798 	else
799 		rds_stats_inc(s_send_rdma);
800 
801 	return ret;
802 }
803 
804 /*
805  * The application wants us to pass an RDMA destination (aka MR)
806  * to the remote
807  */
808 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
809 			  struct cmsghdr *cmsg)
810 {
811 	unsigned long flags;
812 	struct rds_mr *mr;
813 	u32 r_key;
814 	int err = 0;
815 
816 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
817 	    rm->m_rdma_cookie != 0)
818 		return -EINVAL;
819 
820 	memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
821 
822 	/* We are reusing a previously mapped MR here. Most likely, the
823 	 * application has written to the buffer, so we need to explicitly
824 	 * flush those writes to RAM. Otherwise the HCA may not see them
825 	 * when doing a DMA from that buffer.
826 	 */
827 	r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
828 
829 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
830 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
831 	if (!mr)
832 		err = -EINVAL;	/* invalid r_key */
833 	else
834 		kref_get(&mr->r_kref);
835 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
836 
837 	if (mr) {
838 		mr->r_trans->sync_mr(mr->r_trans_private,
839 				     DMA_TO_DEVICE);
840 		rm->rdma.op_rdma_mr = mr;
841 	}
842 	return err;
843 }
844 
845 /*
846  * The application passes us an address range it wants to enable RDMA
847  * to/from. We map the area, and save the <R_Key,offset> pair
848  * in rm->m_rdma_cookie. This causes it to be sent along to the peer
849  * in an extension header.
850  */
851 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
852 			  struct cmsghdr *cmsg)
853 {
854 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
855 	    rm->m_rdma_cookie != 0)
856 		return -EINVAL;
857 
858 	return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie,
859 			      &rm->rdma.op_rdma_mr, rm->m_conn_path);
860 }
861 
862 /*
863  * Fill in rds_message for an atomic request.
864  */
865 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
866 		    struct cmsghdr *cmsg)
867 {
868 	struct page *page = NULL;
869 	struct rds_atomic_args *args;
870 	int ret = 0;
871 
872 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
873 	 || rm->atomic.op_active)
874 		return -EINVAL;
875 
876 	args = CMSG_DATA(cmsg);
877 
878 	/* Nonmasked & masked cmsg ops converted to masked hw ops */
879 	switch (cmsg->cmsg_type) {
880 	case RDS_CMSG_ATOMIC_FADD:
881 		rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
882 		rm->atomic.op_m_fadd.add = args->fadd.add;
883 		rm->atomic.op_m_fadd.nocarry_mask = 0;
884 		break;
885 	case RDS_CMSG_MASKED_ATOMIC_FADD:
886 		rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
887 		rm->atomic.op_m_fadd.add = args->m_fadd.add;
888 		rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
889 		break;
890 	case RDS_CMSG_ATOMIC_CSWP:
891 		rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
892 		rm->atomic.op_m_cswp.compare = args->cswp.compare;
893 		rm->atomic.op_m_cswp.swap = args->cswp.swap;
894 		rm->atomic.op_m_cswp.compare_mask = ~0;
895 		rm->atomic.op_m_cswp.swap_mask = ~0;
896 		break;
897 	case RDS_CMSG_MASKED_ATOMIC_CSWP:
898 		rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
899 		rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
900 		rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
901 		rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
902 		rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
903 		break;
904 	default:
905 		BUG(); /* should never happen */
906 	}
907 
908 	rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
909 	rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
910 	rm->atomic.op_active = 1;
911 	rm->atomic.op_recverr = rs->rs_recverr;
912 	rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1);
913 	if (IS_ERR(rm->atomic.op_sg)) {
914 		ret = PTR_ERR(rm->atomic.op_sg);
915 		goto err;
916 	}
917 
918 	/* verify 8 byte-aligned */
919 	if (args->local_addr & 0x7) {
920 		ret = -EFAULT;
921 		goto err;
922 	}
923 
924 	ret = rds_pin_pages(args->local_addr, 1, &page, 1);
925 	if (ret != 1)
926 		goto err;
927 	ret = 0;
928 
929 	sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
930 
931 	if (rm->atomic.op_notify || rm->atomic.op_recverr) {
932 		/* We allocate an uninitialized notifier here, because
933 		 * we don't want to do that in the completion handler. We
934 		 * would have to use GFP_ATOMIC there, and don't want to deal
935 		 * with failed allocations.
936 		 */
937 		rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
938 		if (!rm->atomic.op_notifier) {
939 			ret = -ENOMEM;
940 			goto err;
941 		}
942 
943 		rm->atomic.op_notifier->n_user_token = args->user_token;
944 		rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
945 	}
946 
947 	rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
948 	rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
949 
950 	return ret;
951 err:
952 	if (page)
953 		unpin_user_page(page);
954 	rm->atomic.op_active = 0;
955 	kfree(rm->atomic.op_notifier);
956 
957 	return ret;
958 }
959