1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/slab.h> 35 #include <linux/pci.h> 36 #include <linux/dma-mapping.h> 37 #include <rdma/rdma_cm.h> 38 39 #include "rds.h" 40 #include "ib.h" 41 42 static struct kmem_cache *rds_ib_incoming_slab; 43 static struct kmem_cache *rds_ib_frag_slab; 44 static atomic_t rds_ib_allocation = ATOMIC_INIT(0); 45 46 void rds_ib_recv_init_ring(struct rds_ib_connection *ic) 47 { 48 struct rds_ib_recv_work *recv; 49 u32 i; 50 51 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) { 52 struct ib_sge *sge; 53 54 recv->r_ibinc = NULL; 55 recv->r_frag = NULL; 56 57 recv->r_wr.next = NULL; 58 recv->r_wr.wr_id = i; 59 recv->r_wr.sg_list = recv->r_sge; 60 recv->r_wr.num_sge = RDS_IB_RECV_SGE; 61 62 sge = &recv->r_sge[0]; 63 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header)); 64 sge->length = sizeof(struct rds_header); 65 sge->lkey = ic->i_pd->local_dma_lkey; 66 67 sge = &recv->r_sge[1]; 68 sge->addr = 0; 69 sge->length = RDS_FRAG_SIZE; 70 sge->lkey = ic->i_pd->local_dma_lkey; 71 } 72 } 73 74 /* 75 * The entire 'from' list, including the from element itself, is put on 76 * to the tail of the 'to' list. 77 */ 78 static void list_splice_entire_tail(struct list_head *from, 79 struct list_head *to) 80 { 81 struct list_head *from_last = from->prev; 82 83 list_splice_tail(from_last, to); 84 list_add_tail(from_last, to); 85 } 86 87 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache) 88 { 89 struct list_head *tmp; 90 91 tmp = xchg(&cache->xfer, NULL); 92 if (tmp) { 93 if (cache->ready) 94 list_splice_entire_tail(tmp, cache->ready); 95 else 96 cache->ready = tmp; 97 } 98 } 99 100 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache) 101 { 102 struct rds_ib_cache_head *head; 103 int cpu; 104 105 cache->percpu = alloc_percpu(struct rds_ib_cache_head); 106 if (!cache->percpu) 107 return -ENOMEM; 108 109 for_each_possible_cpu(cpu) { 110 head = per_cpu_ptr(cache->percpu, cpu); 111 head->first = NULL; 112 head->count = 0; 113 } 114 cache->xfer = NULL; 115 cache->ready = NULL; 116 117 return 0; 118 } 119 120 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic) 121 { 122 int ret; 123 124 ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs); 125 if (!ret) { 126 ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags); 127 if (ret) 128 free_percpu(ic->i_cache_incs.percpu); 129 } 130 131 return ret; 132 } 133 134 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache, 135 struct list_head *caller_list) 136 { 137 struct rds_ib_cache_head *head; 138 int cpu; 139 140 for_each_possible_cpu(cpu) { 141 head = per_cpu_ptr(cache->percpu, cpu); 142 if (head->first) { 143 list_splice_entire_tail(head->first, caller_list); 144 head->first = NULL; 145 } 146 } 147 148 if (cache->ready) { 149 list_splice_entire_tail(cache->ready, caller_list); 150 cache->ready = NULL; 151 } 152 } 153 154 void rds_ib_recv_free_caches(struct rds_ib_connection *ic) 155 { 156 struct rds_ib_incoming *inc; 157 struct rds_ib_incoming *inc_tmp; 158 struct rds_page_frag *frag; 159 struct rds_page_frag *frag_tmp; 160 LIST_HEAD(list); 161 162 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); 163 rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list); 164 free_percpu(ic->i_cache_incs.percpu); 165 166 list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) { 167 list_del(&inc->ii_cache_entry); 168 WARN_ON(!list_empty(&inc->ii_frags)); 169 kmem_cache_free(rds_ib_incoming_slab, inc); 170 } 171 172 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); 173 rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list); 174 free_percpu(ic->i_cache_frags.percpu); 175 176 list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) { 177 list_del(&frag->f_cache_entry); 178 WARN_ON(!list_empty(&frag->f_item)); 179 kmem_cache_free(rds_ib_frag_slab, frag); 180 } 181 } 182 183 /* fwd decl */ 184 static void rds_ib_recv_cache_put(struct list_head *new_item, 185 struct rds_ib_refill_cache *cache); 186 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache); 187 188 189 /* Recycle frag and attached recv buffer f_sg */ 190 static void rds_ib_frag_free(struct rds_ib_connection *ic, 191 struct rds_page_frag *frag) 192 { 193 rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg)); 194 195 rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags); 196 } 197 198 /* Recycle inc after freeing attached frags */ 199 void rds_ib_inc_free(struct rds_incoming *inc) 200 { 201 struct rds_ib_incoming *ibinc; 202 struct rds_page_frag *frag; 203 struct rds_page_frag *pos; 204 struct rds_ib_connection *ic = inc->i_conn->c_transport_data; 205 206 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); 207 208 /* Free attached frags */ 209 list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) { 210 list_del_init(&frag->f_item); 211 rds_ib_frag_free(ic, frag); 212 } 213 BUG_ON(!list_empty(&ibinc->ii_frags)); 214 215 rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc); 216 rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs); 217 } 218 219 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic, 220 struct rds_ib_recv_work *recv) 221 { 222 if (recv->r_ibinc) { 223 rds_inc_put(&recv->r_ibinc->ii_inc); 224 recv->r_ibinc = NULL; 225 } 226 if (recv->r_frag) { 227 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE); 228 rds_ib_frag_free(ic, recv->r_frag); 229 recv->r_frag = NULL; 230 } 231 } 232 233 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic) 234 { 235 u32 i; 236 237 for (i = 0; i < ic->i_recv_ring.w_nr; i++) 238 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]); 239 } 240 241 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic, 242 gfp_t slab_mask) 243 { 244 struct rds_ib_incoming *ibinc; 245 struct list_head *cache_item; 246 int avail_allocs; 247 248 cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs); 249 if (cache_item) { 250 ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry); 251 } else { 252 avail_allocs = atomic_add_unless(&rds_ib_allocation, 253 1, rds_ib_sysctl_max_recv_allocation); 254 if (!avail_allocs) { 255 rds_ib_stats_inc(s_ib_rx_alloc_limit); 256 return NULL; 257 } 258 ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask); 259 if (!ibinc) { 260 atomic_dec(&rds_ib_allocation); 261 return NULL; 262 } 263 } 264 INIT_LIST_HEAD(&ibinc->ii_frags); 265 rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr); 266 267 return ibinc; 268 } 269 270 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic, 271 gfp_t slab_mask, gfp_t page_mask) 272 { 273 struct rds_page_frag *frag; 274 struct list_head *cache_item; 275 int ret; 276 277 cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags); 278 if (cache_item) { 279 frag = container_of(cache_item, struct rds_page_frag, f_cache_entry); 280 } else { 281 frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask); 282 if (!frag) 283 return NULL; 284 285 sg_init_table(&frag->f_sg, 1); 286 ret = rds_page_remainder_alloc(&frag->f_sg, 287 RDS_FRAG_SIZE, page_mask); 288 if (ret) { 289 kmem_cache_free(rds_ib_frag_slab, frag); 290 return NULL; 291 } 292 } 293 294 INIT_LIST_HEAD(&frag->f_item); 295 296 return frag; 297 } 298 299 static int rds_ib_recv_refill_one(struct rds_connection *conn, 300 struct rds_ib_recv_work *recv, gfp_t gfp) 301 { 302 struct rds_ib_connection *ic = conn->c_transport_data; 303 struct ib_sge *sge; 304 int ret = -ENOMEM; 305 gfp_t slab_mask = GFP_NOWAIT; 306 gfp_t page_mask = GFP_NOWAIT; 307 308 if (gfp & __GFP_WAIT) { 309 slab_mask = GFP_KERNEL; 310 page_mask = GFP_HIGHUSER; 311 } 312 313 if (!ic->i_cache_incs.ready) 314 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); 315 if (!ic->i_cache_frags.ready) 316 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); 317 318 /* 319 * ibinc was taken from recv if recv contained the start of a message. 320 * recvs that were continuations will still have this allocated. 321 */ 322 if (!recv->r_ibinc) { 323 recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask); 324 if (!recv->r_ibinc) 325 goto out; 326 } 327 328 WARN_ON(recv->r_frag); /* leak! */ 329 recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask); 330 if (!recv->r_frag) 331 goto out; 332 333 ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 334 1, DMA_FROM_DEVICE); 335 WARN_ON(ret != 1); 336 337 sge = &recv->r_sge[0]; 338 sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header); 339 sge->length = sizeof(struct rds_header); 340 341 sge = &recv->r_sge[1]; 342 sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg); 343 sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg); 344 345 ret = 0; 346 out: 347 return ret; 348 } 349 350 static int acquire_refill(struct rds_connection *conn) 351 { 352 return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0; 353 } 354 355 static void release_refill(struct rds_connection *conn) 356 { 357 clear_bit(RDS_RECV_REFILL, &conn->c_flags); 358 359 /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a 360 * hot path and finding waiters is very rare. We don't want to walk 361 * the system-wide hashed waitqueue buckets in the fast path only to 362 * almost never find waiters. 363 */ 364 if (waitqueue_active(&conn->c_waitq)) 365 wake_up_all(&conn->c_waitq); 366 } 367 368 /* 369 * This tries to allocate and post unused work requests after making sure that 370 * they have all the allocations they need to queue received fragments into 371 * sockets. 372 * 373 * -1 is returned if posting fails due to temporary resource exhaustion. 374 */ 375 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp) 376 { 377 struct rds_ib_connection *ic = conn->c_transport_data; 378 struct rds_ib_recv_work *recv; 379 struct ib_recv_wr *failed_wr; 380 unsigned int posted = 0; 381 int ret = 0; 382 bool can_wait = !!(gfp & __GFP_WAIT); 383 u32 pos; 384 385 /* the goal here is to just make sure that someone, somewhere 386 * is posting buffers. If we can't get the refill lock, 387 * let them do their thing 388 */ 389 if (!acquire_refill(conn)) 390 return; 391 392 while ((prefill || rds_conn_up(conn)) && 393 rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) { 394 if (pos >= ic->i_recv_ring.w_nr) { 395 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n", 396 pos); 397 break; 398 } 399 400 recv = &ic->i_recvs[pos]; 401 ret = rds_ib_recv_refill_one(conn, recv, gfp); 402 if (ret) { 403 break; 404 } 405 406 /* XXX when can this fail? */ 407 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr); 408 rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv, 409 recv->r_ibinc, sg_page(&recv->r_frag->f_sg), 410 (long) ib_sg_dma_address( 411 ic->i_cm_id->device, 412 &recv->r_frag->f_sg), 413 ret); 414 if (ret) { 415 rds_ib_conn_error(conn, "recv post on " 416 "%pI4 returned %d, disconnecting and " 417 "reconnecting\n", &conn->c_faddr, 418 ret); 419 break; 420 } 421 422 posted++; 423 } 424 425 /* We're doing flow control - update the window. */ 426 if (ic->i_flowctl && posted) 427 rds_ib_advertise_credits(conn, posted); 428 429 if (ret) 430 rds_ib_ring_unalloc(&ic->i_recv_ring, 1); 431 432 release_refill(conn); 433 434 /* if we're called from the softirq handler, we'll be GFP_NOWAIT. 435 * in this case the ring being low is going to lead to more interrupts 436 * and we can safely let the softirq code take care of it unless the 437 * ring is completely empty. 438 * 439 * if we're called from krdsd, we'll be GFP_KERNEL. In this case 440 * we might have raced with the softirq code while we had the refill 441 * lock held. Use rds_ib_ring_low() instead of ring_empty to decide 442 * if we should requeue. 443 */ 444 if (rds_conn_up(conn) && 445 ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) || 446 rds_ib_ring_empty(&ic->i_recv_ring))) { 447 queue_delayed_work(rds_wq, &conn->c_recv_w, 1); 448 } 449 } 450 451 /* 452 * We want to recycle several types of recv allocations, like incs and frags. 453 * To use this, the *_free() function passes in the ptr to a list_head within 454 * the recyclee, as well as the cache to put it on. 455 * 456 * First, we put the memory on a percpu list. When this reaches a certain size, 457 * We move it to an intermediate non-percpu list in a lockless manner, with some 458 * xchg/compxchg wizardry. 459 * 460 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can 461 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and 462 * list_empty() will return true with one element is actually present. 463 */ 464 static void rds_ib_recv_cache_put(struct list_head *new_item, 465 struct rds_ib_refill_cache *cache) 466 { 467 unsigned long flags; 468 struct list_head *old, *chpfirst; 469 470 local_irq_save(flags); 471 472 chpfirst = __this_cpu_read(cache->percpu->first); 473 if (!chpfirst) 474 INIT_LIST_HEAD(new_item); 475 else /* put on front */ 476 list_add_tail(new_item, chpfirst); 477 478 __this_cpu_write(cache->percpu->first, new_item); 479 __this_cpu_inc(cache->percpu->count); 480 481 if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT) 482 goto end; 483 484 /* 485 * Return our per-cpu first list to the cache's xfer by atomically 486 * grabbing the current xfer list, appending it to our per-cpu list, 487 * and then atomically returning that entire list back to the 488 * cache's xfer list as long as it's still empty. 489 */ 490 do { 491 old = xchg(&cache->xfer, NULL); 492 if (old) 493 list_splice_entire_tail(old, chpfirst); 494 old = cmpxchg(&cache->xfer, NULL, chpfirst); 495 } while (old); 496 497 498 __this_cpu_write(cache->percpu->first, NULL); 499 __this_cpu_write(cache->percpu->count, 0); 500 end: 501 local_irq_restore(flags); 502 } 503 504 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache) 505 { 506 struct list_head *head = cache->ready; 507 508 if (head) { 509 if (!list_empty(head)) { 510 cache->ready = head->next; 511 list_del_init(head); 512 } else 513 cache->ready = NULL; 514 } 515 516 return head; 517 } 518 519 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to) 520 { 521 struct rds_ib_incoming *ibinc; 522 struct rds_page_frag *frag; 523 unsigned long to_copy; 524 unsigned long frag_off = 0; 525 int copied = 0; 526 int ret; 527 u32 len; 528 529 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); 530 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); 531 len = be32_to_cpu(inc->i_hdr.h_len); 532 533 while (iov_iter_count(to) && copied < len) { 534 if (frag_off == RDS_FRAG_SIZE) { 535 frag = list_entry(frag->f_item.next, 536 struct rds_page_frag, f_item); 537 frag_off = 0; 538 } 539 to_copy = min_t(unsigned long, iov_iter_count(to), 540 RDS_FRAG_SIZE - frag_off); 541 to_copy = min_t(unsigned long, to_copy, len - copied); 542 543 /* XXX needs + offset for multiple recvs per page */ 544 rds_stats_add(s_copy_to_user, to_copy); 545 ret = copy_page_to_iter(sg_page(&frag->f_sg), 546 frag->f_sg.offset + frag_off, 547 to_copy, 548 to); 549 if (ret != to_copy) 550 return -EFAULT; 551 552 frag_off += to_copy; 553 copied += to_copy; 554 } 555 556 return copied; 557 } 558 559 /* ic starts out kzalloc()ed */ 560 void rds_ib_recv_init_ack(struct rds_ib_connection *ic) 561 { 562 struct ib_send_wr *wr = &ic->i_ack_wr; 563 struct ib_sge *sge = &ic->i_ack_sge; 564 565 sge->addr = ic->i_ack_dma; 566 sge->length = sizeof(struct rds_header); 567 sge->lkey = ic->i_pd->local_dma_lkey; 568 569 wr->sg_list = sge; 570 wr->num_sge = 1; 571 wr->opcode = IB_WR_SEND; 572 wr->wr_id = RDS_IB_ACK_WR_ID; 573 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED; 574 } 575 576 /* 577 * You'd think that with reliable IB connections you wouldn't need to ack 578 * messages that have been received. The problem is that IB hardware generates 579 * an ack message before it has DMAed the message into memory. This creates a 580 * potential message loss if the HCA is disabled for any reason between when it 581 * sends the ack and before the message is DMAed and processed. This is only a 582 * potential issue if another HCA is available for fail-over. 583 * 584 * When the remote host receives our ack they'll free the sent message from 585 * their send queue. To decrease the latency of this we always send an ack 586 * immediately after we've received messages. 587 * 588 * For simplicity, we only have one ack in flight at a time. This puts 589 * pressure on senders to have deep enough send queues to absorb the latency of 590 * a single ack frame being in flight. This might not be good enough. 591 * 592 * This is implemented by have a long-lived send_wr and sge which point to a 593 * statically allocated ack frame. This ack wr does not fall under the ring 594 * accounting that the tx and rx wrs do. The QP attribute specifically makes 595 * room for it beyond the ring size. Send completion notices its special 596 * wr_id and avoids working with the ring in that case. 597 */ 598 #ifndef KERNEL_HAS_ATOMIC64 599 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, 600 int ack_required) 601 { 602 unsigned long flags; 603 604 spin_lock_irqsave(&ic->i_ack_lock, flags); 605 ic->i_ack_next = seq; 606 if (ack_required) 607 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 608 spin_unlock_irqrestore(&ic->i_ack_lock, flags); 609 } 610 611 static u64 rds_ib_get_ack(struct rds_ib_connection *ic) 612 { 613 unsigned long flags; 614 u64 seq; 615 616 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 617 618 spin_lock_irqsave(&ic->i_ack_lock, flags); 619 seq = ic->i_ack_next; 620 spin_unlock_irqrestore(&ic->i_ack_lock, flags); 621 622 return seq; 623 } 624 #else 625 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, 626 int ack_required) 627 { 628 atomic64_set(&ic->i_ack_next, seq); 629 if (ack_required) { 630 smp_mb__before_atomic(); 631 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 632 } 633 } 634 635 static u64 rds_ib_get_ack(struct rds_ib_connection *ic) 636 { 637 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 638 smp_mb__after_atomic(); 639 640 return atomic64_read(&ic->i_ack_next); 641 } 642 #endif 643 644 645 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits) 646 { 647 struct rds_header *hdr = ic->i_ack; 648 struct ib_send_wr *failed_wr; 649 u64 seq; 650 int ret; 651 652 seq = rds_ib_get_ack(ic); 653 654 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq); 655 rds_message_populate_header(hdr, 0, 0, 0); 656 hdr->h_ack = cpu_to_be64(seq); 657 hdr->h_credit = adv_credits; 658 rds_message_make_checksum(hdr); 659 ic->i_ack_queued = jiffies; 660 661 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr); 662 if (unlikely(ret)) { 663 /* Failed to send. Release the WR, and 664 * force another ACK. 665 */ 666 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 667 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 668 669 rds_ib_stats_inc(s_ib_ack_send_failure); 670 671 rds_ib_conn_error(ic->conn, "sending ack failed\n"); 672 } else 673 rds_ib_stats_inc(s_ib_ack_sent); 674 } 675 676 /* 677 * There are 3 ways of getting acknowledgements to the peer: 678 * 1. We call rds_ib_attempt_ack from the recv completion handler 679 * to send an ACK-only frame. 680 * However, there can be only one such frame in the send queue 681 * at any time, so we may have to postpone it. 682 * 2. When another (data) packet is transmitted while there's 683 * an ACK in the queue, we piggyback the ACK sequence number 684 * on the data packet. 685 * 3. If the ACK WR is done sending, we get called from the 686 * send queue completion handler, and check whether there's 687 * another ACK pending (postponed because the WR was on the 688 * queue). If so, we transmit it. 689 * 690 * We maintain 2 variables: 691 * - i_ack_flags, which keeps track of whether the ACK WR 692 * is currently in the send queue or not (IB_ACK_IN_FLIGHT) 693 * - i_ack_next, which is the last sequence number we received 694 * 695 * Potentially, send queue and receive queue handlers can run concurrently. 696 * It would be nice to not have to use a spinlock to synchronize things, 697 * but the one problem that rules this out is that 64bit updates are 698 * not atomic on all platforms. Things would be a lot simpler if 699 * we had atomic64 or maybe cmpxchg64 everywhere. 700 * 701 * Reconnecting complicates this picture just slightly. When we 702 * reconnect, we may be seeing duplicate packets. The peer 703 * is retransmitting them, because it hasn't seen an ACK for 704 * them. It is important that we ACK these. 705 * 706 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with 707 * this flag set *MUST* be acknowledged immediately. 708 */ 709 710 /* 711 * When we get here, we're called from the recv queue handler. 712 * Check whether we ought to transmit an ACK. 713 */ 714 void rds_ib_attempt_ack(struct rds_ib_connection *ic) 715 { 716 unsigned int adv_credits; 717 718 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) 719 return; 720 721 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) { 722 rds_ib_stats_inc(s_ib_ack_send_delayed); 723 return; 724 } 725 726 /* Can we get a send credit? */ 727 if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) { 728 rds_ib_stats_inc(s_ib_tx_throttle); 729 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 730 return; 731 } 732 733 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 734 rds_ib_send_ack(ic, adv_credits); 735 } 736 737 /* 738 * We get here from the send completion handler, when the 739 * adapter tells us the ACK frame was sent. 740 */ 741 void rds_ib_ack_send_complete(struct rds_ib_connection *ic) 742 { 743 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 744 rds_ib_attempt_ack(ic); 745 } 746 747 /* 748 * This is called by the regular xmit code when it wants to piggyback 749 * an ACK on an outgoing frame. 750 */ 751 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic) 752 { 753 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) 754 rds_ib_stats_inc(s_ib_ack_send_piggybacked); 755 return rds_ib_get_ack(ic); 756 } 757 758 /* 759 * It's kind of lame that we're copying from the posted receive pages into 760 * long-lived bitmaps. We could have posted the bitmaps and rdma written into 761 * them. But receiving new congestion bitmaps should be a *rare* event, so 762 * hopefully we won't need to invest that complexity in making it more 763 * efficient. By copying we can share a simpler core with TCP which has to 764 * copy. 765 */ 766 static void rds_ib_cong_recv(struct rds_connection *conn, 767 struct rds_ib_incoming *ibinc) 768 { 769 struct rds_cong_map *map; 770 unsigned int map_off; 771 unsigned int map_page; 772 struct rds_page_frag *frag; 773 unsigned long frag_off; 774 unsigned long to_copy; 775 unsigned long copied; 776 uint64_t uncongested = 0; 777 void *addr; 778 779 /* catch completely corrupt packets */ 780 if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) 781 return; 782 783 map = conn->c_fcong; 784 map_page = 0; 785 map_off = 0; 786 787 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); 788 frag_off = 0; 789 790 copied = 0; 791 792 while (copied < RDS_CONG_MAP_BYTES) { 793 uint64_t *src, *dst; 794 unsigned int k; 795 796 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off); 797 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */ 798 799 addr = kmap_atomic(sg_page(&frag->f_sg)); 800 801 src = addr + frag_off; 802 dst = (void *)map->m_page_addrs[map_page] + map_off; 803 for (k = 0; k < to_copy; k += 8) { 804 /* Record ports that became uncongested, ie 805 * bits that changed from 0 to 1. */ 806 uncongested |= ~(*src) & *dst; 807 *dst++ = *src++; 808 } 809 kunmap_atomic(addr); 810 811 copied += to_copy; 812 813 map_off += to_copy; 814 if (map_off == PAGE_SIZE) { 815 map_off = 0; 816 map_page++; 817 } 818 819 frag_off += to_copy; 820 if (frag_off == RDS_FRAG_SIZE) { 821 frag = list_entry(frag->f_item.next, 822 struct rds_page_frag, f_item); 823 frag_off = 0; 824 } 825 } 826 827 /* the congestion map is in little endian order */ 828 uncongested = le64_to_cpu(uncongested); 829 830 rds_cong_map_updated(map, uncongested); 831 } 832 833 /* 834 * Rings are posted with all the allocations they'll need to queue the 835 * incoming message to the receiving socket so this can't fail. 836 * All fragments start with a header, so we can make sure we're not receiving 837 * garbage, and we can tell a small 8 byte fragment from an ACK frame. 838 */ 839 struct rds_ib_ack_state { 840 u64 ack_next; 841 u64 ack_recv; 842 unsigned int ack_required:1; 843 unsigned int ack_next_valid:1; 844 unsigned int ack_recv_valid:1; 845 }; 846 847 static void rds_ib_process_recv(struct rds_connection *conn, 848 struct rds_ib_recv_work *recv, u32 data_len, 849 struct rds_ib_ack_state *state) 850 { 851 struct rds_ib_connection *ic = conn->c_transport_data; 852 struct rds_ib_incoming *ibinc = ic->i_ibinc; 853 struct rds_header *ihdr, *hdr; 854 855 /* XXX shut down the connection if port 0,0 are seen? */ 856 857 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv, 858 data_len); 859 860 if (data_len < sizeof(struct rds_header)) { 861 rds_ib_conn_error(conn, "incoming message " 862 "from %pI4 didn't include a " 863 "header, disconnecting and " 864 "reconnecting\n", 865 &conn->c_faddr); 866 return; 867 } 868 data_len -= sizeof(struct rds_header); 869 870 ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs]; 871 872 /* Validate the checksum. */ 873 if (!rds_message_verify_checksum(ihdr)) { 874 rds_ib_conn_error(conn, "incoming message " 875 "from %pI4 has corrupted header - " 876 "forcing a reconnect\n", 877 &conn->c_faddr); 878 rds_stats_inc(s_recv_drop_bad_checksum); 879 return; 880 } 881 882 /* Process the ACK sequence which comes with every packet */ 883 state->ack_recv = be64_to_cpu(ihdr->h_ack); 884 state->ack_recv_valid = 1; 885 886 /* Process the credits update if there was one */ 887 if (ihdr->h_credit) 888 rds_ib_send_add_credits(conn, ihdr->h_credit); 889 890 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) { 891 /* This is an ACK-only packet. The fact that it gets 892 * special treatment here is that historically, ACKs 893 * were rather special beasts. 894 */ 895 rds_ib_stats_inc(s_ib_ack_received); 896 897 /* 898 * Usually the frags make their way on to incs and are then freed as 899 * the inc is freed. We don't go that route, so we have to drop the 900 * page ref ourselves. We can't just leave the page on the recv 901 * because that confuses the dma mapping of pages and each recv's use 902 * of a partial page. 903 * 904 * FIXME: Fold this into the code path below. 905 */ 906 rds_ib_frag_free(ic, recv->r_frag); 907 recv->r_frag = NULL; 908 return; 909 } 910 911 /* 912 * If we don't already have an inc on the connection then this 913 * fragment has a header and starts a message.. copy its header 914 * into the inc and save the inc so we can hang upcoming fragments 915 * off its list. 916 */ 917 if (!ibinc) { 918 ibinc = recv->r_ibinc; 919 recv->r_ibinc = NULL; 920 ic->i_ibinc = ibinc; 921 922 hdr = &ibinc->ii_inc.i_hdr; 923 memcpy(hdr, ihdr, sizeof(*hdr)); 924 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len); 925 926 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc, 927 ic->i_recv_data_rem, hdr->h_flags); 928 } else { 929 hdr = &ibinc->ii_inc.i_hdr; 930 /* We can't just use memcmp here; fragments of a 931 * single message may carry different ACKs */ 932 if (hdr->h_sequence != ihdr->h_sequence || 933 hdr->h_len != ihdr->h_len || 934 hdr->h_sport != ihdr->h_sport || 935 hdr->h_dport != ihdr->h_dport) { 936 rds_ib_conn_error(conn, 937 "fragment header mismatch; forcing reconnect\n"); 938 return; 939 } 940 } 941 942 list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags); 943 recv->r_frag = NULL; 944 945 if (ic->i_recv_data_rem > RDS_FRAG_SIZE) 946 ic->i_recv_data_rem -= RDS_FRAG_SIZE; 947 else { 948 ic->i_recv_data_rem = 0; 949 ic->i_ibinc = NULL; 950 951 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) 952 rds_ib_cong_recv(conn, ibinc); 953 else { 954 rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr, 955 &ibinc->ii_inc, GFP_ATOMIC); 956 state->ack_next = be64_to_cpu(hdr->h_sequence); 957 state->ack_next_valid = 1; 958 } 959 960 /* Evaluate the ACK_REQUIRED flag *after* we received 961 * the complete frame, and after bumping the next_rx 962 * sequence. */ 963 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) { 964 rds_stats_inc(s_recv_ack_required); 965 state->ack_required = 1; 966 } 967 968 rds_inc_put(&ibinc->ii_inc); 969 } 970 } 971 972 /* 973 * Plucking the oldest entry from the ring can be done concurrently with 974 * the thread refilling the ring. Each ring operation is protected by 975 * spinlocks and the transient state of refilling doesn't change the 976 * recording of which entry is oldest. 977 * 978 * This relies on IB only calling one cq comp_handler for each cq so that 979 * there will only be one caller of rds_recv_incoming() per RDS connection. 980 */ 981 void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context) 982 { 983 struct rds_connection *conn = context; 984 struct rds_ib_connection *ic = conn->c_transport_data; 985 986 rdsdebug("conn %p cq %p\n", conn, cq); 987 988 rds_ib_stats_inc(s_ib_rx_cq_call); 989 990 tasklet_schedule(&ic->i_recv_tasklet); 991 } 992 993 static inline void rds_poll_cq(struct rds_ib_connection *ic, 994 struct rds_ib_ack_state *state) 995 { 996 struct rds_connection *conn = ic->conn; 997 struct ib_wc wc; 998 struct rds_ib_recv_work *recv; 999 1000 while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) { 1001 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n", 1002 (unsigned long long)wc.wr_id, wc.status, 1003 ib_wc_status_msg(wc.status), wc.byte_len, 1004 be32_to_cpu(wc.ex.imm_data)); 1005 rds_ib_stats_inc(s_ib_rx_cq_event); 1006 1007 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)]; 1008 1009 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE); 1010 1011 /* 1012 * Also process recvs in connecting state because it is possible 1013 * to get a recv completion _before_ the rdmacm ESTABLISHED 1014 * event is processed. 1015 */ 1016 if (wc.status == IB_WC_SUCCESS) { 1017 rds_ib_process_recv(conn, recv, wc.byte_len, state); 1018 } else { 1019 /* We expect errors as the qp is drained during shutdown */ 1020 if (rds_conn_up(conn) || rds_conn_connecting(conn)) 1021 rds_ib_conn_error(conn, "recv completion on %pI4 had " 1022 "status %u (%s), disconnecting and " 1023 "reconnecting\n", &conn->c_faddr, 1024 wc.status, 1025 ib_wc_status_msg(wc.status)); 1026 } 1027 1028 /* 1029 * rds_ib_process_recv() doesn't always consume the frag, and 1030 * we might not have called it at all if the wc didn't indicate 1031 * success. We already unmapped the frag's pages, though, and 1032 * the following rds_ib_ring_free() call tells the refill path 1033 * that it will not find an allocated frag here. Make sure we 1034 * keep that promise by freeing a frag that's still on the ring. 1035 */ 1036 if (recv->r_frag) { 1037 rds_ib_frag_free(ic, recv->r_frag); 1038 recv->r_frag = NULL; 1039 } 1040 rds_ib_ring_free(&ic->i_recv_ring, 1); 1041 } 1042 } 1043 1044 void rds_ib_recv_tasklet_fn(unsigned long data) 1045 { 1046 struct rds_ib_connection *ic = (struct rds_ib_connection *) data; 1047 struct rds_connection *conn = ic->conn; 1048 struct rds_ib_ack_state state = { 0, }; 1049 1050 rds_poll_cq(ic, &state); 1051 ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED); 1052 rds_poll_cq(ic, &state); 1053 1054 if (state.ack_next_valid) 1055 rds_ib_set_ack(ic, state.ack_next, state.ack_required); 1056 if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) { 1057 rds_send_drop_acked(conn, state.ack_recv, NULL); 1058 ic->i_ack_recv = state.ack_recv; 1059 } 1060 if (rds_conn_up(conn)) 1061 rds_ib_attempt_ack(ic); 1062 1063 /* If we ever end up with a really empty receive ring, we're 1064 * in deep trouble, as the sender will definitely see RNR 1065 * timeouts. */ 1066 if (rds_ib_ring_empty(&ic->i_recv_ring)) 1067 rds_ib_stats_inc(s_ib_rx_ring_empty); 1068 1069 if (rds_ib_ring_low(&ic->i_recv_ring)) 1070 rds_ib_recv_refill(conn, 0, GFP_NOWAIT); 1071 } 1072 1073 int rds_ib_recv(struct rds_connection *conn) 1074 { 1075 struct rds_ib_connection *ic = conn->c_transport_data; 1076 int ret = 0; 1077 1078 rdsdebug("conn %p\n", conn); 1079 if (rds_conn_up(conn)) { 1080 rds_ib_attempt_ack(ic); 1081 rds_ib_recv_refill(conn, 0, GFP_KERNEL); 1082 } 1083 1084 return ret; 1085 } 1086 1087 int rds_ib_recv_init(void) 1088 { 1089 struct sysinfo si; 1090 int ret = -ENOMEM; 1091 1092 /* Default to 30% of all available RAM for recv memory */ 1093 si_meminfo(&si); 1094 rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE; 1095 1096 rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming", 1097 sizeof(struct rds_ib_incoming), 1098 0, SLAB_HWCACHE_ALIGN, NULL); 1099 if (!rds_ib_incoming_slab) 1100 goto out; 1101 1102 rds_ib_frag_slab = kmem_cache_create("rds_ib_frag", 1103 sizeof(struct rds_page_frag), 1104 0, SLAB_HWCACHE_ALIGN, NULL); 1105 if (!rds_ib_frag_slab) { 1106 kmem_cache_destroy(rds_ib_incoming_slab); 1107 rds_ib_incoming_slab = NULL; 1108 } else 1109 ret = 0; 1110 out: 1111 return ret; 1112 } 1113 1114 void rds_ib_recv_exit(void) 1115 { 1116 kmem_cache_destroy(rds_ib_incoming_slab); 1117 kmem_cache_destroy(rds_ib_frag_slab); 1118 } 1119