xref: /linux/net/rds/ib_rdma.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 
35 #include "rds.h"
36 #include "rdma.h"
37 #include "ib.h"
38 
39 
40 /*
41  * This is stored as mr->r_trans_private.
42  */
43 struct rds_ib_mr {
44 	struct rds_ib_device	*device;
45 	struct rds_ib_mr_pool	*pool;
46 	struct ib_fmr		*fmr;
47 	struct list_head	list;
48 	unsigned int		remap_count;
49 
50 	struct scatterlist	*sg;
51 	unsigned int		sg_len;
52 	u64			*dma;
53 	int			sg_dma_len;
54 };
55 
56 /*
57  * Our own little FMR pool
58  */
59 struct rds_ib_mr_pool {
60 	struct mutex		flush_lock;		/* serialize fmr invalidate */
61 	struct work_struct	flush_worker;		/* flush worker */
62 
63 	spinlock_t		list_lock;		/* protect variables below */
64 	atomic_t		item_count;		/* total # of MRs */
65 	atomic_t		dirty_count;		/* # dirty of MRs */
66 	struct list_head	drop_list;		/* MRs that have reached their max_maps limit */
67 	struct list_head	free_list;		/* unused MRs */
68 	struct list_head	clean_list;		/* unused & unamapped MRs */
69 	atomic_t		free_pinned;		/* memory pinned by free MRs */
70 	unsigned long		max_items;
71 	unsigned long		max_items_soft;
72 	unsigned long		max_free_pinned;
73 	struct ib_fmr_attr	fmr_attr;
74 };
75 
76 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all);
77 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
78 static void rds_ib_mr_pool_flush_worker(struct work_struct *work);
79 
80 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
81 {
82 	struct rds_ib_device *rds_ibdev;
83 	struct rds_ib_ipaddr *i_ipaddr;
84 
85 	list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
86 		spin_lock_irq(&rds_ibdev->spinlock);
87 		list_for_each_entry(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
88 			if (i_ipaddr->ipaddr == ipaddr) {
89 				spin_unlock_irq(&rds_ibdev->spinlock);
90 				return rds_ibdev;
91 			}
92 		}
93 		spin_unlock_irq(&rds_ibdev->spinlock);
94 	}
95 
96 	return NULL;
97 }
98 
99 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
100 {
101 	struct rds_ib_ipaddr *i_ipaddr;
102 
103 	i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
104 	if (!i_ipaddr)
105 		return -ENOMEM;
106 
107 	i_ipaddr->ipaddr = ipaddr;
108 
109 	spin_lock_irq(&rds_ibdev->spinlock);
110 	list_add_tail(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
111 	spin_unlock_irq(&rds_ibdev->spinlock);
112 
113 	return 0;
114 }
115 
116 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
117 {
118 	struct rds_ib_ipaddr *i_ipaddr, *next;
119 
120 	spin_lock_irq(&rds_ibdev->spinlock);
121 	list_for_each_entry_safe(i_ipaddr, next, &rds_ibdev->ipaddr_list, list) {
122 		if (i_ipaddr->ipaddr == ipaddr) {
123 			list_del(&i_ipaddr->list);
124 			kfree(i_ipaddr);
125 			break;
126 		}
127 	}
128 	spin_unlock_irq(&rds_ibdev->spinlock);
129 }
130 
131 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
132 {
133 	struct rds_ib_device *rds_ibdev_old;
134 
135 	rds_ibdev_old = rds_ib_get_device(ipaddr);
136 	if (rds_ibdev_old)
137 		rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
138 
139 	return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
140 }
141 
142 int rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
143 {
144 	struct rds_ib_connection *ic = conn->c_transport_data;
145 
146 	/* conn was previously on the nodev_conns_list */
147 	spin_lock_irq(&ib_nodev_conns_lock);
148 	BUG_ON(list_empty(&ib_nodev_conns));
149 	BUG_ON(list_empty(&ic->ib_node));
150 	list_del(&ic->ib_node);
151 	spin_unlock_irq(&ib_nodev_conns_lock);
152 
153 	spin_lock_irq(&rds_ibdev->spinlock);
154 	list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
155 	spin_unlock_irq(&rds_ibdev->spinlock);
156 
157 	ic->rds_ibdev = rds_ibdev;
158 
159 	return 0;
160 }
161 
162 void rds_ib_remove_nodev_conns(void)
163 {
164 	struct rds_ib_connection *ic, *_ic;
165 	LIST_HEAD(tmp_list);
166 
167 	/* avoid calling conn_destroy with irqs off */
168 	spin_lock_irq(&ib_nodev_conns_lock);
169 	list_splice(&ib_nodev_conns, &tmp_list);
170 	INIT_LIST_HEAD(&ib_nodev_conns);
171 	spin_unlock_irq(&ib_nodev_conns_lock);
172 
173 	list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node) {
174 		if (ic->conn->c_passive)
175 			rds_conn_destroy(ic->conn->c_passive);
176 		rds_conn_destroy(ic->conn);
177 	}
178 }
179 
180 void rds_ib_remove_conns(struct rds_ib_device *rds_ibdev)
181 {
182 	struct rds_ib_connection *ic, *_ic;
183 	LIST_HEAD(tmp_list);
184 
185 	/* avoid calling conn_destroy with irqs off */
186 	spin_lock_irq(&rds_ibdev->spinlock);
187 	list_splice(&rds_ibdev->conn_list, &tmp_list);
188 	INIT_LIST_HEAD(&rds_ibdev->conn_list);
189 	spin_unlock_irq(&rds_ibdev->spinlock);
190 
191 	list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node) {
192 		if (ic->conn->c_passive)
193 			rds_conn_destroy(ic->conn->c_passive);
194 		rds_conn_destroy(ic->conn);
195 	}
196 }
197 
198 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev)
199 {
200 	struct rds_ib_mr_pool *pool;
201 
202 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
203 	if (!pool)
204 		return ERR_PTR(-ENOMEM);
205 
206 	INIT_LIST_HEAD(&pool->free_list);
207 	INIT_LIST_HEAD(&pool->drop_list);
208 	INIT_LIST_HEAD(&pool->clean_list);
209 	mutex_init(&pool->flush_lock);
210 	spin_lock_init(&pool->list_lock);
211 	INIT_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
212 
213 	pool->fmr_attr.max_pages = fmr_message_size;
214 	pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
215 	pool->fmr_attr.page_shift = rds_ibdev->fmr_page_shift;
216 	pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4;
217 
218 	/* We never allow more than max_items MRs to be allocated.
219 	 * When we exceed more than max_items_soft, we start freeing
220 	 * items more aggressively.
221 	 * Make sure that max_items > max_items_soft > max_items / 2
222 	 */
223 	pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
224 	pool->max_items = rds_ibdev->max_fmrs;
225 
226 	return pool;
227 }
228 
229 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
230 {
231 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
232 
233 	iinfo->rdma_mr_max = pool->max_items;
234 	iinfo->rdma_mr_size = pool->fmr_attr.max_pages;
235 }
236 
237 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
238 {
239 	flush_workqueue(rds_wq);
240 	rds_ib_flush_mr_pool(pool, 1);
241 	BUG_ON(atomic_read(&pool->item_count));
242 	BUG_ON(atomic_read(&pool->free_pinned));
243 	kfree(pool);
244 }
245 
246 static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
247 {
248 	struct rds_ib_mr *ibmr = NULL;
249 	unsigned long flags;
250 
251 	spin_lock_irqsave(&pool->list_lock, flags);
252 	if (!list_empty(&pool->clean_list)) {
253 		ibmr = list_entry(pool->clean_list.next, struct rds_ib_mr, list);
254 		list_del_init(&ibmr->list);
255 	}
256 	spin_unlock_irqrestore(&pool->list_lock, flags);
257 
258 	return ibmr;
259 }
260 
261 static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev)
262 {
263 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
264 	struct rds_ib_mr *ibmr = NULL;
265 	int err = 0, iter = 0;
266 
267 	while (1) {
268 		ibmr = rds_ib_reuse_fmr(pool);
269 		if (ibmr)
270 			return ibmr;
271 
272 		/* No clean MRs - now we have the choice of either
273 		 * allocating a fresh MR up to the limit imposed by the
274 		 * driver, or flush any dirty unused MRs.
275 		 * We try to avoid stalling in the send path if possible,
276 		 * so we allocate as long as we're allowed to.
277 		 *
278 		 * We're fussy with enforcing the FMR limit, though. If the driver
279 		 * tells us we can't use more than N fmrs, we shouldn't start
280 		 * arguing with it */
281 		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
282 			break;
283 
284 		atomic_dec(&pool->item_count);
285 
286 		if (++iter > 2) {
287 			rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted);
288 			return ERR_PTR(-EAGAIN);
289 		}
290 
291 		/* We do have some empty MRs. Flush them out. */
292 		rds_ib_stats_inc(s_ib_rdma_mr_pool_wait);
293 		rds_ib_flush_mr_pool(pool, 0);
294 	}
295 
296 	ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
297 	if (!ibmr) {
298 		err = -ENOMEM;
299 		goto out_no_cigar;
300 	}
301 
302 	ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
303 			(IB_ACCESS_LOCAL_WRITE |
304 			 IB_ACCESS_REMOTE_READ |
305 			 IB_ACCESS_REMOTE_WRITE),
306 			&pool->fmr_attr);
307 	if (IS_ERR(ibmr->fmr)) {
308 		err = PTR_ERR(ibmr->fmr);
309 		ibmr->fmr = NULL;
310 		printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
311 		goto out_no_cigar;
312 	}
313 
314 	rds_ib_stats_inc(s_ib_rdma_mr_alloc);
315 	return ibmr;
316 
317 out_no_cigar:
318 	if (ibmr) {
319 		if (ibmr->fmr)
320 			ib_dealloc_fmr(ibmr->fmr);
321 		kfree(ibmr);
322 	}
323 	atomic_dec(&pool->item_count);
324 	return ERR_PTR(err);
325 }
326 
327 static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
328 	       struct scatterlist *sg, unsigned int nents)
329 {
330 	struct ib_device *dev = rds_ibdev->dev;
331 	struct scatterlist *scat = sg;
332 	u64 io_addr = 0;
333 	u64 *dma_pages;
334 	u32 len;
335 	int page_cnt, sg_dma_len;
336 	int i, j;
337 	int ret;
338 
339 	sg_dma_len = ib_dma_map_sg(dev, sg, nents,
340 				 DMA_BIDIRECTIONAL);
341 	if (unlikely(!sg_dma_len)) {
342 		printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
343 		return -EBUSY;
344 	}
345 
346 	len = 0;
347 	page_cnt = 0;
348 
349 	for (i = 0; i < sg_dma_len; ++i) {
350 		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
351 		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
352 
353 		if (dma_addr & ~rds_ibdev->fmr_page_mask) {
354 			if (i > 0)
355 				return -EINVAL;
356 			else
357 				++page_cnt;
358 		}
359 		if ((dma_addr + dma_len) & ~rds_ibdev->fmr_page_mask) {
360 			if (i < sg_dma_len - 1)
361 				return -EINVAL;
362 			else
363 				++page_cnt;
364 		}
365 
366 		len += dma_len;
367 	}
368 
369 	page_cnt += len >> rds_ibdev->fmr_page_shift;
370 	if (page_cnt > fmr_message_size)
371 		return -EINVAL;
372 
373 	dma_pages = kmalloc(sizeof(u64) * page_cnt, GFP_ATOMIC);
374 	if (!dma_pages)
375 		return -ENOMEM;
376 
377 	page_cnt = 0;
378 	for (i = 0; i < sg_dma_len; ++i) {
379 		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
380 		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
381 
382 		for (j = 0; j < dma_len; j += rds_ibdev->fmr_page_size)
383 			dma_pages[page_cnt++] =
384 				(dma_addr & rds_ibdev->fmr_page_mask) + j;
385 	}
386 
387 	ret = ib_map_phys_fmr(ibmr->fmr,
388 				   dma_pages, page_cnt, io_addr);
389 	if (ret)
390 		goto out;
391 
392 	/* Success - we successfully remapped the MR, so we can
393 	 * safely tear down the old mapping. */
394 	rds_ib_teardown_mr(ibmr);
395 
396 	ibmr->sg = scat;
397 	ibmr->sg_len = nents;
398 	ibmr->sg_dma_len = sg_dma_len;
399 	ibmr->remap_count++;
400 
401 	rds_ib_stats_inc(s_ib_rdma_mr_used);
402 	ret = 0;
403 
404 out:
405 	kfree(dma_pages);
406 
407 	return ret;
408 }
409 
410 void rds_ib_sync_mr(void *trans_private, int direction)
411 {
412 	struct rds_ib_mr *ibmr = trans_private;
413 	struct rds_ib_device *rds_ibdev = ibmr->device;
414 
415 	switch (direction) {
416 	case DMA_FROM_DEVICE:
417 		ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
418 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
419 		break;
420 	case DMA_TO_DEVICE:
421 		ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
422 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
423 		break;
424 	}
425 }
426 
427 static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
428 {
429 	struct rds_ib_device *rds_ibdev = ibmr->device;
430 
431 	if (ibmr->sg_dma_len) {
432 		ib_dma_unmap_sg(rds_ibdev->dev,
433 				ibmr->sg, ibmr->sg_len,
434 				DMA_BIDIRECTIONAL);
435 		ibmr->sg_dma_len = 0;
436 	}
437 
438 	/* Release the s/g list */
439 	if (ibmr->sg_len) {
440 		unsigned int i;
441 
442 		for (i = 0; i < ibmr->sg_len; ++i) {
443 			struct page *page = sg_page(&ibmr->sg[i]);
444 
445 			/* FIXME we need a way to tell a r/w MR
446 			 * from a r/o MR */
447 			set_page_dirty(page);
448 			put_page(page);
449 		}
450 		kfree(ibmr->sg);
451 
452 		ibmr->sg = NULL;
453 		ibmr->sg_len = 0;
454 	}
455 }
456 
457 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
458 {
459 	unsigned int pinned = ibmr->sg_len;
460 
461 	__rds_ib_teardown_mr(ibmr);
462 	if (pinned) {
463 		struct rds_ib_device *rds_ibdev = ibmr->device;
464 		struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
465 
466 		atomic_sub(pinned, &pool->free_pinned);
467 	}
468 }
469 
470 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
471 {
472 	unsigned int item_count;
473 
474 	item_count = atomic_read(&pool->item_count);
475 	if (free_all)
476 		return item_count;
477 
478 	return 0;
479 }
480 
481 /*
482  * Flush our pool of MRs.
483  * At a minimum, all currently unused MRs are unmapped.
484  * If the number of MRs allocated exceeds the limit, we also try
485  * to free as many MRs as needed to get back to this limit.
486  */
487 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all)
488 {
489 	struct rds_ib_mr *ibmr, *next;
490 	LIST_HEAD(unmap_list);
491 	LIST_HEAD(fmr_list);
492 	unsigned long unpinned = 0;
493 	unsigned long flags;
494 	unsigned int nfreed = 0, ncleaned = 0, free_goal;
495 	int ret = 0;
496 
497 	rds_ib_stats_inc(s_ib_rdma_mr_pool_flush);
498 
499 	mutex_lock(&pool->flush_lock);
500 
501 	spin_lock_irqsave(&pool->list_lock, flags);
502 	/* Get the list of all MRs to be dropped. Ordering matters -
503 	 * we want to put drop_list ahead of free_list. */
504 	list_splice_init(&pool->free_list, &unmap_list);
505 	list_splice_init(&pool->drop_list, &unmap_list);
506 	if (free_all)
507 		list_splice_init(&pool->clean_list, &unmap_list);
508 	spin_unlock_irqrestore(&pool->list_lock, flags);
509 
510 	free_goal = rds_ib_flush_goal(pool, free_all);
511 
512 	if (list_empty(&unmap_list))
513 		goto out;
514 
515 	/* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
516 	list_for_each_entry(ibmr, &unmap_list, list)
517 		list_add(&ibmr->fmr->list, &fmr_list);
518 	ret = ib_unmap_fmr(&fmr_list);
519 	if (ret)
520 		printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);
521 
522 	/* Now we can destroy the DMA mapping and unpin any pages */
523 	list_for_each_entry_safe(ibmr, next, &unmap_list, list) {
524 		unpinned += ibmr->sg_len;
525 		__rds_ib_teardown_mr(ibmr);
526 		if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) {
527 			rds_ib_stats_inc(s_ib_rdma_mr_free);
528 			list_del(&ibmr->list);
529 			ib_dealloc_fmr(ibmr->fmr);
530 			kfree(ibmr);
531 			nfreed++;
532 		}
533 		ncleaned++;
534 	}
535 
536 	spin_lock_irqsave(&pool->list_lock, flags);
537 	list_splice(&unmap_list, &pool->clean_list);
538 	spin_unlock_irqrestore(&pool->list_lock, flags);
539 
540 	atomic_sub(unpinned, &pool->free_pinned);
541 	atomic_sub(ncleaned, &pool->dirty_count);
542 	atomic_sub(nfreed, &pool->item_count);
543 
544 out:
545 	mutex_unlock(&pool->flush_lock);
546 	return ret;
547 }
548 
549 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
550 {
551 	struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker);
552 
553 	rds_ib_flush_mr_pool(pool, 0);
554 }
555 
556 void rds_ib_free_mr(void *trans_private, int invalidate)
557 {
558 	struct rds_ib_mr *ibmr = trans_private;
559 	struct rds_ib_device *rds_ibdev = ibmr->device;
560 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
561 	unsigned long flags;
562 
563 	rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
564 
565 	/* Return it to the pool's free list */
566 	spin_lock_irqsave(&pool->list_lock, flags);
567 	if (ibmr->remap_count >= pool->fmr_attr.max_maps)
568 		list_add(&ibmr->list, &pool->drop_list);
569 	else
570 		list_add(&ibmr->list, &pool->free_list);
571 
572 	atomic_add(ibmr->sg_len, &pool->free_pinned);
573 	atomic_inc(&pool->dirty_count);
574 	spin_unlock_irqrestore(&pool->list_lock, flags);
575 
576 	/* If we've pinned too many pages, request a flush */
577 	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned
578 	 || atomic_read(&pool->dirty_count) >= pool->max_items / 10)
579 		queue_work(rds_wq, &pool->flush_worker);
580 
581 	if (invalidate) {
582 		if (likely(!in_interrupt())) {
583 			rds_ib_flush_mr_pool(pool, 0);
584 		} else {
585 			/* We get here if the user created a MR marked
586 			 * as use_once and invalidate at the same time. */
587 			queue_work(rds_wq, &pool->flush_worker);
588 		}
589 	}
590 }
591 
592 void rds_ib_flush_mrs(void)
593 {
594 	struct rds_ib_device *rds_ibdev;
595 
596 	list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
597 		struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
598 
599 		if (pool)
600 			rds_ib_flush_mr_pool(pool, 0);
601 	}
602 }
603 
604 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
605 		    struct rds_sock *rs, u32 *key_ret)
606 {
607 	struct rds_ib_device *rds_ibdev;
608 	struct rds_ib_mr *ibmr = NULL;
609 	int ret;
610 
611 	rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
612 	if (!rds_ibdev) {
613 		ret = -ENODEV;
614 		goto out;
615 	}
616 
617 	if (!rds_ibdev->mr_pool) {
618 		ret = -ENODEV;
619 		goto out;
620 	}
621 
622 	ibmr = rds_ib_alloc_fmr(rds_ibdev);
623 	if (IS_ERR(ibmr))
624 		return ibmr;
625 
626 	ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
627 	if (ret == 0)
628 		*key_ret = ibmr->fmr->rkey;
629 	else
630 		printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);
631 
632 	ibmr->device = rds_ibdev;
633 
634  out:
635 	if (ret) {
636 		if (ibmr)
637 			rds_ib_free_mr(ibmr, 0);
638 		ibmr = ERR_PTR(ret);
639 	}
640 	return ibmr;
641 }
642