xref: /linux/net/rds/ib_rdma.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 /*
2  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/rculist.h>
36 #include <linux/llist.h>
37 
38 #include "rds_single_path.h"
39 #include "ib_mr.h"
40 
41 struct workqueue_struct *rds_ib_mr_wq;
42 
43 static DEFINE_PER_CPU(unsigned long, clean_list_grace);
44 #define CLEAN_LIST_BUSY_BIT 0
45 
46 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
47 {
48 	struct rds_ib_device *rds_ibdev;
49 	struct rds_ib_ipaddr *i_ipaddr;
50 
51 	rcu_read_lock();
52 	list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
53 		list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
54 			if (i_ipaddr->ipaddr == ipaddr) {
55 				refcount_inc(&rds_ibdev->refcount);
56 				rcu_read_unlock();
57 				return rds_ibdev;
58 			}
59 		}
60 	}
61 	rcu_read_unlock();
62 
63 	return NULL;
64 }
65 
66 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
67 {
68 	struct rds_ib_ipaddr *i_ipaddr;
69 
70 	i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
71 	if (!i_ipaddr)
72 		return -ENOMEM;
73 
74 	i_ipaddr->ipaddr = ipaddr;
75 
76 	spin_lock_irq(&rds_ibdev->spinlock);
77 	list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
78 	spin_unlock_irq(&rds_ibdev->spinlock);
79 
80 	return 0;
81 }
82 
83 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
84 {
85 	struct rds_ib_ipaddr *i_ipaddr;
86 	struct rds_ib_ipaddr *to_free = NULL;
87 
88 
89 	spin_lock_irq(&rds_ibdev->spinlock);
90 	list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
91 		if (i_ipaddr->ipaddr == ipaddr) {
92 			list_del_rcu(&i_ipaddr->list);
93 			to_free = i_ipaddr;
94 			break;
95 		}
96 	}
97 	spin_unlock_irq(&rds_ibdev->spinlock);
98 
99 	if (to_free)
100 		kfree_rcu(to_free, rcu);
101 }
102 
103 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev,
104 			 struct in6_addr *ipaddr)
105 {
106 	struct rds_ib_device *rds_ibdev_old;
107 
108 	rds_ibdev_old = rds_ib_get_device(ipaddr->s6_addr32[3]);
109 	if (!rds_ibdev_old)
110 		return rds_ib_add_ipaddr(rds_ibdev, ipaddr->s6_addr32[3]);
111 
112 	if (rds_ibdev_old != rds_ibdev) {
113 		rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr->s6_addr32[3]);
114 		rds_ib_dev_put(rds_ibdev_old);
115 		return rds_ib_add_ipaddr(rds_ibdev, ipaddr->s6_addr32[3]);
116 	}
117 	rds_ib_dev_put(rds_ibdev_old);
118 
119 	return 0;
120 }
121 
122 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
123 {
124 	struct rds_ib_connection *ic = conn->c_transport_data;
125 
126 	/* conn was previously on the nodev_conns_list */
127 	spin_lock_irq(&ib_nodev_conns_lock);
128 	BUG_ON(list_empty(&ib_nodev_conns));
129 	BUG_ON(list_empty(&ic->ib_node));
130 	list_del(&ic->ib_node);
131 
132 	spin_lock(&rds_ibdev->spinlock);
133 	list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
134 	spin_unlock(&rds_ibdev->spinlock);
135 	spin_unlock_irq(&ib_nodev_conns_lock);
136 
137 	ic->rds_ibdev = rds_ibdev;
138 	refcount_inc(&rds_ibdev->refcount);
139 }
140 
141 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
142 {
143 	struct rds_ib_connection *ic = conn->c_transport_data;
144 
145 	/* place conn on nodev_conns_list */
146 	spin_lock(&ib_nodev_conns_lock);
147 
148 	spin_lock_irq(&rds_ibdev->spinlock);
149 	BUG_ON(list_empty(&ic->ib_node));
150 	list_del(&ic->ib_node);
151 	spin_unlock_irq(&rds_ibdev->spinlock);
152 
153 	list_add_tail(&ic->ib_node, &ib_nodev_conns);
154 
155 	spin_unlock(&ib_nodev_conns_lock);
156 
157 	ic->rds_ibdev = NULL;
158 	rds_ib_dev_put(rds_ibdev);
159 }
160 
161 void rds_ib_destroy_nodev_conns(void)
162 {
163 	struct rds_ib_connection *ic, *_ic;
164 	LIST_HEAD(tmp_list);
165 
166 	/* avoid calling conn_destroy with irqs off */
167 	spin_lock_irq(&ib_nodev_conns_lock);
168 	list_splice(&ib_nodev_conns, &tmp_list);
169 	spin_unlock_irq(&ib_nodev_conns_lock);
170 
171 	list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
172 		rds_conn_destroy(ic->conn);
173 }
174 
175 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
176 {
177 	struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool;
178 
179 	iinfo->rdma_mr_max = pool_1m->max_items;
180 	iinfo->rdma_mr_size = pool_1m->fmr_attr.max_pages;
181 }
182 
183 #if IS_ENABLED(CONFIG_IPV6)
184 void rds6_ib_get_mr_info(struct rds_ib_device *rds_ibdev,
185 			 struct rds6_info_rdma_connection *iinfo6)
186 {
187 	struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool;
188 
189 	iinfo6->rdma_mr_max = pool_1m->max_items;
190 	iinfo6->rdma_mr_size = pool_1m->fmr_attr.max_pages;
191 }
192 #endif
193 
194 struct rds_ib_mr *rds_ib_reuse_mr(struct rds_ib_mr_pool *pool)
195 {
196 	struct rds_ib_mr *ibmr = NULL;
197 	struct llist_node *ret;
198 	unsigned long *flag;
199 
200 	preempt_disable();
201 	flag = this_cpu_ptr(&clean_list_grace);
202 	set_bit(CLEAN_LIST_BUSY_BIT, flag);
203 	ret = llist_del_first(&pool->clean_list);
204 	if (ret) {
205 		ibmr = llist_entry(ret, struct rds_ib_mr, llnode);
206 		if (pool->pool_type == RDS_IB_MR_8K_POOL)
207 			rds_ib_stats_inc(s_ib_rdma_mr_8k_reused);
208 		else
209 			rds_ib_stats_inc(s_ib_rdma_mr_1m_reused);
210 	}
211 
212 	clear_bit(CLEAN_LIST_BUSY_BIT, flag);
213 	preempt_enable();
214 	return ibmr;
215 }
216 
217 static inline void wait_clean_list_grace(void)
218 {
219 	int cpu;
220 	unsigned long *flag;
221 
222 	for_each_online_cpu(cpu) {
223 		flag = &per_cpu(clean_list_grace, cpu);
224 		while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
225 			cpu_relax();
226 	}
227 }
228 
229 void rds_ib_sync_mr(void *trans_private, int direction)
230 {
231 	struct rds_ib_mr *ibmr = trans_private;
232 	struct rds_ib_device *rds_ibdev = ibmr->device;
233 
234 	switch (direction) {
235 	case DMA_FROM_DEVICE:
236 		ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
237 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
238 		break;
239 	case DMA_TO_DEVICE:
240 		ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
241 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
242 		break;
243 	}
244 }
245 
246 void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
247 {
248 	struct rds_ib_device *rds_ibdev = ibmr->device;
249 
250 	if (ibmr->sg_dma_len) {
251 		ib_dma_unmap_sg(rds_ibdev->dev,
252 				ibmr->sg, ibmr->sg_len,
253 				DMA_BIDIRECTIONAL);
254 		ibmr->sg_dma_len = 0;
255 	}
256 
257 	/* Release the s/g list */
258 	if (ibmr->sg_len) {
259 		unsigned int i;
260 
261 		for (i = 0; i < ibmr->sg_len; ++i) {
262 			struct page *page = sg_page(&ibmr->sg[i]);
263 
264 			/* FIXME we need a way to tell a r/w MR
265 			 * from a r/o MR */
266 			WARN_ON(!page->mapping && irqs_disabled());
267 			set_page_dirty(page);
268 			put_page(page);
269 		}
270 		kfree(ibmr->sg);
271 
272 		ibmr->sg = NULL;
273 		ibmr->sg_len = 0;
274 	}
275 }
276 
277 void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
278 {
279 	unsigned int pinned = ibmr->sg_len;
280 
281 	__rds_ib_teardown_mr(ibmr);
282 	if (pinned) {
283 		struct rds_ib_mr_pool *pool = ibmr->pool;
284 
285 		atomic_sub(pinned, &pool->free_pinned);
286 	}
287 }
288 
289 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
290 {
291 	unsigned int item_count;
292 
293 	item_count = atomic_read(&pool->item_count);
294 	if (free_all)
295 		return item_count;
296 
297 	return 0;
298 }
299 
300 /*
301  * given an llist of mrs, put them all into the list_head for more processing
302  */
303 static unsigned int llist_append_to_list(struct llist_head *llist,
304 					 struct list_head *list)
305 {
306 	struct rds_ib_mr *ibmr;
307 	struct llist_node *node;
308 	struct llist_node *next;
309 	unsigned int count = 0;
310 
311 	node = llist_del_all(llist);
312 	while (node) {
313 		next = node->next;
314 		ibmr = llist_entry(node, struct rds_ib_mr, llnode);
315 		list_add_tail(&ibmr->unmap_list, list);
316 		node = next;
317 		count++;
318 	}
319 	return count;
320 }
321 
322 /*
323  * this takes a list head of mrs and turns it into linked llist nodes
324  * of clusters.  Each cluster has linked llist nodes of
325  * MR_CLUSTER_SIZE mrs that are ready for reuse.
326  */
327 static void list_to_llist_nodes(struct rds_ib_mr_pool *pool,
328 				struct list_head *list,
329 				struct llist_node **nodes_head,
330 				struct llist_node **nodes_tail)
331 {
332 	struct rds_ib_mr *ibmr;
333 	struct llist_node *cur = NULL;
334 	struct llist_node **next = nodes_head;
335 
336 	list_for_each_entry(ibmr, list, unmap_list) {
337 		cur = &ibmr->llnode;
338 		*next = cur;
339 		next = &cur->next;
340 	}
341 	*next = NULL;
342 	*nodes_tail = cur;
343 }
344 
345 /*
346  * Flush our pool of MRs.
347  * At a minimum, all currently unused MRs are unmapped.
348  * If the number of MRs allocated exceeds the limit, we also try
349  * to free as many MRs as needed to get back to this limit.
350  */
351 int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
352 			 int free_all, struct rds_ib_mr **ibmr_ret)
353 {
354 	struct rds_ib_mr *ibmr;
355 	struct llist_node *clean_nodes;
356 	struct llist_node *clean_tail;
357 	LIST_HEAD(unmap_list);
358 	unsigned long unpinned = 0;
359 	unsigned int nfreed = 0, dirty_to_clean = 0, free_goal;
360 
361 	if (pool->pool_type == RDS_IB_MR_8K_POOL)
362 		rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_flush);
363 	else
364 		rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_flush);
365 
366 	if (ibmr_ret) {
367 		DEFINE_WAIT(wait);
368 		while (!mutex_trylock(&pool->flush_lock)) {
369 			ibmr = rds_ib_reuse_mr(pool);
370 			if (ibmr) {
371 				*ibmr_ret = ibmr;
372 				finish_wait(&pool->flush_wait, &wait);
373 				goto out_nolock;
374 			}
375 
376 			prepare_to_wait(&pool->flush_wait, &wait,
377 					TASK_UNINTERRUPTIBLE);
378 			if (llist_empty(&pool->clean_list))
379 				schedule();
380 
381 			ibmr = rds_ib_reuse_mr(pool);
382 			if (ibmr) {
383 				*ibmr_ret = ibmr;
384 				finish_wait(&pool->flush_wait, &wait);
385 				goto out_nolock;
386 			}
387 		}
388 		finish_wait(&pool->flush_wait, &wait);
389 	} else
390 		mutex_lock(&pool->flush_lock);
391 
392 	if (ibmr_ret) {
393 		ibmr = rds_ib_reuse_mr(pool);
394 		if (ibmr) {
395 			*ibmr_ret = ibmr;
396 			goto out;
397 		}
398 	}
399 
400 	/* Get the list of all MRs to be dropped. Ordering matters -
401 	 * we want to put drop_list ahead of free_list.
402 	 */
403 	dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list);
404 	dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list);
405 	if (free_all)
406 		llist_append_to_list(&pool->clean_list, &unmap_list);
407 
408 	free_goal = rds_ib_flush_goal(pool, free_all);
409 
410 	if (list_empty(&unmap_list))
411 		goto out;
412 
413 	if (pool->use_fastreg)
414 		rds_ib_unreg_frmr(&unmap_list, &nfreed, &unpinned, free_goal);
415 	else
416 		rds_ib_unreg_fmr(&unmap_list, &nfreed, &unpinned, free_goal);
417 
418 	if (!list_empty(&unmap_list)) {
419 		/* we have to make sure that none of the things we're about
420 		 * to put on the clean list would race with other cpus trying
421 		 * to pull items off.  The llist would explode if we managed to
422 		 * remove something from the clean list and then add it back again
423 		 * while another CPU was spinning on that same item in llist_del_first.
424 		 *
425 		 * This is pretty unlikely, but just in case  wait for an llist grace period
426 		 * here before adding anything back into the clean list.
427 		 */
428 		wait_clean_list_grace();
429 
430 		list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail);
431 		if (ibmr_ret) {
432 			*ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
433 			clean_nodes = clean_nodes->next;
434 		}
435 		/* more than one entry in llist nodes */
436 		if (clean_nodes)
437 			llist_add_batch(clean_nodes, clean_tail,
438 					&pool->clean_list);
439 
440 	}
441 
442 	atomic_sub(unpinned, &pool->free_pinned);
443 	atomic_sub(dirty_to_clean, &pool->dirty_count);
444 	atomic_sub(nfreed, &pool->item_count);
445 
446 out:
447 	mutex_unlock(&pool->flush_lock);
448 	if (waitqueue_active(&pool->flush_wait))
449 		wake_up(&pool->flush_wait);
450 out_nolock:
451 	return 0;
452 }
453 
454 struct rds_ib_mr *rds_ib_try_reuse_ibmr(struct rds_ib_mr_pool *pool)
455 {
456 	struct rds_ib_mr *ibmr = NULL;
457 	int iter = 0;
458 
459 	while (1) {
460 		ibmr = rds_ib_reuse_mr(pool);
461 		if (ibmr)
462 			return ibmr;
463 
464 		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
465 			break;
466 
467 		atomic_dec(&pool->item_count);
468 
469 		if (++iter > 2) {
470 			if (pool->pool_type == RDS_IB_MR_8K_POOL)
471 				rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_depleted);
472 			else
473 				rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_depleted);
474 			return ERR_PTR(-EAGAIN);
475 		}
476 
477 		/* We do have some empty MRs. Flush them out. */
478 		if (pool->pool_type == RDS_IB_MR_8K_POOL)
479 			rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_wait);
480 		else
481 			rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_wait);
482 
483 		rds_ib_flush_mr_pool(pool, 0, &ibmr);
484 		if (ibmr)
485 			return ibmr;
486 	}
487 
488 	return ibmr;
489 }
490 
491 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
492 {
493 	struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
494 
495 	rds_ib_flush_mr_pool(pool, 0, NULL);
496 }
497 
498 void rds_ib_free_mr(void *trans_private, int invalidate)
499 {
500 	struct rds_ib_mr *ibmr = trans_private;
501 	struct rds_ib_mr_pool *pool = ibmr->pool;
502 	struct rds_ib_device *rds_ibdev = ibmr->device;
503 
504 	rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
505 
506 	/* Return it to the pool's free list */
507 	if (rds_ibdev->use_fastreg)
508 		rds_ib_free_frmr_list(ibmr);
509 	else
510 		rds_ib_free_fmr_list(ibmr);
511 
512 	atomic_add(ibmr->sg_len, &pool->free_pinned);
513 	atomic_inc(&pool->dirty_count);
514 
515 	/* If we've pinned too many pages, request a flush */
516 	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
517 	    atomic_read(&pool->dirty_count) >= pool->max_items / 5)
518 		queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10);
519 
520 	if (invalidate) {
521 		if (likely(!in_interrupt())) {
522 			rds_ib_flush_mr_pool(pool, 0, NULL);
523 		} else {
524 			/* We get here if the user created a MR marked
525 			 * as use_once and invalidate at the same time.
526 			 */
527 			queue_delayed_work(rds_ib_mr_wq,
528 					   &pool->flush_worker, 10);
529 		}
530 	}
531 
532 	rds_ib_dev_put(rds_ibdev);
533 }
534 
535 void rds_ib_flush_mrs(void)
536 {
537 	struct rds_ib_device *rds_ibdev;
538 
539 	down_read(&rds_ib_devices_lock);
540 	list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
541 		if (rds_ibdev->mr_8k_pool)
542 			rds_ib_flush_mr_pool(rds_ibdev->mr_8k_pool, 0, NULL);
543 
544 		if (rds_ibdev->mr_1m_pool)
545 			rds_ib_flush_mr_pool(rds_ibdev->mr_1m_pool, 0, NULL);
546 	}
547 	up_read(&rds_ib_devices_lock);
548 }
549 
550 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
551 		    struct rds_sock *rs, u32 *key_ret,
552 		    struct rds_connection *conn)
553 {
554 	struct rds_ib_device *rds_ibdev;
555 	struct rds_ib_mr *ibmr = NULL;
556 	struct rds_ib_connection *ic = NULL;
557 	int ret;
558 
559 	rds_ibdev = rds_ib_get_device(rs->rs_bound_addr.s6_addr32[3]);
560 	if (!rds_ibdev) {
561 		ret = -ENODEV;
562 		goto out;
563 	}
564 
565 	if (conn)
566 		ic = conn->c_transport_data;
567 
568 	if (!rds_ibdev->mr_8k_pool || !rds_ibdev->mr_1m_pool) {
569 		ret = -ENODEV;
570 		goto out;
571 	}
572 
573 	if (rds_ibdev->use_fastreg)
574 		ibmr = rds_ib_reg_frmr(rds_ibdev, ic, sg, nents, key_ret);
575 	else
576 		ibmr = rds_ib_reg_fmr(rds_ibdev, sg, nents, key_ret);
577 	if (IS_ERR(ibmr)) {
578 		ret = PTR_ERR(ibmr);
579 		pr_warn("RDS/IB: rds_ib_get_mr failed (errno=%d)\n", ret);
580 	} else {
581 		return ibmr;
582 	}
583 
584  out:
585 	if (rds_ibdev)
586 		rds_ib_dev_put(rds_ibdev);
587 
588 	return ERR_PTR(ret);
589 }
590 
591 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
592 {
593 	cancel_delayed_work_sync(&pool->flush_worker);
594 	rds_ib_flush_mr_pool(pool, 1, NULL);
595 	WARN_ON(atomic_read(&pool->item_count));
596 	WARN_ON(atomic_read(&pool->free_pinned));
597 	kfree(pool);
598 }
599 
600 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev,
601 					     int pool_type)
602 {
603 	struct rds_ib_mr_pool *pool;
604 
605 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
606 	if (!pool)
607 		return ERR_PTR(-ENOMEM);
608 
609 	pool->pool_type = pool_type;
610 	init_llist_head(&pool->free_list);
611 	init_llist_head(&pool->drop_list);
612 	init_llist_head(&pool->clean_list);
613 	mutex_init(&pool->flush_lock);
614 	init_waitqueue_head(&pool->flush_wait);
615 	INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
616 
617 	if (pool_type == RDS_IB_MR_1M_POOL) {
618 		/* +1 allows for unaligned MRs */
619 		pool->fmr_attr.max_pages = RDS_MR_1M_MSG_SIZE + 1;
620 		pool->max_items = rds_ibdev->max_1m_mrs;
621 	} else {
622 		/* pool_type == RDS_IB_MR_8K_POOL */
623 		pool->fmr_attr.max_pages = RDS_MR_8K_MSG_SIZE + 1;
624 		pool->max_items = rds_ibdev->max_8k_mrs;
625 	}
626 
627 	pool->max_free_pinned = pool->max_items * pool->fmr_attr.max_pages / 4;
628 	pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
629 	pool->fmr_attr.page_shift = PAGE_SHIFT;
630 	pool->max_items_soft = rds_ibdev->max_mrs * 3 / 4;
631 	pool->use_fastreg = rds_ibdev->use_fastreg;
632 
633 	return pool;
634 }
635 
636 int rds_ib_mr_init(void)
637 {
638 	rds_ib_mr_wq = alloc_workqueue("rds_mr_flushd", WQ_MEM_RECLAIM, 0);
639 	if (!rds_ib_mr_wq)
640 		return -ENOMEM;
641 	return 0;
642 }
643 
644 /* By the time this is called all the IB devices should have been torn down and
645  * had their pools freed.  As each pool is freed its work struct is waited on,
646  * so the pool flushing work queue should be idle by the time we get here.
647  */
648 void rds_ib_mr_exit(void)
649 {
650 	destroy_workqueue(rds_ib_mr_wq);
651 }
652