xref: /linux/net/rds/ib_rdma.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/rculist.h>
36 #include <linux/llist.h>
37 
38 #include "rds.h"
39 #include "ib.h"
40 
41 static DEFINE_PER_CPU(unsigned long, clean_list_grace);
42 #define CLEAN_LIST_BUSY_BIT 0
43 
44 /*
45  * This is stored as mr->r_trans_private.
46  */
47 struct rds_ib_mr {
48 	struct rds_ib_device	*device;
49 	struct rds_ib_mr_pool	*pool;
50 	struct ib_fmr		*fmr;
51 
52 	struct llist_node	llnode;
53 
54 	/* unmap_list is for freeing */
55 	struct list_head	unmap_list;
56 	unsigned int		remap_count;
57 
58 	struct scatterlist	*sg;
59 	unsigned int		sg_len;
60 	u64			*dma;
61 	int			sg_dma_len;
62 };
63 
64 /*
65  * Our own little FMR pool
66  */
67 struct rds_ib_mr_pool {
68 	unsigned int            pool_type;
69 	struct mutex		flush_lock;		/* serialize fmr invalidate */
70 	struct delayed_work	flush_worker;		/* flush worker */
71 
72 	atomic_t		item_count;		/* total # of MRs */
73 	atomic_t		dirty_count;		/* # dirty of MRs */
74 
75 	struct llist_head	drop_list;		/* MRs that have reached their max_maps limit */
76 	struct llist_head	free_list;		/* unused MRs */
77 	struct llist_head	clean_list;		/* global unused & unamapped MRs */
78 	wait_queue_head_t	flush_wait;
79 
80 	atomic_t		free_pinned;		/* memory pinned by free MRs */
81 	unsigned long		max_items;
82 	unsigned long		max_items_soft;
83 	unsigned long		max_free_pinned;
84 	struct ib_fmr_attr	fmr_attr;
85 };
86 
87 static struct workqueue_struct *rds_ib_fmr_wq;
88 
89 int rds_ib_fmr_init(void)
90 {
91 	rds_ib_fmr_wq = create_workqueue("rds_fmr_flushd");
92 	if (!rds_ib_fmr_wq)
93 		return -ENOMEM;
94 	return 0;
95 }
96 
97 /* By the time this is called all the IB devices should have been torn down and
98  * had their pools freed.  As each pool is freed its work struct is waited on,
99  * so the pool flushing work queue should be idle by the time we get here.
100  */
101 void rds_ib_fmr_exit(void)
102 {
103 	destroy_workqueue(rds_ib_fmr_wq);
104 }
105 
106 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **);
107 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
108 static void rds_ib_mr_pool_flush_worker(struct work_struct *work);
109 
110 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
111 {
112 	struct rds_ib_device *rds_ibdev;
113 	struct rds_ib_ipaddr *i_ipaddr;
114 
115 	rcu_read_lock();
116 	list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
117 		list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
118 			if (i_ipaddr->ipaddr == ipaddr) {
119 				atomic_inc(&rds_ibdev->refcount);
120 				rcu_read_unlock();
121 				return rds_ibdev;
122 			}
123 		}
124 	}
125 	rcu_read_unlock();
126 
127 	return NULL;
128 }
129 
130 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
131 {
132 	struct rds_ib_ipaddr *i_ipaddr;
133 
134 	i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
135 	if (!i_ipaddr)
136 		return -ENOMEM;
137 
138 	i_ipaddr->ipaddr = ipaddr;
139 
140 	spin_lock_irq(&rds_ibdev->spinlock);
141 	list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
142 	spin_unlock_irq(&rds_ibdev->spinlock);
143 
144 	return 0;
145 }
146 
147 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
148 {
149 	struct rds_ib_ipaddr *i_ipaddr;
150 	struct rds_ib_ipaddr *to_free = NULL;
151 
152 
153 	spin_lock_irq(&rds_ibdev->spinlock);
154 	list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
155 		if (i_ipaddr->ipaddr == ipaddr) {
156 			list_del_rcu(&i_ipaddr->list);
157 			to_free = i_ipaddr;
158 			break;
159 		}
160 	}
161 	spin_unlock_irq(&rds_ibdev->spinlock);
162 
163 	if (to_free)
164 		kfree_rcu(to_free, rcu);
165 }
166 
167 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
168 {
169 	struct rds_ib_device *rds_ibdev_old;
170 
171 	rds_ibdev_old = rds_ib_get_device(ipaddr);
172 	if (!rds_ibdev_old)
173 		return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
174 
175 	if (rds_ibdev_old != rds_ibdev) {
176 		rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
177 		rds_ib_dev_put(rds_ibdev_old);
178 		return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
179 	}
180 	rds_ib_dev_put(rds_ibdev_old);
181 
182 	return 0;
183 }
184 
185 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
186 {
187 	struct rds_ib_connection *ic = conn->c_transport_data;
188 
189 	/* conn was previously on the nodev_conns_list */
190 	spin_lock_irq(&ib_nodev_conns_lock);
191 	BUG_ON(list_empty(&ib_nodev_conns));
192 	BUG_ON(list_empty(&ic->ib_node));
193 	list_del(&ic->ib_node);
194 
195 	spin_lock(&rds_ibdev->spinlock);
196 	list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
197 	spin_unlock(&rds_ibdev->spinlock);
198 	spin_unlock_irq(&ib_nodev_conns_lock);
199 
200 	ic->rds_ibdev = rds_ibdev;
201 	atomic_inc(&rds_ibdev->refcount);
202 }
203 
204 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
205 {
206 	struct rds_ib_connection *ic = conn->c_transport_data;
207 
208 	/* place conn on nodev_conns_list */
209 	spin_lock(&ib_nodev_conns_lock);
210 
211 	spin_lock_irq(&rds_ibdev->spinlock);
212 	BUG_ON(list_empty(&ic->ib_node));
213 	list_del(&ic->ib_node);
214 	spin_unlock_irq(&rds_ibdev->spinlock);
215 
216 	list_add_tail(&ic->ib_node, &ib_nodev_conns);
217 
218 	spin_unlock(&ib_nodev_conns_lock);
219 
220 	ic->rds_ibdev = NULL;
221 	rds_ib_dev_put(rds_ibdev);
222 }
223 
224 void rds_ib_destroy_nodev_conns(void)
225 {
226 	struct rds_ib_connection *ic, *_ic;
227 	LIST_HEAD(tmp_list);
228 
229 	/* avoid calling conn_destroy with irqs off */
230 	spin_lock_irq(&ib_nodev_conns_lock);
231 	list_splice(&ib_nodev_conns, &tmp_list);
232 	spin_unlock_irq(&ib_nodev_conns_lock);
233 
234 	list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
235 		rds_conn_destroy(ic->conn);
236 }
237 
238 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev,
239 					     int pool_type)
240 {
241 	struct rds_ib_mr_pool *pool;
242 
243 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
244 	if (!pool)
245 		return ERR_PTR(-ENOMEM);
246 
247 	pool->pool_type = pool_type;
248 	init_llist_head(&pool->free_list);
249 	init_llist_head(&pool->drop_list);
250 	init_llist_head(&pool->clean_list);
251 	mutex_init(&pool->flush_lock);
252 	init_waitqueue_head(&pool->flush_wait);
253 	INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
254 
255 	if (pool_type == RDS_IB_MR_1M_POOL) {
256 		/* +1 allows for unaligned MRs */
257 		pool->fmr_attr.max_pages = RDS_FMR_1M_MSG_SIZE + 1;
258 		pool->max_items = RDS_FMR_1M_POOL_SIZE;
259 	} else {
260 		/* pool_type == RDS_IB_MR_8K_POOL */
261 		pool->fmr_attr.max_pages = RDS_FMR_8K_MSG_SIZE + 1;
262 		pool->max_items = RDS_FMR_8K_POOL_SIZE;
263 	}
264 
265 	pool->max_free_pinned = pool->max_items * pool->fmr_attr.max_pages / 4;
266 	pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
267 	pool->fmr_attr.page_shift = PAGE_SHIFT;
268 	pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
269 
270 	return pool;
271 }
272 
273 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
274 {
275 	struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool;
276 
277 	iinfo->rdma_mr_max = pool_1m->max_items;
278 	iinfo->rdma_mr_size = pool_1m->fmr_attr.max_pages;
279 }
280 
281 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
282 {
283 	cancel_delayed_work_sync(&pool->flush_worker);
284 	rds_ib_flush_mr_pool(pool, 1, NULL);
285 	WARN_ON(atomic_read(&pool->item_count));
286 	WARN_ON(atomic_read(&pool->free_pinned));
287 	kfree(pool);
288 }
289 
290 static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
291 {
292 	struct rds_ib_mr *ibmr = NULL;
293 	struct llist_node *ret;
294 	unsigned long *flag;
295 
296 	preempt_disable();
297 	flag = this_cpu_ptr(&clean_list_grace);
298 	set_bit(CLEAN_LIST_BUSY_BIT, flag);
299 	ret = llist_del_first(&pool->clean_list);
300 	if (ret)
301 		ibmr = llist_entry(ret, struct rds_ib_mr, llnode);
302 
303 	clear_bit(CLEAN_LIST_BUSY_BIT, flag);
304 	preempt_enable();
305 	return ibmr;
306 }
307 
308 static inline void wait_clean_list_grace(void)
309 {
310 	int cpu;
311 	unsigned long *flag;
312 
313 	for_each_online_cpu(cpu) {
314 		flag = &per_cpu(clean_list_grace, cpu);
315 		while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
316 			cpu_relax();
317 	}
318 }
319 
320 static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev,
321 					  int npages)
322 {
323 	struct rds_ib_mr_pool *pool;
324 	struct rds_ib_mr *ibmr = NULL;
325 	int err = 0, iter = 0;
326 
327 	if (npages <= RDS_FMR_8K_MSG_SIZE)
328 		pool = rds_ibdev->mr_8k_pool;
329 	else
330 		pool = rds_ibdev->mr_1m_pool;
331 
332 	if (atomic_read(&pool->dirty_count) >= pool->max_items / 10)
333 		queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);
334 
335 	/* Switch pools if one of the pool is reaching upper limit */
336 	if (atomic_read(&pool->dirty_count) >=  pool->max_items * 9 / 10) {
337 		if (pool->pool_type == RDS_IB_MR_8K_POOL)
338 			pool = rds_ibdev->mr_1m_pool;
339 		else
340 			pool = rds_ibdev->mr_8k_pool;
341 	}
342 
343 	while (1) {
344 		ibmr = rds_ib_reuse_fmr(pool);
345 		if (ibmr)
346 			return ibmr;
347 
348 		/* No clean MRs - now we have the choice of either
349 		 * allocating a fresh MR up to the limit imposed by the
350 		 * driver, or flush any dirty unused MRs.
351 		 * We try to avoid stalling in the send path if possible,
352 		 * so we allocate as long as we're allowed to.
353 		 *
354 		 * We're fussy with enforcing the FMR limit, though. If the driver
355 		 * tells us we can't use more than N fmrs, we shouldn't start
356 		 * arguing with it */
357 		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
358 			break;
359 
360 		atomic_dec(&pool->item_count);
361 
362 		if (++iter > 2) {
363 			if (pool->pool_type == RDS_IB_MR_8K_POOL)
364 				rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_depleted);
365 			else
366 				rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_depleted);
367 			return ERR_PTR(-EAGAIN);
368 		}
369 
370 		/* We do have some empty MRs. Flush them out. */
371 		if (pool->pool_type == RDS_IB_MR_8K_POOL)
372 			rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_wait);
373 		else
374 			rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_wait);
375 		rds_ib_flush_mr_pool(pool, 0, &ibmr);
376 		if (ibmr)
377 			return ibmr;
378 	}
379 
380 	ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev));
381 	if (!ibmr) {
382 		err = -ENOMEM;
383 		goto out_no_cigar;
384 	}
385 
386 	ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
387 			(IB_ACCESS_LOCAL_WRITE |
388 			 IB_ACCESS_REMOTE_READ |
389 			 IB_ACCESS_REMOTE_WRITE|
390 			 IB_ACCESS_REMOTE_ATOMIC),
391 			&pool->fmr_attr);
392 	if (IS_ERR(ibmr->fmr)) {
393 		err = PTR_ERR(ibmr->fmr);
394 		ibmr->fmr = NULL;
395 		printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
396 		goto out_no_cigar;
397 	}
398 
399 	ibmr->pool = pool;
400 	if (pool->pool_type == RDS_IB_MR_8K_POOL)
401 		rds_ib_stats_inc(s_ib_rdma_mr_8k_alloc);
402 	else
403 		rds_ib_stats_inc(s_ib_rdma_mr_1m_alloc);
404 
405 	return ibmr;
406 
407 out_no_cigar:
408 	if (ibmr) {
409 		if (ibmr->fmr)
410 			ib_dealloc_fmr(ibmr->fmr);
411 		kfree(ibmr);
412 	}
413 	atomic_dec(&pool->item_count);
414 	return ERR_PTR(err);
415 }
416 
417 static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
418 	       struct scatterlist *sg, unsigned int nents)
419 {
420 	struct ib_device *dev = rds_ibdev->dev;
421 	struct scatterlist *scat = sg;
422 	u64 io_addr = 0;
423 	u64 *dma_pages;
424 	u32 len;
425 	int page_cnt, sg_dma_len;
426 	int i, j;
427 	int ret;
428 
429 	sg_dma_len = ib_dma_map_sg(dev, sg, nents,
430 				 DMA_BIDIRECTIONAL);
431 	if (unlikely(!sg_dma_len)) {
432 		printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
433 		return -EBUSY;
434 	}
435 
436 	len = 0;
437 	page_cnt = 0;
438 
439 	for (i = 0; i < sg_dma_len; ++i) {
440 		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
441 		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
442 
443 		if (dma_addr & ~PAGE_MASK) {
444 			if (i > 0)
445 				return -EINVAL;
446 			else
447 				++page_cnt;
448 		}
449 		if ((dma_addr + dma_len) & ~PAGE_MASK) {
450 			if (i < sg_dma_len - 1)
451 				return -EINVAL;
452 			else
453 				++page_cnt;
454 		}
455 
456 		len += dma_len;
457 	}
458 
459 	page_cnt += len >> PAGE_SHIFT;
460 	if (page_cnt > ibmr->pool->fmr_attr.max_pages)
461 		return -EINVAL;
462 
463 	dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC,
464 				 rdsibdev_to_node(rds_ibdev));
465 	if (!dma_pages)
466 		return -ENOMEM;
467 
468 	page_cnt = 0;
469 	for (i = 0; i < sg_dma_len; ++i) {
470 		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
471 		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
472 
473 		for (j = 0; j < dma_len; j += PAGE_SIZE)
474 			dma_pages[page_cnt++] =
475 				(dma_addr & PAGE_MASK) + j;
476 	}
477 
478 	ret = ib_map_phys_fmr(ibmr->fmr,
479 				   dma_pages, page_cnt, io_addr);
480 	if (ret)
481 		goto out;
482 
483 	/* Success - we successfully remapped the MR, so we can
484 	 * safely tear down the old mapping. */
485 	rds_ib_teardown_mr(ibmr);
486 
487 	ibmr->sg = scat;
488 	ibmr->sg_len = nents;
489 	ibmr->sg_dma_len = sg_dma_len;
490 	ibmr->remap_count++;
491 
492 	if (ibmr->pool->pool_type == RDS_IB_MR_8K_POOL)
493 		rds_ib_stats_inc(s_ib_rdma_mr_8k_used);
494 	else
495 		rds_ib_stats_inc(s_ib_rdma_mr_1m_used);
496 	ret = 0;
497 
498 out:
499 	kfree(dma_pages);
500 
501 	return ret;
502 }
503 
504 void rds_ib_sync_mr(void *trans_private, int direction)
505 {
506 	struct rds_ib_mr *ibmr = trans_private;
507 	struct rds_ib_device *rds_ibdev = ibmr->device;
508 
509 	switch (direction) {
510 	case DMA_FROM_DEVICE:
511 		ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
512 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
513 		break;
514 	case DMA_TO_DEVICE:
515 		ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
516 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
517 		break;
518 	}
519 }
520 
521 static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
522 {
523 	struct rds_ib_device *rds_ibdev = ibmr->device;
524 
525 	if (ibmr->sg_dma_len) {
526 		ib_dma_unmap_sg(rds_ibdev->dev,
527 				ibmr->sg, ibmr->sg_len,
528 				DMA_BIDIRECTIONAL);
529 		ibmr->sg_dma_len = 0;
530 	}
531 
532 	/* Release the s/g list */
533 	if (ibmr->sg_len) {
534 		unsigned int i;
535 
536 		for (i = 0; i < ibmr->sg_len; ++i) {
537 			struct page *page = sg_page(&ibmr->sg[i]);
538 
539 			/* FIXME we need a way to tell a r/w MR
540 			 * from a r/o MR */
541 			WARN_ON(!page->mapping && irqs_disabled());
542 			set_page_dirty(page);
543 			put_page(page);
544 		}
545 		kfree(ibmr->sg);
546 
547 		ibmr->sg = NULL;
548 		ibmr->sg_len = 0;
549 	}
550 }
551 
552 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
553 {
554 	unsigned int pinned = ibmr->sg_len;
555 
556 	__rds_ib_teardown_mr(ibmr);
557 	if (pinned) {
558 		struct rds_ib_mr_pool *pool = ibmr->pool;
559 
560 		atomic_sub(pinned, &pool->free_pinned);
561 	}
562 }
563 
564 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
565 {
566 	unsigned int item_count;
567 
568 	item_count = atomic_read(&pool->item_count);
569 	if (free_all)
570 		return item_count;
571 
572 	return 0;
573 }
574 
575 /*
576  * given an llist of mrs, put them all into the list_head for more processing
577  */
578 static unsigned int llist_append_to_list(struct llist_head *llist,
579 					 struct list_head *list)
580 {
581 	struct rds_ib_mr *ibmr;
582 	struct llist_node *node;
583 	struct llist_node *next;
584 	unsigned int count = 0;
585 
586 	node = llist_del_all(llist);
587 	while (node) {
588 		next = node->next;
589 		ibmr = llist_entry(node, struct rds_ib_mr, llnode);
590 		list_add_tail(&ibmr->unmap_list, list);
591 		node = next;
592 		count++;
593 	}
594 	return count;
595 }
596 
597 /*
598  * this takes a list head of mrs and turns it into linked llist nodes
599  * of clusters.  Each cluster has linked llist nodes of
600  * MR_CLUSTER_SIZE mrs that are ready for reuse.
601  */
602 static void list_to_llist_nodes(struct rds_ib_mr_pool *pool,
603 				struct list_head *list,
604 				struct llist_node **nodes_head,
605 				struct llist_node **nodes_tail)
606 {
607 	struct rds_ib_mr *ibmr;
608 	struct llist_node *cur = NULL;
609 	struct llist_node **next = nodes_head;
610 
611 	list_for_each_entry(ibmr, list, unmap_list) {
612 		cur = &ibmr->llnode;
613 		*next = cur;
614 		next = &cur->next;
615 	}
616 	*next = NULL;
617 	*nodes_tail = cur;
618 }
619 
620 /*
621  * Flush our pool of MRs.
622  * At a minimum, all currently unused MRs are unmapped.
623  * If the number of MRs allocated exceeds the limit, we also try
624  * to free as many MRs as needed to get back to this limit.
625  */
626 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
627 				int free_all, struct rds_ib_mr **ibmr_ret)
628 {
629 	struct rds_ib_mr *ibmr, *next;
630 	struct llist_node *clean_nodes;
631 	struct llist_node *clean_tail;
632 	LIST_HEAD(unmap_list);
633 	LIST_HEAD(fmr_list);
634 	unsigned long unpinned = 0;
635 	unsigned int nfreed = 0, dirty_to_clean = 0, free_goal;
636 	int ret = 0;
637 
638 	if (pool->pool_type == RDS_IB_MR_8K_POOL)
639 		rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_flush);
640 	else
641 		rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_flush);
642 
643 	if (ibmr_ret) {
644 		DEFINE_WAIT(wait);
645 		while (!mutex_trylock(&pool->flush_lock)) {
646 			ibmr = rds_ib_reuse_fmr(pool);
647 			if (ibmr) {
648 				*ibmr_ret = ibmr;
649 				finish_wait(&pool->flush_wait, &wait);
650 				goto out_nolock;
651 			}
652 
653 			prepare_to_wait(&pool->flush_wait, &wait,
654 					TASK_UNINTERRUPTIBLE);
655 			if (llist_empty(&pool->clean_list))
656 				schedule();
657 
658 			ibmr = rds_ib_reuse_fmr(pool);
659 			if (ibmr) {
660 				*ibmr_ret = ibmr;
661 				finish_wait(&pool->flush_wait, &wait);
662 				goto out_nolock;
663 			}
664 		}
665 		finish_wait(&pool->flush_wait, &wait);
666 	} else
667 		mutex_lock(&pool->flush_lock);
668 
669 	if (ibmr_ret) {
670 		ibmr = rds_ib_reuse_fmr(pool);
671 		if (ibmr) {
672 			*ibmr_ret = ibmr;
673 			goto out;
674 		}
675 	}
676 
677 	/* Get the list of all MRs to be dropped. Ordering matters -
678 	 * we want to put drop_list ahead of free_list.
679 	 */
680 	dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list);
681 	dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list);
682 	if (free_all)
683 		llist_append_to_list(&pool->clean_list, &unmap_list);
684 
685 	free_goal = rds_ib_flush_goal(pool, free_all);
686 
687 	if (list_empty(&unmap_list))
688 		goto out;
689 
690 	/* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
691 	list_for_each_entry(ibmr, &unmap_list, unmap_list)
692 		list_add(&ibmr->fmr->list, &fmr_list);
693 
694 	ret = ib_unmap_fmr(&fmr_list);
695 	if (ret)
696 		printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);
697 
698 	/* Now we can destroy the DMA mapping and unpin any pages */
699 	list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) {
700 		unpinned += ibmr->sg_len;
701 		__rds_ib_teardown_mr(ibmr);
702 		if (nfreed < free_goal ||
703 		    ibmr->remap_count >= pool->fmr_attr.max_maps) {
704 			if (ibmr->pool->pool_type == RDS_IB_MR_8K_POOL)
705 				rds_ib_stats_inc(s_ib_rdma_mr_8k_free);
706 			else
707 				rds_ib_stats_inc(s_ib_rdma_mr_1m_free);
708 			list_del(&ibmr->unmap_list);
709 			ib_dealloc_fmr(ibmr->fmr);
710 			kfree(ibmr);
711 			nfreed++;
712 		}
713 	}
714 
715 	if (!list_empty(&unmap_list)) {
716 		/* we have to make sure that none of the things we're about
717 		 * to put on the clean list would race with other cpus trying
718 		 * to pull items off.  The llist would explode if we managed to
719 		 * remove something from the clean list and then add it back again
720 		 * while another CPU was spinning on that same item in llist_del_first.
721 		 *
722 		 * This is pretty unlikely, but just in case  wait for an llist grace period
723 		 * here before adding anything back into the clean list.
724 		 */
725 		wait_clean_list_grace();
726 
727 		list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail);
728 		if (ibmr_ret)
729 			*ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
730 
731 		/* more than one entry in llist nodes */
732 		if (clean_nodes->next)
733 			llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list);
734 
735 	}
736 
737 	atomic_sub(unpinned, &pool->free_pinned);
738 	atomic_sub(dirty_to_clean, &pool->dirty_count);
739 	atomic_sub(nfreed, &pool->item_count);
740 
741 out:
742 	mutex_unlock(&pool->flush_lock);
743 	if (waitqueue_active(&pool->flush_wait))
744 		wake_up(&pool->flush_wait);
745 out_nolock:
746 	return ret;
747 }
748 
749 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
750 {
751 	struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
752 
753 	rds_ib_flush_mr_pool(pool, 0, NULL);
754 }
755 
756 void rds_ib_free_mr(void *trans_private, int invalidate)
757 {
758 	struct rds_ib_mr *ibmr = trans_private;
759 	struct rds_ib_mr_pool *pool = ibmr->pool;
760 	struct rds_ib_device *rds_ibdev = ibmr->device;
761 
762 	rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
763 
764 	/* Return it to the pool's free list */
765 	if (ibmr->remap_count >= pool->fmr_attr.max_maps)
766 		llist_add(&ibmr->llnode, &pool->drop_list);
767 	else
768 		llist_add(&ibmr->llnode, &pool->free_list);
769 
770 	atomic_add(ibmr->sg_len, &pool->free_pinned);
771 	atomic_inc(&pool->dirty_count);
772 
773 	/* If we've pinned too many pages, request a flush */
774 	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
775 	    atomic_read(&pool->dirty_count) >= pool->max_items / 5)
776 		queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);
777 
778 	if (invalidate) {
779 		if (likely(!in_interrupt())) {
780 			rds_ib_flush_mr_pool(pool, 0, NULL);
781 		} else {
782 			/* We get here if the user created a MR marked
783 			 * as use_once and invalidate at the same time.
784 			 */
785 			queue_delayed_work(rds_ib_fmr_wq,
786 					   &pool->flush_worker, 10);
787 		}
788 	}
789 
790 	rds_ib_dev_put(rds_ibdev);
791 }
792 
793 void rds_ib_flush_mrs(void)
794 {
795 	struct rds_ib_device *rds_ibdev;
796 
797 	down_read(&rds_ib_devices_lock);
798 	list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
799 		if (rds_ibdev->mr_8k_pool)
800 			rds_ib_flush_mr_pool(rds_ibdev->mr_8k_pool, 0, NULL);
801 
802 		if (rds_ibdev->mr_1m_pool)
803 			rds_ib_flush_mr_pool(rds_ibdev->mr_1m_pool, 0, NULL);
804 	}
805 	up_read(&rds_ib_devices_lock);
806 }
807 
808 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
809 		    struct rds_sock *rs, u32 *key_ret)
810 {
811 	struct rds_ib_device *rds_ibdev;
812 	struct rds_ib_mr *ibmr = NULL;
813 	int ret;
814 
815 	rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
816 	if (!rds_ibdev) {
817 		ret = -ENODEV;
818 		goto out;
819 	}
820 
821 	if (!rds_ibdev->mr_8k_pool || !rds_ibdev->mr_1m_pool) {
822 		ret = -ENODEV;
823 		goto out;
824 	}
825 
826 	ibmr = rds_ib_alloc_fmr(rds_ibdev, nents);
827 	if (IS_ERR(ibmr)) {
828 		rds_ib_dev_put(rds_ibdev);
829 		return ibmr;
830 	}
831 
832 	ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
833 	if (ret == 0)
834 		*key_ret = ibmr->fmr->rkey;
835 	else
836 		printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);
837 
838 	ibmr->device = rds_ibdev;
839 	rds_ibdev = NULL;
840 
841  out:
842 	if (ret) {
843 		if (ibmr)
844 			rds_ib_free_mr(ibmr, 0);
845 		ibmr = ERR_PTR(ret);
846 	}
847 	if (rds_ibdev)
848 		rds_ib_dev_put(rds_ibdev);
849 	return ibmr;
850 }
851 
852