xref: /linux/net/rds/ib_rdma.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/rculist.h>
36 #include <linux/llist.h>
37 
38 #include "ib_mr.h"
39 
40 struct workqueue_struct *rds_ib_mr_wq;
41 
42 static DEFINE_PER_CPU(unsigned long, clean_list_grace);
43 #define CLEAN_LIST_BUSY_BIT 0
44 
45 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
46 {
47 	struct rds_ib_device *rds_ibdev;
48 	struct rds_ib_ipaddr *i_ipaddr;
49 
50 	rcu_read_lock();
51 	list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
52 		list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
53 			if (i_ipaddr->ipaddr == ipaddr) {
54 				atomic_inc(&rds_ibdev->refcount);
55 				rcu_read_unlock();
56 				return rds_ibdev;
57 			}
58 		}
59 	}
60 	rcu_read_unlock();
61 
62 	return NULL;
63 }
64 
65 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
66 {
67 	struct rds_ib_ipaddr *i_ipaddr;
68 
69 	i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
70 	if (!i_ipaddr)
71 		return -ENOMEM;
72 
73 	i_ipaddr->ipaddr = ipaddr;
74 
75 	spin_lock_irq(&rds_ibdev->spinlock);
76 	list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
77 	spin_unlock_irq(&rds_ibdev->spinlock);
78 
79 	return 0;
80 }
81 
82 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
83 {
84 	struct rds_ib_ipaddr *i_ipaddr;
85 	struct rds_ib_ipaddr *to_free = NULL;
86 
87 
88 	spin_lock_irq(&rds_ibdev->spinlock);
89 	list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
90 		if (i_ipaddr->ipaddr == ipaddr) {
91 			list_del_rcu(&i_ipaddr->list);
92 			to_free = i_ipaddr;
93 			break;
94 		}
95 	}
96 	spin_unlock_irq(&rds_ibdev->spinlock);
97 
98 	if (to_free)
99 		kfree_rcu(to_free, rcu);
100 }
101 
102 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
103 {
104 	struct rds_ib_device *rds_ibdev_old;
105 
106 	rds_ibdev_old = rds_ib_get_device(ipaddr);
107 	if (!rds_ibdev_old)
108 		return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
109 
110 	if (rds_ibdev_old != rds_ibdev) {
111 		rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
112 		rds_ib_dev_put(rds_ibdev_old);
113 		return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
114 	}
115 	rds_ib_dev_put(rds_ibdev_old);
116 
117 	return 0;
118 }
119 
120 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
121 {
122 	struct rds_ib_connection *ic = conn->c_transport_data;
123 
124 	/* conn was previously on the nodev_conns_list */
125 	spin_lock_irq(&ib_nodev_conns_lock);
126 	BUG_ON(list_empty(&ib_nodev_conns));
127 	BUG_ON(list_empty(&ic->ib_node));
128 	list_del(&ic->ib_node);
129 
130 	spin_lock(&rds_ibdev->spinlock);
131 	list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
132 	spin_unlock(&rds_ibdev->spinlock);
133 	spin_unlock_irq(&ib_nodev_conns_lock);
134 
135 	ic->rds_ibdev = rds_ibdev;
136 	atomic_inc(&rds_ibdev->refcount);
137 }
138 
139 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
140 {
141 	struct rds_ib_connection *ic = conn->c_transport_data;
142 
143 	/* place conn on nodev_conns_list */
144 	spin_lock(&ib_nodev_conns_lock);
145 
146 	spin_lock_irq(&rds_ibdev->spinlock);
147 	BUG_ON(list_empty(&ic->ib_node));
148 	list_del(&ic->ib_node);
149 	spin_unlock_irq(&rds_ibdev->spinlock);
150 
151 	list_add_tail(&ic->ib_node, &ib_nodev_conns);
152 
153 	spin_unlock(&ib_nodev_conns_lock);
154 
155 	ic->rds_ibdev = NULL;
156 	rds_ib_dev_put(rds_ibdev);
157 }
158 
159 void rds_ib_destroy_nodev_conns(void)
160 {
161 	struct rds_ib_connection *ic, *_ic;
162 	LIST_HEAD(tmp_list);
163 
164 	/* avoid calling conn_destroy with irqs off */
165 	spin_lock_irq(&ib_nodev_conns_lock);
166 	list_splice(&ib_nodev_conns, &tmp_list);
167 	spin_unlock_irq(&ib_nodev_conns_lock);
168 
169 	list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
170 		rds_conn_destroy(ic->conn);
171 }
172 
173 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
174 {
175 	struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool;
176 
177 	iinfo->rdma_mr_max = pool_1m->max_items;
178 	iinfo->rdma_mr_size = pool_1m->fmr_attr.max_pages;
179 }
180 
181 struct rds_ib_mr *rds_ib_reuse_mr(struct rds_ib_mr_pool *pool)
182 {
183 	struct rds_ib_mr *ibmr = NULL;
184 	struct llist_node *ret;
185 	unsigned long *flag;
186 
187 	preempt_disable();
188 	flag = this_cpu_ptr(&clean_list_grace);
189 	set_bit(CLEAN_LIST_BUSY_BIT, flag);
190 	ret = llist_del_first(&pool->clean_list);
191 	if (ret) {
192 		ibmr = llist_entry(ret, struct rds_ib_mr, llnode);
193 		if (pool->pool_type == RDS_IB_MR_8K_POOL)
194 			rds_ib_stats_inc(s_ib_rdma_mr_8k_reused);
195 		else
196 			rds_ib_stats_inc(s_ib_rdma_mr_1m_reused);
197 	}
198 
199 	clear_bit(CLEAN_LIST_BUSY_BIT, flag);
200 	preempt_enable();
201 	return ibmr;
202 }
203 
204 static inline void wait_clean_list_grace(void)
205 {
206 	int cpu;
207 	unsigned long *flag;
208 
209 	for_each_online_cpu(cpu) {
210 		flag = &per_cpu(clean_list_grace, cpu);
211 		while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
212 			cpu_relax();
213 	}
214 }
215 
216 void rds_ib_sync_mr(void *trans_private, int direction)
217 {
218 	struct rds_ib_mr *ibmr = trans_private;
219 	struct rds_ib_device *rds_ibdev = ibmr->device;
220 
221 	switch (direction) {
222 	case DMA_FROM_DEVICE:
223 		ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
224 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
225 		break;
226 	case DMA_TO_DEVICE:
227 		ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
228 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
229 		break;
230 	}
231 }
232 
233 void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
234 {
235 	struct rds_ib_device *rds_ibdev = ibmr->device;
236 
237 	if (ibmr->sg_dma_len) {
238 		ib_dma_unmap_sg(rds_ibdev->dev,
239 				ibmr->sg, ibmr->sg_len,
240 				DMA_BIDIRECTIONAL);
241 		ibmr->sg_dma_len = 0;
242 	}
243 
244 	/* Release the s/g list */
245 	if (ibmr->sg_len) {
246 		unsigned int i;
247 
248 		for (i = 0; i < ibmr->sg_len; ++i) {
249 			struct page *page = sg_page(&ibmr->sg[i]);
250 
251 			/* FIXME we need a way to tell a r/w MR
252 			 * from a r/o MR */
253 			WARN_ON(!page->mapping && irqs_disabled());
254 			set_page_dirty(page);
255 			put_page(page);
256 		}
257 		kfree(ibmr->sg);
258 
259 		ibmr->sg = NULL;
260 		ibmr->sg_len = 0;
261 	}
262 }
263 
264 void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
265 {
266 	unsigned int pinned = ibmr->sg_len;
267 
268 	__rds_ib_teardown_mr(ibmr);
269 	if (pinned) {
270 		struct rds_ib_mr_pool *pool = ibmr->pool;
271 
272 		atomic_sub(pinned, &pool->free_pinned);
273 	}
274 }
275 
276 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
277 {
278 	unsigned int item_count;
279 
280 	item_count = atomic_read(&pool->item_count);
281 	if (free_all)
282 		return item_count;
283 
284 	return 0;
285 }
286 
287 /*
288  * given an llist of mrs, put them all into the list_head for more processing
289  */
290 static unsigned int llist_append_to_list(struct llist_head *llist,
291 					 struct list_head *list)
292 {
293 	struct rds_ib_mr *ibmr;
294 	struct llist_node *node;
295 	struct llist_node *next;
296 	unsigned int count = 0;
297 
298 	node = llist_del_all(llist);
299 	while (node) {
300 		next = node->next;
301 		ibmr = llist_entry(node, struct rds_ib_mr, llnode);
302 		list_add_tail(&ibmr->unmap_list, list);
303 		node = next;
304 		count++;
305 	}
306 	return count;
307 }
308 
309 /*
310  * this takes a list head of mrs and turns it into linked llist nodes
311  * of clusters.  Each cluster has linked llist nodes of
312  * MR_CLUSTER_SIZE mrs that are ready for reuse.
313  */
314 static void list_to_llist_nodes(struct rds_ib_mr_pool *pool,
315 				struct list_head *list,
316 				struct llist_node **nodes_head,
317 				struct llist_node **nodes_tail)
318 {
319 	struct rds_ib_mr *ibmr;
320 	struct llist_node *cur = NULL;
321 	struct llist_node **next = nodes_head;
322 
323 	list_for_each_entry(ibmr, list, unmap_list) {
324 		cur = &ibmr->llnode;
325 		*next = cur;
326 		next = &cur->next;
327 	}
328 	*next = NULL;
329 	*nodes_tail = cur;
330 }
331 
332 /*
333  * Flush our pool of MRs.
334  * At a minimum, all currently unused MRs are unmapped.
335  * If the number of MRs allocated exceeds the limit, we also try
336  * to free as many MRs as needed to get back to this limit.
337  */
338 int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
339 			 int free_all, struct rds_ib_mr **ibmr_ret)
340 {
341 	struct rds_ib_mr *ibmr;
342 	struct llist_node *clean_nodes;
343 	struct llist_node *clean_tail;
344 	LIST_HEAD(unmap_list);
345 	unsigned long unpinned = 0;
346 	unsigned int nfreed = 0, dirty_to_clean = 0, free_goal;
347 
348 	if (pool->pool_type == RDS_IB_MR_8K_POOL)
349 		rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_flush);
350 	else
351 		rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_flush);
352 
353 	if (ibmr_ret) {
354 		DEFINE_WAIT(wait);
355 		while (!mutex_trylock(&pool->flush_lock)) {
356 			ibmr = rds_ib_reuse_mr(pool);
357 			if (ibmr) {
358 				*ibmr_ret = ibmr;
359 				finish_wait(&pool->flush_wait, &wait);
360 				goto out_nolock;
361 			}
362 
363 			prepare_to_wait(&pool->flush_wait, &wait,
364 					TASK_UNINTERRUPTIBLE);
365 			if (llist_empty(&pool->clean_list))
366 				schedule();
367 
368 			ibmr = rds_ib_reuse_mr(pool);
369 			if (ibmr) {
370 				*ibmr_ret = ibmr;
371 				finish_wait(&pool->flush_wait, &wait);
372 				goto out_nolock;
373 			}
374 		}
375 		finish_wait(&pool->flush_wait, &wait);
376 	} else
377 		mutex_lock(&pool->flush_lock);
378 
379 	if (ibmr_ret) {
380 		ibmr = rds_ib_reuse_mr(pool);
381 		if (ibmr) {
382 			*ibmr_ret = ibmr;
383 			goto out;
384 		}
385 	}
386 
387 	/* Get the list of all MRs to be dropped. Ordering matters -
388 	 * we want to put drop_list ahead of free_list.
389 	 */
390 	dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list);
391 	dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list);
392 	if (free_all)
393 		llist_append_to_list(&pool->clean_list, &unmap_list);
394 
395 	free_goal = rds_ib_flush_goal(pool, free_all);
396 
397 	if (list_empty(&unmap_list))
398 		goto out;
399 
400 	if (pool->use_fastreg)
401 		rds_ib_unreg_frmr(&unmap_list, &nfreed, &unpinned, free_goal);
402 	else
403 		rds_ib_unreg_fmr(&unmap_list, &nfreed, &unpinned, free_goal);
404 
405 	if (!list_empty(&unmap_list)) {
406 		/* we have to make sure that none of the things we're about
407 		 * to put on the clean list would race with other cpus trying
408 		 * to pull items off.  The llist would explode if we managed to
409 		 * remove something from the clean list and then add it back again
410 		 * while another CPU was spinning on that same item in llist_del_first.
411 		 *
412 		 * This is pretty unlikely, but just in case  wait for an llist grace period
413 		 * here before adding anything back into the clean list.
414 		 */
415 		wait_clean_list_grace();
416 
417 		list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail);
418 		if (ibmr_ret)
419 			*ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
420 
421 		/* more than one entry in llist nodes */
422 		if (clean_nodes->next)
423 			llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list);
424 
425 	}
426 
427 	atomic_sub(unpinned, &pool->free_pinned);
428 	atomic_sub(dirty_to_clean, &pool->dirty_count);
429 	atomic_sub(nfreed, &pool->item_count);
430 
431 out:
432 	mutex_unlock(&pool->flush_lock);
433 	if (waitqueue_active(&pool->flush_wait))
434 		wake_up(&pool->flush_wait);
435 out_nolock:
436 	return 0;
437 }
438 
439 struct rds_ib_mr *rds_ib_try_reuse_ibmr(struct rds_ib_mr_pool *pool)
440 {
441 	struct rds_ib_mr *ibmr = NULL;
442 	int iter = 0;
443 
444 	if (atomic_read(&pool->dirty_count) >= pool->max_items_soft / 10)
445 		queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10);
446 
447 	while (1) {
448 		ibmr = rds_ib_reuse_mr(pool);
449 		if (ibmr)
450 			return ibmr;
451 
452 		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
453 			break;
454 
455 		atomic_dec(&pool->item_count);
456 
457 		if (++iter > 2) {
458 			if (pool->pool_type == RDS_IB_MR_8K_POOL)
459 				rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_depleted);
460 			else
461 				rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_depleted);
462 			return ERR_PTR(-EAGAIN);
463 		}
464 
465 		/* We do have some empty MRs. Flush them out. */
466 		if (pool->pool_type == RDS_IB_MR_8K_POOL)
467 			rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_wait);
468 		else
469 			rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_wait);
470 
471 		rds_ib_flush_mr_pool(pool, 0, &ibmr);
472 		if (ibmr)
473 			return ibmr;
474 	}
475 
476 	return ibmr;
477 }
478 
479 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
480 {
481 	struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
482 
483 	rds_ib_flush_mr_pool(pool, 0, NULL);
484 }
485 
486 void rds_ib_free_mr(void *trans_private, int invalidate)
487 {
488 	struct rds_ib_mr *ibmr = trans_private;
489 	struct rds_ib_mr_pool *pool = ibmr->pool;
490 	struct rds_ib_device *rds_ibdev = ibmr->device;
491 
492 	rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
493 
494 	/* Return it to the pool's free list */
495 	if (rds_ibdev->use_fastreg)
496 		rds_ib_free_frmr_list(ibmr);
497 	else
498 		rds_ib_free_fmr_list(ibmr);
499 
500 	atomic_add(ibmr->sg_len, &pool->free_pinned);
501 	atomic_inc(&pool->dirty_count);
502 
503 	/* If we've pinned too many pages, request a flush */
504 	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
505 	    atomic_read(&pool->dirty_count) >= pool->max_items / 5)
506 		queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10);
507 
508 	if (invalidate) {
509 		if (likely(!in_interrupt())) {
510 			rds_ib_flush_mr_pool(pool, 0, NULL);
511 		} else {
512 			/* We get here if the user created a MR marked
513 			 * as use_once and invalidate at the same time.
514 			 */
515 			queue_delayed_work(rds_ib_mr_wq,
516 					   &pool->flush_worker, 10);
517 		}
518 	}
519 
520 	rds_ib_dev_put(rds_ibdev);
521 }
522 
523 void rds_ib_flush_mrs(void)
524 {
525 	struct rds_ib_device *rds_ibdev;
526 
527 	down_read(&rds_ib_devices_lock);
528 	list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
529 		if (rds_ibdev->mr_8k_pool)
530 			rds_ib_flush_mr_pool(rds_ibdev->mr_8k_pool, 0, NULL);
531 
532 		if (rds_ibdev->mr_1m_pool)
533 			rds_ib_flush_mr_pool(rds_ibdev->mr_1m_pool, 0, NULL);
534 	}
535 	up_read(&rds_ib_devices_lock);
536 }
537 
538 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
539 		    struct rds_sock *rs, u32 *key_ret)
540 {
541 	struct rds_ib_device *rds_ibdev;
542 	struct rds_ib_mr *ibmr = NULL;
543 	struct rds_ib_connection *ic = rs->rs_conn->c_transport_data;
544 	int ret;
545 
546 	rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
547 	if (!rds_ibdev) {
548 		ret = -ENODEV;
549 		goto out;
550 	}
551 
552 	if (!rds_ibdev->mr_8k_pool || !rds_ibdev->mr_1m_pool) {
553 		ret = -ENODEV;
554 		goto out;
555 	}
556 
557 	if (rds_ibdev->use_fastreg)
558 		ibmr = rds_ib_reg_frmr(rds_ibdev, ic, sg, nents, key_ret);
559 	else
560 		ibmr = rds_ib_reg_fmr(rds_ibdev, sg, nents, key_ret);
561 	if (ibmr)
562 		rds_ibdev = NULL;
563 
564  out:
565 	if (!ibmr)
566 		pr_warn("RDS/IB: rds_ib_get_mr failed (errno=%d)\n", ret);
567 
568 	if (rds_ibdev)
569 		rds_ib_dev_put(rds_ibdev);
570 
571 	return ibmr;
572 }
573 
574 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
575 {
576 	cancel_delayed_work_sync(&pool->flush_worker);
577 	rds_ib_flush_mr_pool(pool, 1, NULL);
578 	WARN_ON(atomic_read(&pool->item_count));
579 	WARN_ON(atomic_read(&pool->free_pinned));
580 	kfree(pool);
581 }
582 
583 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev,
584 					     int pool_type)
585 {
586 	struct rds_ib_mr_pool *pool;
587 
588 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
589 	if (!pool)
590 		return ERR_PTR(-ENOMEM);
591 
592 	pool->pool_type = pool_type;
593 	init_llist_head(&pool->free_list);
594 	init_llist_head(&pool->drop_list);
595 	init_llist_head(&pool->clean_list);
596 	mutex_init(&pool->flush_lock);
597 	init_waitqueue_head(&pool->flush_wait);
598 	INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
599 
600 	if (pool_type == RDS_IB_MR_1M_POOL) {
601 		/* +1 allows for unaligned MRs */
602 		pool->fmr_attr.max_pages = RDS_MR_1M_MSG_SIZE + 1;
603 		pool->max_items = RDS_MR_1M_POOL_SIZE;
604 	} else {
605 		/* pool_type == RDS_IB_MR_8K_POOL */
606 		pool->fmr_attr.max_pages = RDS_MR_8K_MSG_SIZE + 1;
607 		pool->max_items = RDS_MR_8K_POOL_SIZE;
608 	}
609 
610 	pool->max_free_pinned = pool->max_items * pool->fmr_attr.max_pages / 4;
611 	pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
612 	pool->fmr_attr.page_shift = PAGE_SHIFT;
613 	pool->max_items_soft = rds_ibdev->max_mrs * 3 / 4;
614 	pool->use_fastreg = rds_ibdev->use_fastreg;
615 
616 	return pool;
617 }
618 
619 int rds_ib_mr_init(void)
620 {
621 	rds_ib_mr_wq = create_workqueue("rds_mr_flushd");
622 	if (!rds_ib_mr_wq)
623 		return -ENOMEM;
624 	return 0;
625 }
626 
627 /* By the time this is called all the IB devices should have been torn down and
628  * had their pools freed.  As each pool is freed its work struct is waited on,
629  * so the pool flushing work queue should be idle by the time we get here.
630  */
631 void rds_ib_mr_exit(void)
632 {
633 	destroy_workqueue(rds_ib_mr_wq);
634 }
635