1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 35 #include "rds.h" 36 #include "rdma.h" 37 #include "ib.h" 38 39 40 /* 41 * This is stored as mr->r_trans_private. 42 */ 43 struct rds_ib_mr { 44 struct rds_ib_device *device; 45 struct rds_ib_mr_pool *pool; 46 struct ib_fmr *fmr; 47 struct list_head list; 48 unsigned int remap_count; 49 50 struct scatterlist *sg; 51 unsigned int sg_len; 52 u64 *dma; 53 int sg_dma_len; 54 }; 55 56 /* 57 * Our own little FMR pool 58 */ 59 struct rds_ib_mr_pool { 60 struct mutex flush_lock; /* serialize fmr invalidate */ 61 struct work_struct flush_worker; /* flush worker */ 62 63 spinlock_t list_lock; /* protect variables below */ 64 atomic_t item_count; /* total # of MRs */ 65 atomic_t dirty_count; /* # dirty of MRs */ 66 struct list_head drop_list; /* MRs that have reached their max_maps limit */ 67 struct list_head free_list; /* unused MRs */ 68 struct list_head clean_list; /* unused & unamapped MRs */ 69 atomic_t free_pinned; /* memory pinned by free MRs */ 70 unsigned long max_items; 71 unsigned long max_items_soft; 72 unsigned long max_free_pinned; 73 struct ib_fmr_attr fmr_attr; 74 }; 75 76 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all); 77 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr); 78 static void rds_ib_mr_pool_flush_worker(struct work_struct *work); 79 80 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr) 81 { 82 struct rds_ib_device *rds_ibdev; 83 struct rds_ib_ipaddr *i_ipaddr; 84 85 list_for_each_entry(rds_ibdev, &rds_ib_devices, list) { 86 spin_lock_irq(&rds_ibdev->spinlock); 87 list_for_each_entry(i_ipaddr, &rds_ibdev->ipaddr_list, list) { 88 if (i_ipaddr->ipaddr == ipaddr) { 89 spin_unlock_irq(&rds_ibdev->spinlock); 90 return rds_ibdev; 91 } 92 } 93 spin_unlock_irq(&rds_ibdev->spinlock); 94 } 95 96 return NULL; 97 } 98 99 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) 100 { 101 struct rds_ib_ipaddr *i_ipaddr; 102 103 i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL); 104 if (!i_ipaddr) 105 return -ENOMEM; 106 107 i_ipaddr->ipaddr = ipaddr; 108 109 spin_lock_irq(&rds_ibdev->spinlock); 110 list_add_tail(&i_ipaddr->list, &rds_ibdev->ipaddr_list); 111 spin_unlock_irq(&rds_ibdev->spinlock); 112 113 return 0; 114 } 115 116 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) 117 { 118 struct rds_ib_ipaddr *i_ipaddr, *next; 119 120 spin_lock_irq(&rds_ibdev->spinlock); 121 list_for_each_entry_safe(i_ipaddr, next, &rds_ibdev->ipaddr_list, list) { 122 if (i_ipaddr->ipaddr == ipaddr) { 123 list_del(&i_ipaddr->list); 124 kfree(i_ipaddr); 125 break; 126 } 127 } 128 spin_unlock_irq(&rds_ibdev->spinlock); 129 } 130 131 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) 132 { 133 struct rds_ib_device *rds_ibdev_old; 134 135 rds_ibdev_old = rds_ib_get_device(ipaddr); 136 if (rds_ibdev_old) 137 rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr); 138 139 return rds_ib_add_ipaddr(rds_ibdev, ipaddr); 140 } 141 142 int rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn) 143 { 144 struct rds_ib_connection *ic = conn->c_transport_data; 145 146 /* conn was previously on the nodev_conns_list */ 147 spin_lock_irq(&ib_nodev_conns_lock); 148 BUG_ON(list_empty(&ib_nodev_conns)); 149 BUG_ON(list_empty(&ic->ib_node)); 150 list_del(&ic->ib_node); 151 spin_unlock_irq(&ib_nodev_conns_lock); 152 153 spin_lock_irq(&rds_ibdev->spinlock); 154 list_add_tail(&ic->ib_node, &rds_ibdev->conn_list); 155 spin_unlock_irq(&rds_ibdev->spinlock); 156 157 ic->rds_ibdev = rds_ibdev; 158 159 return 0; 160 } 161 162 void rds_ib_remove_nodev_conns(void) 163 { 164 struct rds_ib_connection *ic, *_ic; 165 LIST_HEAD(tmp_list); 166 167 /* avoid calling conn_destroy with irqs off */ 168 spin_lock_irq(&ib_nodev_conns_lock); 169 list_splice(&ib_nodev_conns, &tmp_list); 170 INIT_LIST_HEAD(&ib_nodev_conns); 171 spin_unlock_irq(&ib_nodev_conns_lock); 172 173 list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node) { 174 if (ic->conn->c_passive) 175 rds_conn_destroy(ic->conn->c_passive); 176 rds_conn_destroy(ic->conn); 177 } 178 } 179 180 void rds_ib_remove_conns(struct rds_ib_device *rds_ibdev) 181 { 182 struct rds_ib_connection *ic, *_ic; 183 LIST_HEAD(tmp_list); 184 185 /* avoid calling conn_destroy with irqs off */ 186 spin_lock_irq(&rds_ibdev->spinlock); 187 list_splice(&rds_ibdev->conn_list, &tmp_list); 188 INIT_LIST_HEAD(&rds_ibdev->conn_list); 189 spin_unlock_irq(&rds_ibdev->spinlock); 190 191 list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node) { 192 if (ic->conn->c_passive) 193 rds_conn_destroy(ic->conn->c_passive); 194 rds_conn_destroy(ic->conn); 195 } 196 } 197 198 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev) 199 { 200 struct rds_ib_mr_pool *pool; 201 202 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 203 if (!pool) 204 return ERR_PTR(-ENOMEM); 205 206 INIT_LIST_HEAD(&pool->free_list); 207 INIT_LIST_HEAD(&pool->drop_list); 208 INIT_LIST_HEAD(&pool->clean_list); 209 mutex_init(&pool->flush_lock); 210 spin_lock_init(&pool->list_lock); 211 INIT_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker); 212 213 pool->fmr_attr.max_pages = fmr_message_size; 214 pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps; 215 pool->fmr_attr.page_shift = rds_ibdev->fmr_page_shift; 216 pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4; 217 218 /* We never allow more than max_items MRs to be allocated. 219 * When we exceed more than max_items_soft, we start freeing 220 * items more aggressively. 221 * Make sure that max_items > max_items_soft > max_items / 2 222 */ 223 pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4; 224 pool->max_items = rds_ibdev->max_fmrs; 225 226 return pool; 227 } 228 229 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo) 230 { 231 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; 232 233 iinfo->rdma_mr_max = pool->max_items; 234 iinfo->rdma_mr_size = pool->fmr_attr.max_pages; 235 } 236 237 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool) 238 { 239 flush_workqueue(rds_wq); 240 rds_ib_flush_mr_pool(pool, 1); 241 BUG_ON(atomic_read(&pool->item_count)); 242 BUG_ON(atomic_read(&pool->free_pinned)); 243 kfree(pool); 244 } 245 246 static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool) 247 { 248 struct rds_ib_mr *ibmr = NULL; 249 unsigned long flags; 250 251 spin_lock_irqsave(&pool->list_lock, flags); 252 if (!list_empty(&pool->clean_list)) { 253 ibmr = list_entry(pool->clean_list.next, struct rds_ib_mr, list); 254 list_del_init(&ibmr->list); 255 } 256 spin_unlock_irqrestore(&pool->list_lock, flags); 257 258 return ibmr; 259 } 260 261 static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev) 262 { 263 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; 264 struct rds_ib_mr *ibmr = NULL; 265 int err = 0, iter = 0; 266 267 while (1) { 268 ibmr = rds_ib_reuse_fmr(pool); 269 if (ibmr) 270 return ibmr; 271 272 /* No clean MRs - now we have the choice of either 273 * allocating a fresh MR up to the limit imposed by the 274 * driver, or flush any dirty unused MRs. 275 * We try to avoid stalling in the send path if possible, 276 * so we allocate as long as we're allowed to. 277 * 278 * We're fussy with enforcing the FMR limit, though. If the driver 279 * tells us we can't use more than N fmrs, we shouldn't start 280 * arguing with it */ 281 if (atomic_inc_return(&pool->item_count) <= pool->max_items) 282 break; 283 284 atomic_dec(&pool->item_count); 285 286 if (++iter > 2) { 287 rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted); 288 return ERR_PTR(-EAGAIN); 289 } 290 291 /* We do have some empty MRs. Flush them out. */ 292 rds_ib_stats_inc(s_ib_rdma_mr_pool_wait); 293 rds_ib_flush_mr_pool(pool, 0); 294 } 295 296 ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL); 297 if (!ibmr) { 298 err = -ENOMEM; 299 goto out_no_cigar; 300 } 301 302 ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd, 303 (IB_ACCESS_LOCAL_WRITE | 304 IB_ACCESS_REMOTE_READ | 305 IB_ACCESS_REMOTE_WRITE), 306 &pool->fmr_attr); 307 if (IS_ERR(ibmr->fmr)) { 308 err = PTR_ERR(ibmr->fmr); 309 ibmr->fmr = NULL; 310 printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err); 311 goto out_no_cigar; 312 } 313 314 rds_ib_stats_inc(s_ib_rdma_mr_alloc); 315 return ibmr; 316 317 out_no_cigar: 318 if (ibmr) { 319 if (ibmr->fmr) 320 ib_dealloc_fmr(ibmr->fmr); 321 kfree(ibmr); 322 } 323 atomic_dec(&pool->item_count); 324 return ERR_PTR(err); 325 } 326 327 static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr, 328 struct scatterlist *sg, unsigned int nents) 329 { 330 struct ib_device *dev = rds_ibdev->dev; 331 struct scatterlist *scat = sg; 332 u64 io_addr = 0; 333 u64 *dma_pages; 334 u32 len; 335 int page_cnt, sg_dma_len; 336 int i, j; 337 int ret; 338 339 sg_dma_len = ib_dma_map_sg(dev, sg, nents, 340 DMA_BIDIRECTIONAL); 341 if (unlikely(!sg_dma_len)) { 342 printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n"); 343 return -EBUSY; 344 } 345 346 len = 0; 347 page_cnt = 0; 348 349 for (i = 0; i < sg_dma_len; ++i) { 350 unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]); 351 u64 dma_addr = ib_sg_dma_address(dev, &scat[i]); 352 353 if (dma_addr & ~rds_ibdev->fmr_page_mask) { 354 if (i > 0) 355 return -EINVAL; 356 else 357 ++page_cnt; 358 } 359 if ((dma_addr + dma_len) & ~rds_ibdev->fmr_page_mask) { 360 if (i < sg_dma_len - 1) 361 return -EINVAL; 362 else 363 ++page_cnt; 364 } 365 366 len += dma_len; 367 } 368 369 page_cnt += len >> rds_ibdev->fmr_page_shift; 370 if (page_cnt > fmr_message_size) 371 return -EINVAL; 372 373 dma_pages = kmalloc(sizeof(u64) * page_cnt, GFP_ATOMIC); 374 if (!dma_pages) 375 return -ENOMEM; 376 377 page_cnt = 0; 378 for (i = 0; i < sg_dma_len; ++i) { 379 unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]); 380 u64 dma_addr = ib_sg_dma_address(dev, &scat[i]); 381 382 for (j = 0; j < dma_len; j += rds_ibdev->fmr_page_size) 383 dma_pages[page_cnt++] = 384 (dma_addr & rds_ibdev->fmr_page_mask) + j; 385 } 386 387 ret = ib_map_phys_fmr(ibmr->fmr, 388 dma_pages, page_cnt, io_addr); 389 if (ret) 390 goto out; 391 392 /* Success - we successfully remapped the MR, so we can 393 * safely tear down the old mapping. */ 394 rds_ib_teardown_mr(ibmr); 395 396 ibmr->sg = scat; 397 ibmr->sg_len = nents; 398 ibmr->sg_dma_len = sg_dma_len; 399 ibmr->remap_count++; 400 401 rds_ib_stats_inc(s_ib_rdma_mr_used); 402 ret = 0; 403 404 out: 405 kfree(dma_pages); 406 407 return ret; 408 } 409 410 void rds_ib_sync_mr(void *trans_private, int direction) 411 { 412 struct rds_ib_mr *ibmr = trans_private; 413 struct rds_ib_device *rds_ibdev = ibmr->device; 414 415 switch (direction) { 416 case DMA_FROM_DEVICE: 417 ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg, 418 ibmr->sg_dma_len, DMA_BIDIRECTIONAL); 419 break; 420 case DMA_TO_DEVICE: 421 ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg, 422 ibmr->sg_dma_len, DMA_BIDIRECTIONAL); 423 break; 424 } 425 } 426 427 static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr) 428 { 429 struct rds_ib_device *rds_ibdev = ibmr->device; 430 431 if (ibmr->sg_dma_len) { 432 ib_dma_unmap_sg(rds_ibdev->dev, 433 ibmr->sg, ibmr->sg_len, 434 DMA_BIDIRECTIONAL); 435 ibmr->sg_dma_len = 0; 436 } 437 438 /* Release the s/g list */ 439 if (ibmr->sg_len) { 440 unsigned int i; 441 442 for (i = 0; i < ibmr->sg_len; ++i) { 443 struct page *page = sg_page(&ibmr->sg[i]); 444 445 /* FIXME we need a way to tell a r/w MR 446 * from a r/o MR */ 447 set_page_dirty(page); 448 put_page(page); 449 } 450 kfree(ibmr->sg); 451 452 ibmr->sg = NULL; 453 ibmr->sg_len = 0; 454 } 455 } 456 457 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr) 458 { 459 unsigned int pinned = ibmr->sg_len; 460 461 __rds_ib_teardown_mr(ibmr); 462 if (pinned) { 463 struct rds_ib_device *rds_ibdev = ibmr->device; 464 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; 465 466 atomic_sub(pinned, &pool->free_pinned); 467 } 468 } 469 470 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all) 471 { 472 unsigned int item_count; 473 474 item_count = atomic_read(&pool->item_count); 475 if (free_all) 476 return item_count; 477 478 return 0; 479 } 480 481 /* 482 * Flush our pool of MRs. 483 * At a minimum, all currently unused MRs are unmapped. 484 * If the number of MRs allocated exceeds the limit, we also try 485 * to free as many MRs as needed to get back to this limit. 486 */ 487 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all) 488 { 489 struct rds_ib_mr *ibmr, *next; 490 LIST_HEAD(unmap_list); 491 LIST_HEAD(fmr_list); 492 unsigned long unpinned = 0; 493 unsigned long flags; 494 unsigned int nfreed = 0, ncleaned = 0, free_goal; 495 int ret = 0; 496 497 rds_ib_stats_inc(s_ib_rdma_mr_pool_flush); 498 499 mutex_lock(&pool->flush_lock); 500 501 spin_lock_irqsave(&pool->list_lock, flags); 502 /* Get the list of all MRs to be dropped. Ordering matters - 503 * we want to put drop_list ahead of free_list. */ 504 list_splice_init(&pool->free_list, &unmap_list); 505 list_splice_init(&pool->drop_list, &unmap_list); 506 if (free_all) 507 list_splice_init(&pool->clean_list, &unmap_list); 508 spin_unlock_irqrestore(&pool->list_lock, flags); 509 510 free_goal = rds_ib_flush_goal(pool, free_all); 511 512 if (list_empty(&unmap_list)) 513 goto out; 514 515 /* String all ib_mr's onto one list and hand them to ib_unmap_fmr */ 516 list_for_each_entry(ibmr, &unmap_list, list) 517 list_add(&ibmr->fmr->list, &fmr_list); 518 ret = ib_unmap_fmr(&fmr_list); 519 if (ret) 520 printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret); 521 522 /* Now we can destroy the DMA mapping and unpin any pages */ 523 list_for_each_entry_safe(ibmr, next, &unmap_list, list) { 524 unpinned += ibmr->sg_len; 525 __rds_ib_teardown_mr(ibmr); 526 if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) { 527 rds_ib_stats_inc(s_ib_rdma_mr_free); 528 list_del(&ibmr->list); 529 ib_dealloc_fmr(ibmr->fmr); 530 kfree(ibmr); 531 nfreed++; 532 } 533 ncleaned++; 534 } 535 536 spin_lock_irqsave(&pool->list_lock, flags); 537 list_splice(&unmap_list, &pool->clean_list); 538 spin_unlock_irqrestore(&pool->list_lock, flags); 539 540 atomic_sub(unpinned, &pool->free_pinned); 541 atomic_sub(ncleaned, &pool->dirty_count); 542 atomic_sub(nfreed, &pool->item_count); 543 544 out: 545 mutex_unlock(&pool->flush_lock); 546 return ret; 547 } 548 549 static void rds_ib_mr_pool_flush_worker(struct work_struct *work) 550 { 551 struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker); 552 553 rds_ib_flush_mr_pool(pool, 0); 554 } 555 556 void rds_ib_free_mr(void *trans_private, int invalidate) 557 { 558 struct rds_ib_mr *ibmr = trans_private; 559 struct rds_ib_device *rds_ibdev = ibmr->device; 560 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; 561 unsigned long flags; 562 563 rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len); 564 565 /* Return it to the pool's free list */ 566 spin_lock_irqsave(&pool->list_lock, flags); 567 if (ibmr->remap_count >= pool->fmr_attr.max_maps) 568 list_add(&ibmr->list, &pool->drop_list); 569 else 570 list_add(&ibmr->list, &pool->free_list); 571 572 atomic_add(ibmr->sg_len, &pool->free_pinned); 573 atomic_inc(&pool->dirty_count); 574 spin_unlock_irqrestore(&pool->list_lock, flags); 575 576 /* If we've pinned too many pages, request a flush */ 577 if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned 578 || atomic_read(&pool->dirty_count) >= pool->max_items / 10) 579 queue_work(rds_wq, &pool->flush_worker); 580 581 if (invalidate) { 582 if (likely(!in_interrupt())) { 583 rds_ib_flush_mr_pool(pool, 0); 584 } else { 585 /* We get here if the user created a MR marked 586 * as use_once and invalidate at the same time. */ 587 queue_work(rds_wq, &pool->flush_worker); 588 } 589 } 590 } 591 592 void rds_ib_flush_mrs(void) 593 { 594 struct rds_ib_device *rds_ibdev; 595 596 list_for_each_entry(rds_ibdev, &rds_ib_devices, list) { 597 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; 598 599 if (pool) 600 rds_ib_flush_mr_pool(pool, 0); 601 } 602 } 603 604 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents, 605 struct rds_sock *rs, u32 *key_ret) 606 { 607 struct rds_ib_device *rds_ibdev; 608 struct rds_ib_mr *ibmr = NULL; 609 int ret; 610 611 rds_ibdev = rds_ib_get_device(rs->rs_bound_addr); 612 if (!rds_ibdev) { 613 ret = -ENODEV; 614 goto out; 615 } 616 617 if (!rds_ibdev->mr_pool) { 618 ret = -ENODEV; 619 goto out; 620 } 621 622 ibmr = rds_ib_alloc_fmr(rds_ibdev); 623 if (IS_ERR(ibmr)) 624 return ibmr; 625 626 ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents); 627 if (ret == 0) 628 *key_ret = ibmr->fmr->rkey; 629 else 630 printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret); 631 632 ibmr->device = rds_ibdev; 633 634 out: 635 if (ret) { 636 if (ibmr) 637 rds_ib_free_mr(ibmr, 0); 638 ibmr = ERR_PTR(ret); 639 } 640 return ibmr; 641 } 642