xref: /linux/net/rds/ib_send.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/device.h>
36 #include <linux/dmapool.h>
37 #include <linux/ratelimit.h>
38 
39 #include "rds_single_path.h"
40 #include "rds.h"
41 #include "ib.h"
42 #include "ib_mr.h"
43 
44 /*
45  * Convert IB-specific error message to RDS error message and call core
46  * completion handler.
47  */
48 static void rds_ib_send_complete(struct rds_message *rm,
49 				 int wc_status,
50 				 void (*complete)(struct rds_message *rm, int status))
51 {
52 	int notify_status;
53 
54 	switch (wc_status) {
55 	case IB_WC_WR_FLUSH_ERR:
56 		return;
57 
58 	case IB_WC_SUCCESS:
59 		notify_status = RDS_RDMA_SUCCESS;
60 		break;
61 
62 	case IB_WC_REM_ACCESS_ERR:
63 		notify_status = RDS_RDMA_REMOTE_ERROR;
64 		break;
65 
66 	default:
67 		notify_status = RDS_RDMA_OTHER_ERROR;
68 		break;
69 	}
70 	complete(rm, notify_status);
71 }
72 
73 static void rds_ib_send_unmap_data(struct rds_ib_connection *ic,
74 				   struct rm_data_op *op,
75 				   int wc_status)
76 {
77 	if (op->op_nents)
78 		ib_dma_unmap_sg(ic->i_cm_id->device,
79 				op->op_sg, op->op_nents,
80 				DMA_TO_DEVICE);
81 }
82 
83 static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
84 				   struct rm_rdma_op *op,
85 				   int wc_status)
86 {
87 	if (op->op_mapped) {
88 		ib_dma_unmap_sg(ic->i_cm_id->device,
89 				op->op_sg, op->op_nents,
90 				op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
91 		op->op_mapped = 0;
92 	}
93 
94 	/* If the user asked for a completion notification on this
95 	 * message, we can implement three different semantics:
96 	 *  1.	Notify when we received the ACK on the RDS message
97 	 *	that was queued with the RDMA. This provides reliable
98 	 *	notification of RDMA status at the expense of a one-way
99 	 *	packet delay.
100 	 *  2.	Notify when the IB stack gives us the completion event for
101 	 *	the RDMA operation.
102 	 *  3.	Notify when the IB stack gives us the completion event for
103 	 *	the accompanying RDS messages.
104 	 * Here, we implement approach #3. To implement approach #2,
105 	 * we would need to take an event for the rdma WR. To implement #1,
106 	 * don't call rds_rdma_send_complete at all, and fall back to the notify
107 	 * handling in the ACK processing code.
108 	 *
109 	 * Note: There's no need to explicitly sync any RDMA buffers using
110 	 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
111 	 * operation itself unmapped the RDMA buffers, which takes care
112 	 * of synching.
113 	 */
114 	rds_ib_send_complete(container_of(op, struct rds_message, rdma),
115 			     wc_status, rds_rdma_send_complete);
116 
117 	if (op->op_write)
118 		rds_stats_add(s_send_rdma_bytes, op->op_bytes);
119 	else
120 		rds_stats_add(s_recv_rdma_bytes, op->op_bytes);
121 }
122 
123 static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic,
124 				     struct rm_atomic_op *op,
125 				     int wc_status)
126 {
127 	/* unmap atomic recvbuf */
128 	if (op->op_mapped) {
129 		ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1,
130 				DMA_FROM_DEVICE);
131 		op->op_mapped = 0;
132 	}
133 
134 	rds_ib_send_complete(container_of(op, struct rds_message, atomic),
135 			     wc_status, rds_atomic_send_complete);
136 
137 	if (op->op_type == RDS_ATOMIC_TYPE_CSWP)
138 		rds_ib_stats_inc(s_ib_atomic_cswp);
139 	else
140 		rds_ib_stats_inc(s_ib_atomic_fadd);
141 }
142 
143 /*
144  * Unmap the resources associated with a struct send_work.
145  *
146  * Returns the rm for no good reason other than it is unobtainable
147  * other than by switching on wr.opcode, currently, and the caller,
148  * the event handler, needs it.
149  */
150 static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic,
151 						struct rds_ib_send_work *send,
152 						int wc_status)
153 {
154 	struct rds_message *rm = NULL;
155 
156 	/* In the error case, wc.opcode sometimes contains garbage */
157 	switch (send->s_wr.opcode) {
158 	case IB_WR_SEND:
159 		if (send->s_op) {
160 			rm = container_of(send->s_op, struct rds_message, data);
161 			rds_ib_send_unmap_data(ic, send->s_op, wc_status);
162 		}
163 		break;
164 	case IB_WR_RDMA_WRITE:
165 	case IB_WR_RDMA_READ:
166 		if (send->s_op) {
167 			rm = container_of(send->s_op, struct rds_message, rdma);
168 			rds_ib_send_unmap_rdma(ic, send->s_op, wc_status);
169 		}
170 		break;
171 	case IB_WR_ATOMIC_FETCH_AND_ADD:
172 	case IB_WR_ATOMIC_CMP_AND_SWP:
173 		if (send->s_op) {
174 			rm = container_of(send->s_op, struct rds_message, atomic);
175 			rds_ib_send_unmap_atomic(ic, send->s_op, wc_status);
176 		}
177 		break;
178 	default:
179 		printk_ratelimited(KERN_NOTICE
180 			       "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
181 			       __func__, send->s_wr.opcode);
182 		break;
183 	}
184 
185 	send->s_wr.opcode = 0xdead;
186 
187 	return rm;
188 }
189 
190 void rds_ib_send_init_ring(struct rds_ib_connection *ic)
191 {
192 	struct rds_ib_send_work *send;
193 	u32 i;
194 
195 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
196 		struct ib_sge *sge;
197 
198 		send->s_op = NULL;
199 
200 		send->s_wr.wr_id = i;
201 		send->s_wr.sg_list = send->s_sge;
202 		send->s_wr.ex.imm_data = 0;
203 
204 		sge = &send->s_sge[0];
205 		sge->addr = ic->i_send_hdrs_dma[i];
206 
207 		sge->length = sizeof(struct rds_header);
208 		sge->lkey = ic->i_pd->local_dma_lkey;
209 
210 		send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
211 	}
212 }
213 
214 void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
215 {
216 	struct rds_ib_send_work *send;
217 	u32 i;
218 
219 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
220 		if (send->s_op && send->s_wr.opcode != 0xdead)
221 			rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR);
222 	}
223 }
224 
225 /*
226  * The only fast path caller always has a non-zero nr, so we don't
227  * bother testing nr before performing the atomic sub.
228  */
229 static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr)
230 {
231 	if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) &&
232 	    waitqueue_active(&rds_ib_ring_empty_wait))
233 		wake_up(&rds_ib_ring_empty_wait);
234 	BUG_ON(atomic_read(&ic->i_signaled_sends) < 0);
235 }
236 
237 /*
238  * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
239  * operations performed in the send path.  As the sender allocs and potentially
240  * unallocs the next free entry in the ring it doesn't alter which is
241  * the next to be freed, which is what this is concerned with.
242  */
243 void rds_ib_send_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc)
244 {
245 	struct rds_message *rm = NULL;
246 	struct rds_connection *conn = ic->conn;
247 	struct rds_ib_send_work *send;
248 	u32 completed;
249 	u32 oldest;
250 	u32 i = 0;
251 	int nr_sig = 0;
252 
253 
254 	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
255 		 (unsigned long long)wc->wr_id, wc->status,
256 		 ib_wc_status_msg(wc->status), wc->byte_len,
257 		 be32_to_cpu(wc->ex.imm_data));
258 	rds_ib_stats_inc(s_ib_tx_cq_event);
259 
260 	if (wc->wr_id == RDS_IB_ACK_WR_ID) {
261 		if (time_after(jiffies, ic->i_ack_queued + HZ / 2))
262 			rds_ib_stats_inc(s_ib_tx_stalled);
263 		rds_ib_ack_send_complete(ic);
264 		return;
265 	}
266 
267 	oldest = rds_ib_ring_oldest(&ic->i_send_ring);
268 
269 	completed = rds_ib_ring_completed(&ic->i_send_ring, wc->wr_id, oldest);
270 
271 	for (i = 0; i < completed; i++) {
272 		send = &ic->i_sends[oldest];
273 		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
274 			nr_sig++;
275 
276 		rm = rds_ib_send_unmap_op(ic, send, wc->status);
277 
278 		if (time_after(jiffies, send->s_queued + HZ / 2))
279 			rds_ib_stats_inc(s_ib_tx_stalled);
280 
281 		if (send->s_op) {
282 			if (send->s_op == rm->m_final_op) {
283 				/* If anyone waited for this message to get
284 				 * flushed out, wake them up now
285 				 */
286 				rds_message_unmapped(rm);
287 			}
288 			rds_message_put(rm);
289 			send->s_op = NULL;
290 		}
291 
292 		oldest = (oldest + 1) % ic->i_send_ring.w_nr;
293 	}
294 
295 	rds_ib_ring_free(&ic->i_send_ring, completed);
296 	rds_ib_sub_signaled(ic, nr_sig);
297 	nr_sig = 0;
298 
299 	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
300 	    test_bit(0, &conn->c_map_queued))
301 		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
302 
303 	/* We expect errors as the qp is drained during shutdown */
304 	if (wc->status != IB_WC_SUCCESS && rds_conn_up(conn)) {
305 		rds_ib_conn_error(conn, "send completion on <%pI6c,%pI6c,%d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
306 				  &conn->c_laddr, &conn->c_faddr,
307 				  conn->c_tos, wc->status,
308 				  ib_wc_status_msg(wc->status), wc->vendor_err);
309 	}
310 }
311 
312 /*
313  * This is the main function for allocating credits when sending
314  * messages.
315  *
316  * Conceptually, we have two counters:
317  *  -	send credits: this tells us how many WRs we're allowed
318  *	to submit without overruning the receiver's queue. For
319  *	each SEND WR we post, we decrement this by one.
320  *
321  *  -	posted credits: this tells us how many WRs we recently
322  *	posted to the receive queue. This value is transferred
323  *	to the peer as a "credit update" in a RDS header field.
324  *	Every time we transmit credits to the peer, we subtract
325  *	the amount of transferred credits from this counter.
326  *
327  * It is essential that we avoid situations where both sides have
328  * exhausted their send credits, and are unable to send new credits
329  * to the peer. We achieve this by requiring that we send at least
330  * one credit update to the peer before exhausting our credits.
331  * When new credits arrive, we subtract one credit that is withheld
332  * until we've posted new buffers and are ready to transmit these
333  * credits (see rds_ib_send_add_credits below).
334  *
335  * The RDS send code is essentially single-threaded; rds_send_xmit
336  * sets RDS_IN_XMIT to ensure exclusive access to the send ring.
337  * However, the ACK sending code is independent and can race with
338  * message SENDs.
339  *
340  * In the send path, we need to update the counters for send credits
341  * and the counter of posted buffers atomically - when we use the
342  * last available credit, we cannot allow another thread to race us
343  * and grab the posted credits counter.  Hence, we have to use a
344  * spinlock to protect the credit counter, or use atomics.
345  *
346  * Spinlocks shared between the send and the receive path are bad,
347  * because they create unnecessary delays. An early implementation
348  * using a spinlock showed a 5% degradation in throughput at some
349  * loads.
350  *
351  * This implementation avoids spinlocks completely, putting both
352  * counters into a single atomic, and updating that atomic using
353  * atomic_add (in the receive path, when receiving fresh credits),
354  * and using atomic_cmpxchg when updating the two counters.
355  */
356 int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
357 			     u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
358 {
359 	unsigned int avail, posted, got = 0, advertise;
360 	long oldval, newval;
361 
362 	*adv_credits = 0;
363 	if (!ic->i_flowctl)
364 		return wanted;
365 
366 try_again:
367 	advertise = 0;
368 	oldval = newval = atomic_read(&ic->i_credits);
369 	posted = IB_GET_POST_CREDITS(oldval);
370 	avail = IB_GET_SEND_CREDITS(oldval);
371 
372 	rdsdebug("wanted=%u credits=%u posted=%u\n",
373 			wanted, avail, posted);
374 
375 	/* The last credit must be used to send a credit update. */
376 	if (avail && !posted)
377 		avail--;
378 
379 	if (avail < wanted) {
380 		struct rds_connection *conn = ic->i_cm_id->context;
381 
382 		/* Oops, there aren't that many credits left! */
383 		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
384 		got = avail;
385 	} else {
386 		/* Sometimes you get what you want, lalala. */
387 		got = wanted;
388 	}
389 	newval -= IB_SET_SEND_CREDITS(got);
390 
391 	/*
392 	 * If need_posted is non-zero, then the caller wants
393 	 * the posted regardless of whether any send credits are
394 	 * available.
395 	 */
396 	if (posted && (got || need_posted)) {
397 		advertise = min_t(unsigned int, posted, max_posted);
398 		newval -= IB_SET_POST_CREDITS(advertise);
399 	}
400 
401 	/* Finally bill everything */
402 	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
403 		goto try_again;
404 
405 	*adv_credits = advertise;
406 	return got;
407 }
408 
409 void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
410 {
411 	struct rds_ib_connection *ic = conn->c_transport_data;
412 
413 	if (credits == 0)
414 		return;
415 
416 	rdsdebug("credits=%u current=%u%s\n",
417 			credits,
418 			IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
419 			test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
420 
421 	atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
422 	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
423 		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
424 
425 	WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
426 
427 	rds_ib_stats_inc(s_ib_rx_credit_updates);
428 }
429 
430 void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
431 {
432 	struct rds_ib_connection *ic = conn->c_transport_data;
433 
434 	if (posted == 0)
435 		return;
436 
437 	atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
438 
439 	/* Decide whether to send an update to the peer now.
440 	 * If we would send a credit update for every single buffer we
441 	 * post, we would end up with an ACK storm (ACK arrives,
442 	 * consumes buffer, we refill the ring, send ACK to remote
443 	 * advertising the newly posted buffer... ad inf)
444 	 *
445 	 * Performance pretty much depends on how often we send
446 	 * credit updates - too frequent updates mean lots of ACKs.
447 	 * Too infrequent updates, and the peer will run out of
448 	 * credits and has to throttle.
449 	 * For the time being, 16 seems to be a good compromise.
450 	 */
451 	if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
452 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
453 }
454 
455 static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic,
456 					     struct rds_ib_send_work *send,
457 					     bool notify)
458 {
459 	/*
460 	 * We want to delay signaling completions just enough to get
461 	 * the batching benefits but not so much that we create dead time
462 	 * on the wire.
463 	 */
464 	if (ic->i_unsignaled_wrs-- == 0 || notify) {
465 		ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
466 		send->s_wr.send_flags |= IB_SEND_SIGNALED;
467 		return 1;
468 	}
469 	return 0;
470 }
471 
472 /*
473  * This can be called multiple times for a given message.  The first time
474  * we see a message we map its scatterlist into the IB device so that
475  * we can provide that mapped address to the IB scatter gather entries
476  * in the IB work requests.  We translate the scatterlist into a series
477  * of work requests that fragment the message.  These work requests complete
478  * in order so we pass ownership of the message to the completion handler
479  * once we send the final fragment.
480  *
481  * The RDS core uses the c_send_lock to only enter this function once
482  * per connection.  This makes sure that the tx ring alloc/unalloc pairs
483  * don't get out of sync and confuse the ring.
484  */
485 int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
486 		unsigned int hdr_off, unsigned int sg, unsigned int off)
487 {
488 	struct rds_ib_connection *ic = conn->c_transport_data;
489 	struct ib_device *dev = ic->i_cm_id->device;
490 	struct rds_ib_send_work *send = NULL;
491 	struct rds_ib_send_work *first;
492 	struct rds_ib_send_work *prev;
493 	const struct ib_send_wr *failed_wr;
494 	struct scatterlist *scat;
495 	u32 pos;
496 	u32 i;
497 	u32 work_alloc;
498 	u32 credit_alloc = 0;
499 	u32 posted;
500 	u32 adv_credits = 0;
501 	int send_flags = 0;
502 	int bytes_sent = 0;
503 	int ret;
504 	int flow_controlled = 0;
505 	int nr_sig = 0;
506 
507 	BUG_ON(off % RDS_FRAG_SIZE);
508 	BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
509 
510 	/* Do not send cong updates to IB loopback */
511 	if (conn->c_loopback
512 	    && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
513 		rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
514 		scat = &rm->data.op_sg[sg];
515 		ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length);
516 		return sizeof(struct rds_header) + ret;
517 	}
518 
519 	/* FIXME we may overallocate here */
520 	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
521 		i = 1;
522 	else
523 		i = DIV_ROUND_UP(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
524 
525 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
526 	if (work_alloc == 0) {
527 		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
528 		rds_ib_stats_inc(s_ib_tx_ring_full);
529 		ret = -ENOMEM;
530 		goto out;
531 	}
532 
533 	if (ic->i_flowctl) {
534 		credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
535 		adv_credits += posted;
536 		if (credit_alloc < work_alloc) {
537 			rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
538 			work_alloc = credit_alloc;
539 			flow_controlled = 1;
540 		}
541 		if (work_alloc == 0) {
542 			set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
543 			rds_ib_stats_inc(s_ib_tx_throttle);
544 			ret = -ENOMEM;
545 			goto out;
546 		}
547 	}
548 
549 	/* map the message the first time we see it */
550 	if (!ic->i_data_op) {
551 		if (rm->data.op_nents) {
552 			rm->data.op_count = ib_dma_map_sg(dev,
553 							  rm->data.op_sg,
554 							  rm->data.op_nents,
555 							  DMA_TO_DEVICE);
556 			rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
557 			if (rm->data.op_count == 0) {
558 				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
559 				rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
560 				ret = -ENOMEM; /* XXX ? */
561 				goto out;
562 			}
563 		} else {
564 			rm->data.op_count = 0;
565 		}
566 
567 		rds_message_addref(rm);
568 		rm->data.op_dmasg = 0;
569 		rm->data.op_dmaoff = 0;
570 		ic->i_data_op = &rm->data;
571 
572 		/* Finalize the header */
573 		if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
574 			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
575 		if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
576 			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
577 
578 		/* If it has a RDMA op, tell the peer we did it. This is
579 		 * used by the peer to release use-once RDMA MRs. */
580 		if (rm->rdma.op_active) {
581 			struct rds_ext_header_rdma ext_hdr;
582 
583 			ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
584 			rds_message_add_extension(&rm->m_inc.i_hdr,
585 					RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
586 		}
587 		if (rm->m_rdma_cookie) {
588 			rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
589 					rds_rdma_cookie_key(rm->m_rdma_cookie),
590 					rds_rdma_cookie_offset(rm->m_rdma_cookie));
591 		}
592 
593 		/* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
594 		 * we should not do this unless we have a chance of at least
595 		 * sticking the header into the send ring. Which is why we
596 		 * should call rds_ib_ring_alloc first. */
597 		rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
598 		rds_message_make_checksum(&rm->m_inc.i_hdr);
599 
600 		/*
601 		 * Update adv_credits since we reset the ACK_REQUIRED bit.
602 		 */
603 		if (ic->i_flowctl) {
604 			rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
605 			adv_credits += posted;
606 			BUG_ON(adv_credits > 255);
607 		}
608 	}
609 
610 	/* Sometimes you want to put a fence between an RDMA
611 	 * READ and the following SEND.
612 	 * We could either do this all the time
613 	 * or when requested by the user. Right now, we let
614 	 * the application choose.
615 	 */
616 	if (rm->rdma.op_active && rm->rdma.op_fence)
617 		send_flags = IB_SEND_FENCE;
618 
619 	/* Each frag gets a header. Msgs may be 0 bytes */
620 	send = &ic->i_sends[pos];
621 	first = send;
622 	prev = NULL;
623 	scat = &ic->i_data_op->op_sg[rm->data.op_dmasg];
624 	i = 0;
625 	do {
626 		unsigned int len = 0;
627 
628 		/* Set up the header */
629 		send->s_wr.send_flags = send_flags;
630 		send->s_wr.opcode = IB_WR_SEND;
631 		send->s_wr.num_sge = 1;
632 		send->s_wr.next = NULL;
633 		send->s_queued = jiffies;
634 		send->s_op = NULL;
635 
636 		send->s_sge[0].addr = ic->i_send_hdrs_dma[pos];
637 
638 		send->s_sge[0].length = sizeof(struct rds_header);
639 		send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
640 
641 		ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev,
642 					   ic->i_send_hdrs_dma[pos],
643 					   sizeof(struct rds_header),
644 					   DMA_TO_DEVICE);
645 		memcpy(ic->i_send_hdrs[pos], &rm->m_inc.i_hdr,
646 		       sizeof(struct rds_header));
647 
648 
649 		/* Set up the data, if present */
650 		if (i < work_alloc
651 		    && scat != &rm->data.op_sg[rm->data.op_count]) {
652 			len = min(RDS_FRAG_SIZE,
653 				  sg_dma_len(scat) - rm->data.op_dmaoff);
654 			send->s_wr.num_sge = 2;
655 
656 			send->s_sge[1].addr = sg_dma_address(scat);
657 			send->s_sge[1].addr += rm->data.op_dmaoff;
658 			send->s_sge[1].length = len;
659 			send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
660 
661 			bytes_sent += len;
662 			rm->data.op_dmaoff += len;
663 			if (rm->data.op_dmaoff == sg_dma_len(scat)) {
664 				scat++;
665 				rm->data.op_dmasg++;
666 				rm->data.op_dmaoff = 0;
667 			}
668 		}
669 
670 		rds_ib_set_wr_signal_state(ic, send, false);
671 
672 		/*
673 		 * Always signal the last one if we're stopping due to flow control.
674 		 */
675 		if (ic->i_flowctl && flow_controlled && i == (work_alloc - 1)) {
676 			rds_ib_set_wr_signal_state(ic, send, true);
677 			send->s_wr.send_flags |= IB_SEND_SOLICITED;
678 		}
679 
680 		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
681 			nr_sig++;
682 
683 		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
684 			 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
685 
686 		if (ic->i_flowctl && adv_credits) {
687 			struct rds_header *hdr = ic->i_send_hdrs[pos];
688 
689 			/* add credit and redo the header checksum */
690 			hdr->h_credit = adv_credits;
691 			rds_message_make_checksum(hdr);
692 			adv_credits = 0;
693 			rds_ib_stats_inc(s_ib_tx_credit_updates);
694 		}
695 		ib_dma_sync_single_for_device(ic->rds_ibdev->dev,
696 					      ic->i_send_hdrs_dma[pos],
697 					      sizeof(struct rds_header),
698 					      DMA_TO_DEVICE);
699 
700 		if (prev)
701 			prev->s_wr.next = &send->s_wr;
702 		prev = send;
703 
704 		pos = (pos + 1) % ic->i_send_ring.w_nr;
705 		send = &ic->i_sends[pos];
706 		i++;
707 
708 	} while (i < work_alloc
709 		 && scat != &rm->data.op_sg[rm->data.op_count]);
710 
711 	/* Account the RDS header in the number of bytes we sent, but just once.
712 	 * The caller has no concept of fragmentation. */
713 	if (hdr_off == 0)
714 		bytes_sent += sizeof(struct rds_header);
715 
716 	/* if we finished the message then send completion owns it */
717 	if (scat == &rm->data.op_sg[rm->data.op_count]) {
718 		prev->s_op = ic->i_data_op;
719 		prev->s_wr.send_flags |= IB_SEND_SOLICITED;
720 		if (!(prev->s_wr.send_flags & IB_SEND_SIGNALED))
721 			nr_sig += rds_ib_set_wr_signal_state(ic, prev, true);
722 		ic->i_data_op = NULL;
723 	}
724 
725 	/* Put back wrs & credits we didn't use */
726 	if (i < work_alloc) {
727 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
728 		work_alloc = i;
729 	}
730 	if (ic->i_flowctl && i < credit_alloc)
731 		rds_ib_send_add_credits(conn, credit_alloc - i);
732 
733 	if (nr_sig)
734 		atomic_add(nr_sig, &ic->i_signaled_sends);
735 
736 	/* XXX need to worry about failed_wr and partial sends. */
737 	failed_wr = &first->s_wr;
738 	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
739 	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
740 		 first, &first->s_wr, ret, failed_wr);
741 	BUG_ON(failed_wr != &first->s_wr);
742 	if (ret) {
743 		printk(KERN_WARNING "RDS/IB: ib_post_send to %pI6c "
744 		       "returned %d\n", &conn->c_faddr, ret);
745 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
746 		rds_ib_sub_signaled(ic, nr_sig);
747 		if (prev->s_op) {
748 			ic->i_data_op = prev->s_op;
749 			prev->s_op = NULL;
750 		}
751 
752 		rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
753 		goto out;
754 	}
755 
756 	ret = bytes_sent;
757 out:
758 	BUG_ON(adv_credits);
759 	return ret;
760 }
761 
762 /*
763  * Issue atomic operation.
764  * A simplified version of the rdma case, we always map 1 SG, and
765  * only 8 bytes, for the return value from the atomic operation.
766  */
767 int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op)
768 {
769 	struct rds_ib_connection *ic = conn->c_transport_data;
770 	struct rds_ib_send_work *send = NULL;
771 	const struct ib_send_wr *failed_wr;
772 	u32 pos;
773 	u32 work_alloc;
774 	int ret;
775 	int nr_sig = 0;
776 
777 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos);
778 	if (work_alloc != 1) {
779 		rds_ib_stats_inc(s_ib_tx_ring_full);
780 		ret = -ENOMEM;
781 		goto out;
782 	}
783 
784 	/* address of send request in ring */
785 	send = &ic->i_sends[pos];
786 	send->s_queued = jiffies;
787 
788 	if (op->op_type == RDS_ATOMIC_TYPE_CSWP) {
789 		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP;
790 		send->s_atomic_wr.compare_add = op->op_m_cswp.compare;
791 		send->s_atomic_wr.swap = op->op_m_cswp.swap;
792 		send->s_atomic_wr.compare_add_mask = op->op_m_cswp.compare_mask;
793 		send->s_atomic_wr.swap_mask = op->op_m_cswp.swap_mask;
794 	} else { /* FADD */
795 		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD;
796 		send->s_atomic_wr.compare_add = op->op_m_fadd.add;
797 		send->s_atomic_wr.swap = 0;
798 		send->s_atomic_wr.compare_add_mask = op->op_m_fadd.nocarry_mask;
799 		send->s_atomic_wr.swap_mask = 0;
800 	}
801 	send->s_wr.send_flags = 0;
802 	nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify);
803 	send->s_atomic_wr.wr.num_sge = 1;
804 	send->s_atomic_wr.wr.next = NULL;
805 	send->s_atomic_wr.remote_addr = op->op_remote_addr;
806 	send->s_atomic_wr.rkey = op->op_rkey;
807 	send->s_op = op;
808 	rds_message_addref(container_of(send->s_op, struct rds_message, atomic));
809 
810 	/* map 8 byte retval buffer to the device */
811 	ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE);
812 	rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret);
813 	if (ret != 1) {
814 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
815 		rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
816 		ret = -ENOMEM; /* XXX ? */
817 		goto out;
818 	}
819 
820 	/* Convert our struct scatterlist to struct ib_sge */
821 	send->s_sge[0].addr = sg_dma_address(op->op_sg);
822 	send->s_sge[0].length = sg_dma_len(op->op_sg);
823 	send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
824 
825 	rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr,
826 		 send->s_sge[0].addr, send->s_sge[0].length);
827 
828 	if (nr_sig)
829 		atomic_add(nr_sig, &ic->i_signaled_sends);
830 
831 	failed_wr = &send->s_atomic_wr.wr;
832 	ret = ib_post_send(ic->i_cm_id->qp, &send->s_atomic_wr.wr, &failed_wr);
833 	rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic,
834 		 send, &send->s_atomic_wr, ret, failed_wr);
835 	BUG_ON(failed_wr != &send->s_atomic_wr.wr);
836 	if (ret) {
837 		printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI6c "
838 		       "returned %d\n", &conn->c_faddr, ret);
839 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
840 		rds_ib_sub_signaled(ic, nr_sig);
841 		goto out;
842 	}
843 
844 	if (unlikely(failed_wr != &send->s_atomic_wr.wr)) {
845 		printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
846 		BUG_ON(failed_wr != &send->s_atomic_wr.wr);
847 	}
848 
849 out:
850 	return ret;
851 }
852 
853 int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
854 {
855 	struct rds_ib_connection *ic = conn->c_transport_data;
856 	struct rds_ib_send_work *send = NULL;
857 	struct rds_ib_send_work *first;
858 	struct rds_ib_send_work *prev;
859 	const struct ib_send_wr *failed_wr;
860 	struct scatterlist *scat;
861 	unsigned long len;
862 	u64 remote_addr = op->op_remote_addr;
863 	u32 max_sge = ic->rds_ibdev->max_sge;
864 	u32 pos;
865 	u32 work_alloc;
866 	u32 i;
867 	u32 j;
868 	int sent;
869 	int ret;
870 	int num_sge;
871 	int nr_sig = 0;
872 	u64 odp_addr = op->op_odp_addr;
873 	u32 odp_lkey = 0;
874 
875 	/* map the op the first time we see it */
876 	if (!op->op_odp_mr) {
877 		if (!op->op_mapped) {
878 			op->op_count =
879 				ib_dma_map_sg(ic->i_cm_id->device, op->op_sg,
880 					      op->op_nents,
881 					      (op->op_write) ? DMA_TO_DEVICE :
882 							       DMA_FROM_DEVICE);
883 			rdsdebug("ic %p mapping op %p: %d\n", ic, op,
884 				 op->op_count);
885 			if (op->op_count == 0) {
886 				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
887 				ret = -ENOMEM; /* XXX ? */
888 				goto out;
889 			}
890 			op->op_mapped = 1;
891 		}
892 	} else {
893 		op->op_count = op->op_nents;
894 		odp_lkey = rds_ib_get_lkey(op->op_odp_mr->r_trans_private);
895 	}
896 
897 	/*
898 	 * Instead of knowing how to return a partial rdma read/write we insist that there
899 	 * be enough work requests to send the entire message.
900 	 */
901 	i = DIV_ROUND_UP(op->op_count, max_sge);
902 
903 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
904 	if (work_alloc != i) {
905 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
906 		rds_ib_stats_inc(s_ib_tx_ring_full);
907 		ret = -ENOMEM;
908 		goto out;
909 	}
910 
911 	send = &ic->i_sends[pos];
912 	first = send;
913 	prev = NULL;
914 	scat = &op->op_sg[0];
915 	sent = 0;
916 	num_sge = op->op_count;
917 
918 	for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
919 		send->s_wr.send_flags = 0;
920 		send->s_queued = jiffies;
921 		send->s_op = NULL;
922 
923 		if (!op->op_notify)
924 			nr_sig += rds_ib_set_wr_signal_state(ic, send,
925 							     op->op_notify);
926 
927 		send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
928 		send->s_rdma_wr.remote_addr = remote_addr;
929 		send->s_rdma_wr.rkey = op->op_rkey;
930 
931 		if (num_sge > max_sge) {
932 			send->s_rdma_wr.wr.num_sge = max_sge;
933 			num_sge -= max_sge;
934 		} else {
935 			send->s_rdma_wr.wr.num_sge = num_sge;
936 		}
937 
938 		send->s_rdma_wr.wr.next = NULL;
939 
940 		if (prev)
941 			prev->s_rdma_wr.wr.next = &send->s_rdma_wr.wr;
942 
943 		for (j = 0; j < send->s_rdma_wr.wr.num_sge &&
944 		     scat != &op->op_sg[op->op_count]; j++) {
945 			len = sg_dma_len(scat);
946 			if (!op->op_odp_mr) {
947 				send->s_sge[j].addr = sg_dma_address(scat);
948 				send->s_sge[j].lkey = ic->i_pd->local_dma_lkey;
949 			} else {
950 				send->s_sge[j].addr = odp_addr;
951 				send->s_sge[j].lkey = odp_lkey;
952 			}
953 			send->s_sge[j].length = len;
954 
955 			sent += len;
956 			rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
957 
958 			remote_addr += len;
959 			odp_addr += len;
960 			scat++;
961 		}
962 
963 		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
964 			&send->s_rdma_wr.wr,
965 			send->s_rdma_wr.wr.num_sge,
966 			send->s_rdma_wr.wr.next);
967 
968 		prev = send;
969 		if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
970 			send = ic->i_sends;
971 	}
972 
973 	/* give a reference to the last op */
974 	if (scat == &op->op_sg[op->op_count]) {
975 		prev->s_op = op;
976 		rds_message_addref(container_of(op, struct rds_message, rdma));
977 	}
978 
979 	if (i < work_alloc) {
980 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
981 		work_alloc = i;
982 	}
983 
984 	if (nr_sig)
985 		atomic_add(nr_sig, &ic->i_signaled_sends);
986 
987 	failed_wr = &first->s_rdma_wr.wr;
988 	ret = ib_post_send(ic->i_cm_id->qp, &first->s_rdma_wr.wr, &failed_wr);
989 	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
990 		 first, &first->s_rdma_wr.wr, ret, failed_wr);
991 	BUG_ON(failed_wr != &first->s_rdma_wr.wr);
992 	if (ret) {
993 		printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI6c "
994 		       "returned %d\n", &conn->c_faddr, ret);
995 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
996 		rds_ib_sub_signaled(ic, nr_sig);
997 		goto out;
998 	}
999 
1000 	if (unlikely(failed_wr != &first->s_rdma_wr.wr)) {
1001 		printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
1002 		BUG_ON(failed_wr != &first->s_rdma_wr.wr);
1003 	}
1004 
1005 
1006 out:
1007 	return ret;
1008 }
1009 
1010 void rds_ib_xmit_path_complete(struct rds_conn_path *cp)
1011 {
1012 	struct rds_connection *conn = cp->cp_conn;
1013 	struct rds_ib_connection *ic = conn->c_transport_data;
1014 
1015 	/* We may have a pending ACK or window update we were unable
1016 	 * to send previously (due to flow control). Try again. */
1017 	rds_ib_attempt_ack(ic);
1018 }
1019