1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/in.h> 35 #include <linux/device.h> 36 #include <linux/dmapool.h> 37 #include <linux/ratelimit.h> 38 39 #include "rds.h" 40 #include "ib.h" 41 42 /* 43 * Convert IB-specific error message to RDS error message and call core 44 * completion handler. 45 */ 46 static void rds_ib_send_complete(struct rds_message *rm, 47 int wc_status, 48 void (*complete)(struct rds_message *rm, int status)) 49 { 50 int notify_status; 51 52 switch (wc_status) { 53 case IB_WC_WR_FLUSH_ERR: 54 return; 55 56 case IB_WC_SUCCESS: 57 notify_status = RDS_RDMA_SUCCESS; 58 break; 59 60 case IB_WC_REM_ACCESS_ERR: 61 notify_status = RDS_RDMA_REMOTE_ERROR; 62 break; 63 64 default: 65 notify_status = RDS_RDMA_OTHER_ERROR; 66 break; 67 } 68 complete(rm, notify_status); 69 } 70 71 static void rds_ib_send_unmap_data(struct rds_ib_connection *ic, 72 struct rm_data_op *op, 73 int wc_status) 74 { 75 if (op->op_nents) 76 ib_dma_unmap_sg(ic->i_cm_id->device, 77 op->op_sg, op->op_nents, 78 DMA_TO_DEVICE); 79 } 80 81 static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic, 82 struct rm_rdma_op *op, 83 int wc_status) 84 { 85 if (op->op_mapped) { 86 ib_dma_unmap_sg(ic->i_cm_id->device, 87 op->op_sg, op->op_nents, 88 op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 89 op->op_mapped = 0; 90 } 91 92 /* If the user asked for a completion notification on this 93 * message, we can implement three different semantics: 94 * 1. Notify when we received the ACK on the RDS message 95 * that was queued with the RDMA. This provides reliable 96 * notification of RDMA status at the expense of a one-way 97 * packet delay. 98 * 2. Notify when the IB stack gives us the completion event for 99 * the RDMA operation. 100 * 3. Notify when the IB stack gives us the completion event for 101 * the accompanying RDS messages. 102 * Here, we implement approach #3. To implement approach #2, 103 * we would need to take an event for the rdma WR. To implement #1, 104 * don't call rds_rdma_send_complete at all, and fall back to the notify 105 * handling in the ACK processing code. 106 * 107 * Note: There's no need to explicitly sync any RDMA buffers using 108 * ib_dma_sync_sg_for_cpu - the completion for the RDMA 109 * operation itself unmapped the RDMA buffers, which takes care 110 * of synching. 111 */ 112 rds_ib_send_complete(container_of(op, struct rds_message, rdma), 113 wc_status, rds_rdma_send_complete); 114 115 if (op->op_write) 116 rds_stats_add(s_send_rdma_bytes, op->op_bytes); 117 else 118 rds_stats_add(s_recv_rdma_bytes, op->op_bytes); 119 } 120 121 static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic, 122 struct rm_atomic_op *op, 123 int wc_status) 124 { 125 /* unmap atomic recvbuf */ 126 if (op->op_mapped) { 127 ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1, 128 DMA_FROM_DEVICE); 129 op->op_mapped = 0; 130 } 131 132 rds_ib_send_complete(container_of(op, struct rds_message, atomic), 133 wc_status, rds_atomic_send_complete); 134 135 if (op->op_type == RDS_ATOMIC_TYPE_CSWP) 136 rds_ib_stats_inc(s_ib_atomic_cswp); 137 else 138 rds_ib_stats_inc(s_ib_atomic_fadd); 139 } 140 141 /* 142 * Unmap the resources associated with a struct send_work. 143 * 144 * Returns the rm for no good reason other than it is unobtainable 145 * other than by switching on wr.opcode, currently, and the caller, 146 * the event handler, needs it. 147 */ 148 static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic, 149 struct rds_ib_send_work *send, 150 int wc_status) 151 { 152 struct rds_message *rm = NULL; 153 154 /* In the error case, wc.opcode sometimes contains garbage */ 155 switch (send->s_wr.opcode) { 156 case IB_WR_SEND: 157 if (send->s_op) { 158 rm = container_of(send->s_op, struct rds_message, data); 159 rds_ib_send_unmap_data(ic, send->s_op, wc_status); 160 } 161 break; 162 case IB_WR_RDMA_WRITE: 163 case IB_WR_RDMA_READ: 164 if (send->s_op) { 165 rm = container_of(send->s_op, struct rds_message, rdma); 166 rds_ib_send_unmap_rdma(ic, send->s_op, wc_status); 167 } 168 break; 169 case IB_WR_ATOMIC_FETCH_AND_ADD: 170 case IB_WR_ATOMIC_CMP_AND_SWP: 171 if (send->s_op) { 172 rm = container_of(send->s_op, struct rds_message, atomic); 173 rds_ib_send_unmap_atomic(ic, send->s_op, wc_status); 174 } 175 break; 176 default: 177 printk_ratelimited(KERN_NOTICE 178 "RDS/IB: %s: unexpected opcode 0x%x in WR!\n", 179 __func__, send->s_wr.opcode); 180 break; 181 } 182 183 send->s_wr.opcode = 0xdead; 184 185 return rm; 186 } 187 188 void rds_ib_send_init_ring(struct rds_ib_connection *ic) 189 { 190 struct rds_ib_send_work *send; 191 u32 i; 192 193 for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { 194 struct ib_sge *sge; 195 196 send->s_op = NULL; 197 198 send->s_wr.wr_id = i; 199 send->s_wr.sg_list = send->s_sge; 200 send->s_wr.ex.imm_data = 0; 201 202 sge = &send->s_sge[0]; 203 sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header)); 204 sge->length = sizeof(struct rds_header); 205 sge->lkey = ic->i_pd->local_dma_lkey; 206 207 send->s_sge[1].lkey = ic->i_pd->local_dma_lkey; 208 } 209 } 210 211 void rds_ib_send_clear_ring(struct rds_ib_connection *ic) 212 { 213 struct rds_ib_send_work *send; 214 u32 i; 215 216 for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { 217 if (send->s_op && send->s_wr.opcode != 0xdead) 218 rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR); 219 } 220 } 221 222 /* 223 * The only fast path caller always has a non-zero nr, so we don't 224 * bother testing nr before performing the atomic sub. 225 */ 226 static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr) 227 { 228 if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) && 229 waitqueue_active(&rds_ib_ring_empty_wait)) 230 wake_up(&rds_ib_ring_empty_wait); 231 BUG_ON(atomic_read(&ic->i_signaled_sends) < 0); 232 } 233 234 /* 235 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc 236 * operations performed in the send path. As the sender allocs and potentially 237 * unallocs the next free entry in the ring it doesn't alter which is 238 * the next to be freed, which is what this is concerned with. 239 */ 240 void rds_ib_send_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc) 241 { 242 struct rds_message *rm = NULL; 243 struct rds_connection *conn = ic->conn; 244 struct rds_ib_send_work *send; 245 u32 completed; 246 u32 oldest; 247 u32 i = 0; 248 int nr_sig = 0; 249 250 251 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n", 252 (unsigned long long)wc->wr_id, wc->status, 253 ib_wc_status_msg(wc->status), wc->byte_len, 254 be32_to_cpu(wc->ex.imm_data)); 255 rds_ib_stats_inc(s_ib_tx_cq_event); 256 257 if (wc->wr_id == RDS_IB_ACK_WR_ID) { 258 if (time_after(jiffies, ic->i_ack_queued + HZ / 2)) 259 rds_ib_stats_inc(s_ib_tx_stalled); 260 rds_ib_ack_send_complete(ic); 261 return; 262 } 263 264 oldest = rds_ib_ring_oldest(&ic->i_send_ring); 265 266 completed = rds_ib_ring_completed(&ic->i_send_ring, wc->wr_id, oldest); 267 268 for (i = 0; i < completed; i++) { 269 send = &ic->i_sends[oldest]; 270 if (send->s_wr.send_flags & IB_SEND_SIGNALED) 271 nr_sig++; 272 273 rm = rds_ib_send_unmap_op(ic, send, wc->status); 274 275 if (time_after(jiffies, send->s_queued + HZ / 2)) 276 rds_ib_stats_inc(s_ib_tx_stalled); 277 278 if (send->s_op) { 279 if (send->s_op == rm->m_final_op) { 280 /* If anyone waited for this message to get 281 * flushed out, wake them up now 282 */ 283 rds_message_unmapped(rm); 284 } 285 rds_message_put(rm); 286 send->s_op = NULL; 287 } 288 289 oldest = (oldest + 1) % ic->i_send_ring.w_nr; 290 } 291 292 rds_ib_ring_free(&ic->i_send_ring, completed); 293 rds_ib_sub_signaled(ic, nr_sig); 294 nr_sig = 0; 295 296 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) || 297 test_bit(0, &conn->c_map_queued)) 298 queue_delayed_work(rds_wq, &conn->c_send_w, 0); 299 300 /* We expect errors as the qp is drained during shutdown */ 301 if (wc->status != IB_WC_SUCCESS && rds_conn_up(conn)) { 302 rds_ib_conn_error(conn, "send completion on %pI4 had status %u (%s), disconnecting and reconnecting\n", 303 &conn->c_faddr, wc->status, 304 ib_wc_status_msg(wc->status)); 305 } 306 } 307 308 /* 309 * This is the main function for allocating credits when sending 310 * messages. 311 * 312 * Conceptually, we have two counters: 313 * - send credits: this tells us how many WRs we're allowed 314 * to submit without overruning the receiver's queue. For 315 * each SEND WR we post, we decrement this by one. 316 * 317 * - posted credits: this tells us how many WRs we recently 318 * posted to the receive queue. This value is transferred 319 * to the peer as a "credit update" in a RDS header field. 320 * Every time we transmit credits to the peer, we subtract 321 * the amount of transferred credits from this counter. 322 * 323 * It is essential that we avoid situations where both sides have 324 * exhausted their send credits, and are unable to send new credits 325 * to the peer. We achieve this by requiring that we send at least 326 * one credit update to the peer before exhausting our credits. 327 * When new credits arrive, we subtract one credit that is withheld 328 * until we've posted new buffers and are ready to transmit these 329 * credits (see rds_ib_send_add_credits below). 330 * 331 * The RDS send code is essentially single-threaded; rds_send_xmit 332 * sets RDS_IN_XMIT to ensure exclusive access to the send ring. 333 * However, the ACK sending code is independent and can race with 334 * message SENDs. 335 * 336 * In the send path, we need to update the counters for send credits 337 * and the counter of posted buffers atomically - when we use the 338 * last available credit, we cannot allow another thread to race us 339 * and grab the posted credits counter. Hence, we have to use a 340 * spinlock to protect the credit counter, or use atomics. 341 * 342 * Spinlocks shared between the send and the receive path are bad, 343 * because they create unnecessary delays. An early implementation 344 * using a spinlock showed a 5% degradation in throughput at some 345 * loads. 346 * 347 * This implementation avoids spinlocks completely, putting both 348 * counters into a single atomic, and updating that atomic using 349 * atomic_add (in the receive path, when receiving fresh credits), 350 * and using atomic_cmpxchg when updating the two counters. 351 */ 352 int rds_ib_send_grab_credits(struct rds_ib_connection *ic, 353 u32 wanted, u32 *adv_credits, int need_posted, int max_posted) 354 { 355 unsigned int avail, posted, got = 0, advertise; 356 long oldval, newval; 357 358 *adv_credits = 0; 359 if (!ic->i_flowctl) 360 return wanted; 361 362 try_again: 363 advertise = 0; 364 oldval = newval = atomic_read(&ic->i_credits); 365 posted = IB_GET_POST_CREDITS(oldval); 366 avail = IB_GET_SEND_CREDITS(oldval); 367 368 rdsdebug("wanted=%u credits=%u posted=%u\n", 369 wanted, avail, posted); 370 371 /* The last credit must be used to send a credit update. */ 372 if (avail && !posted) 373 avail--; 374 375 if (avail < wanted) { 376 struct rds_connection *conn = ic->i_cm_id->context; 377 378 /* Oops, there aren't that many credits left! */ 379 set_bit(RDS_LL_SEND_FULL, &conn->c_flags); 380 got = avail; 381 } else { 382 /* Sometimes you get what you want, lalala. */ 383 got = wanted; 384 } 385 newval -= IB_SET_SEND_CREDITS(got); 386 387 /* 388 * If need_posted is non-zero, then the caller wants 389 * the posted regardless of whether any send credits are 390 * available. 391 */ 392 if (posted && (got || need_posted)) { 393 advertise = min_t(unsigned int, posted, max_posted); 394 newval -= IB_SET_POST_CREDITS(advertise); 395 } 396 397 /* Finally bill everything */ 398 if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval) 399 goto try_again; 400 401 *adv_credits = advertise; 402 return got; 403 } 404 405 void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits) 406 { 407 struct rds_ib_connection *ic = conn->c_transport_data; 408 409 if (credits == 0) 410 return; 411 412 rdsdebug("credits=%u current=%u%s\n", 413 credits, 414 IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)), 415 test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : ""); 416 417 atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits); 418 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags)) 419 queue_delayed_work(rds_wq, &conn->c_send_w, 0); 420 421 WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384); 422 423 rds_ib_stats_inc(s_ib_rx_credit_updates); 424 } 425 426 void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted) 427 { 428 struct rds_ib_connection *ic = conn->c_transport_data; 429 430 if (posted == 0) 431 return; 432 433 atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits); 434 435 /* Decide whether to send an update to the peer now. 436 * If we would send a credit update for every single buffer we 437 * post, we would end up with an ACK storm (ACK arrives, 438 * consumes buffer, we refill the ring, send ACK to remote 439 * advertising the newly posted buffer... ad inf) 440 * 441 * Performance pretty much depends on how often we send 442 * credit updates - too frequent updates mean lots of ACKs. 443 * Too infrequent updates, and the peer will run out of 444 * credits and has to throttle. 445 * For the time being, 16 seems to be a good compromise. 446 */ 447 if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16) 448 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 449 } 450 451 static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic, 452 struct rds_ib_send_work *send, 453 bool notify) 454 { 455 /* 456 * We want to delay signaling completions just enough to get 457 * the batching benefits but not so much that we create dead time 458 * on the wire. 459 */ 460 if (ic->i_unsignaled_wrs-- == 0 || notify) { 461 ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs; 462 send->s_wr.send_flags |= IB_SEND_SIGNALED; 463 return 1; 464 } 465 return 0; 466 } 467 468 /* 469 * This can be called multiple times for a given message. The first time 470 * we see a message we map its scatterlist into the IB device so that 471 * we can provide that mapped address to the IB scatter gather entries 472 * in the IB work requests. We translate the scatterlist into a series 473 * of work requests that fragment the message. These work requests complete 474 * in order so we pass ownership of the message to the completion handler 475 * once we send the final fragment. 476 * 477 * The RDS core uses the c_send_lock to only enter this function once 478 * per connection. This makes sure that the tx ring alloc/unalloc pairs 479 * don't get out of sync and confuse the ring. 480 */ 481 int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm, 482 unsigned int hdr_off, unsigned int sg, unsigned int off) 483 { 484 struct rds_ib_connection *ic = conn->c_transport_data; 485 struct ib_device *dev = ic->i_cm_id->device; 486 struct rds_ib_send_work *send = NULL; 487 struct rds_ib_send_work *first; 488 struct rds_ib_send_work *prev; 489 struct ib_send_wr *failed_wr; 490 struct scatterlist *scat; 491 u32 pos; 492 u32 i; 493 u32 work_alloc; 494 u32 credit_alloc = 0; 495 u32 posted; 496 u32 adv_credits = 0; 497 int send_flags = 0; 498 int bytes_sent = 0; 499 int ret; 500 int flow_controlled = 0; 501 int nr_sig = 0; 502 503 BUG_ON(off % RDS_FRAG_SIZE); 504 BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header)); 505 506 /* Do not send cong updates to IB loopback */ 507 if (conn->c_loopback 508 && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) { 509 rds_cong_map_updated(conn->c_fcong, ~(u64) 0); 510 scat = &rm->data.op_sg[sg]; 511 ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length); 512 return sizeof(struct rds_header) + ret; 513 } 514 515 /* FIXME we may overallocate here */ 516 if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) 517 i = 1; 518 else 519 i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE); 520 521 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos); 522 if (work_alloc == 0) { 523 set_bit(RDS_LL_SEND_FULL, &conn->c_flags); 524 rds_ib_stats_inc(s_ib_tx_ring_full); 525 ret = -ENOMEM; 526 goto out; 527 } 528 529 if (ic->i_flowctl) { 530 credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT); 531 adv_credits += posted; 532 if (credit_alloc < work_alloc) { 533 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc); 534 work_alloc = credit_alloc; 535 flow_controlled = 1; 536 } 537 if (work_alloc == 0) { 538 set_bit(RDS_LL_SEND_FULL, &conn->c_flags); 539 rds_ib_stats_inc(s_ib_tx_throttle); 540 ret = -ENOMEM; 541 goto out; 542 } 543 } 544 545 /* map the message the first time we see it */ 546 if (!ic->i_data_op) { 547 if (rm->data.op_nents) { 548 rm->data.op_count = ib_dma_map_sg(dev, 549 rm->data.op_sg, 550 rm->data.op_nents, 551 DMA_TO_DEVICE); 552 rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count); 553 if (rm->data.op_count == 0) { 554 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); 555 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 556 ret = -ENOMEM; /* XXX ? */ 557 goto out; 558 } 559 } else { 560 rm->data.op_count = 0; 561 } 562 563 rds_message_addref(rm); 564 rm->data.op_dmasg = 0; 565 rm->data.op_dmaoff = 0; 566 ic->i_data_op = &rm->data; 567 568 /* Finalize the header */ 569 if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags)) 570 rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED; 571 if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) 572 rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED; 573 574 /* If it has a RDMA op, tell the peer we did it. This is 575 * used by the peer to release use-once RDMA MRs. */ 576 if (rm->rdma.op_active) { 577 struct rds_ext_header_rdma ext_hdr; 578 579 ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey); 580 rds_message_add_extension(&rm->m_inc.i_hdr, 581 RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr)); 582 } 583 if (rm->m_rdma_cookie) { 584 rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr, 585 rds_rdma_cookie_key(rm->m_rdma_cookie), 586 rds_rdma_cookie_offset(rm->m_rdma_cookie)); 587 } 588 589 /* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so 590 * we should not do this unless we have a chance of at least 591 * sticking the header into the send ring. Which is why we 592 * should call rds_ib_ring_alloc first. */ 593 rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic)); 594 rds_message_make_checksum(&rm->m_inc.i_hdr); 595 596 /* 597 * Update adv_credits since we reset the ACK_REQUIRED bit. 598 */ 599 if (ic->i_flowctl) { 600 rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits); 601 adv_credits += posted; 602 BUG_ON(adv_credits > 255); 603 } 604 } 605 606 /* Sometimes you want to put a fence between an RDMA 607 * READ and the following SEND. 608 * We could either do this all the time 609 * or when requested by the user. Right now, we let 610 * the application choose. 611 */ 612 if (rm->rdma.op_active && rm->rdma.op_fence) 613 send_flags = IB_SEND_FENCE; 614 615 /* Each frag gets a header. Msgs may be 0 bytes */ 616 send = &ic->i_sends[pos]; 617 first = send; 618 prev = NULL; 619 scat = &ic->i_data_op->op_sg[rm->data.op_dmasg]; 620 i = 0; 621 do { 622 unsigned int len = 0; 623 624 /* Set up the header */ 625 send->s_wr.send_flags = send_flags; 626 send->s_wr.opcode = IB_WR_SEND; 627 send->s_wr.num_sge = 1; 628 send->s_wr.next = NULL; 629 send->s_queued = jiffies; 630 send->s_op = NULL; 631 632 send->s_sge[0].addr = ic->i_send_hdrs_dma 633 + (pos * sizeof(struct rds_header)); 634 send->s_sge[0].length = sizeof(struct rds_header); 635 636 memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header)); 637 638 /* Set up the data, if present */ 639 if (i < work_alloc 640 && scat != &rm->data.op_sg[rm->data.op_count]) { 641 len = min(RDS_FRAG_SIZE, 642 ib_sg_dma_len(dev, scat) - rm->data.op_dmaoff); 643 send->s_wr.num_sge = 2; 644 645 send->s_sge[1].addr = ib_sg_dma_address(dev, scat); 646 send->s_sge[1].addr += rm->data.op_dmaoff; 647 send->s_sge[1].length = len; 648 649 bytes_sent += len; 650 rm->data.op_dmaoff += len; 651 if (rm->data.op_dmaoff == ib_sg_dma_len(dev, scat)) { 652 scat++; 653 rm->data.op_dmasg++; 654 rm->data.op_dmaoff = 0; 655 } 656 } 657 658 rds_ib_set_wr_signal_state(ic, send, 0); 659 660 /* 661 * Always signal the last one if we're stopping due to flow control. 662 */ 663 if (ic->i_flowctl && flow_controlled && i == (work_alloc-1)) 664 send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED; 665 666 if (send->s_wr.send_flags & IB_SEND_SIGNALED) 667 nr_sig++; 668 669 rdsdebug("send %p wr %p num_sge %u next %p\n", send, 670 &send->s_wr, send->s_wr.num_sge, send->s_wr.next); 671 672 if (ic->i_flowctl && adv_credits) { 673 struct rds_header *hdr = &ic->i_send_hdrs[pos]; 674 675 /* add credit and redo the header checksum */ 676 hdr->h_credit = adv_credits; 677 rds_message_make_checksum(hdr); 678 adv_credits = 0; 679 rds_ib_stats_inc(s_ib_tx_credit_updates); 680 } 681 682 if (prev) 683 prev->s_wr.next = &send->s_wr; 684 prev = send; 685 686 pos = (pos + 1) % ic->i_send_ring.w_nr; 687 send = &ic->i_sends[pos]; 688 i++; 689 690 } while (i < work_alloc 691 && scat != &rm->data.op_sg[rm->data.op_count]); 692 693 /* Account the RDS header in the number of bytes we sent, but just once. 694 * The caller has no concept of fragmentation. */ 695 if (hdr_off == 0) 696 bytes_sent += sizeof(struct rds_header); 697 698 /* if we finished the message then send completion owns it */ 699 if (scat == &rm->data.op_sg[rm->data.op_count]) { 700 prev->s_op = ic->i_data_op; 701 prev->s_wr.send_flags |= IB_SEND_SOLICITED; 702 if (!(prev->s_wr.send_flags & IB_SEND_SIGNALED)) { 703 ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs; 704 prev->s_wr.send_flags |= IB_SEND_SIGNALED; 705 nr_sig++; 706 } 707 ic->i_data_op = NULL; 708 } 709 710 /* Put back wrs & credits we didn't use */ 711 if (i < work_alloc) { 712 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i); 713 work_alloc = i; 714 } 715 if (ic->i_flowctl && i < credit_alloc) 716 rds_ib_send_add_credits(conn, credit_alloc - i); 717 718 if (nr_sig) 719 atomic_add(nr_sig, &ic->i_signaled_sends); 720 721 /* XXX need to worry about failed_wr and partial sends. */ 722 failed_wr = &first->s_wr; 723 ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr); 724 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, 725 first, &first->s_wr, ret, failed_wr); 726 BUG_ON(failed_wr != &first->s_wr); 727 if (ret) { 728 printk(KERN_WARNING "RDS/IB: ib_post_send to %pI4 " 729 "returned %d\n", &conn->c_faddr, ret); 730 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 731 rds_ib_sub_signaled(ic, nr_sig); 732 if (prev->s_op) { 733 ic->i_data_op = prev->s_op; 734 prev->s_op = NULL; 735 } 736 737 rds_ib_conn_error(ic->conn, "ib_post_send failed\n"); 738 goto out; 739 } 740 741 ret = bytes_sent; 742 out: 743 BUG_ON(adv_credits); 744 return ret; 745 } 746 747 /* 748 * Issue atomic operation. 749 * A simplified version of the rdma case, we always map 1 SG, and 750 * only 8 bytes, for the return value from the atomic operation. 751 */ 752 int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op) 753 { 754 struct rds_ib_connection *ic = conn->c_transport_data; 755 struct rds_ib_send_work *send = NULL; 756 struct ib_send_wr *failed_wr; 757 struct rds_ib_device *rds_ibdev; 758 u32 pos; 759 u32 work_alloc; 760 int ret; 761 int nr_sig = 0; 762 763 rds_ibdev = ib_get_client_data(ic->i_cm_id->device, &rds_ib_client); 764 765 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos); 766 if (work_alloc != 1) { 767 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 768 rds_ib_stats_inc(s_ib_tx_ring_full); 769 ret = -ENOMEM; 770 goto out; 771 } 772 773 /* address of send request in ring */ 774 send = &ic->i_sends[pos]; 775 send->s_queued = jiffies; 776 777 if (op->op_type == RDS_ATOMIC_TYPE_CSWP) { 778 send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP; 779 send->s_atomic_wr.compare_add = op->op_m_cswp.compare; 780 send->s_atomic_wr.swap = op->op_m_cswp.swap; 781 send->s_atomic_wr.compare_add_mask = op->op_m_cswp.compare_mask; 782 send->s_atomic_wr.swap_mask = op->op_m_cswp.swap_mask; 783 } else { /* FADD */ 784 send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD; 785 send->s_atomic_wr.compare_add = op->op_m_fadd.add; 786 send->s_atomic_wr.swap = 0; 787 send->s_atomic_wr.compare_add_mask = op->op_m_fadd.nocarry_mask; 788 send->s_atomic_wr.swap_mask = 0; 789 } 790 nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify); 791 send->s_atomic_wr.wr.num_sge = 1; 792 send->s_atomic_wr.wr.next = NULL; 793 send->s_atomic_wr.remote_addr = op->op_remote_addr; 794 send->s_atomic_wr.rkey = op->op_rkey; 795 send->s_op = op; 796 rds_message_addref(container_of(send->s_op, struct rds_message, atomic)); 797 798 /* map 8 byte retval buffer to the device */ 799 ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE); 800 rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret); 801 if (ret != 1) { 802 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 803 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); 804 ret = -ENOMEM; /* XXX ? */ 805 goto out; 806 } 807 808 /* Convert our struct scatterlist to struct ib_sge */ 809 send->s_sge[0].addr = ib_sg_dma_address(ic->i_cm_id->device, op->op_sg); 810 send->s_sge[0].length = ib_sg_dma_len(ic->i_cm_id->device, op->op_sg); 811 send->s_sge[0].lkey = ic->i_pd->local_dma_lkey; 812 813 rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr, 814 send->s_sge[0].addr, send->s_sge[0].length); 815 816 if (nr_sig) 817 atomic_add(nr_sig, &ic->i_signaled_sends); 818 819 failed_wr = &send->s_atomic_wr.wr; 820 ret = ib_post_send(ic->i_cm_id->qp, &send->s_atomic_wr.wr, &failed_wr); 821 rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic, 822 send, &send->s_atomic_wr, ret, failed_wr); 823 BUG_ON(failed_wr != &send->s_atomic_wr.wr); 824 if (ret) { 825 printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI4 " 826 "returned %d\n", &conn->c_faddr, ret); 827 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 828 rds_ib_sub_signaled(ic, nr_sig); 829 goto out; 830 } 831 832 if (unlikely(failed_wr != &send->s_atomic_wr.wr)) { 833 printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret); 834 BUG_ON(failed_wr != &send->s_atomic_wr.wr); 835 } 836 837 out: 838 return ret; 839 } 840 841 int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op) 842 { 843 struct rds_ib_connection *ic = conn->c_transport_data; 844 struct rds_ib_send_work *send = NULL; 845 struct rds_ib_send_work *first; 846 struct rds_ib_send_work *prev; 847 struct ib_send_wr *failed_wr; 848 struct scatterlist *scat; 849 unsigned long len; 850 u64 remote_addr = op->op_remote_addr; 851 u32 max_sge = ic->rds_ibdev->max_sge; 852 u32 pos; 853 u32 work_alloc; 854 u32 i; 855 u32 j; 856 int sent; 857 int ret; 858 int num_sge; 859 int nr_sig = 0; 860 861 /* map the op the first time we see it */ 862 if (!op->op_mapped) { 863 op->op_count = ib_dma_map_sg(ic->i_cm_id->device, 864 op->op_sg, op->op_nents, (op->op_write) ? 865 DMA_TO_DEVICE : DMA_FROM_DEVICE); 866 rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count); 867 if (op->op_count == 0) { 868 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); 869 ret = -ENOMEM; /* XXX ? */ 870 goto out; 871 } 872 873 op->op_mapped = 1; 874 } 875 876 /* 877 * Instead of knowing how to return a partial rdma read/write we insist that there 878 * be enough work requests to send the entire message. 879 */ 880 i = ceil(op->op_count, max_sge); 881 882 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos); 883 if (work_alloc != i) { 884 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 885 rds_ib_stats_inc(s_ib_tx_ring_full); 886 ret = -ENOMEM; 887 goto out; 888 } 889 890 send = &ic->i_sends[pos]; 891 first = send; 892 prev = NULL; 893 scat = &op->op_sg[0]; 894 sent = 0; 895 num_sge = op->op_count; 896 897 for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) { 898 send->s_wr.send_flags = 0; 899 send->s_queued = jiffies; 900 send->s_op = NULL; 901 902 nr_sig += rds_ib_set_wr_signal_state(ic, send, op->op_notify); 903 904 send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ; 905 send->s_rdma_wr.remote_addr = remote_addr; 906 send->s_rdma_wr.rkey = op->op_rkey; 907 908 if (num_sge > max_sge) { 909 send->s_rdma_wr.wr.num_sge = max_sge; 910 num_sge -= max_sge; 911 } else { 912 send->s_rdma_wr.wr.num_sge = num_sge; 913 } 914 915 send->s_rdma_wr.wr.next = NULL; 916 917 if (prev) 918 prev->s_rdma_wr.wr.next = &send->s_rdma_wr.wr; 919 920 for (j = 0; j < send->s_rdma_wr.wr.num_sge && 921 scat != &op->op_sg[op->op_count]; j++) { 922 len = ib_sg_dma_len(ic->i_cm_id->device, scat); 923 send->s_sge[j].addr = 924 ib_sg_dma_address(ic->i_cm_id->device, scat); 925 send->s_sge[j].length = len; 926 send->s_sge[j].lkey = ic->i_pd->local_dma_lkey; 927 928 sent += len; 929 rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr); 930 931 remote_addr += len; 932 scat++; 933 } 934 935 rdsdebug("send %p wr %p num_sge %u next %p\n", send, 936 &send->s_rdma_wr.wr, 937 send->s_rdma_wr.wr.num_sge, 938 send->s_rdma_wr.wr.next); 939 940 prev = send; 941 if (++send == &ic->i_sends[ic->i_send_ring.w_nr]) 942 send = ic->i_sends; 943 } 944 945 /* give a reference to the last op */ 946 if (scat == &op->op_sg[op->op_count]) { 947 prev->s_op = op; 948 rds_message_addref(container_of(op, struct rds_message, rdma)); 949 } 950 951 if (i < work_alloc) { 952 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i); 953 work_alloc = i; 954 } 955 956 if (nr_sig) 957 atomic_add(nr_sig, &ic->i_signaled_sends); 958 959 failed_wr = &first->s_rdma_wr.wr; 960 ret = ib_post_send(ic->i_cm_id->qp, &first->s_rdma_wr.wr, &failed_wr); 961 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, 962 first, &first->s_rdma_wr.wr, ret, failed_wr); 963 BUG_ON(failed_wr != &first->s_rdma_wr.wr); 964 if (ret) { 965 printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI4 " 966 "returned %d\n", &conn->c_faddr, ret); 967 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 968 rds_ib_sub_signaled(ic, nr_sig); 969 goto out; 970 } 971 972 if (unlikely(failed_wr != &first->s_rdma_wr.wr)) { 973 printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret); 974 BUG_ON(failed_wr != &first->s_rdma_wr.wr); 975 } 976 977 978 out: 979 return ret; 980 } 981 982 void rds_ib_xmit_complete(struct rds_connection *conn) 983 { 984 struct rds_ib_connection *ic = conn->c_transport_data; 985 986 /* We may have a pending ACK or window update we were unable 987 * to send previously (due to flow control). Try again. */ 988 rds_ib_attempt_ack(ic); 989 } 990