1 /* 2 * Copyright (c) 2007, 2020 Oracle and/or its affiliates. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/pagemap.h> 34 #include <linux/slab.h> 35 #include <linux/rbtree.h> 36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */ 37 38 #include "rds.h" 39 40 /* 41 * XXX 42 * - build with sparse 43 * - should we detect duplicate keys on a socket? hmm. 44 * - an rdma is an mlock, apply rlimit? 45 */ 46 47 /* 48 * get the number of pages by looking at the page indices that the start and 49 * end addresses fall in. 50 * 51 * Returns 0 if the vec is invalid. It is invalid if the number of bytes 52 * causes the address to wrap or overflows an unsigned int. This comes 53 * from being stored in the 'length' member of 'struct scatterlist'. 54 */ 55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec) 56 { 57 if ((vec->addr + vec->bytes <= vec->addr) || 58 (vec->bytes > (u64)UINT_MAX)) 59 return 0; 60 61 return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) - 62 (vec->addr >> PAGE_SHIFT); 63 } 64 65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key, 66 struct rds_mr *insert) 67 { 68 struct rb_node **p = &root->rb_node; 69 struct rb_node *parent = NULL; 70 struct rds_mr *mr; 71 72 while (*p) { 73 parent = *p; 74 mr = rb_entry(parent, struct rds_mr, r_rb_node); 75 76 if (key < mr->r_key) 77 p = &(*p)->rb_left; 78 else if (key > mr->r_key) 79 p = &(*p)->rb_right; 80 else 81 return mr; 82 } 83 84 if (insert) { 85 rb_link_node(&insert->r_rb_node, parent, p); 86 rb_insert_color(&insert->r_rb_node, root); 87 kref_get(&insert->r_kref); 88 } 89 return NULL; 90 } 91 92 /* 93 * Destroy the transport-specific part of a MR. 94 */ 95 static void rds_destroy_mr(struct rds_mr *mr) 96 { 97 struct rds_sock *rs = mr->r_sock; 98 void *trans_private = NULL; 99 unsigned long flags; 100 101 rdsdebug("RDS: destroy mr key is %x refcnt %u\n", 102 mr->r_key, kref_read(&mr->r_kref)); 103 104 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 105 if (!RB_EMPTY_NODE(&mr->r_rb_node)) 106 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 107 trans_private = mr->r_trans_private; 108 mr->r_trans_private = NULL; 109 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 110 111 if (trans_private) 112 mr->r_trans->free_mr(trans_private, mr->r_invalidate); 113 } 114 115 void __rds_put_mr_final(struct kref *kref) 116 { 117 struct rds_mr *mr = container_of(kref, struct rds_mr, r_kref); 118 119 rds_destroy_mr(mr); 120 kfree(mr); 121 } 122 123 /* 124 * By the time this is called we can't have any more ioctls called on 125 * the socket so we don't need to worry about racing with others. 126 */ 127 void rds_rdma_drop_keys(struct rds_sock *rs) 128 { 129 struct rds_mr *mr; 130 struct rb_node *node; 131 unsigned long flags; 132 133 /* Release any MRs associated with this socket */ 134 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 135 while ((node = rb_first(&rs->rs_rdma_keys))) { 136 mr = rb_entry(node, struct rds_mr, r_rb_node); 137 if (mr->r_trans == rs->rs_transport) 138 mr->r_invalidate = 0; 139 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 140 RB_CLEAR_NODE(&mr->r_rb_node); 141 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 142 kref_put(&mr->r_kref, __rds_put_mr_final); 143 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 144 } 145 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 146 147 if (rs->rs_transport && rs->rs_transport->flush_mrs) 148 rs->rs_transport->flush_mrs(); 149 } 150 151 /* 152 * Helper function to pin user pages. 153 */ 154 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages, 155 struct page **pages, int write) 156 { 157 unsigned int gup_flags = FOLL_LONGTERM; 158 int ret; 159 160 if (write) 161 gup_flags |= FOLL_WRITE; 162 163 ret = pin_user_pages_fast(user_addr, nr_pages, gup_flags, pages); 164 if (ret >= 0 && ret < nr_pages) { 165 unpin_user_pages(pages, ret); 166 ret = -EFAULT; 167 } 168 169 return ret; 170 } 171 172 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args, 173 u64 *cookie_ret, struct rds_mr **mr_ret, 174 struct rds_conn_path *cp) 175 { 176 struct rds_mr *mr = NULL, *found; 177 struct scatterlist *sg = NULL; 178 unsigned int nr_pages; 179 struct page **pages = NULL; 180 void *trans_private; 181 unsigned long flags; 182 rds_rdma_cookie_t cookie; 183 unsigned int nents = 0; 184 int need_odp = 0; 185 long i; 186 int ret; 187 188 if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) { 189 ret = -ENOTCONN; /* XXX not a great errno */ 190 goto out; 191 } 192 193 if (!rs->rs_transport->get_mr) { 194 ret = -EOPNOTSUPP; 195 goto out; 196 } 197 198 /* If the combination of the addr and size requested for this memory 199 * region causes an integer overflow, return error. 200 */ 201 if (((args->vec.addr + args->vec.bytes) < args->vec.addr) || 202 PAGE_ALIGN(args->vec.addr + args->vec.bytes) < 203 (args->vec.addr + args->vec.bytes)) { 204 ret = -EINVAL; 205 goto out; 206 } 207 208 if (!can_do_mlock()) { 209 ret = -EPERM; 210 goto out; 211 } 212 213 nr_pages = rds_pages_in_vec(&args->vec); 214 if (nr_pages == 0) { 215 ret = -EINVAL; 216 goto out; 217 } 218 219 /* Restrict the size of mr irrespective of underlying transport 220 * To account for unaligned mr regions, subtract one from nr_pages 221 */ 222 if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) { 223 ret = -EMSGSIZE; 224 goto out; 225 } 226 227 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n", 228 args->vec.addr, args->vec.bytes, nr_pages); 229 230 /* XXX clamp nr_pages to limit the size of this alloc? */ 231 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 232 if (!pages) { 233 ret = -ENOMEM; 234 goto out; 235 } 236 237 mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL); 238 if (!mr) { 239 ret = -ENOMEM; 240 goto out; 241 } 242 243 kref_init(&mr->r_kref); 244 RB_CLEAR_NODE(&mr->r_rb_node); 245 mr->r_trans = rs->rs_transport; 246 mr->r_sock = rs; 247 248 if (args->flags & RDS_RDMA_USE_ONCE) 249 mr->r_use_once = 1; 250 if (args->flags & RDS_RDMA_INVALIDATE) 251 mr->r_invalidate = 1; 252 if (args->flags & RDS_RDMA_READWRITE) 253 mr->r_write = 1; 254 255 /* 256 * Pin the pages that make up the user buffer and transfer the page 257 * pointers to the mr's sg array. We check to see if we've mapped 258 * the whole region after transferring the partial page references 259 * to the sg array so that we can have one page ref cleanup path. 260 * 261 * For now we have no flag that tells us whether the mapping is 262 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to 263 * the zero page. 264 */ 265 ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1); 266 if (ret == -EOPNOTSUPP) { 267 need_odp = 1; 268 } else if (ret <= 0) { 269 goto out; 270 } else { 271 nents = ret; 272 sg = kmalloc_array(nents, sizeof(*sg), GFP_KERNEL); 273 if (!sg) { 274 ret = -ENOMEM; 275 goto out; 276 } 277 WARN_ON(!nents); 278 sg_init_table(sg, nents); 279 280 /* Stick all pages into the scatterlist */ 281 for (i = 0 ; i < nents; i++) 282 sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0); 283 284 rdsdebug("RDS: trans_private nents is %u\n", nents); 285 } 286 /* Obtain a transport specific MR. If this succeeds, the 287 * s/g list is now owned by the MR. 288 * Note that dma_map() implies that pending writes are 289 * flushed to RAM, so no dma_sync is needed here. */ 290 trans_private = rs->rs_transport->get_mr( 291 sg, nents, rs, &mr->r_key, cp ? cp->cp_conn : NULL, 292 args->vec.addr, args->vec.bytes, 293 need_odp ? ODP_ZEROBASED : ODP_NOT_NEEDED); 294 295 if (IS_ERR(trans_private)) { 296 /* In ODP case, we don't GUP pages, so don't need 297 * to release anything. 298 */ 299 if (!need_odp) { 300 unpin_user_pages(pages, nr_pages); 301 kfree(sg); 302 } 303 ret = PTR_ERR(trans_private); 304 /* Trigger connection so that its ready for the next retry */ 305 if (ret == -ENODEV) 306 rds_conn_connect_if_down(cp->cp_conn); 307 goto out; 308 } 309 310 mr->r_trans_private = trans_private; 311 312 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n", 313 mr->r_key, (void *)(unsigned long) args->cookie_addr); 314 315 /* The user may pass us an unaligned address, but we can only 316 * map page aligned regions. So we keep the offset, and build 317 * a 64bit cookie containing <R_Key, offset> and pass that 318 * around. */ 319 if (need_odp) 320 cookie = rds_rdma_make_cookie(mr->r_key, 0); 321 else 322 cookie = rds_rdma_make_cookie(mr->r_key, 323 args->vec.addr & ~PAGE_MASK); 324 if (cookie_ret) 325 *cookie_ret = cookie; 326 327 if (args->cookie_addr && 328 put_user(cookie, (u64 __user *)(unsigned long)args->cookie_addr)) { 329 if (!need_odp) { 330 unpin_user_pages(pages, nr_pages); 331 kfree(sg); 332 } 333 ret = -EFAULT; 334 goto out; 335 } 336 337 /* Inserting the new MR into the rbtree bumps its 338 * reference count. */ 339 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 340 found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); 341 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 342 343 BUG_ON(found && found != mr); 344 345 rdsdebug("RDS: get_mr key is %x\n", mr->r_key); 346 if (mr_ret) { 347 kref_get(&mr->r_kref); 348 *mr_ret = mr; 349 } 350 351 ret = 0; 352 out: 353 kfree(pages); 354 if (mr) 355 kref_put(&mr->r_kref, __rds_put_mr_final); 356 return ret; 357 } 358 359 int rds_get_mr(struct rds_sock *rs, sockptr_t optval, int optlen) 360 { 361 struct rds_get_mr_args args; 362 363 if (optlen != sizeof(struct rds_get_mr_args)) 364 return -EINVAL; 365 366 if (copy_from_sockptr(&args, optval, sizeof(struct rds_get_mr_args))) 367 return -EFAULT; 368 369 return __rds_rdma_map(rs, &args, NULL, NULL, NULL); 370 } 371 372 int rds_get_mr_for_dest(struct rds_sock *rs, sockptr_t optval, int optlen) 373 { 374 struct rds_get_mr_for_dest_args args; 375 struct rds_get_mr_args new_args; 376 377 if (optlen != sizeof(struct rds_get_mr_for_dest_args)) 378 return -EINVAL; 379 380 if (copy_from_sockptr(&args, optval, 381 sizeof(struct rds_get_mr_for_dest_args))) 382 return -EFAULT; 383 384 /* 385 * Initially, just behave like get_mr(). 386 * TODO: Implement get_mr as wrapper around this 387 * and deprecate it. 388 */ 389 new_args.vec = args.vec; 390 new_args.cookie_addr = args.cookie_addr; 391 new_args.flags = args.flags; 392 393 return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL); 394 } 395 396 /* 397 * Free the MR indicated by the given R_Key 398 */ 399 int rds_free_mr(struct rds_sock *rs, sockptr_t optval, int optlen) 400 { 401 struct rds_free_mr_args args; 402 struct rds_mr *mr; 403 unsigned long flags; 404 405 if (optlen != sizeof(struct rds_free_mr_args)) 406 return -EINVAL; 407 408 if (copy_from_sockptr(&args, optval, sizeof(struct rds_free_mr_args))) 409 return -EFAULT; 410 411 /* Special case - a null cookie means flush all unused MRs */ 412 if (args.cookie == 0) { 413 if (!rs->rs_transport || !rs->rs_transport->flush_mrs) 414 return -EINVAL; 415 rs->rs_transport->flush_mrs(); 416 return 0; 417 } 418 419 /* Look up the MR given its R_key and remove it from the rbtree 420 * so nobody else finds it. 421 * This should also prevent races with rds_rdma_unuse. 422 */ 423 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 424 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL); 425 if (mr) { 426 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 427 RB_CLEAR_NODE(&mr->r_rb_node); 428 if (args.flags & RDS_RDMA_INVALIDATE) 429 mr->r_invalidate = 1; 430 } 431 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 432 433 if (!mr) 434 return -EINVAL; 435 436 kref_put(&mr->r_kref, __rds_put_mr_final); 437 return 0; 438 } 439 440 /* 441 * This is called when we receive an extension header that 442 * tells us this MR was used. It allows us to implement 443 * use_once semantics 444 */ 445 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force) 446 { 447 struct rds_mr *mr; 448 unsigned long flags; 449 int zot_me = 0; 450 451 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 452 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 453 if (!mr) { 454 pr_debug("rds: trying to unuse MR with unknown r_key %u!\n", 455 r_key); 456 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 457 return; 458 } 459 460 /* Get a reference so that the MR won't go away before calling 461 * sync_mr() below. 462 */ 463 kref_get(&mr->r_kref); 464 465 /* If it is going to be freed, remove it from the tree now so 466 * that no other thread can find it and free it. 467 */ 468 if (mr->r_use_once || force) { 469 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 470 RB_CLEAR_NODE(&mr->r_rb_node); 471 zot_me = 1; 472 } 473 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 474 475 /* May have to issue a dma_sync on this memory region. 476 * Note we could avoid this if the operation was a RDMA READ, 477 * but at this point we can't tell. */ 478 if (mr->r_trans->sync_mr) 479 mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE); 480 481 /* Release the reference held above. */ 482 kref_put(&mr->r_kref, __rds_put_mr_final); 483 484 /* If the MR was marked as invalidate, this will 485 * trigger an async flush. */ 486 if (zot_me) 487 kref_put(&mr->r_kref, __rds_put_mr_final); 488 } 489 490 void rds_rdma_free_op(struct rm_rdma_op *ro) 491 { 492 unsigned int i; 493 494 if (ro->op_odp_mr) { 495 kref_put(&ro->op_odp_mr->r_kref, __rds_put_mr_final); 496 } else { 497 for (i = 0; i < ro->op_nents; i++) { 498 struct page *page = sg_page(&ro->op_sg[i]); 499 500 /* Mark page dirty if it was possibly modified, which 501 * is the case for a RDMA_READ which copies from remote 502 * to local memory 503 */ 504 unpin_user_pages_dirty_lock(&page, 1, !ro->op_write); 505 } 506 } 507 508 kfree(ro->op_notifier); 509 ro->op_notifier = NULL; 510 ro->op_active = 0; 511 ro->op_odp_mr = NULL; 512 } 513 514 void rds_atomic_free_op(struct rm_atomic_op *ao) 515 { 516 struct page *page = sg_page(ao->op_sg); 517 518 /* Mark page dirty if it was possibly modified, which 519 * is the case for a RDMA_READ which copies from remote 520 * to local memory */ 521 unpin_user_pages_dirty_lock(&page, 1, true); 522 523 kfree(ao->op_notifier); 524 ao->op_notifier = NULL; 525 ao->op_active = 0; 526 } 527 528 529 /* 530 * Count the number of pages needed to describe an incoming iovec array. 531 */ 532 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs) 533 { 534 int tot_pages = 0; 535 unsigned int nr_pages; 536 unsigned int i; 537 538 /* figure out the number of pages in the vector */ 539 for (i = 0; i < nr_iovecs; i++) { 540 nr_pages = rds_pages_in_vec(&iov[i]); 541 if (nr_pages == 0) 542 return -EINVAL; 543 544 tot_pages += nr_pages; 545 546 /* 547 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, 548 * so tot_pages cannot overflow without first going negative. 549 */ 550 if (tot_pages < 0) 551 return -EINVAL; 552 } 553 554 return tot_pages; 555 } 556 557 int rds_rdma_extra_size(struct rds_rdma_args *args, 558 struct rds_iov_vector *iov) 559 { 560 struct rds_iovec *vec; 561 struct rds_iovec __user *local_vec; 562 int tot_pages = 0; 563 unsigned int nr_pages; 564 unsigned int i; 565 566 local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr; 567 568 if (args->nr_local == 0) 569 return -EINVAL; 570 571 if (args->nr_local > UIO_MAXIOV) 572 return -EMSGSIZE; 573 574 iov->iov = kcalloc(args->nr_local, 575 sizeof(struct rds_iovec), 576 GFP_KERNEL); 577 if (!iov->iov) 578 return -ENOMEM; 579 580 vec = &iov->iov[0]; 581 582 if (copy_from_user(vec, local_vec, args->nr_local * 583 sizeof(struct rds_iovec))) 584 return -EFAULT; 585 iov->len = args->nr_local; 586 587 /* figure out the number of pages in the vector */ 588 for (i = 0; i < args->nr_local; i++, vec++) { 589 590 nr_pages = rds_pages_in_vec(vec); 591 if (nr_pages == 0) 592 return -EINVAL; 593 594 tot_pages += nr_pages; 595 596 /* 597 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, 598 * so tot_pages cannot overflow without first going negative. 599 */ 600 if (tot_pages < 0) 601 return -EINVAL; 602 } 603 604 return tot_pages * sizeof(struct scatterlist); 605 } 606 607 /* 608 * The application asks for a RDMA transfer. 609 * Extract all arguments and set up the rdma_op 610 */ 611 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, 612 struct cmsghdr *cmsg, 613 struct rds_iov_vector *vec) 614 { 615 struct rds_rdma_args *args; 616 struct rm_rdma_op *op = &rm->rdma; 617 int nr_pages; 618 unsigned int nr_bytes; 619 struct page **pages = NULL; 620 struct rds_iovec *iovs; 621 unsigned int i, j; 622 int ret = 0; 623 bool odp_supported = true; 624 625 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args)) 626 || rm->rdma.op_active) 627 return -EINVAL; 628 629 args = CMSG_DATA(cmsg); 630 631 if (ipv6_addr_any(&rs->rs_bound_addr)) { 632 ret = -ENOTCONN; /* XXX not a great errno */ 633 goto out_ret; 634 } 635 636 if (args->nr_local > UIO_MAXIOV) { 637 ret = -EMSGSIZE; 638 goto out_ret; 639 } 640 641 if (vec->len != args->nr_local) { 642 ret = -EINVAL; 643 goto out_ret; 644 } 645 /* odp-mr is not supported for multiple requests within one message */ 646 if (args->nr_local != 1) 647 odp_supported = false; 648 649 iovs = vec->iov; 650 651 nr_pages = rds_rdma_pages(iovs, args->nr_local); 652 if (nr_pages < 0) { 653 ret = -EINVAL; 654 goto out_ret; 655 } 656 657 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 658 if (!pages) { 659 ret = -ENOMEM; 660 goto out_ret; 661 } 662 663 op->op_write = !!(args->flags & RDS_RDMA_READWRITE); 664 op->op_fence = !!(args->flags & RDS_RDMA_FENCE); 665 op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 666 op->op_silent = !!(args->flags & RDS_RDMA_SILENT); 667 op->op_active = 1; 668 op->op_recverr = rs->rs_recverr; 669 op->op_odp_mr = NULL; 670 671 WARN_ON(!nr_pages); 672 op->op_sg = rds_message_alloc_sgs(rm, nr_pages); 673 if (IS_ERR(op->op_sg)) { 674 ret = PTR_ERR(op->op_sg); 675 goto out_pages; 676 } 677 678 if (op->op_notify || op->op_recverr) { 679 /* We allocate an uninitialized notifier here, because 680 * we don't want to do that in the completion handler. We 681 * would have to use GFP_ATOMIC there, and don't want to deal 682 * with failed allocations. 683 */ 684 op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL); 685 if (!op->op_notifier) { 686 ret = -ENOMEM; 687 goto out_pages; 688 } 689 op->op_notifier->n_user_token = args->user_token; 690 op->op_notifier->n_status = RDS_RDMA_SUCCESS; 691 } 692 693 /* The cookie contains the R_Key of the remote memory region, and 694 * optionally an offset into it. This is how we implement RDMA into 695 * unaligned memory. 696 * When setting up the RDMA, we need to add that offset to the 697 * destination address (which is really an offset into the MR) 698 * FIXME: We may want to move this into ib_rdma.c 699 */ 700 op->op_rkey = rds_rdma_cookie_key(args->cookie); 701 op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie); 702 703 nr_bytes = 0; 704 705 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n", 706 (unsigned long long)args->nr_local, 707 (unsigned long long)args->remote_vec.addr, 708 op->op_rkey); 709 710 for (i = 0; i < args->nr_local; i++) { 711 struct rds_iovec *iov = &iovs[i]; 712 /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */ 713 unsigned int nr = rds_pages_in_vec(iov); 714 715 rs->rs_user_addr = iov->addr; 716 rs->rs_user_bytes = iov->bytes; 717 718 /* If it's a WRITE operation, we want to pin the pages for reading. 719 * If it's a READ operation, we need to pin the pages for writing. 720 */ 721 ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write); 722 if ((!odp_supported && ret <= 0) || 723 (odp_supported && ret <= 0 && ret != -EOPNOTSUPP)) 724 goto out_pages; 725 726 if (ret == -EOPNOTSUPP) { 727 struct rds_mr *local_odp_mr; 728 729 if (!rs->rs_transport->get_mr) { 730 ret = -EOPNOTSUPP; 731 goto out_pages; 732 } 733 local_odp_mr = 734 kzalloc(sizeof(*local_odp_mr), GFP_KERNEL); 735 if (!local_odp_mr) { 736 ret = -ENOMEM; 737 goto out_pages; 738 } 739 RB_CLEAR_NODE(&local_odp_mr->r_rb_node); 740 kref_init(&local_odp_mr->r_kref); 741 local_odp_mr->r_trans = rs->rs_transport; 742 local_odp_mr->r_sock = rs; 743 local_odp_mr->r_trans_private = 744 rs->rs_transport->get_mr( 745 NULL, 0, rs, &local_odp_mr->r_key, NULL, 746 iov->addr, iov->bytes, ODP_VIRTUAL); 747 if (IS_ERR(local_odp_mr->r_trans_private)) { 748 ret = PTR_ERR(local_odp_mr->r_trans_private); 749 rdsdebug("get_mr ret %d %p\"", ret, 750 local_odp_mr->r_trans_private); 751 kfree(local_odp_mr); 752 ret = -EOPNOTSUPP; 753 goto out_pages; 754 } 755 rdsdebug("Need odp; local_odp_mr %p trans_private %p\n", 756 local_odp_mr, local_odp_mr->r_trans_private); 757 op->op_odp_mr = local_odp_mr; 758 op->op_odp_addr = iov->addr; 759 } 760 761 rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n", 762 nr_bytes, nr, iov->bytes, iov->addr); 763 764 nr_bytes += iov->bytes; 765 766 for (j = 0; j < nr; j++) { 767 unsigned int offset = iov->addr & ~PAGE_MASK; 768 struct scatterlist *sg; 769 770 sg = &op->op_sg[op->op_nents + j]; 771 sg_set_page(sg, pages[j], 772 min_t(unsigned int, iov->bytes, PAGE_SIZE - offset), 773 offset); 774 775 sg_dma_len(sg) = sg->length; 776 rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n", 777 sg->offset, sg->length, iov->addr, iov->bytes); 778 779 iov->addr += sg->length; 780 iov->bytes -= sg->length; 781 } 782 783 op->op_nents += nr; 784 } 785 786 if (nr_bytes > args->remote_vec.bytes) { 787 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n", 788 nr_bytes, 789 (unsigned int) args->remote_vec.bytes); 790 ret = -EINVAL; 791 goto out_pages; 792 } 793 op->op_bytes = nr_bytes; 794 ret = 0; 795 796 out_pages: 797 kfree(pages); 798 out_ret: 799 if (ret) 800 rds_rdma_free_op(op); 801 else 802 rds_stats_inc(s_send_rdma); 803 804 return ret; 805 } 806 807 /* 808 * The application wants us to pass an RDMA destination (aka MR) 809 * to the remote 810 */ 811 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm, 812 struct cmsghdr *cmsg) 813 { 814 unsigned long flags; 815 struct rds_mr *mr; 816 u32 r_key; 817 int err = 0; 818 819 if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) || 820 rm->m_rdma_cookie != 0) 821 return -EINVAL; 822 823 memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie)); 824 825 /* We are reusing a previously mapped MR here. Most likely, the 826 * application has written to the buffer, so we need to explicitly 827 * flush those writes to RAM. Otherwise the HCA may not see them 828 * when doing a DMA from that buffer. 829 */ 830 r_key = rds_rdma_cookie_key(rm->m_rdma_cookie); 831 832 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 833 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 834 if (!mr) 835 err = -EINVAL; /* invalid r_key */ 836 else 837 kref_get(&mr->r_kref); 838 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 839 840 if (mr) { 841 mr->r_trans->sync_mr(mr->r_trans_private, 842 DMA_TO_DEVICE); 843 rm->rdma.op_rdma_mr = mr; 844 } 845 return err; 846 } 847 848 /* 849 * The application passes us an address range it wants to enable RDMA 850 * to/from. We map the area, and save the <R_Key,offset> pair 851 * in rm->m_rdma_cookie. This causes it to be sent along to the peer 852 * in an extension header. 853 */ 854 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm, 855 struct cmsghdr *cmsg) 856 { 857 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) || 858 rm->m_rdma_cookie != 0) 859 return -EINVAL; 860 861 return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, 862 &rm->rdma.op_rdma_mr, rm->m_conn_path); 863 } 864 865 /* 866 * Fill in rds_message for an atomic request. 867 */ 868 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm, 869 struct cmsghdr *cmsg) 870 { 871 struct page *page = NULL; 872 struct rds_atomic_args *args; 873 int ret = 0; 874 875 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args)) 876 || rm->atomic.op_active) 877 return -EINVAL; 878 879 args = CMSG_DATA(cmsg); 880 881 /* Nonmasked & masked cmsg ops converted to masked hw ops */ 882 switch (cmsg->cmsg_type) { 883 case RDS_CMSG_ATOMIC_FADD: 884 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; 885 rm->atomic.op_m_fadd.add = args->fadd.add; 886 rm->atomic.op_m_fadd.nocarry_mask = 0; 887 break; 888 case RDS_CMSG_MASKED_ATOMIC_FADD: 889 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; 890 rm->atomic.op_m_fadd.add = args->m_fadd.add; 891 rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask; 892 break; 893 case RDS_CMSG_ATOMIC_CSWP: 894 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; 895 rm->atomic.op_m_cswp.compare = args->cswp.compare; 896 rm->atomic.op_m_cswp.swap = args->cswp.swap; 897 rm->atomic.op_m_cswp.compare_mask = ~0; 898 rm->atomic.op_m_cswp.swap_mask = ~0; 899 break; 900 case RDS_CMSG_MASKED_ATOMIC_CSWP: 901 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; 902 rm->atomic.op_m_cswp.compare = args->m_cswp.compare; 903 rm->atomic.op_m_cswp.swap = args->m_cswp.swap; 904 rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask; 905 rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask; 906 break; 907 default: 908 BUG(); /* should never happen */ 909 } 910 911 rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 912 rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT); 913 rm->atomic.op_active = 1; 914 rm->atomic.op_recverr = rs->rs_recverr; 915 rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1); 916 if (IS_ERR(rm->atomic.op_sg)) { 917 ret = PTR_ERR(rm->atomic.op_sg); 918 goto err; 919 } 920 921 /* verify 8 byte-aligned */ 922 if (args->local_addr & 0x7) { 923 ret = -EFAULT; 924 goto err; 925 } 926 927 ret = rds_pin_pages(args->local_addr, 1, &page, 1); 928 if (ret != 1) 929 goto err; 930 ret = 0; 931 932 sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr)); 933 934 if (rm->atomic.op_notify || rm->atomic.op_recverr) { 935 /* We allocate an uninitialized notifier here, because 936 * we don't want to do that in the completion handler. We 937 * would have to use GFP_ATOMIC there, and don't want to deal 938 * with failed allocations. 939 */ 940 rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL); 941 if (!rm->atomic.op_notifier) { 942 ret = -ENOMEM; 943 goto err; 944 } 945 946 rm->atomic.op_notifier->n_user_token = args->user_token; 947 rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS; 948 } 949 950 rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie); 951 rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie); 952 953 return ret; 954 err: 955 if (page) 956 unpin_user_page(page); 957 rm->atomic.op_active = 0; 958 kfree(rm->atomic.op_notifier); 959 960 return ret; 961 } 962