xref: /linux/net/rds/ib_recv.c (revision 861e10be08c69808065d755d3e3cab5d520a2d32)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38 
39 #include "rds.h"
40 #include "ib.h"
41 
42 static struct kmem_cache *rds_ib_incoming_slab;
43 static struct kmem_cache *rds_ib_frag_slab;
44 static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
45 
46 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
47 {
48 	struct rds_ib_recv_work *recv;
49 	u32 i;
50 
51 	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
52 		struct ib_sge *sge;
53 
54 		recv->r_ibinc = NULL;
55 		recv->r_frag = NULL;
56 
57 		recv->r_wr.next = NULL;
58 		recv->r_wr.wr_id = i;
59 		recv->r_wr.sg_list = recv->r_sge;
60 		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
61 
62 		sge = &recv->r_sge[0];
63 		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
64 		sge->length = sizeof(struct rds_header);
65 		sge->lkey = ic->i_mr->lkey;
66 
67 		sge = &recv->r_sge[1];
68 		sge->addr = 0;
69 		sge->length = RDS_FRAG_SIZE;
70 		sge->lkey = ic->i_mr->lkey;
71 	}
72 }
73 
74 /*
75  * The entire 'from' list, including the from element itself, is put on
76  * to the tail of the 'to' list.
77  */
78 static void list_splice_entire_tail(struct list_head *from,
79 				    struct list_head *to)
80 {
81 	struct list_head *from_last = from->prev;
82 
83 	list_splice_tail(from_last, to);
84 	list_add_tail(from_last, to);
85 }
86 
87 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
88 {
89 	struct list_head *tmp;
90 
91 	tmp = xchg(&cache->xfer, NULL);
92 	if (tmp) {
93 		if (cache->ready)
94 			list_splice_entire_tail(tmp, cache->ready);
95 		else
96 			cache->ready = tmp;
97 	}
98 }
99 
100 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
101 {
102 	struct rds_ib_cache_head *head;
103 	int cpu;
104 
105 	cache->percpu = alloc_percpu(struct rds_ib_cache_head);
106 	if (!cache->percpu)
107 	       return -ENOMEM;
108 
109 	for_each_possible_cpu(cpu) {
110 		head = per_cpu_ptr(cache->percpu, cpu);
111 		head->first = NULL;
112 		head->count = 0;
113 	}
114 	cache->xfer = NULL;
115 	cache->ready = NULL;
116 
117 	return 0;
118 }
119 
120 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
121 {
122 	int ret;
123 
124 	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
125 	if (!ret) {
126 		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
127 		if (ret)
128 			free_percpu(ic->i_cache_incs.percpu);
129 	}
130 
131 	return ret;
132 }
133 
134 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
135 					  struct list_head *caller_list)
136 {
137 	struct rds_ib_cache_head *head;
138 	int cpu;
139 
140 	for_each_possible_cpu(cpu) {
141 		head = per_cpu_ptr(cache->percpu, cpu);
142 		if (head->first) {
143 			list_splice_entire_tail(head->first, caller_list);
144 			head->first = NULL;
145 		}
146 	}
147 
148 	if (cache->ready) {
149 		list_splice_entire_tail(cache->ready, caller_list);
150 		cache->ready = NULL;
151 	}
152 }
153 
154 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
155 {
156 	struct rds_ib_incoming *inc;
157 	struct rds_ib_incoming *inc_tmp;
158 	struct rds_page_frag *frag;
159 	struct rds_page_frag *frag_tmp;
160 	LIST_HEAD(list);
161 
162 	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
163 	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
164 	free_percpu(ic->i_cache_incs.percpu);
165 
166 	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
167 		list_del(&inc->ii_cache_entry);
168 		WARN_ON(!list_empty(&inc->ii_frags));
169 		kmem_cache_free(rds_ib_incoming_slab, inc);
170 	}
171 
172 	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
173 	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
174 	free_percpu(ic->i_cache_frags.percpu);
175 
176 	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
177 		list_del(&frag->f_cache_entry);
178 		WARN_ON(!list_empty(&frag->f_item));
179 		kmem_cache_free(rds_ib_frag_slab, frag);
180 	}
181 }
182 
183 /* fwd decl */
184 static void rds_ib_recv_cache_put(struct list_head *new_item,
185 				  struct rds_ib_refill_cache *cache);
186 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
187 
188 
189 /* Recycle frag and attached recv buffer f_sg */
190 static void rds_ib_frag_free(struct rds_ib_connection *ic,
191 			     struct rds_page_frag *frag)
192 {
193 	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
194 
195 	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
196 }
197 
198 /* Recycle inc after freeing attached frags */
199 void rds_ib_inc_free(struct rds_incoming *inc)
200 {
201 	struct rds_ib_incoming *ibinc;
202 	struct rds_page_frag *frag;
203 	struct rds_page_frag *pos;
204 	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
205 
206 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
207 
208 	/* Free attached frags */
209 	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
210 		list_del_init(&frag->f_item);
211 		rds_ib_frag_free(ic, frag);
212 	}
213 	BUG_ON(!list_empty(&ibinc->ii_frags));
214 
215 	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
216 	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
217 }
218 
219 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
220 				  struct rds_ib_recv_work *recv)
221 {
222 	if (recv->r_ibinc) {
223 		rds_inc_put(&recv->r_ibinc->ii_inc);
224 		recv->r_ibinc = NULL;
225 	}
226 	if (recv->r_frag) {
227 		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
228 		rds_ib_frag_free(ic, recv->r_frag);
229 		recv->r_frag = NULL;
230 	}
231 }
232 
233 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
234 {
235 	u32 i;
236 
237 	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
238 		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
239 }
240 
241 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
242 						     gfp_t slab_mask)
243 {
244 	struct rds_ib_incoming *ibinc;
245 	struct list_head *cache_item;
246 	int avail_allocs;
247 
248 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
249 	if (cache_item) {
250 		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
251 	} else {
252 		avail_allocs = atomic_add_unless(&rds_ib_allocation,
253 						 1, rds_ib_sysctl_max_recv_allocation);
254 		if (!avail_allocs) {
255 			rds_ib_stats_inc(s_ib_rx_alloc_limit);
256 			return NULL;
257 		}
258 		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
259 		if (!ibinc) {
260 			atomic_dec(&rds_ib_allocation);
261 			return NULL;
262 		}
263 	}
264 	INIT_LIST_HEAD(&ibinc->ii_frags);
265 	rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
266 
267 	return ibinc;
268 }
269 
270 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
271 						    gfp_t slab_mask, gfp_t page_mask)
272 {
273 	struct rds_page_frag *frag;
274 	struct list_head *cache_item;
275 	int ret;
276 
277 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
278 	if (cache_item) {
279 		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
280 	} else {
281 		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
282 		if (!frag)
283 			return NULL;
284 
285 		sg_init_table(&frag->f_sg, 1);
286 		ret = rds_page_remainder_alloc(&frag->f_sg,
287 					       RDS_FRAG_SIZE, page_mask);
288 		if (ret) {
289 			kmem_cache_free(rds_ib_frag_slab, frag);
290 			return NULL;
291 		}
292 	}
293 
294 	INIT_LIST_HEAD(&frag->f_item);
295 
296 	return frag;
297 }
298 
299 static int rds_ib_recv_refill_one(struct rds_connection *conn,
300 				  struct rds_ib_recv_work *recv, int prefill)
301 {
302 	struct rds_ib_connection *ic = conn->c_transport_data;
303 	struct ib_sge *sge;
304 	int ret = -ENOMEM;
305 	gfp_t slab_mask = GFP_NOWAIT;
306 	gfp_t page_mask = GFP_NOWAIT;
307 
308 	if (prefill) {
309 		slab_mask = GFP_KERNEL;
310 		page_mask = GFP_HIGHUSER;
311 	}
312 
313 	if (!ic->i_cache_incs.ready)
314 		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
315 	if (!ic->i_cache_frags.ready)
316 		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
317 
318 	/*
319 	 * ibinc was taken from recv if recv contained the start of a message.
320 	 * recvs that were continuations will still have this allocated.
321 	 */
322 	if (!recv->r_ibinc) {
323 		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
324 		if (!recv->r_ibinc)
325 			goto out;
326 	}
327 
328 	WARN_ON(recv->r_frag); /* leak! */
329 	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
330 	if (!recv->r_frag)
331 		goto out;
332 
333 	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
334 			    1, DMA_FROM_DEVICE);
335 	WARN_ON(ret != 1);
336 
337 	sge = &recv->r_sge[0];
338 	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
339 	sge->length = sizeof(struct rds_header);
340 
341 	sge = &recv->r_sge[1];
342 	sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
343 	sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
344 
345 	ret = 0;
346 out:
347 	return ret;
348 }
349 
350 /*
351  * This tries to allocate and post unused work requests after making sure that
352  * they have all the allocations they need to queue received fragments into
353  * sockets.
354  *
355  * -1 is returned if posting fails due to temporary resource exhaustion.
356  */
357 void rds_ib_recv_refill(struct rds_connection *conn, int prefill)
358 {
359 	struct rds_ib_connection *ic = conn->c_transport_data;
360 	struct rds_ib_recv_work *recv;
361 	struct ib_recv_wr *failed_wr;
362 	unsigned int posted = 0;
363 	int ret = 0;
364 	u32 pos;
365 
366 	while ((prefill || rds_conn_up(conn)) &&
367 	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
368 		if (pos >= ic->i_recv_ring.w_nr) {
369 			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
370 					pos);
371 			break;
372 		}
373 
374 		recv = &ic->i_recvs[pos];
375 		ret = rds_ib_recv_refill_one(conn, recv, prefill);
376 		if (ret) {
377 			break;
378 		}
379 
380 		/* XXX when can this fail? */
381 		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
382 		rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
383 			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
384 			 (long) ib_sg_dma_address(
385 				ic->i_cm_id->device,
386 				&recv->r_frag->f_sg),
387 			ret);
388 		if (ret) {
389 			rds_ib_conn_error(conn, "recv post on "
390 			       "%pI4 returned %d, disconnecting and "
391 			       "reconnecting\n", &conn->c_faddr,
392 			       ret);
393 			break;
394 		}
395 
396 		posted++;
397 	}
398 
399 	/* We're doing flow control - update the window. */
400 	if (ic->i_flowctl && posted)
401 		rds_ib_advertise_credits(conn, posted);
402 
403 	if (ret)
404 		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
405 }
406 
407 /*
408  * We want to recycle several types of recv allocations, like incs and frags.
409  * To use this, the *_free() function passes in the ptr to a list_head within
410  * the recyclee, as well as the cache to put it on.
411  *
412  * First, we put the memory on a percpu list. When this reaches a certain size,
413  * We move it to an intermediate non-percpu list in a lockless manner, with some
414  * xchg/compxchg wizardry.
415  *
416  * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
417  * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
418  * list_empty() will return true with one element is actually present.
419  */
420 static void rds_ib_recv_cache_put(struct list_head *new_item,
421 				 struct rds_ib_refill_cache *cache)
422 {
423 	unsigned long flags;
424 	struct list_head *old;
425 	struct list_head __percpu *chpfirst;
426 
427 	local_irq_save(flags);
428 
429 	chpfirst = __this_cpu_read(cache->percpu->first);
430 	if (!chpfirst)
431 		INIT_LIST_HEAD(new_item);
432 	else /* put on front */
433 		list_add_tail(new_item, chpfirst);
434 
435 	__this_cpu_write(chpfirst, new_item);
436 	__this_cpu_inc(cache->percpu->count);
437 
438 	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
439 		goto end;
440 
441 	/*
442 	 * Return our per-cpu first list to the cache's xfer by atomically
443 	 * grabbing the current xfer list, appending it to our per-cpu list,
444 	 * and then atomically returning that entire list back to the
445 	 * cache's xfer list as long as it's still empty.
446 	 */
447 	do {
448 		old = xchg(&cache->xfer, NULL);
449 		if (old)
450 			list_splice_entire_tail(old, chpfirst);
451 		old = cmpxchg(&cache->xfer, NULL, chpfirst);
452 	} while (old);
453 
454 
455 	__this_cpu_write(chpfirst, NULL);
456 	__this_cpu_write(cache->percpu->count, 0);
457 end:
458 	local_irq_restore(flags);
459 }
460 
461 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
462 {
463 	struct list_head *head = cache->ready;
464 
465 	if (head) {
466 		if (!list_empty(head)) {
467 			cache->ready = head->next;
468 			list_del_init(head);
469 		} else
470 			cache->ready = NULL;
471 	}
472 
473 	return head;
474 }
475 
476 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
477 			    size_t size)
478 {
479 	struct rds_ib_incoming *ibinc;
480 	struct rds_page_frag *frag;
481 	struct iovec *iov = first_iov;
482 	unsigned long to_copy;
483 	unsigned long frag_off = 0;
484 	unsigned long iov_off = 0;
485 	int copied = 0;
486 	int ret;
487 	u32 len;
488 
489 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
490 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
491 	len = be32_to_cpu(inc->i_hdr.h_len);
492 
493 	while (copied < size && copied < len) {
494 		if (frag_off == RDS_FRAG_SIZE) {
495 			frag = list_entry(frag->f_item.next,
496 					  struct rds_page_frag, f_item);
497 			frag_off = 0;
498 		}
499 		while (iov_off == iov->iov_len) {
500 			iov_off = 0;
501 			iov++;
502 		}
503 
504 		to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
505 		to_copy = min_t(size_t, to_copy, size - copied);
506 		to_copy = min_t(unsigned long, to_copy, len - copied);
507 
508 		rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
509 			 "[%p, %u] + %lu\n",
510 			 to_copy, iov->iov_base, iov->iov_len, iov_off,
511 			 sg_page(&frag->f_sg), frag->f_sg.offset, frag_off);
512 
513 		/* XXX needs + offset for multiple recvs per page */
514 		ret = rds_page_copy_to_user(sg_page(&frag->f_sg),
515 					    frag->f_sg.offset + frag_off,
516 					    iov->iov_base + iov_off,
517 					    to_copy);
518 		if (ret) {
519 			copied = ret;
520 			break;
521 		}
522 
523 		iov_off += to_copy;
524 		frag_off += to_copy;
525 		copied += to_copy;
526 	}
527 
528 	return copied;
529 }
530 
531 /* ic starts out kzalloc()ed */
532 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
533 {
534 	struct ib_send_wr *wr = &ic->i_ack_wr;
535 	struct ib_sge *sge = &ic->i_ack_sge;
536 
537 	sge->addr = ic->i_ack_dma;
538 	sge->length = sizeof(struct rds_header);
539 	sge->lkey = ic->i_mr->lkey;
540 
541 	wr->sg_list = sge;
542 	wr->num_sge = 1;
543 	wr->opcode = IB_WR_SEND;
544 	wr->wr_id = RDS_IB_ACK_WR_ID;
545 	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
546 }
547 
548 /*
549  * You'd think that with reliable IB connections you wouldn't need to ack
550  * messages that have been received.  The problem is that IB hardware generates
551  * an ack message before it has DMAed the message into memory.  This creates a
552  * potential message loss if the HCA is disabled for any reason between when it
553  * sends the ack and before the message is DMAed and processed.  This is only a
554  * potential issue if another HCA is available for fail-over.
555  *
556  * When the remote host receives our ack they'll free the sent message from
557  * their send queue.  To decrease the latency of this we always send an ack
558  * immediately after we've received messages.
559  *
560  * For simplicity, we only have one ack in flight at a time.  This puts
561  * pressure on senders to have deep enough send queues to absorb the latency of
562  * a single ack frame being in flight.  This might not be good enough.
563  *
564  * This is implemented by have a long-lived send_wr and sge which point to a
565  * statically allocated ack frame.  This ack wr does not fall under the ring
566  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
567  * room for it beyond the ring size.  Send completion notices its special
568  * wr_id and avoids working with the ring in that case.
569  */
570 #ifndef KERNEL_HAS_ATOMIC64
571 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
572 				int ack_required)
573 {
574 	unsigned long flags;
575 
576 	spin_lock_irqsave(&ic->i_ack_lock, flags);
577 	ic->i_ack_next = seq;
578 	if (ack_required)
579 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
580 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
581 }
582 
583 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
584 {
585 	unsigned long flags;
586 	u64 seq;
587 
588 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
589 
590 	spin_lock_irqsave(&ic->i_ack_lock, flags);
591 	seq = ic->i_ack_next;
592 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
593 
594 	return seq;
595 }
596 #else
597 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
598 				int ack_required)
599 {
600 	atomic64_set(&ic->i_ack_next, seq);
601 	if (ack_required) {
602 		smp_mb__before_clear_bit();
603 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
604 	}
605 }
606 
607 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
608 {
609 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
610 	smp_mb__after_clear_bit();
611 
612 	return atomic64_read(&ic->i_ack_next);
613 }
614 #endif
615 
616 
617 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
618 {
619 	struct rds_header *hdr = ic->i_ack;
620 	struct ib_send_wr *failed_wr;
621 	u64 seq;
622 	int ret;
623 
624 	seq = rds_ib_get_ack(ic);
625 
626 	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
627 	rds_message_populate_header(hdr, 0, 0, 0);
628 	hdr->h_ack = cpu_to_be64(seq);
629 	hdr->h_credit = adv_credits;
630 	rds_message_make_checksum(hdr);
631 	ic->i_ack_queued = jiffies;
632 
633 	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
634 	if (unlikely(ret)) {
635 		/* Failed to send. Release the WR, and
636 		 * force another ACK.
637 		 */
638 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
639 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
640 
641 		rds_ib_stats_inc(s_ib_ack_send_failure);
642 
643 		rds_ib_conn_error(ic->conn, "sending ack failed\n");
644 	} else
645 		rds_ib_stats_inc(s_ib_ack_sent);
646 }
647 
648 /*
649  * There are 3 ways of getting acknowledgements to the peer:
650  *  1.	We call rds_ib_attempt_ack from the recv completion handler
651  *	to send an ACK-only frame.
652  *	However, there can be only one such frame in the send queue
653  *	at any time, so we may have to postpone it.
654  *  2.	When another (data) packet is transmitted while there's
655  *	an ACK in the queue, we piggyback the ACK sequence number
656  *	on the data packet.
657  *  3.	If the ACK WR is done sending, we get called from the
658  *	send queue completion handler, and check whether there's
659  *	another ACK pending (postponed because the WR was on the
660  *	queue). If so, we transmit it.
661  *
662  * We maintain 2 variables:
663  *  -	i_ack_flags, which keeps track of whether the ACK WR
664  *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
665  *  -	i_ack_next, which is the last sequence number we received
666  *
667  * Potentially, send queue and receive queue handlers can run concurrently.
668  * It would be nice to not have to use a spinlock to synchronize things,
669  * but the one problem that rules this out is that 64bit updates are
670  * not atomic on all platforms. Things would be a lot simpler if
671  * we had atomic64 or maybe cmpxchg64 everywhere.
672  *
673  * Reconnecting complicates this picture just slightly. When we
674  * reconnect, we may be seeing duplicate packets. The peer
675  * is retransmitting them, because it hasn't seen an ACK for
676  * them. It is important that we ACK these.
677  *
678  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
679  * this flag set *MUST* be acknowledged immediately.
680  */
681 
682 /*
683  * When we get here, we're called from the recv queue handler.
684  * Check whether we ought to transmit an ACK.
685  */
686 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
687 {
688 	unsigned int adv_credits;
689 
690 	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
691 		return;
692 
693 	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
694 		rds_ib_stats_inc(s_ib_ack_send_delayed);
695 		return;
696 	}
697 
698 	/* Can we get a send credit? */
699 	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
700 		rds_ib_stats_inc(s_ib_tx_throttle);
701 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
702 		return;
703 	}
704 
705 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
706 	rds_ib_send_ack(ic, adv_credits);
707 }
708 
709 /*
710  * We get here from the send completion handler, when the
711  * adapter tells us the ACK frame was sent.
712  */
713 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
714 {
715 	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
716 	rds_ib_attempt_ack(ic);
717 }
718 
719 /*
720  * This is called by the regular xmit code when it wants to piggyback
721  * an ACK on an outgoing frame.
722  */
723 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
724 {
725 	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
726 		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
727 	return rds_ib_get_ack(ic);
728 }
729 
730 /*
731  * It's kind of lame that we're copying from the posted receive pages into
732  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
733  * them.  But receiving new congestion bitmaps should be a *rare* event, so
734  * hopefully we won't need to invest that complexity in making it more
735  * efficient.  By copying we can share a simpler core with TCP which has to
736  * copy.
737  */
738 static void rds_ib_cong_recv(struct rds_connection *conn,
739 			      struct rds_ib_incoming *ibinc)
740 {
741 	struct rds_cong_map *map;
742 	unsigned int map_off;
743 	unsigned int map_page;
744 	struct rds_page_frag *frag;
745 	unsigned long frag_off;
746 	unsigned long to_copy;
747 	unsigned long copied;
748 	uint64_t uncongested = 0;
749 	void *addr;
750 
751 	/* catch completely corrupt packets */
752 	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
753 		return;
754 
755 	map = conn->c_fcong;
756 	map_page = 0;
757 	map_off = 0;
758 
759 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
760 	frag_off = 0;
761 
762 	copied = 0;
763 
764 	while (copied < RDS_CONG_MAP_BYTES) {
765 		uint64_t *src, *dst;
766 		unsigned int k;
767 
768 		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
769 		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
770 
771 		addr = kmap_atomic(sg_page(&frag->f_sg));
772 
773 		src = addr + frag_off;
774 		dst = (void *)map->m_page_addrs[map_page] + map_off;
775 		for (k = 0; k < to_copy; k += 8) {
776 			/* Record ports that became uncongested, ie
777 			 * bits that changed from 0 to 1. */
778 			uncongested |= ~(*src) & *dst;
779 			*dst++ = *src++;
780 		}
781 		kunmap_atomic(addr);
782 
783 		copied += to_copy;
784 
785 		map_off += to_copy;
786 		if (map_off == PAGE_SIZE) {
787 			map_off = 0;
788 			map_page++;
789 		}
790 
791 		frag_off += to_copy;
792 		if (frag_off == RDS_FRAG_SIZE) {
793 			frag = list_entry(frag->f_item.next,
794 					  struct rds_page_frag, f_item);
795 			frag_off = 0;
796 		}
797 	}
798 
799 	/* the congestion map is in little endian order */
800 	uncongested = le64_to_cpu(uncongested);
801 
802 	rds_cong_map_updated(map, uncongested);
803 }
804 
805 /*
806  * Rings are posted with all the allocations they'll need to queue the
807  * incoming message to the receiving socket so this can't fail.
808  * All fragments start with a header, so we can make sure we're not receiving
809  * garbage, and we can tell a small 8 byte fragment from an ACK frame.
810  */
811 struct rds_ib_ack_state {
812 	u64		ack_next;
813 	u64		ack_recv;
814 	unsigned int	ack_required:1;
815 	unsigned int	ack_next_valid:1;
816 	unsigned int	ack_recv_valid:1;
817 };
818 
819 static void rds_ib_process_recv(struct rds_connection *conn,
820 				struct rds_ib_recv_work *recv, u32 data_len,
821 				struct rds_ib_ack_state *state)
822 {
823 	struct rds_ib_connection *ic = conn->c_transport_data;
824 	struct rds_ib_incoming *ibinc = ic->i_ibinc;
825 	struct rds_header *ihdr, *hdr;
826 
827 	/* XXX shut down the connection if port 0,0 are seen? */
828 
829 	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
830 		 data_len);
831 
832 	if (data_len < sizeof(struct rds_header)) {
833 		rds_ib_conn_error(conn, "incoming message "
834 		       "from %pI4 didn't include a "
835 		       "header, disconnecting and "
836 		       "reconnecting\n",
837 		       &conn->c_faddr);
838 		return;
839 	}
840 	data_len -= sizeof(struct rds_header);
841 
842 	ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
843 
844 	/* Validate the checksum. */
845 	if (!rds_message_verify_checksum(ihdr)) {
846 		rds_ib_conn_error(conn, "incoming message "
847 		       "from %pI4 has corrupted header - "
848 		       "forcing a reconnect\n",
849 		       &conn->c_faddr);
850 		rds_stats_inc(s_recv_drop_bad_checksum);
851 		return;
852 	}
853 
854 	/* Process the ACK sequence which comes with every packet */
855 	state->ack_recv = be64_to_cpu(ihdr->h_ack);
856 	state->ack_recv_valid = 1;
857 
858 	/* Process the credits update if there was one */
859 	if (ihdr->h_credit)
860 		rds_ib_send_add_credits(conn, ihdr->h_credit);
861 
862 	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
863 		/* This is an ACK-only packet. The fact that it gets
864 		 * special treatment here is that historically, ACKs
865 		 * were rather special beasts.
866 		 */
867 		rds_ib_stats_inc(s_ib_ack_received);
868 
869 		/*
870 		 * Usually the frags make their way on to incs and are then freed as
871 		 * the inc is freed.  We don't go that route, so we have to drop the
872 		 * page ref ourselves.  We can't just leave the page on the recv
873 		 * because that confuses the dma mapping of pages and each recv's use
874 		 * of a partial page.
875 		 *
876 		 * FIXME: Fold this into the code path below.
877 		 */
878 		rds_ib_frag_free(ic, recv->r_frag);
879 		recv->r_frag = NULL;
880 		return;
881 	}
882 
883 	/*
884 	 * If we don't already have an inc on the connection then this
885 	 * fragment has a header and starts a message.. copy its header
886 	 * into the inc and save the inc so we can hang upcoming fragments
887 	 * off its list.
888 	 */
889 	if (!ibinc) {
890 		ibinc = recv->r_ibinc;
891 		recv->r_ibinc = NULL;
892 		ic->i_ibinc = ibinc;
893 
894 		hdr = &ibinc->ii_inc.i_hdr;
895 		memcpy(hdr, ihdr, sizeof(*hdr));
896 		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
897 
898 		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
899 			 ic->i_recv_data_rem, hdr->h_flags);
900 	} else {
901 		hdr = &ibinc->ii_inc.i_hdr;
902 		/* We can't just use memcmp here; fragments of a
903 		 * single message may carry different ACKs */
904 		if (hdr->h_sequence != ihdr->h_sequence ||
905 		    hdr->h_len != ihdr->h_len ||
906 		    hdr->h_sport != ihdr->h_sport ||
907 		    hdr->h_dport != ihdr->h_dport) {
908 			rds_ib_conn_error(conn,
909 				"fragment header mismatch; forcing reconnect\n");
910 			return;
911 		}
912 	}
913 
914 	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
915 	recv->r_frag = NULL;
916 
917 	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
918 		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
919 	else {
920 		ic->i_recv_data_rem = 0;
921 		ic->i_ibinc = NULL;
922 
923 		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
924 			rds_ib_cong_recv(conn, ibinc);
925 		else {
926 			rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
927 					  &ibinc->ii_inc, GFP_ATOMIC);
928 			state->ack_next = be64_to_cpu(hdr->h_sequence);
929 			state->ack_next_valid = 1;
930 		}
931 
932 		/* Evaluate the ACK_REQUIRED flag *after* we received
933 		 * the complete frame, and after bumping the next_rx
934 		 * sequence. */
935 		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
936 			rds_stats_inc(s_recv_ack_required);
937 			state->ack_required = 1;
938 		}
939 
940 		rds_inc_put(&ibinc->ii_inc);
941 	}
942 }
943 
944 /*
945  * Plucking the oldest entry from the ring can be done concurrently with
946  * the thread refilling the ring.  Each ring operation is protected by
947  * spinlocks and the transient state of refilling doesn't change the
948  * recording of which entry is oldest.
949  *
950  * This relies on IB only calling one cq comp_handler for each cq so that
951  * there will only be one caller of rds_recv_incoming() per RDS connection.
952  */
953 void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
954 {
955 	struct rds_connection *conn = context;
956 	struct rds_ib_connection *ic = conn->c_transport_data;
957 
958 	rdsdebug("conn %p cq %p\n", conn, cq);
959 
960 	rds_ib_stats_inc(s_ib_rx_cq_call);
961 
962 	tasklet_schedule(&ic->i_recv_tasklet);
963 }
964 
965 static inline void rds_poll_cq(struct rds_ib_connection *ic,
966 			       struct rds_ib_ack_state *state)
967 {
968 	struct rds_connection *conn = ic->conn;
969 	struct ib_wc wc;
970 	struct rds_ib_recv_work *recv;
971 
972 	while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
973 		rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
974 			 (unsigned long long)wc.wr_id, wc.status,
975 			 rds_ib_wc_status_str(wc.status), wc.byte_len,
976 			 be32_to_cpu(wc.ex.imm_data));
977 		rds_ib_stats_inc(s_ib_rx_cq_event);
978 
979 		recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
980 
981 		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
982 
983 		/*
984 		 * Also process recvs in connecting state because it is possible
985 		 * to get a recv completion _before_ the rdmacm ESTABLISHED
986 		 * event is processed.
987 		 */
988 		if (wc.status == IB_WC_SUCCESS) {
989 			rds_ib_process_recv(conn, recv, wc.byte_len, state);
990 		} else {
991 			/* We expect errors as the qp is drained during shutdown */
992 			if (rds_conn_up(conn) || rds_conn_connecting(conn))
993 				rds_ib_conn_error(conn, "recv completion on %pI4 had "
994 						  "status %u (%s), disconnecting and "
995 						  "reconnecting\n", &conn->c_faddr,
996 						  wc.status,
997 						  rds_ib_wc_status_str(wc.status));
998 		}
999 
1000 		/*
1001 		 * It's very important that we only free this ring entry if we've truly
1002 		 * freed the resources allocated to the entry.  The refilling path can
1003 		 * leak if we don't.
1004 		 */
1005 		rds_ib_ring_free(&ic->i_recv_ring, 1);
1006 	}
1007 }
1008 
1009 void rds_ib_recv_tasklet_fn(unsigned long data)
1010 {
1011 	struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
1012 	struct rds_connection *conn = ic->conn;
1013 	struct rds_ib_ack_state state = { 0, };
1014 
1015 	rds_poll_cq(ic, &state);
1016 	ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
1017 	rds_poll_cq(ic, &state);
1018 
1019 	if (state.ack_next_valid)
1020 		rds_ib_set_ack(ic, state.ack_next, state.ack_required);
1021 	if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
1022 		rds_send_drop_acked(conn, state.ack_recv, NULL);
1023 		ic->i_ack_recv = state.ack_recv;
1024 	}
1025 	if (rds_conn_up(conn))
1026 		rds_ib_attempt_ack(ic);
1027 
1028 	/* If we ever end up with a really empty receive ring, we're
1029 	 * in deep trouble, as the sender will definitely see RNR
1030 	 * timeouts. */
1031 	if (rds_ib_ring_empty(&ic->i_recv_ring))
1032 		rds_ib_stats_inc(s_ib_rx_ring_empty);
1033 
1034 	if (rds_ib_ring_low(&ic->i_recv_ring))
1035 		rds_ib_recv_refill(conn, 0);
1036 }
1037 
1038 int rds_ib_recv(struct rds_connection *conn)
1039 {
1040 	struct rds_ib_connection *ic = conn->c_transport_data;
1041 	int ret = 0;
1042 
1043 	rdsdebug("conn %p\n", conn);
1044 	if (rds_conn_up(conn))
1045 		rds_ib_attempt_ack(ic);
1046 
1047 	return ret;
1048 }
1049 
1050 int rds_ib_recv_init(void)
1051 {
1052 	struct sysinfo si;
1053 	int ret = -ENOMEM;
1054 
1055 	/* Default to 30% of all available RAM for recv memory */
1056 	si_meminfo(&si);
1057 	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1058 
1059 	rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1060 					sizeof(struct rds_ib_incoming),
1061 					0, SLAB_HWCACHE_ALIGN, NULL);
1062 	if (!rds_ib_incoming_slab)
1063 		goto out;
1064 
1065 	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1066 					sizeof(struct rds_page_frag),
1067 					0, SLAB_HWCACHE_ALIGN, NULL);
1068 	if (!rds_ib_frag_slab)
1069 		kmem_cache_destroy(rds_ib_incoming_slab);
1070 	else
1071 		ret = 0;
1072 out:
1073 	return ret;
1074 }
1075 
1076 void rds_ib_recv_exit(void)
1077 {
1078 	kmem_cache_destroy(rds_ib_incoming_slab);
1079 	kmem_cache_destroy(rds_ib_frag_slab);
1080 }
1081