1 /* 2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/slab.h> 35 #include <linux/rculist.h> 36 #include <linux/llist.h> 37 38 #include "rds_single_path.h" 39 #include "ib_mr.h" 40 #include "rds.h" 41 42 struct workqueue_struct *rds_ib_mr_wq; 43 44 static void rds_ib_odp_mr_worker(struct work_struct *work); 45 46 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr) 47 { 48 struct rds_ib_device *rds_ibdev; 49 struct rds_ib_ipaddr *i_ipaddr; 50 51 rcu_read_lock(); 52 list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) { 53 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) { 54 if (i_ipaddr->ipaddr == ipaddr) { 55 refcount_inc(&rds_ibdev->refcount); 56 rcu_read_unlock(); 57 return rds_ibdev; 58 } 59 } 60 } 61 rcu_read_unlock(); 62 63 return NULL; 64 } 65 66 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) 67 { 68 struct rds_ib_ipaddr *i_ipaddr; 69 70 i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL); 71 if (!i_ipaddr) 72 return -ENOMEM; 73 74 i_ipaddr->ipaddr = ipaddr; 75 76 spin_lock_irq(&rds_ibdev->spinlock); 77 list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list); 78 spin_unlock_irq(&rds_ibdev->spinlock); 79 80 return 0; 81 } 82 83 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) 84 { 85 struct rds_ib_ipaddr *i_ipaddr; 86 struct rds_ib_ipaddr *to_free = NULL; 87 88 89 spin_lock_irq(&rds_ibdev->spinlock); 90 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) { 91 if (i_ipaddr->ipaddr == ipaddr) { 92 list_del_rcu(&i_ipaddr->list); 93 to_free = i_ipaddr; 94 break; 95 } 96 } 97 spin_unlock_irq(&rds_ibdev->spinlock); 98 99 if (to_free) 100 kfree_rcu(to_free, rcu); 101 } 102 103 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, 104 struct in6_addr *ipaddr) 105 { 106 struct rds_ib_device *rds_ibdev_old; 107 108 rds_ibdev_old = rds_ib_get_device(ipaddr->s6_addr32[3]); 109 if (!rds_ibdev_old) 110 return rds_ib_add_ipaddr(rds_ibdev, ipaddr->s6_addr32[3]); 111 112 if (rds_ibdev_old != rds_ibdev) { 113 rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr->s6_addr32[3]); 114 rds_ib_dev_put(rds_ibdev_old); 115 return rds_ib_add_ipaddr(rds_ibdev, ipaddr->s6_addr32[3]); 116 } 117 rds_ib_dev_put(rds_ibdev_old); 118 119 return 0; 120 } 121 122 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn) 123 { 124 struct rds_ib_connection *ic = conn->c_transport_data; 125 126 /* conn was previously on the nodev_conns_list */ 127 spin_lock_irq(&ib_nodev_conns_lock); 128 BUG_ON(list_empty(&ib_nodev_conns)); 129 BUG_ON(list_empty(&ic->ib_node)); 130 list_del(&ic->ib_node); 131 132 spin_lock(&rds_ibdev->spinlock); 133 list_add_tail(&ic->ib_node, &rds_ibdev->conn_list); 134 spin_unlock(&rds_ibdev->spinlock); 135 spin_unlock_irq(&ib_nodev_conns_lock); 136 137 ic->rds_ibdev = rds_ibdev; 138 refcount_inc(&rds_ibdev->refcount); 139 } 140 141 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn) 142 { 143 struct rds_ib_connection *ic = conn->c_transport_data; 144 145 /* place conn on nodev_conns_list */ 146 spin_lock(&ib_nodev_conns_lock); 147 148 spin_lock_irq(&rds_ibdev->spinlock); 149 BUG_ON(list_empty(&ic->ib_node)); 150 list_del(&ic->ib_node); 151 spin_unlock_irq(&rds_ibdev->spinlock); 152 153 list_add_tail(&ic->ib_node, &ib_nodev_conns); 154 155 spin_unlock(&ib_nodev_conns_lock); 156 157 ic->rds_ibdev = NULL; 158 rds_ib_dev_put(rds_ibdev); 159 } 160 161 void rds_ib_destroy_nodev_conns(void) 162 { 163 struct rds_ib_connection *ic, *_ic; 164 LIST_HEAD(tmp_list); 165 166 /* avoid calling conn_destroy with irqs off */ 167 spin_lock_irq(&ib_nodev_conns_lock); 168 list_splice(&ib_nodev_conns, &tmp_list); 169 spin_unlock_irq(&ib_nodev_conns_lock); 170 171 list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node) 172 rds_conn_destroy(ic->conn); 173 } 174 175 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo) 176 { 177 struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool; 178 179 iinfo->rdma_mr_max = pool_1m->max_items; 180 iinfo->rdma_mr_size = pool_1m->max_pages; 181 } 182 183 #if IS_ENABLED(CONFIG_IPV6) 184 void rds6_ib_get_mr_info(struct rds_ib_device *rds_ibdev, 185 struct rds6_info_rdma_connection *iinfo6) 186 { 187 struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool; 188 189 iinfo6->rdma_mr_max = pool_1m->max_items; 190 iinfo6->rdma_mr_size = pool_1m->max_pages; 191 } 192 #endif 193 194 struct rds_ib_mr *rds_ib_reuse_mr(struct rds_ib_mr_pool *pool) 195 { 196 struct rds_ib_mr *ibmr = NULL; 197 struct llist_node *ret; 198 unsigned long flags; 199 200 spin_lock_irqsave(&pool->clean_lock, flags); 201 ret = llist_del_first(&pool->clean_list); 202 spin_unlock_irqrestore(&pool->clean_lock, flags); 203 if (ret) { 204 ibmr = llist_entry(ret, struct rds_ib_mr, llnode); 205 if (pool->pool_type == RDS_IB_MR_8K_POOL) 206 rds_ib_stats_inc(s_ib_rdma_mr_8k_reused); 207 else 208 rds_ib_stats_inc(s_ib_rdma_mr_1m_reused); 209 } 210 211 return ibmr; 212 } 213 214 void rds_ib_sync_mr(void *trans_private, int direction) 215 { 216 struct rds_ib_mr *ibmr = trans_private; 217 struct rds_ib_device *rds_ibdev = ibmr->device; 218 219 if (ibmr->odp) 220 return; 221 222 switch (direction) { 223 case DMA_FROM_DEVICE: 224 ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg, 225 ibmr->sg_dma_len, DMA_BIDIRECTIONAL); 226 break; 227 case DMA_TO_DEVICE: 228 ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg, 229 ibmr->sg_dma_len, DMA_BIDIRECTIONAL); 230 break; 231 } 232 } 233 234 void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr) 235 { 236 struct rds_ib_device *rds_ibdev = ibmr->device; 237 238 if (ibmr->sg_dma_len) { 239 ib_dma_unmap_sg(rds_ibdev->dev, 240 ibmr->sg, ibmr->sg_len, 241 DMA_BIDIRECTIONAL); 242 ibmr->sg_dma_len = 0; 243 } 244 245 /* Release the s/g list */ 246 if (ibmr->sg_len) { 247 unsigned int i; 248 249 for (i = 0; i < ibmr->sg_len; ++i) { 250 struct page *page = sg_page(&ibmr->sg[i]); 251 252 /* FIXME we need a way to tell a r/w MR 253 * from a r/o MR */ 254 WARN_ON(!page->mapping && irqs_disabled()); 255 set_page_dirty(page); 256 put_page(page); 257 } 258 kfree(ibmr->sg); 259 260 ibmr->sg = NULL; 261 ibmr->sg_len = 0; 262 } 263 } 264 265 void rds_ib_teardown_mr(struct rds_ib_mr *ibmr) 266 { 267 unsigned int pinned = ibmr->sg_len; 268 269 __rds_ib_teardown_mr(ibmr); 270 if (pinned) { 271 struct rds_ib_mr_pool *pool = ibmr->pool; 272 273 atomic_sub(pinned, &pool->free_pinned); 274 } 275 } 276 277 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all) 278 { 279 unsigned int item_count; 280 281 item_count = atomic_read(&pool->item_count); 282 if (free_all) 283 return item_count; 284 285 return 0; 286 } 287 288 /* 289 * given an llist of mrs, put them all into the list_head for more processing 290 */ 291 static unsigned int llist_append_to_list(struct llist_head *llist, 292 struct list_head *list) 293 { 294 struct rds_ib_mr *ibmr; 295 struct llist_node *node; 296 struct llist_node *next; 297 unsigned int count = 0; 298 299 node = llist_del_all(llist); 300 while (node) { 301 next = node->next; 302 ibmr = llist_entry(node, struct rds_ib_mr, llnode); 303 list_add_tail(&ibmr->unmap_list, list); 304 node = next; 305 count++; 306 } 307 return count; 308 } 309 310 /* 311 * this takes a list head of mrs and turns it into linked llist nodes 312 * of clusters. Each cluster has linked llist nodes of 313 * MR_CLUSTER_SIZE mrs that are ready for reuse. 314 */ 315 static void list_to_llist_nodes(struct list_head *list, 316 struct llist_node **nodes_head, 317 struct llist_node **nodes_tail) 318 { 319 struct rds_ib_mr *ibmr; 320 struct llist_node *cur = NULL; 321 struct llist_node **next = nodes_head; 322 323 list_for_each_entry(ibmr, list, unmap_list) { 324 cur = &ibmr->llnode; 325 *next = cur; 326 next = &cur->next; 327 } 328 *next = NULL; 329 *nodes_tail = cur; 330 } 331 332 /* 333 * Flush our pool of MRs. 334 * At a minimum, all currently unused MRs are unmapped. 335 * If the number of MRs allocated exceeds the limit, we also try 336 * to free as many MRs as needed to get back to this limit. 337 */ 338 int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, 339 int free_all, struct rds_ib_mr **ibmr_ret) 340 { 341 struct rds_ib_mr *ibmr; 342 struct llist_node *clean_nodes; 343 struct llist_node *clean_tail; 344 LIST_HEAD(unmap_list); 345 unsigned long unpinned = 0; 346 unsigned int nfreed = 0, dirty_to_clean = 0, free_goal; 347 348 if (pool->pool_type == RDS_IB_MR_8K_POOL) 349 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_flush); 350 else 351 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_flush); 352 353 if (ibmr_ret) { 354 DEFINE_WAIT(wait); 355 while (!mutex_trylock(&pool->flush_lock)) { 356 ibmr = rds_ib_reuse_mr(pool); 357 if (ibmr) { 358 *ibmr_ret = ibmr; 359 finish_wait(&pool->flush_wait, &wait); 360 goto out_nolock; 361 } 362 363 prepare_to_wait(&pool->flush_wait, &wait, 364 TASK_UNINTERRUPTIBLE); 365 if (llist_empty(&pool->clean_list)) 366 schedule(); 367 368 ibmr = rds_ib_reuse_mr(pool); 369 if (ibmr) { 370 *ibmr_ret = ibmr; 371 finish_wait(&pool->flush_wait, &wait); 372 goto out_nolock; 373 } 374 } 375 finish_wait(&pool->flush_wait, &wait); 376 } else 377 mutex_lock(&pool->flush_lock); 378 379 if (ibmr_ret) { 380 ibmr = rds_ib_reuse_mr(pool); 381 if (ibmr) { 382 *ibmr_ret = ibmr; 383 goto out; 384 } 385 } 386 387 /* Get the list of all MRs to be dropped. Ordering matters - 388 * we want to put drop_list ahead of free_list. 389 */ 390 dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list); 391 dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list); 392 if (free_all) { 393 unsigned long flags; 394 395 spin_lock_irqsave(&pool->clean_lock, flags); 396 llist_append_to_list(&pool->clean_list, &unmap_list); 397 spin_unlock_irqrestore(&pool->clean_lock, flags); 398 } 399 400 free_goal = rds_ib_flush_goal(pool, free_all); 401 402 if (list_empty(&unmap_list)) 403 goto out; 404 405 rds_ib_unreg_frmr(&unmap_list, &nfreed, &unpinned, free_goal); 406 407 if (!list_empty(&unmap_list)) { 408 unsigned long flags; 409 410 list_to_llist_nodes(&unmap_list, &clean_nodes, &clean_tail); 411 if (ibmr_ret) { 412 *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode); 413 clean_nodes = clean_nodes->next; 414 } 415 /* more than one entry in llist nodes */ 416 if (clean_nodes) { 417 spin_lock_irqsave(&pool->clean_lock, flags); 418 llist_add_batch(clean_nodes, clean_tail, 419 &pool->clean_list); 420 spin_unlock_irqrestore(&pool->clean_lock, flags); 421 } 422 } 423 424 atomic_sub(unpinned, &pool->free_pinned); 425 atomic_sub(dirty_to_clean, &pool->dirty_count); 426 atomic_sub(nfreed, &pool->item_count); 427 428 out: 429 mutex_unlock(&pool->flush_lock); 430 if (waitqueue_active(&pool->flush_wait)) 431 wake_up(&pool->flush_wait); 432 out_nolock: 433 return 0; 434 } 435 436 struct rds_ib_mr *rds_ib_try_reuse_ibmr(struct rds_ib_mr_pool *pool) 437 { 438 struct rds_ib_mr *ibmr = NULL; 439 int iter = 0; 440 441 while (1) { 442 ibmr = rds_ib_reuse_mr(pool); 443 if (ibmr) 444 return ibmr; 445 446 if (atomic_inc_return(&pool->item_count) <= pool->max_items) 447 break; 448 449 atomic_dec(&pool->item_count); 450 451 if (++iter > 2) { 452 if (pool->pool_type == RDS_IB_MR_8K_POOL) 453 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_depleted); 454 else 455 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_depleted); 456 break; 457 } 458 459 /* We do have some empty MRs. Flush them out. */ 460 if (pool->pool_type == RDS_IB_MR_8K_POOL) 461 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_wait); 462 else 463 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_wait); 464 465 rds_ib_flush_mr_pool(pool, 0, &ibmr); 466 if (ibmr) 467 return ibmr; 468 } 469 470 return NULL; 471 } 472 473 static void rds_ib_mr_pool_flush_worker(struct work_struct *work) 474 { 475 struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work); 476 477 rds_ib_flush_mr_pool(pool, 0, NULL); 478 } 479 480 void rds_ib_free_mr(void *trans_private, int invalidate) 481 { 482 struct rds_ib_mr *ibmr = trans_private; 483 struct rds_ib_mr_pool *pool = ibmr->pool; 484 struct rds_ib_device *rds_ibdev = ibmr->device; 485 486 rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len); 487 488 if (ibmr->odp) { 489 /* A MR created and marked as use_once. We use delayed work, 490 * because there is a change that we are in interrupt and can't 491 * call to ib_dereg_mr() directly. 492 */ 493 INIT_DELAYED_WORK(&ibmr->work, rds_ib_odp_mr_worker); 494 queue_delayed_work(rds_ib_mr_wq, &ibmr->work, 0); 495 return; 496 } 497 498 /* Return it to the pool's free list */ 499 rds_ib_free_frmr_list(ibmr); 500 501 atomic_add(ibmr->sg_len, &pool->free_pinned); 502 atomic_inc(&pool->dirty_count); 503 504 /* If we've pinned too many pages, request a flush */ 505 if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned || 506 atomic_read(&pool->dirty_count) >= pool->max_items / 5) 507 queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10); 508 509 if (invalidate) { 510 if (likely(!in_interrupt())) { 511 rds_ib_flush_mr_pool(pool, 0, NULL); 512 } else { 513 /* We get here if the user created a MR marked 514 * as use_once and invalidate at the same time. 515 */ 516 queue_delayed_work(rds_ib_mr_wq, 517 &pool->flush_worker, 10); 518 } 519 } 520 521 rds_ib_dev_put(rds_ibdev); 522 } 523 524 void rds_ib_flush_mrs(void) 525 { 526 struct rds_ib_device *rds_ibdev; 527 528 down_read(&rds_ib_devices_lock); 529 list_for_each_entry(rds_ibdev, &rds_ib_devices, list) { 530 if (rds_ibdev->mr_8k_pool) 531 rds_ib_flush_mr_pool(rds_ibdev->mr_8k_pool, 0, NULL); 532 533 if (rds_ibdev->mr_1m_pool) 534 rds_ib_flush_mr_pool(rds_ibdev->mr_1m_pool, 0, NULL); 535 } 536 up_read(&rds_ib_devices_lock); 537 } 538 539 u32 rds_ib_get_lkey(void *trans_private) 540 { 541 struct rds_ib_mr *ibmr = trans_private; 542 543 return ibmr->u.mr->lkey; 544 } 545 546 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents, 547 struct rds_sock *rs, u32 *key_ret, 548 struct rds_connection *conn, 549 u64 start, u64 length, int need_odp) 550 { 551 struct rds_ib_device *rds_ibdev; 552 struct rds_ib_mr *ibmr = NULL; 553 struct rds_ib_connection *ic = NULL; 554 int ret; 555 556 rds_ibdev = rds_ib_get_device(rs->rs_bound_addr.s6_addr32[3]); 557 if (!rds_ibdev) { 558 ret = -ENODEV; 559 goto out; 560 } 561 562 if (need_odp == ODP_ZEROBASED || need_odp == ODP_VIRTUAL) { 563 u64 virt_addr = need_odp == ODP_ZEROBASED ? 0 : start; 564 int access_flags = 565 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 566 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_ATOMIC | 567 IB_ACCESS_ON_DEMAND); 568 struct ib_sge sge = {}; 569 struct ib_mr *ib_mr; 570 571 if (!rds_ibdev->odp_capable) { 572 ret = -EOPNOTSUPP; 573 goto out; 574 } 575 576 ib_mr = ib_reg_user_mr(rds_ibdev->pd, start, length, virt_addr, 577 access_flags); 578 579 if (IS_ERR(ib_mr)) { 580 rdsdebug("rds_ib_get_user_mr returned %d\n", 581 IS_ERR(ib_mr)); 582 ret = PTR_ERR(ib_mr); 583 goto out; 584 } 585 if (key_ret) 586 *key_ret = ib_mr->rkey; 587 588 ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL); 589 if (!ibmr) { 590 ib_dereg_mr(ib_mr); 591 ret = -ENOMEM; 592 goto out; 593 } 594 ibmr->u.mr = ib_mr; 595 ibmr->odp = 1; 596 597 sge.addr = virt_addr; 598 sge.length = length; 599 sge.lkey = ib_mr->lkey; 600 601 ib_advise_mr(rds_ibdev->pd, 602 IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE, 603 IB_UVERBS_ADVISE_MR_FLAG_FLUSH, &sge, 1); 604 return ibmr; 605 } 606 607 if (conn) 608 ic = conn->c_transport_data; 609 610 if (!rds_ibdev->mr_8k_pool || !rds_ibdev->mr_1m_pool) { 611 ret = -ENODEV; 612 goto out; 613 } 614 615 ibmr = rds_ib_reg_frmr(rds_ibdev, ic, sg, nents, key_ret); 616 if (IS_ERR(ibmr)) { 617 ret = PTR_ERR(ibmr); 618 pr_warn("RDS/IB: rds_ib_get_mr failed (errno=%d)\n", ret); 619 } else { 620 return ibmr; 621 } 622 623 out: 624 if (rds_ibdev) 625 rds_ib_dev_put(rds_ibdev); 626 627 return ERR_PTR(ret); 628 } 629 630 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool) 631 { 632 cancel_delayed_work_sync(&pool->flush_worker); 633 rds_ib_flush_mr_pool(pool, 1, NULL); 634 WARN_ON(atomic_read(&pool->item_count)); 635 WARN_ON(atomic_read(&pool->free_pinned)); 636 kfree(pool); 637 } 638 639 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev, 640 int pool_type) 641 { 642 struct rds_ib_mr_pool *pool; 643 644 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 645 if (!pool) 646 return ERR_PTR(-ENOMEM); 647 648 pool->pool_type = pool_type; 649 init_llist_head(&pool->free_list); 650 init_llist_head(&pool->drop_list); 651 init_llist_head(&pool->clean_list); 652 spin_lock_init(&pool->clean_lock); 653 mutex_init(&pool->flush_lock); 654 init_waitqueue_head(&pool->flush_wait); 655 INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker); 656 657 if (pool_type == RDS_IB_MR_1M_POOL) { 658 /* +1 allows for unaligned MRs */ 659 pool->max_pages = RDS_MR_1M_MSG_SIZE + 1; 660 pool->max_items = rds_ibdev->max_1m_mrs; 661 } else { 662 /* pool_type == RDS_IB_MR_8K_POOL */ 663 pool->max_pages = RDS_MR_8K_MSG_SIZE + 1; 664 pool->max_items = rds_ibdev->max_8k_mrs; 665 } 666 667 pool->max_free_pinned = pool->max_items * pool->max_pages / 4; 668 pool->max_items_soft = rds_ibdev->max_mrs * 3 / 4; 669 670 return pool; 671 } 672 673 int rds_ib_mr_init(void) 674 { 675 rds_ib_mr_wq = alloc_workqueue("rds_mr_flushd", WQ_MEM_RECLAIM, 0); 676 if (!rds_ib_mr_wq) 677 return -ENOMEM; 678 return 0; 679 } 680 681 /* By the time this is called all the IB devices should have been torn down and 682 * had their pools freed. As each pool is freed its work struct is waited on, 683 * so the pool flushing work queue should be idle by the time we get here. 684 */ 685 void rds_ib_mr_exit(void) 686 { 687 destroy_workqueue(rds_ib_mr_wq); 688 } 689 690 static void rds_ib_odp_mr_worker(struct work_struct *work) 691 { 692 struct rds_ib_mr *ibmr; 693 694 ibmr = container_of(work, struct rds_ib_mr, work.work); 695 ib_dereg_mr(ibmr->u.mr); 696 kfree(ibmr); 697 } 698