xref: /linux/net/rds/ib_recv.c (revision da1d9caf95def6f0320819cf941c9fd1069ba9e1)
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38 
39 #include "rds_single_path.h"
40 #include "rds.h"
41 #include "ib.h"
42 
43 static struct kmem_cache *rds_ib_incoming_slab;
44 static struct kmem_cache *rds_ib_frag_slab;
45 static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
46 
47 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
48 {
49 	struct rds_ib_recv_work *recv;
50 	u32 i;
51 
52 	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
53 		struct ib_sge *sge;
54 
55 		recv->r_ibinc = NULL;
56 		recv->r_frag = NULL;
57 
58 		recv->r_wr.next = NULL;
59 		recv->r_wr.wr_id = i;
60 		recv->r_wr.sg_list = recv->r_sge;
61 		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
62 
63 		sge = &recv->r_sge[0];
64 		sge->addr = ic->i_recv_hdrs_dma[i];
65 		sge->length = sizeof(struct rds_header);
66 		sge->lkey = ic->i_pd->local_dma_lkey;
67 
68 		sge = &recv->r_sge[1];
69 		sge->addr = 0;
70 		sge->length = RDS_FRAG_SIZE;
71 		sge->lkey = ic->i_pd->local_dma_lkey;
72 	}
73 }
74 
75 /*
76  * The entire 'from' list, including the from element itself, is put on
77  * to the tail of the 'to' list.
78  */
79 static void list_splice_entire_tail(struct list_head *from,
80 				    struct list_head *to)
81 {
82 	struct list_head *from_last = from->prev;
83 
84 	list_splice_tail(from_last, to);
85 	list_add_tail(from_last, to);
86 }
87 
88 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
89 {
90 	struct list_head *tmp;
91 
92 	tmp = xchg(&cache->xfer, NULL);
93 	if (tmp) {
94 		if (cache->ready)
95 			list_splice_entire_tail(tmp, cache->ready);
96 		else
97 			cache->ready = tmp;
98 	}
99 }
100 
101 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
102 {
103 	struct rds_ib_cache_head *head;
104 	int cpu;
105 
106 	cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
107 	if (!cache->percpu)
108 	       return -ENOMEM;
109 
110 	for_each_possible_cpu(cpu) {
111 		head = per_cpu_ptr(cache->percpu, cpu);
112 		head->first = NULL;
113 		head->count = 0;
114 	}
115 	cache->xfer = NULL;
116 	cache->ready = NULL;
117 
118 	return 0;
119 }
120 
121 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
122 {
123 	int ret;
124 
125 	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
126 	if (!ret) {
127 		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
128 		if (ret)
129 			free_percpu(ic->i_cache_incs.percpu);
130 	}
131 
132 	return ret;
133 }
134 
135 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
136 					  struct list_head *caller_list)
137 {
138 	struct rds_ib_cache_head *head;
139 	int cpu;
140 
141 	for_each_possible_cpu(cpu) {
142 		head = per_cpu_ptr(cache->percpu, cpu);
143 		if (head->first) {
144 			list_splice_entire_tail(head->first, caller_list);
145 			head->first = NULL;
146 		}
147 	}
148 
149 	if (cache->ready) {
150 		list_splice_entire_tail(cache->ready, caller_list);
151 		cache->ready = NULL;
152 	}
153 }
154 
155 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
156 {
157 	struct rds_ib_incoming *inc;
158 	struct rds_ib_incoming *inc_tmp;
159 	struct rds_page_frag *frag;
160 	struct rds_page_frag *frag_tmp;
161 	LIST_HEAD(list);
162 
163 	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
164 	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
165 	free_percpu(ic->i_cache_incs.percpu);
166 
167 	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
168 		list_del(&inc->ii_cache_entry);
169 		WARN_ON(!list_empty(&inc->ii_frags));
170 		kmem_cache_free(rds_ib_incoming_slab, inc);
171 		atomic_dec(&rds_ib_allocation);
172 	}
173 
174 	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
175 	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
176 	free_percpu(ic->i_cache_frags.percpu);
177 
178 	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
179 		list_del(&frag->f_cache_entry);
180 		WARN_ON(!list_empty(&frag->f_item));
181 		kmem_cache_free(rds_ib_frag_slab, frag);
182 	}
183 }
184 
185 /* fwd decl */
186 static void rds_ib_recv_cache_put(struct list_head *new_item,
187 				  struct rds_ib_refill_cache *cache);
188 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
189 
190 
191 /* Recycle frag and attached recv buffer f_sg */
192 static void rds_ib_frag_free(struct rds_ib_connection *ic,
193 			     struct rds_page_frag *frag)
194 {
195 	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
196 
197 	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
198 	atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
199 	rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
200 }
201 
202 /* Recycle inc after freeing attached frags */
203 void rds_ib_inc_free(struct rds_incoming *inc)
204 {
205 	struct rds_ib_incoming *ibinc;
206 	struct rds_page_frag *frag;
207 	struct rds_page_frag *pos;
208 	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
209 
210 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
211 
212 	/* Free attached frags */
213 	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
214 		list_del_init(&frag->f_item);
215 		rds_ib_frag_free(ic, frag);
216 	}
217 	BUG_ON(!list_empty(&ibinc->ii_frags));
218 
219 	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
220 	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
221 }
222 
223 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
224 				  struct rds_ib_recv_work *recv)
225 {
226 	if (recv->r_ibinc) {
227 		rds_inc_put(&recv->r_ibinc->ii_inc);
228 		recv->r_ibinc = NULL;
229 	}
230 	if (recv->r_frag) {
231 		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
232 		rds_ib_frag_free(ic, recv->r_frag);
233 		recv->r_frag = NULL;
234 	}
235 }
236 
237 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
238 {
239 	u32 i;
240 
241 	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
242 		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
243 }
244 
245 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
246 						     gfp_t slab_mask)
247 {
248 	struct rds_ib_incoming *ibinc;
249 	struct list_head *cache_item;
250 	int avail_allocs;
251 
252 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
253 	if (cache_item) {
254 		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
255 	} else {
256 		avail_allocs = atomic_add_unless(&rds_ib_allocation,
257 						 1, rds_ib_sysctl_max_recv_allocation);
258 		if (!avail_allocs) {
259 			rds_ib_stats_inc(s_ib_rx_alloc_limit);
260 			return NULL;
261 		}
262 		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
263 		if (!ibinc) {
264 			atomic_dec(&rds_ib_allocation);
265 			return NULL;
266 		}
267 		rds_ib_stats_inc(s_ib_rx_total_incs);
268 	}
269 	INIT_LIST_HEAD(&ibinc->ii_frags);
270 	rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
271 
272 	return ibinc;
273 }
274 
275 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
276 						    gfp_t slab_mask, gfp_t page_mask)
277 {
278 	struct rds_page_frag *frag;
279 	struct list_head *cache_item;
280 	int ret;
281 
282 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
283 	if (cache_item) {
284 		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
285 		atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
286 		rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
287 	} else {
288 		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
289 		if (!frag)
290 			return NULL;
291 
292 		sg_init_table(&frag->f_sg, 1);
293 		ret = rds_page_remainder_alloc(&frag->f_sg,
294 					       RDS_FRAG_SIZE, page_mask);
295 		if (ret) {
296 			kmem_cache_free(rds_ib_frag_slab, frag);
297 			return NULL;
298 		}
299 		rds_ib_stats_inc(s_ib_rx_total_frags);
300 	}
301 
302 	INIT_LIST_HEAD(&frag->f_item);
303 
304 	return frag;
305 }
306 
307 static int rds_ib_recv_refill_one(struct rds_connection *conn,
308 				  struct rds_ib_recv_work *recv, gfp_t gfp)
309 {
310 	struct rds_ib_connection *ic = conn->c_transport_data;
311 	struct ib_sge *sge;
312 	int ret = -ENOMEM;
313 	gfp_t slab_mask = gfp;
314 	gfp_t page_mask = gfp;
315 
316 	if (gfp & __GFP_DIRECT_RECLAIM) {
317 		slab_mask = GFP_KERNEL;
318 		page_mask = GFP_HIGHUSER;
319 	}
320 
321 	if (!ic->i_cache_incs.ready)
322 		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
323 	if (!ic->i_cache_frags.ready)
324 		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
325 
326 	/*
327 	 * ibinc was taken from recv if recv contained the start of a message.
328 	 * recvs that were continuations will still have this allocated.
329 	 */
330 	if (!recv->r_ibinc) {
331 		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
332 		if (!recv->r_ibinc)
333 			goto out;
334 	}
335 
336 	WARN_ON(recv->r_frag); /* leak! */
337 	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
338 	if (!recv->r_frag)
339 		goto out;
340 
341 	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
342 			    1, DMA_FROM_DEVICE);
343 	WARN_ON(ret != 1);
344 
345 	sge = &recv->r_sge[0];
346 	sge->addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
347 	sge->length = sizeof(struct rds_header);
348 
349 	sge = &recv->r_sge[1];
350 	sge->addr = sg_dma_address(&recv->r_frag->f_sg);
351 	sge->length = sg_dma_len(&recv->r_frag->f_sg);
352 
353 	ret = 0;
354 out:
355 	return ret;
356 }
357 
358 static int acquire_refill(struct rds_connection *conn)
359 {
360 	return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
361 }
362 
363 static void release_refill(struct rds_connection *conn)
364 {
365 	clear_bit(RDS_RECV_REFILL, &conn->c_flags);
366 
367 	/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
368 	 * hot path and finding waiters is very rare.  We don't want to walk
369 	 * the system-wide hashed waitqueue buckets in the fast path only to
370 	 * almost never find waiters.
371 	 */
372 	if (waitqueue_active(&conn->c_waitq))
373 		wake_up_all(&conn->c_waitq);
374 }
375 
376 /*
377  * This tries to allocate and post unused work requests after making sure that
378  * they have all the allocations they need to queue received fragments into
379  * sockets.
380  */
381 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
382 {
383 	struct rds_ib_connection *ic = conn->c_transport_data;
384 	struct rds_ib_recv_work *recv;
385 	unsigned int posted = 0;
386 	int ret = 0;
387 	bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
388 	bool must_wake = false;
389 	u32 pos;
390 
391 	/* the goal here is to just make sure that someone, somewhere
392 	 * is posting buffers.  If we can't get the refill lock,
393 	 * let them do their thing
394 	 */
395 	if (!acquire_refill(conn))
396 		return;
397 
398 	while ((prefill || rds_conn_up(conn)) &&
399 	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
400 		if (pos >= ic->i_recv_ring.w_nr) {
401 			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
402 					pos);
403 			break;
404 		}
405 
406 		recv = &ic->i_recvs[pos];
407 		ret = rds_ib_recv_refill_one(conn, recv, gfp);
408 		if (ret) {
409 			must_wake = true;
410 			break;
411 		}
412 
413 		rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
414 			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
415 			 (long)sg_dma_address(&recv->r_frag->f_sg));
416 
417 		/* XXX when can this fail? */
418 		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
419 		if (ret) {
420 			rds_ib_conn_error(conn, "recv post on "
421 			       "%pI6c returned %d, disconnecting and "
422 			       "reconnecting\n", &conn->c_faddr,
423 			       ret);
424 			break;
425 		}
426 
427 		posted++;
428 
429 		if ((posted > 128 && need_resched()) || posted > 8192) {
430 			must_wake = true;
431 			break;
432 		}
433 	}
434 
435 	/* We're doing flow control - update the window. */
436 	if (ic->i_flowctl && posted)
437 		rds_ib_advertise_credits(conn, posted);
438 
439 	if (ret)
440 		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
441 
442 	release_refill(conn);
443 
444 	/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
445 	 * in this case the ring being low is going to lead to more interrupts
446 	 * and we can safely let the softirq code take care of it unless the
447 	 * ring is completely empty.
448 	 *
449 	 * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
450 	 * we might have raced with the softirq code while we had the refill
451 	 * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
452 	 * if we should requeue.
453 	 */
454 	if (rds_conn_up(conn) &&
455 	    (must_wake ||
456 	    (can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
457 	    rds_ib_ring_empty(&ic->i_recv_ring))) {
458 		queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
459 	}
460 	if (can_wait)
461 		cond_resched();
462 }
463 
464 /*
465  * We want to recycle several types of recv allocations, like incs and frags.
466  * To use this, the *_free() function passes in the ptr to a list_head within
467  * the recyclee, as well as the cache to put it on.
468  *
469  * First, we put the memory on a percpu list. When this reaches a certain size,
470  * We move it to an intermediate non-percpu list in a lockless manner, with some
471  * xchg/compxchg wizardry.
472  *
473  * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
474  * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
475  * list_empty() will return true with one element is actually present.
476  */
477 static void rds_ib_recv_cache_put(struct list_head *new_item,
478 				 struct rds_ib_refill_cache *cache)
479 {
480 	unsigned long flags;
481 	struct list_head *old, *chpfirst;
482 
483 	local_irq_save(flags);
484 
485 	chpfirst = __this_cpu_read(cache->percpu->first);
486 	if (!chpfirst)
487 		INIT_LIST_HEAD(new_item);
488 	else /* put on front */
489 		list_add_tail(new_item, chpfirst);
490 
491 	__this_cpu_write(cache->percpu->first, new_item);
492 	__this_cpu_inc(cache->percpu->count);
493 
494 	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
495 		goto end;
496 
497 	/*
498 	 * Return our per-cpu first list to the cache's xfer by atomically
499 	 * grabbing the current xfer list, appending it to our per-cpu list,
500 	 * and then atomically returning that entire list back to the
501 	 * cache's xfer list as long as it's still empty.
502 	 */
503 	do {
504 		old = xchg(&cache->xfer, NULL);
505 		if (old)
506 			list_splice_entire_tail(old, chpfirst);
507 		old = cmpxchg(&cache->xfer, NULL, chpfirst);
508 	} while (old);
509 
510 
511 	__this_cpu_write(cache->percpu->first, NULL);
512 	__this_cpu_write(cache->percpu->count, 0);
513 end:
514 	local_irq_restore(flags);
515 }
516 
517 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
518 {
519 	struct list_head *head = cache->ready;
520 
521 	if (head) {
522 		if (!list_empty(head)) {
523 			cache->ready = head->next;
524 			list_del_init(head);
525 		} else
526 			cache->ready = NULL;
527 	}
528 
529 	return head;
530 }
531 
532 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
533 {
534 	struct rds_ib_incoming *ibinc;
535 	struct rds_page_frag *frag;
536 	unsigned long to_copy;
537 	unsigned long frag_off = 0;
538 	int copied = 0;
539 	int ret;
540 	u32 len;
541 
542 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
543 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
544 	len = be32_to_cpu(inc->i_hdr.h_len);
545 
546 	while (iov_iter_count(to) && copied < len) {
547 		if (frag_off == RDS_FRAG_SIZE) {
548 			frag = list_entry(frag->f_item.next,
549 					  struct rds_page_frag, f_item);
550 			frag_off = 0;
551 		}
552 		to_copy = min_t(unsigned long, iov_iter_count(to),
553 				RDS_FRAG_SIZE - frag_off);
554 		to_copy = min_t(unsigned long, to_copy, len - copied);
555 
556 		/* XXX needs + offset for multiple recvs per page */
557 		rds_stats_add(s_copy_to_user, to_copy);
558 		ret = copy_page_to_iter(sg_page(&frag->f_sg),
559 					frag->f_sg.offset + frag_off,
560 					to_copy,
561 					to);
562 		if (ret != to_copy)
563 			return -EFAULT;
564 
565 		frag_off += to_copy;
566 		copied += to_copy;
567 	}
568 
569 	return copied;
570 }
571 
572 /* ic starts out kzalloc()ed */
573 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
574 {
575 	struct ib_send_wr *wr = &ic->i_ack_wr;
576 	struct ib_sge *sge = &ic->i_ack_sge;
577 
578 	sge->addr = ic->i_ack_dma;
579 	sge->length = sizeof(struct rds_header);
580 	sge->lkey = ic->i_pd->local_dma_lkey;
581 
582 	wr->sg_list = sge;
583 	wr->num_sge = 1;
584 	wr->opcode = IB_WR_SEND;
585 	wr->wr_id = RDS_IB_ACK_WR_ID;
586 	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
587 }
588 
589 /*
590  * You'd think that with reliable IB connections you wouldn't need to ack
591  * messages that have been received.  The problem is that IB hardware generates
592  * an ack message before it has DMAed the message into memory.  This creates a
593  * potential message loss if the HCA is disabled for any reason between when it
594  * sends the ack and before the message is DMAed and processed.  This is only a
595  * potential issue if another HCA is available for fail-over.
596  *
597  * When the remote host receives our ack they'll free the sent message from
598  * their send queue.  To decrease the latency of this we always send an ack
599  * immediately after we've received messages.
600  *
601  * For simplicity, we only have one ack in flight at a time.  This puts
602  * pressure on senders to have deep enough send queues to absorb the latency of
603  * a single ack frame being in flight.  This might not be good enough.
604  *
605  * This is implemented by have a long-lived send_wr and sge which point to a
606  * statically allocated ack frame.  This ack wr does not fall under the ring
607  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
608  * room for it beyond the ring size.  Send completion notices its special
609  * wr_id and avoids working with the ring in that case.
610  */
611 #ifndef KERNEL_HAS_ATOMIC64
612 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
613 {
614 	unsigned long flags;
615 
616 	spin_lock_irqsave(&ic->i_ack_lock, flags);
617 	ic->i_ack_next = seq;
618 	if (ack_required)
619 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
620 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
621 }
622 
623 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
624 {
625 	unsigned long flags;
626 	u64 seq;
627 
628 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
629 
630 	spin_lock_irqsave(&ic->i_ack_lock, flags);
631 	seq = ic->i_ack_next;
632 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
633 
634 	return seq;
635 }
636 #else
637 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
638 {
639 	atomic64_set(&ic->i_ack_next, seq);
640 	if (ack_required) {
641 		smp_mb__before_atomic();
642 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
643 	}
644 }
645 
646 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
647 {
648 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
649 	smp_mb__after_atomic();
650 
651 	return atomic64_read(&ic->i_ack_next);
652 }
653 #endif
654 
655 
656 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
657 {
658 	struct rds_header *hdr = ic->i_ack;
659 	u64 seq;
660 	int ret;
661 
662 	seq = rds_ib_get_ack(ic);
663 
664 	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
665 
666 	ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, ic->i_ack_dma,
667 				   sizeof(*hdr), DMA_TO_DEVICE);
668 	rds_message_populate_header(hdr, 0, 0, 0);
669 	hdr->h_ack = cpu_to_be64(seq);
670 	hdr->h_credit = adv_credits;
671 	rds_message_make_checksum(hdr);
672 	ib_dma_sync_single_for_device(ic->rds_ibdev->dev, ic->i_ack_dma,
673 				      sizeof(*hdr), DMA_TO_DEVICE);
674 
675 	ic->i_ack_queued = jiffies;
676 
677 	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
678 	if (unlikely(ret)) {
679 		/* Failed to send. Release the WR, and
680 		 * force another ACK.
681 		 */
682 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
683 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
684 
685 		rds_ib_stats_inc(s_ib_ack_send_failure);
686 
687 		rds_ib_conn_error(ic->conn, "sending ack failed\n");
688 	} else
689 		rds_ib_stats_inc(s_ib_ack_sent);
690 }
691 
692 /*
693  * There are 3 ways of getting acknowledgements to the peer:
694  *  1.	We call rds_ib_attempt_ack from the recv completion handler
695  *	to send an ACK-only frame.
696  *	However, there can be only one such frame in the send queue
697  *	at any time, so we may have to postpone it.
698  *  2.	When another (data) packet is transmitted while there's
699  *	an ACK in the queue, we piggyback the ACK sequence number
700  *	on the data packet.
701  *  3.	If the ACK WR is done sending, we get called from the
702  *	send queue completion handler, and check whether there's
703  *	another ACK pending (postponed because the WR was on the
704  *	queue). If so, we transmit it.
705  *
706  * We maintain 2 variables:
707  *  -	i_ack_flags, which keeps track of whether the ACK WR
708  *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
709  *  -	i_ack_next, which is the last sequence number we received
710  *
711  * Potentially, send queue and receive queue handlers can run concurrently.
712  * It would be nice to not have to use a spinlock to synchronize things,
713  * but the one problem that rules this out is that 64bit updates are
714  * not atomic on all platforms. Things would be a lot simpler if
715  * we had atomic64 or maybe cmpxchg64 everywhere.
716  *
717  * Reconnecting complicates this picture just slightly. When we
718  * reconnect, we may be seeing duplicate packets. The peer
719  * is retransmitting them, because it hasn't seen an ACK for
720  * them. It is important that we ACK these.
721  *
722  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
723  * this flag set *MUST* be acknowledged immediately.
724  */
725 
726 /*
727  * When we get here, we're called from the recv queue handler.
728  * Check whether we ought to transmit an ACK.
729  */
730 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
731 {
732 	unsigned int adv_credits;
733 
734 	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
735 		return;
736 
737 	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
738 		rds_ib_stats_inc(s_ib_ack_send_delayed);
739 		return;
740 	}
741 
742 	/* Can we get a send credit? */
743 	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
744 		rds_ib_stats_inc(s_ib_tx_throttle);
745 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
746 		return;
747 	}
748 
749 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
750 	rds_ib_send_ack(ic, adv_credits);
751 }
752 
753 /*
754  * We get here from the send completion handler, when the
755  * adapter tells us the ACK frame was sent.
756  */
757 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
758 {
759 	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
760 	rds_ib_attempt_ack(ic);
761 }
762 
763 /*
764  * This is called by the regular xmit code when it wants to piggyback
765  * an ACK on an outgoing frame.
766  */
767 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
768 {
769 	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
770 		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
771 	return rds_ib_get_ack(ic);
772 }
773 
774 /*
775  * It's kind of lame that we're copying from the posted receive pages into
776  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
777  * them.  But receiving new congestion bitmaps should be a *rare* event, so
778  * hopefully we won't need to invest that complexity in making it more
779  * efficient.  By copying we can share a simpler core with TCP which has to
780  * copy.
781  */
782 static void rds_ib_cong_recv(struct rds_connection *conn,
783 			      struct rds_ib_incoming *ibinc)
784 {
785 	struct rds_cong_map *map;
786 	unsigned int map_off;
787 	unsigned int map_page;
788 	struct rds_page_frag *frag;
789 	unsigned long frag_off;
790 	unsigned long to_copy;
791 	unsigned long copied;
792 	__le64 uncongested = 0;
793 	void *addr;
794 
795 	/* catch completely corrupt packets */
796 	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
797 		return;
798 
799 	map = conn->c_fcong;
800 	map_page = 0;
801 	map_off = 0;
802 
803 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
804 	frag_off = 0;
805 
806 	copied = 0;
807 
808 	while (copied < RDS_CONG_MAP_BYTES) {
809 		__le64 *src, *dst;
810 		unsigned int k;
811 
812 		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
813 		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
814 
815 		addr = kmap_atomic(sg_page(&frag->f_sg));
816 
817 		src = addr + frag->f_sg.offset + frag_off;
818 		dst = (void *)map->m_page_addrs[map_page] + map_off;
819 		for (k = 0; k < to_copy; k += 8) {
820 			/* Record ports that became uncongested, ie
821 			 * bits that changed from 0 to 1. */
822 			uncongested |= ~(*src) & *dst;
823 			*dst++ = *src++;
824 		}
825 		kunmap_atomic(addr);
826 
827 		copied += to_copy;
828 
829 		map_off += to_copy;
830 		if (map_off == PAGE_SIZE) {
831 			map_off = 0;
832 			map_page++;
833 		}
834 
835 		frag_off += to_copy;
836 		if (frag_off == RDS_FRAG_SIZE) {
837 			frag = list_entry(frag->f_item.next,
838 					  struct rds_page_frag, f_item);
839 			frag_off = 0;
840 		}
841 	}
842 
843 	/* the congestion map is in little endian order */
844 	rds_cong_map_updated(map, le64_to_cpu(uncongested));
845 }
846 
847 static void rds_ib_process_recv(struct rds_connection *conn,
848 				struct rds_ib_recv_work *recv, u32 data_len,
849 				struct rds_ib_ack_state *state)
850 {
851 	struct rds_ib_connection *ic = conn->c_transport_data;
852 	struct rds_ib_incoming *ibinc = ic->i_ibinc;
853 	struct rds_header *ihdr, *hdr;
854 	dma_addr_t dma_addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
855 
856 	/* XXX shut down the connection if port 0,0 are seen? */
857 
858 	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
859 		 data_len);
860 
861 	if (data_len < sizeof(struct rds_header)) {
862 		rds_ib_conn_error(conn, "incoming message "
863 		       "from %pI6c didn't include a "
864 		       "header, disconnecting and "
865 		       "reconnecting\n",
866 		       &conn->c_faddr);
867 		return;
868 	}
869 	data_len -= sizeof(struct rds_header);
870 
871 	ihdr = ic->i_recv_hdrs[recv - ic->i_recvs];
872 
873 	ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, dma_addr,
874 				   sizeof(*ihdr), DMA_FROM_DEVICE);
875 	/* Validate the checksum. */
876 	if (!rds_message_verify_checksum(ihdr)) {
877 		rds_ib_conn_error(conn, "incoming message "
878 		       "from %pI6c has corrupted header - "
879 		       "forcing a reconnect\n",
880 		       &conn->c_faddr);
881 		rds_stats_inc(s_recv_drop_bad_checksum);
882 		goto done;
883 	}
884 
885 	/* Process the ACK sequence which comes with every packet */
886 	state->ack_recv = be64_to_cpu(ihdr->h_ack);
887 	state->ack_recv_valid = 1;
888 
889 	/* Process the credits update if there was one */
890 	if (ihdr->h_credit)
891 		rds_ib_send_add_credits(conn, ihdr->h_credit);
892 
893 	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
894 		/* This is an ACK-only packet. The fact that it gets
895 		 * special treatment here is that historically, ACKs
896 		 * were rather special beasts.
897 		 */
898 		rds_ib_stats_inc(s_ib_ack_received);
899 
900 		/*
901 		 * Usually the frags make their way on to incs and are then freed as
902 		 * the inc is freed.  We don't go that route, so we have to drop the
903 		 * page ref ourselves.  We can't just leave the page on the recv
904 		 * because that confuses the dma mapping of pages and each recv's use
905 		 * of a partial page.
906 		 *
907 		 * FIXME: Fold this into the code path below.
908 		 */
909 		rds_ib_frag_free(ic, recv->r_frag);
910 		recv->r_frag = NULL;
911 		goto done;
912 	}
913 
914 	/*
915 	 * If we don't already have an inc on the connection then this
916 	 * fragment has a header and starts a message.. copy its header
917 	 * into the inc and save the inc so we can hang upcoming fragments
918 	 * off its list.
919 	 */
920 	if (!ibinc) {
921 		ibinc = recv->r_ibinc;
922 		recv->r_ibinc = NULL;
923 		ic->i_ibinc = ibinc;
924 
925 		hdr = &ibinc->ii_inc.i_hdr;
926 		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
927 				local_clock();
928 		memcpy(hdr, ihdr, sizeof(*hdr));
929 		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
930 		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
931 				local_clock();
932 
933 		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
934 			 ic->i_recv_data_rem, hdr->h_flags);
935 	} else {
936 		hdr = &ibinc->ii_inc.i_hdr;
937 		/* We can't just use memcmp here; fragments of a
938 		 * single message may carry different ACKs */
939 		if (hdr->h_sequence != ihdr->h_sequence ||
940 		    hdr->h_len != ihdr->h_len ||
941 		    hdr->h_sport != ihdr->h_sport ||
942 		    hdr->h_dport != ihdr->h_dport) {
943 			rds_ib_conn_error(conn,
944 				"fragment header mismatch; forcing reconnect\n");
945 			goto done;
946 		}
947 	}
948 
949 	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
950 	recv->r_frag = NULL;
951 
952 	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
953 		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
954 	else {
955 		ic->i_recv_data_rem = 0;
956 		ic->i_ibinc = NULL;
957 
958 		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
959 			rds_ib_cong_recv(conn, ibinc);
960 		} else {
961 			rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
962 					  &ibinc->ii_inc, GFP_ATOMIC);
963 			state->ack_next = be64_to_cpu(hdr->h_sequence);
964 			state->ack_next_valid = 1;
965 		}
966 
967 		/* Evaluate the ACK_REQUIRED flag *after* we received
968 		 * the complete frame, and after bumping the next_rx
969 		 * sequence. */
970 		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
971 			rds_stats_inc(s_recv_ack_required);
972 			state->ack_required = 1;
973 		}
974 
975 		rds_inc_put(&ibinc->ii_inc);
976 	}
977 done:
978 	ib_dma_sync_single_for_device(ic->rds_ibdev->dev, dma_addr,
979 				      sizeof(*ihdr), DMA_FROM_DEVICE);
980 }
981 
982 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
983 			     struct ib_wc *wc,
984 			     struct rds_ib_ack_state *state)
985 {
986 	struct rds_connection *conn = ic->conn;
987 	struct rds_ib_recv_work *recv;
988 
989 	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
990 		 (unsigned long long)wc->wr_id, wc->status,
991 		 ib_wc_status_msg(wc->status), wc->byte_len,
992 		 be32_to_cpu(wc->ex.imm_data));
993 
994 	rds_ib_stats_inc(s_ib_rx_cq_event);
995 	recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
996 	ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
997 			DMA_FROM_DEVICE);
998 
999 	/* Also process recvs in connecting state because it is possible
1000 	 * to get a recv completion _before_ the rdmacm ESTABLISHED
1001 	 * event is processed.
1002 	 */
1003 	if (wc->status == IB_WC_SUCCESS) {
1004 		rds_ib_process_recv(conn, recv, wc->byte_len, state);
1005 	} else {
1006 		/* We expect errors as the qp is drained during shutdown */
1007 		if (rds_conn_up(conn) || rds_conn_connecting(conn))
1008 			rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
1009 					  &conn->c_laddr, &conn->c_faddr,
1010 					  conn->c_tos, wc->status,
1011 					  ib_wc_status_msg(wc->status),
1012 					  wc->vendor_err);
1013 	}
1014 
1015 	/* rds_ib_process_recv() doesn't always consume the frag, and
1016 	 * we might not have called it at all if the wc didn't indicate
1017 	 * success. We already unmapped the frag's pages, though, and
1018 	 * the following rds_ib_ring_free() call tells the refill path
1019 	 * that it will not find an allocated frag here. Make sure we
1020 	 * keep that promise by freeing a frag that's still on the ring.
1021 	 */
1022 	if (recv->r_frag) {
1023 		rds_ib_frag_free(ic, recv->r_frag);
1024 		recv->r_frag = NULL;
1025 	}
1026 	rds_ib_ring_free(&ic->i_recv_ring, 1);
1027 
1028 	/* If we ever end up with a really empty receive ring, we're
1029 	 * in deep trouble, as the sender will definitely see RNR
1030 	 * timeouts. */
1031 	if (rds_ib_ring_empty(&ic->i_recv_ring))
1032 		rds_ib_stats_inc(s_ib_rx_ring_empty);
1033 
1034 	if (rds_ib_ring_low(&ic->i_recv_ring)) {
1035 		rds_ib_recv_refill(conn, 0, GFP_NOWAIT | __GFP_NOWARN);
1036 		rds_ib_stats_inc(s_ib_rx_refill_from_cq);
1037 	}
1038 }
1039 
1040 int rds_ib_recv_path(struct rds_conn_path *cp)
1041 {
1042 	struct rds_connection *conn = cp->cp_conn;
1043 	struct rds_ib_connection *ic = conn->c_transport_data;
1044 
1045 	rdsdebug("conn %p\n", conn);
1046 	if (rds_conn_up(conn)) {
1047 		rds_ib_attempt_ack(ic);
1048 		rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1049 		rds_ib_stats_inc(s_ib_rx_refill_from_thread);
1050 	}
1051 
1052 	return 0;
1053 }
1054 
1055 int rds_ib_recv_init(void)
1056 {
1057 	struct sysinfo si;
1058 	int ret = -ENOMEM;
1059 
1060 	/* Default to 30% of all available RAM for recv memory */
1061 	si_meminfo(&si);
1062 	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1063 
1064 	rds_ib_incoming_slab =
1065 		kmem_cache_create_usercopy("rds_ib_incoming",
1066 					   sizeof(struct rds_ib_incoming),
1067 					   0, SLAB_HWCACHE_ALIGN,
1068 					   offsetof(struct rds_ib_incoming,
1069 						    ii_inc.i_usercopy),
1070 					   sizeof(struct rds_inc_usercopy),
1071 					   NULL);
1072 	if (!rds_ib_incoming_slab)
1073 		goto out;
1074 
1075 	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1076 					sizeof(struct rds_page_frag),
1077 					0, SLAB_HWCACHE_ALIGN, NULL);
1078 	if (!rds_ib_frag_slab) {
1079 		kmem_cache_destroy(rds_ib_incoming_slab);
1080 		rds_ib_incoming_slab = NULL;
1081 	} else
1082 		ret = 0;
1083 out:
1084 	return ret;
1085 }
1086 
1087 void rds_ib_recv_exit(void)
1088 {
1089 	WARN_ON(atomic_read(&rds_ib_allocation));
1090 
1091 	kmem_cache_destroy(rds_ib_incoming_slab);
1092 	kmem_cache_destroy(rds_ib_frag_slab);
1093 }
1094