1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/pci.h> 35 #include <linux/dma-mapping.h> 36 #include <rdma/rdma_cm.h> 37 38 #include "rds.h" 39 #include "ib.h" 40 41 static struct kmem_cache *rds_ib_incoming_slab; 42 static struct kmem_cache *rds_ib_frag_slab; 43 static atomic_t rds_ib_allocation = ATOMIC_INIT(0); 44 45 static void rds_ib_frag_drop_page(struct rds_page_frag *frag) 46 { 47 rdsdebug("frag %p page %p\n", frag, frag->f_page); 48 __free_page(frag->f_page); 49 frag->f_page = NULL; 50 } 51 52 static void rds_ib_frag_free(struct rds_page_frag *frag) 53 { 54 rdsdebug("frag %p page %p\n", frag, frag->f_page); 55 BUG_ON(frag->f_page != NULL); 56 kmem_cache_free(rds_ib_frag_slab, frag); 57 } 58 59 /* 60 * We map a page at a time. Its fragments are posted in order. This 61 * is called in fragment order as the fragments get send completion events. 62 * Only the last frag in the page performs the unmapping. 63 * 64 * It's OK for ring cleanup to call this in whatever order it likes because 65 * DMA is not in flight and so we can unmap while other ring entries still 66 * hold page references in their frags. 67 */ 68 static void rds_ib_recv_unmap_page(struct rds_ib_connection *ic, 69 struct rds_ib_recv_work *recv) 70 { 71 struct rds_page_frag *frag = recv->r_frag; 72 73 rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page); 74 if (frag->f_mapped) 75 ib_dma_unmap_page(ic->i_cm_id->device, 76 frag->f_mapped, 77 RDS_FRAG_SIZE, DMA_FROM_DEVICE); 78 frag->f_mapped = 0; 79 } 80 81 void rds_ib_recv_init_ring(struct rds_ib_connection *ic) 82 { 83 struct rds_ib_recv_work *recv; 84 u32 i; 85 86 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) { 87 struct ib_sge *sge; 88 89 recv->r_ibinc = NULL; 90 recv->r_frag = NULL; 91 92 recv->r_wr.next = NULL; 93 recv->r_wr.wr_id = i; 94 recv->r_wr.sg_list = recv->r_sge; 95 recv->r_wr.num_sge = RDS_IB_RECV_SGE; 96 97 sge = rds_ib_data_sge(ic, recv->r_sge); 98 sge->addr = 0; 99 sge->length = RDS_FRAG_SIZE; 100 sge->lkey = ic->i_mr->lkey; 101 102 sge = rds_ib_header_sge(ic, recv->r_sge); 103 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header)); 104 sge->length = sizeof(struct rds_header); 105 sge->lkey = ic->i_mr->lkey; 106 } 107 } 108 109 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic, 110 struct rds_ib_recv_work *recv) 111 { 112 if (recv->r_ibinc) { 113 rds_inc_put(&recv->r_ibinc->ii_inc); 114 recv->r_ibinc = NULL; 115 } 116 if (recv->r_frag) { 117 rds_ib_recv_unmap_page(ic, recv); 118 if (recv->r_frag->f_page) 119 rds_ib_frag_drop_page(recv->r_frag); 120 rds_ib_frag_free(recv->r_frag); 121 recv->r_frag = NULL; 122 } 123 } 124 125 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic) 126 { 127 u32 i; 128 129 for (i = 0; i < ic->i_recv_ring.w_nr; i++) 130 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]); 131 132 if (ic->i_frag.f_page) 133 rds_ib_frag_drop_page(&ic->i_frag); 134 } 135 136 static int rds_ib_recv_refill_one(struct rds_connection *conn, 137 struct rds_ib_recv_work *recv, 138 gfp_t kptr_gfp, gfp_t page_gfp) 139 { 140 struct rds_ib_connection *ic = conn->c_transport_data; 141 dma_addr_t dma_addr; 142 struct ib_sge *sge; 143 int ret = -ENOMEM; 144 145 if (recv->r_ibinc == NULL) { 146 if (atomic_read(&rds_ib_allocation) >= rds_ib_sysctl_max_recv_allocation) { 147 rds_ib_stats_inc(s_ib_rx_alloc_limit); 148 goto out; 149 } 150 recv->r_ibinc = kmem_cache_alloc(rds_ib_incoming_slab, 151 kptr_gfp); 152 if (recv->r_ibinc == NULL) 153 goto out; 154 atomic_inc(&rds_ib_allocation); 155 INIT_LIST_HEAD(&recv->r_ibinc->ii_frags); 156 rds_inc_init(&recv->r_ibinc->ii_inc, conn, conn->c_faddr); 157 } 158 159 if (recv->r_frag == NULL) { 160 recv->r_frag = kmem_cache_alloc(rds_ib_frag_slab, kptr_gfp); 161 if (recv->r_frag == NULL) 162 goto out; 163 INIT_LIST_HEAD(&recv->r_frag->f_item); 164 recv->r_frag->f_page = NULL; 165 } 166 167 if (ic->i_frag.f_page == NULL) { 168 ic->i_frag.f_page = alloc_page(page_gfp); 169 if (ic->i_frag.f_page == NULL) 170 goto out; 171 ic->i_frag.f_offset = 0; 172 } 173 174 dma_addr = ib_dma_map_page(ic->i_cm_id->device, 175 ic->i_frag.f_page, 176 ic->i_frag.f_offset, 177 RDS_FRAG_SIZE, 178 DMA_FROM_DEVICE); 179 if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr)) 180 goto out; 181 182 /* 183 * Once we get the RDS_PAGE_LAST_OFF frag then rds_ib_frag_unmap() 184 * must be called on this recv. This happens as completions hit 185 * in order or on connection shutdown. 186 */ 187 recv->r_frag->f_page = ic->i_frag.f_page; 188 recv->r_frag->f_offset = ic->i_frag.f_offset; 189 recv->r_frag->f_mapped = dma_addr; 190 191 sge = rds_ib_data_sge(ic, recv->r_sge); 192 sge->addr = dma_addr; 193 sge->length = RDS_FRAG_SIZE; 194 195 sge = rds_ib_header_sge(ic, recv->r_sge); 196 sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header); 197 sge->length = sizeof(struct rds_header); 198 199 get_page(recv->r_frag->f_page); 200 201 if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) { 202 ic->i_frag.f_offset += RDS_FRAG_SIZE; 203 } else { 204 put_page(ic->i_frag.f_page); 205 ic->i_frag.f_page = NULL; 206 ic->i_frag.f_offset = 0; 207 } 208 209 ret = 0; 210 out: 211 return ret; 212 } 213 214 /* 215 * This tries to allocate and post unused work requests after making sure that 216 * they have all the allocations they need to queue received fragments into 217 * sockets. The i_recv_mutex is held here so that ring_alloc and _unalloc 218 * pairs don't go unmatched. 219 * 220 * -1 is returned if posting fails due to temporary resource exhaustion. 221 */ 222 int rds_ib_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp, 223 gfp_t page_gfp, int prefill) 224 { 225 struct rds_ib_connection *ic = conn->c_transport_data; 226 struct rds_ib_recv_work *recv; 227 struct ib_recv_wr *failed_wr; 228 unsigned int posted = 0; 229 int ret = 0; 230 u32 pos; 231 232 while ((prefill || rds_conn_up(conn)) 233 && rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) { 234 if (pos >= ic->i_recv_ring.w_nr) { 235 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n", 236 pos); 237 ret = -EINVAL; 238 break; 239 } 240 241 recv = &ic->i_recvs[pos]; 242 ret = rds_ib_recv_refill_one(conn, recv, kptr_gfp, page_gfp); 243 if (ret) { 244 ret = -1; 245 break; 246 } 247 248 /* XXX when can this fail? */ 249 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr); 250 rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv, 251 recv->r_ibinc, recv->r_frag->f_page, 252 (long) recv->r_frag->f_mapped, ret); 253 if (ret) { 254 rds_ib_conn_error(conn, "recv post on " 255 "%pI4 returned %d, disconnecting and " 256 "reconnecting\n", &conn->c_faddr, 257 ret); 258 ret = -1; 259 break; 260 } 261 262 posted++; 263 } 264 265 /* We're doing flow control - update the window. */ 266 if (ic->i_flowctl && posted) 267 rds_ib_advertise_credits(conn, posted); 268 269 if (ret) 270 rds_ib_ring_unalloc(&ic->i_recv_ring, 1); 271 return ret; 272 } 273 274 void rds_ib_inc_purge(struct rds_incoming *inc) 275 { 276 struct rds_ib_incoming *ibinc; 277 struct rds_page_frag *frag; 278 struct rds_page_frag *pos; 279 280 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); 281 rdsdebug("purging ibinc %p inc %p\n", ibinc, inc); 282 283 list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) { 284 list_del_init(&frag->f_item); 285 rds_ib_frag_drop_page(frag); 286 rds_ib_frag_free(frag); 287 } 288 } 289 290 void rds_ib_inc_free(struct rds_incoming *inc) 291 { 292 struct rds_ib_incoming *ibinc; 293 294 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); 295 296 rds_ib_inc_purge(inc); 297 rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc); 298 BUG_ON(!list_empty(&ibinc->ii_frags)); 299 kmem_cache_free(rds_ib_incoming_slab, ibinc); 300 atomic_dec(&rds_ib_allocation); 301 BUG_ON(atomic_read(&rds_ib_allocation) < 0); 302 } 303 304 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov, 305 size_t size) 306 { 307 struct rds_ib_incoming *ibinc; 308 struct rds_page_frag *frag; 309 struct iovec *iov = first_iov; 310 unsigned long to_copy; 311 unsigned long frag_off = 0; 312 unsigned long iov_off = 0; 313 int copied = 0; 314 int ret; 315 u32 len; 316 317 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); 318 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); 319 len = be32_to_cpu(inc->i_hdr.h_len); 320 321 while (copied < size && copied < len) { 322 if (frag_off == RDS_FRAG_SIZE) { 323 frag = list_entry(frag->f_item.next, 324 struct rds_page_frag, f_item); 325 frag_off = 0; 326 } 327 while (iov_off == iov->iov_len) { 328 iov_off = 0; 329 iov++; 330 } 331 332 to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off); 333 to_copy = min_t(size_t, to_copy, size - copied); 334 to_copy = min_t(unsigned long, to_copy, len - copied); 335 336 rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag " 337 "[%p, %lu] + %lu\n", 338 to_copy, iov->iov_base, iov->iov_len, iov_off, 339 frag->f_page, frag->f_offset, frag_off); 340 341 /* XXX needs + offset for multiple recvs per page */ 342 ret = rds_page_copy_to_user(frag->f_page, 343 frag->f_offset + frag_off, 344 iov->iov_base + iov_off, 345 to_copy); 346 if (ret) { 347 copied = ret; 348 break; 349 } 350 351 iov_off += to_copy; 352 frag_off += to_copy; 353 copied += to_copy; 354 } 355 356 return copied; 357 } 358 359 /* ic starts out kzalloc()ed */ 360 void rds_ib_recv_init_ack(struct rds_ib_connection *ic) 361 { 362 struct ib_send_wr *wr = &ic->i_ack_wr; 363 struct ib_sge *sge = &ic->i_ack_sge; 364 365 sge->addr = ic->i_ack_dma; 366 sge->length = sizeof(struct rds_header); 367 sge->lkey = ic->i_mr->lkey; 368 369 wr->sg_list = sge; 370 wr->num_sge = 1; 371 wr->opcode = IB_WR_SEND; 372 wr->wr_id = RDS_IB_ACK_WR_ID; 373 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED; 374 } 375 376 /* 377 * You'd think that with reliable IB connections you wouldn't need to ack 378 * messages that have been received. The problem is that IB hardware generates 379 * an ack message before it has DMAed the message into memory. This creates a 380 * potential message loss if the HCA is disabled for any reason between when it 381 * sends the ack and before the message is DMAed and processed. This is only a 382 * potential issue if another HCA is available for fail-over. 383 * 384 * When the remote host receives our ack they'll free the sent message from 385 * their send queue. To decrease the latency of this we always send an ack 386 * immediately after we've received messages. 387 * 388 * For simplicity, we only have one ack in flight at a time. This puts 389 * pressure on senders to have deep enough send queues to absorb the latency of 390 * a single ack frame being in flight. This might not be good enough. 391 * 392 * This is implemented by have a long-lived send_wr and sge which point to a 393 * statically allocated ack frame. This ack wr does not fall under the ring 394 * accounting that the tx and rx wrs do. The QP attribute specifically makes 395 * room for it beyond the ring size. Send completion notices its special 396 * wr_id and avoids working with the ring in that case. 397 */ 398 #ifndef KERNEL_HAS_ATOMIC64 399 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, 400 int ack_required) 401 { 402 unsigned long flags; 403 404 spin_lock_irqsave(&ic->i_ack_lock, flags); 405 ic->i_ack_next = seq; 406 if (ack_required) 407 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 408 spin_unlock_irqrestore(&ic->i_ack_lock, flags); 409 } 410 411 static u64 rds_ib_get_ack(struct rds_ib_connection *ic) 412 { 413 unsigned long flags; 414 u64 seq; 415 416 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 417 418 spin_lock_irqsave(&ic->i_ack_lock, flags); 419 seq = ic->i_ack_next; 420 spin_unlock_irqrestore(&ic->i_ack_lock, flags); 421 422 return seq; 423 } 424 #else 425 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, 426 int ack_required) 427 { 428 atomic64_set(&ic->i_ack_next, seq); 429 if (ack_required) { 430 smp_mb__before_clear_bit(); 431 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 432 } 433 } 434 435 static u64 rds_ib_get_ack(struct rds_ib_connection *ic) 436 { 437 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 438 smp_mb__after_clear_bit(); 439 440 return atomic64_read(&ic->i_ack_next); 441 } 442 #endif 443 444 445 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits) 446 { 447 struct rds_header *hdr = ic->i_ack; 448 struct ib_send_wr *failed_wr; 449 u64 seq; 450 int ret; 451 452 seq = rds_ib_get_ack(ic); 453 454 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq); 455 rds_message_populate_header(hdr, 0, 0, 0); 456 hdr->h_ack = cpu_to_be64(seq); 457 hdr->h_credit = adv_credits; 458 rds_message_make_checksum(hdr); 459 ic->i_ack_queued = jiffies; 460 461 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr); 462 if (unlikely(ret)) { 463 /* Failed to send. Release the WR, and 464 * force another ACK. 465 */ 466 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 467 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 468 469 rds_ib_stats_inc(s_ib_ack_send_failure); 470 /* Need to finesse this later. */ 471 BUG(); 472 } else 473 rds_ib_stats_inc(s_ib_ack_sent); 474 } 475 476 /* 477 * There are 3 ways of getting acknowledgements to the peer: 478 * 1. We call rds_ib_attempt_ack from the recv completion handler 479 * to send an ACK-only frame. 480 * However, there can be only one such frame in the send queue 481 * at any time, so we may have to postpone it. 482 * 2. When another (data) packet is transmitted while there's 483 * an ACK in the queue, we piggyback the ACK sequence number 484 * on the data packet. 485 * 3. If the ACK WR is done sending, we get called from the 486 * send queue completion handler, and check whether there's 487 * another ACK pending (postponed because the WR was on the 488 * queue). If so, we transmit it. 489 * 490 * We maintain 2 variables: 491 * - i_ack_flags, which keeps track of whether the ACK WR 492 * is currently in the send queue or not (IB_ACK_IN_FLIGHT) 493 * - i_ack_next, which is the last sequence number we received 494 * 495 * Potentially, send queue and receive queue handlers can run concurrently. 496 * It would be nice to not have to use a spinlock to synchronize things, 497 * but the one problem that rules this out is that 64bit updates are 498 * not atomic on all platforms. Things would be a lot simpler if 499 * we had atomic64 or maybe cmpxchg64 everywhere. 500 * 501 * Reconnecting complicates this picture just slightly. When we 502 * reconnect, we may be seeing duplicate packets. The peer 503 * is retransmitting them, because it hasn't seen an ACK for 504 * them. It is important that we ACK these. 505 * 506 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with 507 * this flag set *MUST* be acknowledged immediately. 508 */ 509 510 /* 511 * When we get here, we're called from the recv queue handler. 512 * Check whether we ought to transmit an ACK. 513 */ 514 void rds_ib_attempt_ack(struct rds_ib_connection *ic) 515 { 516 unsigned int adv_credits; 517 518 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) 519 return; 520 521 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) { 522 rds_ib_stats_inc(s_ib_ack_send_delayed); 523 return; 524 } 525 526 /* Can we get a send credit? */ 527 if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) { 528 rds_ib_stats_inc(s_ib_tx_throttle); 529 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 530 return; 531 } 532 533 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 534 rds_ib_send_ack(ic, adv_credits); 535 } 536 537 /* 538 * We get here from the send completion handler, when the 539 * adapter tells us the ACK frame was sent. 540 */ 541 void rds_ib_ack_send_complete(struct rds_ib_connection *ic) 542 { 543 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 544 rds_ib_attempt_ack(ic); 545 } 546 547 /* 548 * This is called by the regular xmit code when it wants to piggyback 549 * an ACK on an outgoing frame. 550 */ 551 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic) 552 { 553 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) 554 rds_ib_stats_inc(s_ib_ack_send_piggybacked); 555 return rds_ib_get_ack(ic); 556 } 557 558 static struct rds_header *rds_ib_get_header(struct rds_connection *conn, 559 struct rds_ib_recv_work *recv, 560 u32 data_len) 561 { 562 struct rds_ib_connection *ic = conn->c_transport_data; 563 void *hdr_buff = &ic->i_recv_hdrs[recv - ic->i_recvs]; 564 void *addr; 565 u32 misplaced_hdr_bytes; 566 567 /* 568 * Support header at the front (RDS 3.1+) as well as header-at-end. 569 * 570 * Cases: 571 * 1) header all in header buff (great!) 572 * 2) header all in data page (copy all to header buff) 573 * 3) header split across hdr buf + data page 574 * (move bit in hdr buff to end before copying other bit from data page) 575 */ 576 if (conn->c_version > RDS_PROTOCOL_3_0 || data_len == RDS_FRAG_SIZE) 577 return hdr_buff; 578 579 if (data_len <= (RDS_FRAG_SIZE - sizeof(struct rds_header))) { 580 addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0); 581 memcpy(hdr_buff, 582 addr + recv->r_frag->f_offset + data_len, 583 sizeof(struct rds_header)); 584 kunmap_atomic(addr, KM_SOFTIRQ0); 585 return hdr_buff; 586 } 587 588 misplaced_hdr_bytes = (sizeof(struct rds_header) - (RDS_FRAG_SIZE - data_len)); 589 590 memmove(hdr_buff + misplaced_hdr_bytes, hdr_buff, misplaced_hdr_bytes); 591 592 addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0); 593 memcpy(hdr_buff, addr + recv->r_frag->f_offset + data_len, 594 sizeof(struct rds_header) - misplaced_hdr_bytes); 595 kunmap_atomic(addr, KM_SOFTIRQ0); 596 return hdr_buff; 597 } 598 599 /* 600 * It's kind of lame that we're copying from the posted receive pages into 601 * long-lived bitmaps. We could have posted the bitmaps and rdma written into 602 * them. But receiving new congestion bitmaps should be a *rare* event, so 603 * hopefully we won't need to invest that complexity in making it more 604 * efficient. By copying we can share a simpler core with TCP which has to 605 * copy. 606 */ 607 static void rds_ib_cong_recv(struct rds_connection *conn, 608 struct rds_ib_incoming *ibinc) 609 { 610 struct rds_cong_map *map; 611 unsigned int map_off; 612 unsigned int map_page; 613 struct rds_page_frag *frag; 614 unsigned long frag_off; 615 unsigned long to_copy; 616 unsigned long copied; 617 uint64_t uncongested = 0; 618 void *addr; 619 620 /* catch completely corrupt packets */ 621 if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) 622 return; 623 624 map = conn->c_fcong; 625 map_page = 0; 626 map_off = 0; 627 628 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); 629 frag_off = 0; 630 631 copied = 0; 632 633 while (copied < RDS_CONG_MAP_BYTES) { 634 uint64_t *src, *dst; 635 unsigned int k; 636 637 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off); 638 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */ 639 640 addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0); 641 642 src = addr + frag_off; 643 dst = (void *)map->m_page_addrs[map_page] + map_off; 644 for (k = 0; k < to_copy; k += 8) { 645 /* Record ports that became uncongested, ie 646 * bits that changed from 0 to 1. */ 647 uncongested |= ~(*src) & *dst; 648 *dst++ = *src++; 649 } 650 kunmap_atomic(addr, KM_SOFTIRQ0); 651 652 copied += to_copy; 653 654 map_off += to_copy; 655 if (map_off == PAGE_SIZE) { 656 map_off = 0; 657 map_page++; 658 } 659 660 frag_off += to_copy; 661 if (frag_off == RDS_FRAG_SIZE) { 662 frag = list_entry(frag->f_item.next, 663 struct rds_page_frag, f_item); 664 frag_off = 0; 665 } 666 } 667 668 /* the congestion map is in little endian order */ 669 uncongested = le64_to_cpu(uncongested); 670 671 rds_cong_map_updated(map, uncongested); 672 } 673 674 /* 675 * Rings are posted with all the allocations they'll need to queue the 676 * incoming message to the receiving socket so this can't fail. 677 * All fragments start with a header, so we can make sure we're not receiving 678 * garbage, and we can tell a small 8 byte fragment from an ACK frame. 679 */ 680 struct rds_ib_ack_state { 681 u64 ack_next; 682 u64 ack_recv; 683 unsigned int ack_required:1; 684 unsigned int ack_next_valid:1; 685 unsigned int ack_recv_valid:1; 686 }; 687 688 static void rds_ib_process_recv(struct rds_connection *conn, 689 struct rds_ib_recv_work *recv, u32 data_len, 690 struct rds_ib_ack_state *state) 691 { 692 struct rds_ib_connection *ic = conn->c_transport_data; 693 struct rds_ib_incoming *ibinc = ic->i_ibinc; 694 struct rds_header *ihdr, *hdr; 695 696 /* XXX shut down the connection if port 0,0 are seen? */ 697 698 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv, 699 data_len); 700 701 if (data_len < sizeof(struct rds_header)) { 702 rds_ib_conn_error(conn, "incoming message " 703 "from %pI4 didn't inclue a " 704 "header, disconnecting and " 705 "reconnecting\n", 706 &conn->c_faddr); 707 return; 708 } 709 data_len -= sizeof(struct rds_header); 710 711 ihdr = rds_ib_get_header(conn, recv, data_len); 712 713 /* Validate the checksum. */ 714 if (!rds_message_verify_checksum(ihdr)) { 715 rds_ib_conn_error(conn, "incoming message " 716 "from %pI4 has corrupted header - " 717 "forcing a reconnect\n", 718 &conn->c_faddr); 719 rds_stats_inc(s_recv_drop_bad_checksum); 720 return; 721 } 722 723 /* Process the ACK sequence which comes with every packet */ 724 state->ack_recv = be64_to_cpu(ihdr->h_ack); 725 state->ack_recv_valid = 1; 726 727 /* Process the credits update if there was one */ 728 if (ihdr->h_credit) 729 rds_ib_send_add_credits(conn, ihdr->h_credit); 730 731 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) { 732 /* This is an ACK-only packet. The fact that it gets 733 * special treatment here is that historically, ACKs 734 * were rather special beasts. 735 */ 736 rds_ib_stats_inc(s_ib_ack_received); 737 738 /* 739 * Usually the frags make their way on to incs and are then freed as 740 * the inc is freed. We don't go that route, so we have to drop the 741 * page ref ourselves. We can't just leave the page on the recv 742 * because that confuses the dma mapping of pages and each recv's use 743 * of a partial page. We can leave the frag, though, it will be 744 * reused. 745 * 746 * FIXME: Fold this into the code path below. 747 */ 748 rds_ib_frag_drop_page(recv->r_frag); 749 return; 750 } 751 752 /* 753 * If we don't already have an inc on the connection then this 754 * fragment has a header and starts a message.. copy its header 755 * into the inc and save the inc so we can hang upcoming fragments 756 * off its list. 757 */ 758 if (ibinc == NULL) { 759 ibinc = recv->r_ibinc; 760 recv->r_ibinc = NULL; 761 ic->i_ibinc = ibinc; 762 763 hdr = &ibinc->ii_inc.i_hdr; 764 memcpy(hdr, ihdr, sizeof(*hdr)); 765 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len); 766 767 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc, 768 ic->i_recv_data_rem, hdr->h_flags); 769 } else { 770 hdr = &ibinc->ii_inc.i_hdr; 771 /* We can't just use memcmp here; fragments of a 772 * single message may carry different ACKs */ 773 if (hdr->h_sequence != ihdr->h_sequence 774 || hdr->h_len != ihdr->h_len 775 || hdr->h_sport != ihdr->h_sport 776 || hdr->h_dport != ihdr->h_dport) { 777 rds_ib_conn_error(conn, 778 "fragment header mismatch; forcing reconnect\n"); 779 return; 780 } 781 } 782 783 list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags); 784 recv->r_frag = NULL; 785 786 if (ic->i_recv_data_rem > RDS_FRAG_SIZE) 787 ic->i_recv_data_rem -= RDS_FRAG_SIZE; 788 else { 789 ic->i_recv_data_rem = 0; 790 ic->i_ibinc = NULL; 791 792 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) 793 rds_ib_cong_recv(conn, ibinc); 794 else { 795 rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr, 796 &ibinc->ii_inc, GFP_ATOMIC, 797 KM_SOFTIRQ0); 798 state->ack_next = be64_to_cpu(hdr->h_sequence); 799 state->ack_next_valid = 1; 800 } 801 802 /* Evaluate the ACK_REQUIRED flag *after* we received 803 * the complete frame, and after bumping the next_rx 804 * sequence. */ 805 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) { 806 rds_stats_inc(s_recv_ack_required); 807 state->ack_required = 1; 808 } 809 810 rds_inc_put(&ibinc->ii_inc); 811 } 812 } 813 814 /* 815 * Plucking the oldest entry from the ring can be done concurrently with 816 * the thread refilling the ring. Each ring operation is protected by 817 * spinlocks and the transient state of refilling doesn't change the 818 * recording of which entry is oldest. 819 * 820 * This relies on IB only calling one cq comp_handler for each cq so that 821 * there will only be one caller of rds_recv_incoming() per RDS connection. 822 */ 823 void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context) 824 { 825 struct rds_connection *conn = context; 826 struct rds_ib_connection *ic = conn->c_transport_data; 827 struct ib_wc wc; 828 struct rds_ib_ack_state state = { 0, }; 829 struct rds_ib_recv_work *recv; 830 831 rdsdebug("conn %p cq %p\n", conn, cq); 832 833 rds_ib_stats_inc(s_ib_rx_cq_call); 834 835 ib_req_notify_cq(cq, IB_CQ_SOLICITED); 836 837 while (ib_poll_cq(cq, 1, &wc) > 0) { 838 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", 839 (unsigned long long)wc.wr_id, wc.status, wc.byte_len, 840 be32_to_cpu(wc.ex.imm_data)); 841 rds_ib_stats_inc(s_ib_rx_cq_event); 842 843 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)]; 844 845 rds_ib_recv_unmap_page(ic, recv); 846 847 /* 848 * Also process recvs in connecting state because it is possible 849 * to get a recv completion _before_ the rdmacm ESTABLISHED 850 * event is processed. 851 */ 852 if (rds_conn_up(conn) || rds_conn_connecting(conn)) { 853 /* We expect errors as the qp is drained during shutdown */ 854 if (wc.status == IB_WC_SUCCESS) { 855 rds_ib_process_recv(conn, recv, wc.byte_len, &state); 856 } else { 857 rds_ib_conn_error(conn, "recv completion on " 858 "%pI4 had status %u, disconnecting and " 859 "reconnecting\n", &conn->c_faddr, 860 wc.status); 861 } 862 } 863 864 rds_ib_ring_free(&ic->i_recv_ring, 1); 865 } 866 867 if (state.ack_next_valid) 868 rds_ib_set_ack(ic, state.ack_next, state.ack_required); 869 if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) { 870 rds_send_drop_acked(conn, state.ack_recv, NULL); 871 ic->i_ack_recv = state.ack_recv; 872 } 873 if (rds_conn_up(conn)) 874 rds_ib_attempt_ack(ic); 875 876 /* If we ever end up with a really empty receive ring, we're 877 * in deep trouble, as the sender will definitely see RNR 878 * timeouts. */ 879 if (rds_ib_ring_empty(&ic->i_recv_ring)) 880 rds_ib_stats_inc(s_ib_rx_ring_empty); 881 882 /* 883 * If the ring is running low, then schedule the thread to refill. 884 */ 885 if (rds_ib_ring_low(&ic->i_recv_ring)) 886 queue_delayed_work(rds_wq, &conn->c_recv_w, 0); 887 } 888 889 int rds_ib_recv(struct rds_connection *conn) 890 { 891 struct rds_ib_connection *ic = conn->c_transport_data; 892 int ret = 0; 893 894 rdsdebug("conn %p\n", conn); 895 896 /* 897 * If we get a temporary posting failure in this context then 898 * we're really low and we want the caller to back off for a bit. 899 */ 900 mutex_lock(&ic->i_recv_mutex); 901 if (rds_ib_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0)) 902 ret = -ENOMEM; 903 else 904 rds_ib_stats_inc(s_ib_rx_refill_from_thread); 905 mutex_unlock(&ic->i_recv_mutex); 906 907 if (rds_conn_up(conn)) 908 rds_ib_attempt_ack(ic); 909 910 return ret; 911 } 912 913 int __init rds_ib_recv_init(void) 914 { 915 struct sysinfo si; 916 int ret = -ENOMEM; 917 918 /* Default to 30% of all available RAM for recv memory */ 919 si_meminfo(&si); 920 rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE; 921 922 rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming", 923 sizeof(struct rds_ib_incoming), 924 0, 0, NULL); 925 if (rds_ib_incoming_slab == NULL) 926 goto out; 927 928 rds_ib_frag_slab = kmem_cache_create("rds_ib_frag", 929 sizeof(struct rds_page_frag), 930 0, 0, NULL); 931 if (rds_ib_frag_slab == NULL) 932 kmem_cache_destroy(rds_ib_incoming_slab); 933 else 934 ret = 0; 935 out: 936 return ret; 937 } 938 939 void rds_ib_recv_exit(void) 940 { 941 kmem_cache_destroy(rds_ib_incoming_slab); 942 kmem_cache_destroy(rds_ib_frag_slab); 943 } 944