xref: /linux/net/rds/ib_recv.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38 
39 #include "rds.h"
40 #include "ib.h"
41 
42 static struct kmem_cache *rds_ib_incoming_slab;
43 static struct kmem_cache *rds_ib_frag_slab;
44 static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
45 
46 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
47 {
48 	struct rds_ib_recv_work *recv;
49 	u32 i;
50 
51 	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
52 		struct ib_sge *sge;
53 
54 		recv->r_ibinc = NULL;
55 		recv->r_frag = NULL;
56 
57 		recv->r_wr.next = NULL;
58 		recv->r_wr.wr_id = i;
59 		recv->r_wr.sg_list = recv->r_sge;
60 		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
61 
62 		sge = &recv->r_sge[0];
63 		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
64 		sge->length = sizeof(struct rds_header);
65 		sge->lkey = ic->i_mr->lkey;
66 
67 		sge = &recv->r_sge[1];
68 		sge->addr = 0;
69 		sge->length = RDS_FRAG_SIZE;
70 		sge->lkey = ic->i_mr->lkey;
71 	}
72 }
73 
74 /*
75  * The entire 'from' list, including the from element itself, is put on
76  * to the tail of the 'to' list.
77  */
78 static void list_splice_entire_tail(struct list_head *from,
79 				    struct list_head *to)
80 {
81 	struct list_head *from_last = from->prev;
82 
83 	list_splice_tail(from_last, to);
84 	list_add_tail(from_last, to);
85 }
86 
87 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
88 {
89 	struct list_head *tmp;
90 
91 	tmp = xchg(&cache->xfer, NULL);
92 	if (tmp) {
93 		if (cache->ready)
94 			list_splice_entire_tail(tmp, cache->ready);
95 		else
96 			cache->ready = tmp;
97 	}
98 }
99 
100 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
101 {
102 	struct rds_ib_cache_head *head;
103 	int cpu;
104 
105 	cache->percpu = alloc_percpu(struct rds_ib_cache_head);
106 	if (!cache->percpu)
107 	       return -ENOMEM;
108 
109 	for_each_possible_cpu(cpu) {
110 		head = per_cpu_ptr(cache->percpu, cpu);
111 		head->first = NULL;
112 		head->count = 0;
113 	}
114 	cache->xfer = NULL;
115 	cache->ready = NULL;
116 
117 	return 0;
118 }
119 
120 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
121 {
122 	int ret;
123 
124 	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
125 	if (!ret) {
126 		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
127 		if (ret)
128 			free_percpu(ic->i_cache_incs.percpu);
129 	}
130 
131 	return ret;
132 }
133 
134 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
135 					  struct list_head *caller_list)
136 {
137 	struct rds_ib_cache_head *head;
138 	int cpu;
139 
140 	for_each_possible_cpu(cpu) {
141 		head = per_cpu_ptr(cache->percpu, cpu);
142 		if (head->first) {
143 			list_splice_entire_tail(head->first, caller_list);
144 			head->first = NULL;
145 		}
146 	}
147 
148 	if (cache->ready) {
149 		list_splice_entire_tail(cache->ready, caller_list);
150 		cache->ready = NULL;
151 	}
152 }
153 
154 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
155 {
156 	struct rds_ib_incoming *inc;
157 	struct rds_ib_incoming *inc_tmp;
158 	struct rds_page_frag *frag;
159 	struct rds_page_frag *frag_tmp;
160 	LIST_HEAD(list);
161 
162 	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
163 	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
164 	free_percpu(ic->i_cache_incs.percpu);
165 
166 	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
167 		list_del(&inc->ii_cache_entry);
168 		WARN_ON(!list_empty(&inc->ii_frags));
169 		kmem_cache_free(rds_ib_incoming_slab, inc);
170 	}
171 
172 	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
173 	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
174 	free_percpu(ic->i_cache_frags.percpu);
175 
176 	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
177 		list_del(&frag->f_cache_entry);
178 		WARN_ON(!list_empty(&frag->f_item));
179 		kmem_cache_free(rds_ib_frag_slab, frag);
180 	}
181 }
182 
183 /* fwd decl */
184 static void rds_ib_recv_cache_put(struct list_head *new_item,
185 				  struct rds_ib_refill_cache *cache);
186 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
187 
188 
189 /* Recycle frag and attached recv buffer f_sg */
190 static void rds_ib_frag_free(struct rds_ib_connection *ic,
191 			     struct rds_page_frag *frag)
192 {
193 	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
194 
195 	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
196 }
197 
198 /* Recycle inc after freeing attached frags */
199 void rds_ib_inc_free(struct rds_incoming *inc)
200 {
201 	struct rds_ib_incoming *ibinc;
202 	struct rds_page_frag *frag;
203 	struct rds_page_frag *pos;
204 	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
205 
206 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
207 
208 	/* Free attached frags */
209 	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
210 		list_del_init(&frag->f_item);
211 		rds_ib_frag_free(ic, frag);
212 	}
213 	BUG_ON(!list_empty(&ibinc->ii_frags));
214 
215 	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
216 	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
217 }
218 
219 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
220 				  struct rds_ib_recv_work *recv)
221 {
222 	if (recv->r_ibinc) {
223 		rds_inc_put(&recv->r_ibinc->ii_inc);
224 		recv->r_ibinc = NULL;
225 	}
226 	if (recv->r_frag) {
227 		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
228 		rds_ib_frag_free(ic, recv->r_frag);
229 		recv->r_frag = NULL;
230 	}
231 }
232 
233 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
234 {
235 	u32 i;
236 
237 	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
238 		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
239 }
240 
241 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
242 						     gfp_t slab_mask)
243 {
244 	struct rds_ib_incoming *ibinc;
245 	struct list_head *cache_item;
246 	int avail_allocs;
247 
248 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
249 	if (cache_item) {
250 		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
251 	} else {
252 		avail_allocs = atomic_add_unless(&rds_ib_allocation,
253 						 1, rds_ib_sysctl_max_recv_allocation);
254 		if (!avail_allocs) {
255 			rds_ib_stats_inc(s_ib_rx_alloc_limit);
256 			return NULL;
257 		}
258 		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
259 		if (!ibinc) {
260 			atomic_dec(&rds_ib_allocation);
261 			return NULL;
262 		}
263 	}
264 	INIT_LIST_HEAD(&ibinc->ii_frags);
265 	rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
266 
267 	return ibinc;
268 }
269 
270 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
271 						    gfp_t slab_mask, gfp_t page_mask)
272 {
273 	struct rds_page_frag *frag;
274 	struct list_head *cache_item;
275 	int ret;
276 
277 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
278 	if (cache_item) {
279 		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
280 	} else {
281 		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
282 		if (!frag)
283 			return NULL;
284 
285 		sg_init_table(&frag->f_sg, 1);
286 		ret = rds_page_remainder_alloc(&frag->f_sg,
287 					       RDS_FRAG_SIZE, page_mask);
288 		if (ret) {
289 			kmem_cache_free(rds_ib_frag_slab, frag);
290 			return NULL;
291 		}
292 	}
293 
294 	INIT_LIST_HEAD(&frag->f_item);
295 
296 	return frag;
297 }
298 
299 static int rds_ib_recv_refill_one(struct rds_connection *conn,
300 				  struct rds_ib_recv_work *recv, int prefill)
301 {
302 	struct rds_ib_connection *ic = conn->c_transport_data;
303 	struct ib_sge *sge;
304 	int ret = -ENOMEM;
305 	gfp_t slab_mask = GFP_NOWAIT;
306 	gfp_t page_mask = GFP_NOWAIT;
307 
308 	if (prefill) {
309 		slab_mask = GFP_KERNEL;
310 		page_mask = GFP_HIGHUSER;
311 	}
312 
313 	if (!ic->i_cache_incs.ready)
314 		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
315 	if (!ic->i_cache_frags.ready)
316 		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
317 
318 	/*
319 	 * ibinc was taken from recv if recv contained the start of a message.
320 	 * recvs that were continuations will still have this allocated.
321 	 */
322 	if (!recv->r_ibinc) {
323 		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
324 		if (!recv->r_ibinc)
325 			goto out;
326 	}
327 
328 	WARN_ON(recv->r_frag); /* leak! */
329 	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
330 	if (!recv->r_frag)
331 		goto out;
332 
333 	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
334 			    1, DMA_FROM_DEVICE);
335 	WARN_ON(ret != 1);
336 
337 	sge = &recv->r_sge[0];
338 	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
339 	sge->length = sizeof(struct rds_header);
340 
341 	sge = &recv->r_sge[1];
342 	sge->addr = sg_dma_address(&recv->r_frag->f_sg);
343 	sge->length = sg_dma_len(&recv->r_frag->f_sg);
344 
345 	ret = 0;
346 out:
347 	return ret;
348 }
349 
350 /*
351  * This tries to allocate and post unused work requests after making sure that
352  * they have all the allocations they need to queue received fragments into
353  * sockets.
354  *
355  * -1 is returned if posting fails due to temporary resource exhaustion.
356  */
357 void rds_ib_recv_refill(struct rds_connection *conn, int prefill)
358 {
359 	struct rds_ib_connection *ic = conn->c_transport_data;
360 	struct rds_ib_recv_work *recv;
361 	struct ib_recv_wr *failed_wr;
362 	unsigned int posted = 0;
363 	int ret = 0;
364 	u32 pos;
365 
366 	while ((prefill || rds_conn_up(conn)) &&
367 	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
368 		if (pos >= ic->i_recv_ring.w_nr) {
369 			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
370 					pos);
371 			break;
372 		}
373 
374 		recv = &ic->i_recvs[pos];
375 		ret = rds_ib_recv_refill_one(conn, recv, prefill);
376 		if (ret) {
377 			break;
378 		}
379 
380 		/* XXX when can this fail? */
381 		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
382 		rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
383 			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
384 			 (long) sg_dma_address(&recv->r_frag->f_sg), ret);
385 		if (ret) {
386 			rds_ib_conn_error(conn, "recv post on "
387 			       "%pI4 returned %d, disconnecting and "
388 			       "reconnecting\n", &conn->c_faddr,
389 			       ret);
390 			break;
391 		}
392 
393 		posted++;
394 	}
395 
396 	/* We're doing flow control - update the window. */
397 	if (ic->i_flowctl && posted)
398 		rds_ib_advertise_credits(conn, posted);
399 
400 	if (ret)
401 		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
402 }
403 
404 /*
405  * We want to recycle several types of recv allocations, like incs and frags.
406  * To use this, the *_free() function passes in the ptr to a list_head within
407  * the recyclee, as well as the cache to put it on.
408  *
409  * First, we put the memory on a percpu list. When this reaches a certain size,
410  * We move it to an intermediate non-percpu list in a lockless manner, with some
411  * xchg/compxchg wizardry.
412  *
413  * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
414  * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
415  * list_empty() will return true with one element is actually present.
416  */
417 static void rds_ib_recv_cache_put(struct list_head *new_item,
418 				 struct rds_ib_refill_cache *cache)
419 {
420 	unsigned long flags;
421 	struct list_head *old;
422 	struct list_head __percpu *chpfirst;
423 
424 	local_irq_save(flags);
425 
426 	chpfirst = __this_cpu_read(cache->percpu->first);
427 	if (!chpfirst)
428 		INIT_LIST_HEAD(new_item);
429 	else /* put on front */
430 		list_add_tail(new_item, chpfirst);
431 
432 	__this_cpu_write(chpfirst, new_item);
433 	__this_cpu_inc(cache->percpu->count);
434 
435 	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
436 		goto end;
437 
438 	/*
439 	 * Return our per-cpu first list to the cache's xfer by atomically
440 	 * grabbing the current xfer list, appending it to our per-cpu list,
441 	 * and then atomically returning that entire list back to the
442 	 * cache's xfer list as long as it's still empty.
443 	 */
444 	do {
445 		old = xchg(&cache->xfer, NULL);
446 		if (old)
447 			list_splice_entire_tail(old, chpfirst);
448 		old = cmpxchg(&cache->xfer, NULL, chpfirst);
449 	} while (old);
450 
451 
452 	__this_cpu_write(chpfirst, NULL);
453 	__this_cpu_write(cache->percpu->count, 0);
454 end:
455 	local_irq_restore(flags);
456 }
457 
458 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
459 {
460 	struct list_head *head = cache->ready;
461 
462 	if (head) {
463 		if (!list_empty(head)) {
464 			cache->ready = head->next;
465 			list_del_init(head);
466 		} else
467 			cache->ready = NULL;
468 	}
469 
470 	return head;
471 }
472 
473 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
474 			    size_t size)
475 {
476 	struct rds_ib_incoming *ibinc;
477 	struct rds_page_frag *frag;
478 	struct iovec *iov = first_iov;
479 	unsigned long to_copy;
480 	unsigned long frag_off = 0;
481 	unsigned long iov_off = 0;
482 	int copied = 0;
483 	int ret;
484 	u32 len;
485 
486 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
487 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
488 	len = be32_to_cpu(inc->i_hdr.h_len);
489 
490 	while (copied < size && copied < len) {
491 		if (frag_off == RDS_FRAG_SIZE) {
492 			frag = list_entry(frag->f_item.next,
493 					  struct rds_page_frag, f_item);
494 			frag_off = 0;
495 		}
496 		while (iov_off == iov->iov_len) {
497 			iov_off = 0;
498 			iov++;
499 		}
500 
501 		to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
502 		to_copy = min_t(size_t, to_copy, size - copied);
503 		to_copy = min_t(unsigned long, to_copy, len - copied);
504 
505 		rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
506 			 "[%p, %u] + %lu\n",
507 			 to_copy, iov->iov_base, iov->iov_len, iov_off,
508 			 sg_page(&frag->f_sg), frag->f_sg.offset, frag_off);
509 
510 		/* XXX needs + offset for multiple recvs per page */
511 		ret = rds_page_copy_to_user(sg_page(&frag->f_sg),
512 					    frag->f_sg.offset + frag_off,
513 					    iov->iov_base + iov_off,
514 					    to_copy);
515 		if (ret) {
516 			copied = ret;
517 			break;
518 		}
519 
520 		iov_off += to_copy;
521 		frag_off += to_copy;
522 		copied += to_copy;
523 	}
524 
525 	return copied;
526 }
527 
528 /* ic starts out kzalloc()ed */
529 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
530 {
531 	struct ib_send_wr *wr = &ic->i_ack_wr;
532 	struct ib_sge *sge = &ic->i_ack_sge;
533 
534 	sge->addr = ic->i_ack_dma;
535 	sge->length = sizeof(struct rds_header);
536 	sge->lkey = ic->i_mr->lkey;
537 
538 	wr->sg_list = sge;
539 	wr->num_sge = 1;
540 	wr->opcode = IB_WR_SEND;
541 	wr->wr_id = RDS_IB_ACK_WR_ID;
542 	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
543 }
544 
545 /*
546  * You'd think that with reliable IB connections you wouldn't need to ack
547  * messages that have been received.  The problem is that IB hardware generates
548  * an ack message before it has DMAed the message into memory.  This creates a
549  * potential message loss if the HCA is disabled for any reason between when it
550  * sends the ack and before the message is DMAed and processed.  This is only a
551  * potential issue if another HCA is available for fail-over.
552  *
553  * When the remote host receives our ack they'll free the sent message from
554  * their send queue.  To decrease the latency of this we always send an ack
555  * immediately after we've received messages.
556  *
557  * For simplicity, we only have one ack in flight at a time.  This puts
558  * pressure on senders to have deep enough send queues to absorb the latency of
559  * a single ack frame being in flight.  This might not be good enough.
560  *
561  * This is implemented by have a long-lived send_wr and sge which point to a
562  * statically allocated ack frame.  This ack wr does not fall under the ring
563  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
564  * room for it beyond the ring size.  Send completion notices its special
565  * wr_id and avoids working with the ring in that case.
566  */
567 #ifndef KERNEL_HAS_ATOMIC64
568 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
569 				int ack_required)
570 {
571 	unsigned long flags;
572 
573 	spin_lock_irqsave(&ic->i_ack_lock, flags);
574 	ic->i_ack_next = seq;
575 	if (ack_required)
576 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
577 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
578 }
579 
580 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
581 {
582 	unsigned long flags;
583 	u64 seq;
584 
585 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
586 
587 	spin_lock_irqsave(&ic->i_ack_lock, flags);
588 	seq = ic->i_ack_next;
589 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
590 
591 	return seq;
592 }
593 #else
594 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
595 				int ack_required)
596 {
597 	atomic64_set(&ic->i_ack_next, seq);
598 	if (ack_required) {
599 		smp_mb__before_clear_bit();
600 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
601 	}
602 }
603 
604 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
605 {
606 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
607 	smp_mb__after_clear_bit();
608 
609 	return atomic64_read(&ic->i_ack_next);
610 }
611 #endif
612 
613 
614 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
615 {
616 	struct rds_header *hdr = ic->i_ack;
617 	struct ib_send_wr *failed_wr;
618 	u64 seq;
619 	int ret;
620 
621 	seq = rds_ib_get_ack(ic);
622 
623 	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
624 	rds_message_populate_header(hdr, 0, 0, 0);
625 	hdr->h_ack = cpu_to_be64(seq);
626 	hdr->h_credit = adv_credits;
627 	rds_message_make_checksum(hdr);
628 	ic->i_ack_queued = jiffies;
629 
630 	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
631 	if (unlikely(ret)) {
632 		/* Failed to send. Release the WR, and
633 		 * force another ACK.
634 		 */
635 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
636 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
637 
638 		rds_ib_stats_inc(s_ib_ack_send_failure);
639 
640 		rds_ib_conn_error(ic->conn, "sending ack failed\n");
641 	} else
642 		rds_ib_stats_inc(s_ib_ack_sent);
643 }
644 
645 /*
646  * There are 3 ways of getting acknowledgements to the peer:
647  *  1.	We call rds_ib_attempt_ack from the recv completion handler
648  *	to send an ACK-only frame.
649  *	However, there can be only one such frame in the send queue
650  *	at any time, so we may have to postpone it.
651  *  2.	When another (data) packet is transmitted while there's
652  *	an ACK in the queue, we piggyback the ACK sequence number
653  *	on the data packet.
654  *  3.	If the ACK WR is done sending, we get called from the
655  *	send queue completion handler, and check whether there's
656  *	another ACK pending (postponed because the WR was on the
657  *	queue). If so, we transmit it.
658  *
659  * We maintain 2 variables:
660  *  -	i_ack_flags, which keeps track of whether the ACK WR
661  *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
662  *  -	i_ack_next, which is the last sequence number we received
663  *
664  * Potentially, send queue and receive queue handlers can run concurrently.
665  * It would be nice to not have to use a spinlock to synchronize things,
666  * but the one problem that rules this out is that 64bit updates are
667  * not atomic on all platforms. Things would be a lot simpler if
668  * we had atomic64 or maybe cmpxchg64 everywhere.
669  *
670  * Reconnecting complicates this picture just slightly. When we
671  * reconnect, we may be seeing duplicate packets. The peer
672  * is retransmitting them, because it hasn't seen an ACK for
673  * them. It is important that we ACK these.
674  *
675  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
676  * this flag set *MUST* be acknowledged immediately.
677  */
678 
679 /*
680  * When we get here, we're called from the recv queue handler.
681  * Check whether we ought to transmit an ACK.
682  */
683 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
684 {
685 	unsigned int adv_credits;
686 
687 	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
688 		return;
689 
690 	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
691 		rds_ib_stats_inc(s_ib_ack_send_delayed);
692 		return;
693 	}
694 
695 	/* Can we get a send credit? */
696 	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
697 		rds_ib_stats_inc(s_ib_tx_throttle);
698 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
699 		return;
700 	}
701 
702 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
703 	rds_ib_send_ack(ic, adv_credits);
704 }
705 
706 /*
707  * We get here from the send completion handler, when the
708  * adapter tells us the ACK frame was sent.
709  */
710 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
711 {
712 	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
713 	rds_ib_attempt_ack(ic);
714 }
715 
716 /*
717  * This is called by the regular xmit code when it wants to piggyback
718  * an ACK on an outgoing frame.
719  */
720 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
721 {
722 	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
723 		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
724 	return rds_ib_get_ack(ic);
725 }
726 
727 /*
728  * It's kind of lame that we're copying from the posted receive pages into
729  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
730  * them.  But receiving new congestion bitmaps should be a *rare* event, so
731  * hopefully we won't need to invest that complexity in making it more
732  * efficient.  By copying we can share a simpler core with TCP which has to
733  * copy.
734  */
735 static void rds_ib_cong_recv(struct rds_connection *conn,
736 			      struct rds_ib_incoming *ibinc)
737 {
738 	struct rds_cong_map *map;
739 	unsigned int map_off;
740 	unsigned int map_page;
741 	struct rds_page_frag *frag;
742 	unsigned long frag_off;
743 	unsigned long to_copy;
744 	unsigned long copied;
745 	uint64_t uncongested = 0;
746 	void *addr;
747 
748 	/* catch completely corrupt packets */
749 	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
750 		return;
751 
752 	map = conn->c_fcong;
753 	map_page = 0;
754 	map_off = 0;
755 
756 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
757 	frag_off = 0;
758 
759 	copied = 0;
760 
761 	while (copied < RDS_CONG_MAP_BYTES) {
762 		uint64_t *src, *dst;
763 		unsigned int k;
764 
765 		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
766 		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
767 
768 		addr = kmap_atomic(sg_page(&frag->f_sg));
769 
770 		src = addr + frag_off;
771 		dst = (void *)map->m_page_addrs[map_page] + map_off;
772 		for (k = 0; k < to_copy; k += 8) {
773 			/* Record ports that became uncongested, ie
774 			 * bits that changed from 0 to 1. */
775 			uncongested |= ~(*src) & *dst;
776 			*dst++ = *src++;
777 		}
778 		kunmap_atomic(addr);
779 
780 		copied += to_copy;
781 
782 		map_off += to_copy;
783 		if (map_off == PAGE_SIZE) {
784 			map_off = 0;
785 			map_page++;
786 		}
787 
788 		frag_off += to_copy;
789 		if (frag_off == RDS_FRAG_SIZE) {
790 			frag = list_entry(frag->f_item.next,
791 					  struct rds_page_frag, f_item);
792 			frag_off = 0;
793 		}
794 	}
795 
796 	/* the congestion map is in little endian order */
797 	uncongested = le64_to_cpu(uncongested);
798 
799 	rds_cong_map_updated(map, uncongested);
800 }
801 
802 /*
803  * Rings are posted with all the allocations they'll need to queue the
804  * incoming message to the receiving socket so this can't fail.
805  * All fragments start with a header, so we can make sure we're not receiving
806  * garbage, and we can tell a small 8 byte fragment from an ACK frame.
807  */
808 struct rds_ib_ack_state {
809 	u64		ack_next;
810 	u64		ack_recv;
811 	unsigned int	ack_required:1;
812 	unsigned int	ack_next_valid:1;
813 	unsigned int	ack_recv_valid:1;
814 };
815 
816 static void rds_ib_process_recv(struct rds_connection *conn,
817 				struct rds_ib_recv_work *recv, u32 data_len,
818 				struct rds_ib_ack_state *state)
819 {
820 	struct rds_ib_connection *ic = conn->c_transport_data;
821 	struct rds_ib_incoming *ibinc = ic->i_ibinc;
822 	struct rds_header *ihdr, *hdr;
823 
824 	/* XXX shut down the connection if port 0,0 are seen? */
825 
826 	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
827 		 data_len);
828 
829 	if (data_len < sizeof(struct rds_header)) {
830 		rds_ib_conn_error(conn, "incoming message "
831 		       "from %pI4 didn't include a "
832 		       "header, disconnecting and "
833 		       "reconnecting\n",
834 		       &conn->c_faddr);
835 		return;
836 	}
837 	data_len -= sizeof(struct rds_header);
838 
839 	ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
840 
841 	/* Validate the checksum. */
842 	if (!rds_message_verify_checksum(ihdr)) {
843 		rds_ib_conn_error(conn, "incoming message "
844 		       "from %pI4 has corrupted header - "
845 		       "forcing a reconnect\n",
846 		       &conn->c_faddr);
847 		rds_stats_inc(s_recv_drop_bad_checksum);
848 		return;
849 	}
850 
851 	/* Process the ACK sequence which comes with every packet */
852 	state->ack_recv = be64_to_cpu(ihdr->h_ack);
853 	state->ack_recv_valid = 1;
854 
855 	/* Process the credits update if there was one */
856 	if (ihdr->h_credit)
857 		rds_ib_send_add_credits(conn, ihdr->h_credit);
858 
859 	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
860 		/* This is an ACK-only packet. The fact that it gets
861 		 * special treatment here is that historically, ACKs
862 		 * were rather special beasts.
863 		 */
864 		rds_ib_stats_inc(s_ib_ack_received);
865 
866 		/*
867 		 * Usually the frags make their way on to incs and are then freed as
868 		 * the inc is freed.  We don't go that route, so we have to drop the
869 		 * page ref ourselves.  We can't just leave the page on the recv
870 		 * because that confuses the dma mapping of pages and each recv's use
871 		 * of a partial page.
872 		 *
873 		 * FIXME: Fold this into the code path below.
874 		 */
875 		rds_ib_frag_free(ic, recv->r_frag);
876 		recv->r_frag = NULL;
877 		return;
878 	}
879 
880 	/*
881 	 * If we don't already have an inc on the connection then this
882 	 * fragment has a header and starts a message.. copy its header
883 	 * into the inc and save the inc so we can hang upcoming fragments
884 	 * off its list.
885 	 */
886 	if (!ibinc) {
887 		ibinc = recv->r_ibinc;
888 		recv->r_ibinc = NULL;
889 		ic->i_ibinc = ibinc;
890 
891 		hdr = &ibinc->ii_inc.i_hdr;
892 		memcpy(hdr, ihdr, sizeof(*hdr));
893 		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
894 
895 		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
896 			 ic->i_recv_data_rem, hdr->h_flags);
897 	} else {
898 		hdr = &ibinc->ii_inc.i_hdr;
899 		/* We can't just use memcmp here; fragments of a
900 		 * single message may carry different ACKs */
901 		if (hdr->h_sequence != ihdr->h_sequence ||
902 		    hdr->h_len != ihdr->h_len ||
903 		    hdr->h_sport != ihdr->h_sport ||
904 		    hdr->h_dport != ihdr->h_dport) {
905 			rds_ib_conn_error(conn,
906 				"fragment header mismatch; forcing reconnect\n");
907 			return;
908 		}
909 	}
910 
911 	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
912 	recv->r_frag = NULL;
913 
914 	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
915 		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
916 	else {
917 		ic->i_recv_data_rem = 0;
918 		ic->i_ibinc = NULL;
919 
920 		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
921 			rds_ib_cong_recv(conn, ibinc);
922 		else {
923 			rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
924 					  &ibinc->ii_inc, GFP_ATOMIC);
925 			state->ack_next = be64_to_cpu(hdr->h_sequence);
926 			state->ack_next_valid = 1;
927 		}
928 
929 		/* Evaluate the ACK_REQUIRED flag *after* we received
930 		 * the complete frame, and after bumping the next_rx
931 		 * sequence. */
932 		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
933 			rds_stats_inc(s_recv_ack_required);
934 			state->ack_required = 1;
935 		}
936 
937 		rds_inc_put(&ibinc->ii_inc);
938 	}
939 }
940 
941 /*
942  * Plucking the oldest entry from the ring can be done concurrently with
943  * the thread refilling the ring.  Each ring operation is protected by
944  * spinlocks and the transient state of refilling doesn't change the
945  * recording of which entry is oldest.
946  *
947  * This relies on IB only calling one cq comp_handler for each cq so that
948  * there will only be one caller of rds_recv_incoming() per RDS connection.
949  */
950 void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
951 {
952 	struct rds_connection *conn = context;
953 	struct rds_ib_connection *ic = conn->c_transport_data;
954 
955 	rdsdebug("conn %p cq %p\n", conn, cq);
956 
957 	rds_ib_stats_inc(s_ib_rx_cq_call);
958 
959 	tasklet_schedule(&ic->i_recv_tasklet);
960 }
961 
962 static inline void rds_poll_cq(struct rds_ib_connection *ic,
963 			       struct rds_ib_ack_state *state)
964 {
965 	struct rds_connection *conn = ic->conn;
966 	struct ib_wc wc;
967 	struct rds_ib_recv_work *recv;
968 
969 	while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
970 		rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
971 			 (unsigned long long)wc.wr_id, wc.status,
972 			 rds_ib_wc_status_str(wc.status), wc.byte_len,
973 			 be32_to_cpu(wc.ex.imm_data));
974 		rds_ib_stats_inc(s_ib_rx_cq_event);
975 
976 		recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
977 
978 		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
979 
980 		/*
981 		 * Also process recvs in connecting state because it is possible
982 		 * to get a recv completion _before_ the rdmacm ESTABLISHED
983 		 * event is processed.
984 		 */
985 		if (wc.status == IB_WC_SUCCESS) {
986 			rds_ib_process_recv(conn, recv, wc.byte_len, state);
987 		} else {
988 			/* We expect errors as the qp is drained during shutdown */
989 			if (rds_conn_up(conn) || rds_conn_connecting(conn))
990 				rds_ib_conn_error(conn, "recv completion on %pI4 had "
991 						  "status %u (%s), disconnecting and "
992 						  "reconnecting\n", &conn->c_faddr,
993 						  wc.status,
994 						  rds_ib_wc_status_str(wc.status));
995 		}
996 
997 		/*
998 		 * It's very important that we only free this ring entry if we've truly
999 		 * freed the resources allocated to the entry.  The refilling path can
1000 		 * leak if we don't.
1001 		 */
1002 		rds_ib_ring_free(&ic->i_recv_ring, 1);
1003 	}
1004 }
1005 
1006 void rds_ib_recv_tasklet_fn(unsigned long data)
1007 {
1008 	struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
1009 	struct rds_connection *conn = ic->conn;
1010 	struct rds_ib_ack_state state = { 0, };
1011 
1012 	rds_poll_cq(ic, &state);
1013 	ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
1014 	rds_poll_cq(ic, &state);
1015 
1016 	if (state.ack_next_valid)
1017 		rds_ib_set_ack(ic, state.ack_next, state.ack_required);
1018 	if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
1019 		rds_send_drop_acked(conn, state.ack_recv, NULL);
1020 		ic->i_ack_recv = state.ack_recv;
1021 	}
1022 	if (rds_conn_up(conn))
1023 		rds_ib_attempt_ack(ic);
1024 
1025 	/* If we ever end up with a really empty receive ring, we're
1026 	 * in deep trouble, as the sender will definitely see RNR
1027 	 * timeouts. */
1028 	if (rds_ib_ring_empty(&ic->i_recv_ring))
1029 		rds_ib_stats_inc(s_ib_rx_ring_empty);
1030 
1031 	if (rds_ib_ring_low(&ic->i_recv_ring))
1032 		rds_ib_recv_refill(conn, 0);
1033 }
1034 
1035 int rds_ib_recv(struct rds_connection *conn)
1036 {
1037 	struct rds_ib_connection *ic = conn->c_transport_data;
1038 	int ret = 0;
1039 
1040 	rdsdebug("conn %p\n", conn);
1041 	if (rds_conn_up(conn))
1042 		rds_ib_attempt_ack(ic);
1043 
1044 	return ret;
1045 }
1046 
1047 int rds_ib_recv_init(void)
1048 {
1049 	struct sysinfo si;
1050 	int ret = -ENOMEM;
1051 
1052 	/* Default to 30% of all available RAM for recv memory */
1053 	si_meminfo(&si);
1054 	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1055 
1056 	rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1057 					sizeof(struct rds_ib_incoming),
1058 					0, SLAB_HWCACHE_ALIGN, NULL);
1059 	if (!rds_ib_incoming_slab)
1060 		goto out;
1061 
1062 	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1063 					sizeof(struct rds_page_frag),
1064 					0, SLAB_HWCACHE_ALIGN, NULL);
1065 	if (!rds_ib_frag_slab)
1066 		kmem_cache_destroy(rds_ib_incoming_slab);
1067 	else
1068 		ret = 0;
1069 out:
1070 	return ret;
1071 }
1072 
1073 void rds_ib_recv_exit(void)
1074 {
1075 	kmem_cache_destroy(rds_ib_incoming_slab);
1076 	kmem_cache_destroy(rds_ib_frag_slab);
1077 }
1078