1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/slab.h> 35 #include <linux/rculist.h> 36 #include <linux/llist.h> 37 38 #include "ib_mr.h" 39 40 struct workqueue_struct *rds_ib_mr_wq; 41 42 static DEFINE_PER_CPU(unsigned long, clean_list_grace); 43 #define CLEAN_LIST_BUSY_BIT 0 44 45 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr) 46 { 47 struct rds_ib_device *rds_ibdev; 48 struct rds_ib_ipaddr *i_ipaddr; 49 50 rcu_read_lock(); 51 list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) { 52 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) { 53 if (i_ipaddr->ipaddr == ipaddr) { 54 atomic_inc(&rds_ibdev->refcount); 55 rcu_read_unlock(); 56 return rds_ibdev; 57 } 58 } 59 } 60 rcu_read_unlock(); 61 62 return NULL; 63 } 64 65 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) 66 { 67 struct rds_ib_ipaddr *i_ipaddr; 68 69 i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL); 70 if (!i_ipaddr) 71 return -ENOMEM; 72 73 i_ipaddr->ipaddr = ipaddr; 74 75 spin_lock_irq(&rds_ibdev->spinlock); 76 list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list); 77 spin_unlock_irq(&rds_ibdev->spinlock); 78 79 return 0; 80 } 81 82 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) 83 { 84 struct rds_ib_ipaddr *i_ipaddr; 85 struct rds_ib_ipaddr *to_free = NULL; 86 87 88 spin_lock_irq(&rds_ibdev->spinlock); 89 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) { 90 if (i_ipaddr->ipaddr == ipaddr) { 91 list_del_rcu(&i_ipaddr->list); 92 to_free = i_ipaddr; 93 break; 94 } 95 } 96 spin_unlock_irq(&rds_ibdev->spinlock); 97 98 if (to_free) 99 kfree_rcu(to_free, rcu); 100 } 101 102 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) 103 { 104 struct rds_ib_device *rds_ibdev_old; 105 106 rds_ibdev_old = rds_ib_get_device(ipaddr); 107 if (!rds_ibdev_old) 108 return rds_ib_add_ipaddr(rds_ibdev, ipaddr); 109 110 if (rds_ibdev_old != rds_ibdev) { 111 rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr); 112 rds_ib_dev_put(rds_ibdev_old); 113 return rds_ib_add_ipaddr(rds_ibdev, ipaddr); 114 } 115 rds_ib_dev_put(rds_ibdev_old); 116 117 return 0; 118 } 119 120 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn) 121 { 122 struct rds_ib_connection *ic = conn->c_transport_data; 123 124 /* conn was previously on the nodev_conns_list */ 125 spin_lock_irq(&ib_nodev_conns_lock); 126 BUG_ON(list_empty(&ib_nodev_conns)); 127 BUG_ON(list_empty(&ic->ib_node)); 128 list_del(&ic->ib_node); 129 130 spin_lock(&rds_ibdev->spinlock); 131 list_add_tail(&ic->ib_node, &rds_ibdev->conn_list); 132 spin_unlock(&rds_ibdev->spinlock); 133 spin_unlock_irq(&ib_nodev_conns_lock); 134 135 ic->rds_ibdev = rds_ibdev; 136 atomic_inc(&rds_ibdev->refcount); 137 } 138 139 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn) 140 { 141 struct rds_ib_connection *ic = conn->c_transport_data; 142 143 /* place conn on nodev_conns_list */ 144 spin_lock(&ib_nodev_conns_lock); 145 146 spin_lock_irq(&rds_ibdev->spinlock); 147 BUG_ON(list_empty(&ic->ib_node)); 148 list_del(&ic->ib_node); 149 spin_unlock_irq(&rds_ibdev->spinlock); 150 151 list_add_tail(&ic->ib_node, &ib_nodev_conns); 152 153 spin_unlock(&ib_nodev_conns_lock); 154 155 ic->rds_ibdev = NULL; 156 rds_ib_dev_put(rds_ibdev); 157 } 158 159 void rds_ib_destroy_nodev_conns(void) 160 { 161 struct rds_ib_connection *ic, *_ic; 162 LIST_HEAD(tmp_list); 163 164 /* avoid calling conn_destroy with irqs off */ 165 spin_lock_irq(&ib_nodev_conns_lock); 166 list_splice(&ib_nodev_conns, &tmp_list); 167 spin_unlock_irq(&ib_nodev_conns_lock); 168 169 list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node) 170 rds_conn_destroy(ic->conn); 171 } 172 173 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo) 174 { 175 struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool; 176 177 iinfo->rdma_mr_max = pool_1m->max_items; 178 iinfo->rdma_mr_size = pool_1m->fmr_attr.max_pages; 179 } 180 181 struct rds_ib_mr *rds_ib_reuse_mr(struct rds_ib_mr_pool *pool) 182 { 183 struct rds_ib_mr *ibmr = NULL; 184 struct llist_node *ret; 185 unsigned long *flag; 186 187 preempt_disable(); 188 flag = this_cpu_ptr(&clean_list_grace); 189 set_bit(CLEAN_LIST_BUSY_BIT, flag); 190 ret = llist_del_first(&pool->clean_list); 191 if (ret) { 192 ibmr = llist_entry(ret, struct rds_ib_mr, llnode); 193 if (pool->pool_type == RDS_IB_MR_8K_POOL) 194 rds_ib_stats_inc(s_ib_rdma_mr_8k_reused); 195 else 196 rds_ib_stats_inc(s_ib_rdma_mr_1m_reused); 197 } 198 199 clear_bit(CLEAN_LIST_BUSY_BIT, flag); 200 preempt_enable(); 201 return ibmr; 202 } 203 204 static inline void wait_clean_list_grace(void) 205 { 206 int cpu; 207 unsigned long *flag; 208 209 for_each_online_cpu(cpu) { 210 flag = &per_cpu(clean_list_grace, cpu); 211 while (test_bit(CLEAN_LIST_BUSY_BIT, flag)) 212 cpu_relax(); 213 } 214 } 215 216 void rds_ib_sync_mr(void *trans_private, int direction) 217 { 218 struct rds_ib_mr *ibmr = trans_private; 219 struct rds_ib_device *rds_ibdev = ibmr->device; 220 221 switch (direction) { 222 case DMA_FROM_DEVICE: 223 ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg, 224 ibmr->sg_dma_len, DMA_BIDIRECTIONAL); 225 break; 226 case DMA_TO_DEVICE: 227 ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg, 228 ibmr->sg_dma_len, DMA_BIDIRECTIONAL); 229 break; 230 } 231 } 232 233 void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr) 234 { 235 struct rds_ib_device *rds_ibdev = ibmr->device; 236 237 if (ibmr->sg_dma_len) { 238 ib_dma_unmap_sg(rds_ibdev->dev, 239 ibmr->sg, ibmr->sg_len, 240 DMA_BIDIRECTIONAL); 241 ibmr->sg_dma_len = 0; 242 } 243 244 /* Release the s/g list */ 245 if (ibmr->sg_len) { 246 unsigned int i; 247 248 for (i = 0; i < ibmr->sg_len; ++i) { 249 struct page *page = sg_page(&ibmr->sg[i]); 250 251 /* FIXME we need a way to tell a r/w MR 252 * from a r/o MR */ 253 WARN_ON(!page->mapping && irqs_disabled()); 254 set_page_dirty(page); 255 put_page(page); 256 } 257 kfree(ibmr->sg); 258 259 ibmr->sg = NULL; 260 ibmr->sg_len = 0; 261 } 262 } 263 264 void rds_ib_teardown_mr(struct rds_ib_mr *ibmr) 265 { 266 unsigned int pinned = ibmr->sg_len; 267 268 __rds_ib_teardown_mr(ibmr); 269 if (pinned) { 270 struct rds_ib_mr_pool *pool = ibmr->pool; 271 272 atomic_sub(pinned, &pool->free_pinned); 273 } 274 } 275 276 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all) 277 { 278 unsigned int item_count; 279 280 item_count = atomic_read(&pool->item_count); 281 if (free_all) 282 return item_count; 283 284 return 0; 285 } 286 287 /* 288 * given an llist of mrs, put them all into the list_head for more processing 289 */ 290 static unsigned int llist_append_to_list(struct llist_head *llist, 291 struct list_head *list) 292 { 293 struct rds_ib_mr *ibmr; 294 struct llist_node *node; 295 struct llist_node *next; 296 unsigned int count = 0; 297 298 node = llist_del_all(llist); 299 while (node) { 300 next = node->next; 301 ibmr = llist_entry(node, struct rds_ib_mr, llnode); 302 list_add_tail(&ibmr->unmap_list, list); 303 node = next; 304 count++; 305 } 306 return count; 307 } 308 309 /* 310 * this takes a list head of mrs and turns it into linked llist nodes 311 * of clusters. Each cluster has linked llist nodes of 312 * MR_CLUSTER_SIZE mrs that are ready for reuse. 313 */ 314 static void list_to_llist_nodes(struct rds_ib_mr_pool *pool, 315 struct list_head *list, 316 struct llist_node **nodes_head, 317 struct llist_node **nodes_tail) 318 { 319 struct rds_ib_mr *ibmr; 320 struct llist_node *cur = NULL; 321 struct llist_node **next = nodes_head; 322 323 list_for_each_entry(ibmr, list, unmap_list) { 324 cur = &ibmr->llnode; 325 *next = cur; 326 next = &cur->next; 327 } 328 *next = NULL; 329 *nodes_tail = cur; 330 } 331 332 /* 333 * Flush our pool of MRs. 334 * At a minimum, all currently unused MRs are unmapped. 335 * If the number of MRs allocated exceeds the limit, we also try 336 * to free as many MRs as needed to get back to this limit. 337 */ 338 int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, 339 int free_all, struct rds_ib_mr **ibmr_ret) 340 { 341 struct rds_ib_mr *ibmr; 342 struct llist_node *clean_nodes; 343 struct llist_node *clean_tail; 344 LIST_HEAD(unmap_list); 345 unsigned long unpinned = 0; 346 unsigned int nfreed = 0, dirty_to_clean = 0, free_goal; 347 348 if (pool->pool_type == RDS_IB_MR_8K_POOL) 349 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_flush); 350 else 351 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_flush); 352 353 if (ibmr_ret) { 354 DEFINE_WAIT(wait); 355 while (!mutex_trylock(&pool->flush_lock)) { 356 ibmr = rds_ib_reuse_mr(pool); 357 if (ibmr) { 358 *ibmr_ret = ibmr; 359 finish_wait(&pool->flush_wait, &wait); 360 goto out_nolock; 361 } 362 363 prepare_to_wait(&pool->flush_wait, &wait, 364 TASK_UNINTERRUPTIBLE); 365 if (llist_empty(&pool->clean_list)) 366 schedule(); 367 368 ibmr = rds_ib_reuse_mr(pool); 369 if (ibmr) { 370 *ibmr_ret = ibmr; 371 finish_wait(&pool->flush_wait, &wait); 372 goto out_nolock; 373 } 374 } 375 finish_wait(&pool->flush_wait, &wait); 376 } else 377 mutex_lock(&pool->flush_lock); 378 379 if (ibmr_ret) { 380 ibmr = rds_ib_reuse_mr(pool); 381 if (ibmr) { 382 *ibmr_ret = ibmr; 383 goto out; 384 } 385 } 386 387 /* Get the list of all MRs to be dropped. Ordering matters - 388 * we want to put drop_list ahead of free_list. 389 */ 390 dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list); 391 dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list); 392 if (free_all) 393 llist_append_to_list(&pool->clean_list, &unmap_list); 394 395 free_goal = rds_ib_flush_goal(pool, free_all); 396 397 if (list_empty(&unmap_list)) 398 goto out; 399 400 if (pool->use_fastreg) 401 rds_ib_unreg_frmr(&unmap_list, &nfreed, &unpinned, free_goal); 402 else 403 rds_ib_unreg_fmr(&unmap_list, &nfreed, &unpinned, free_goal); 404 405 if (!list_empty(&unmap_list)) { 406 /* we have to make sure that none of the things we're about 407 * to put on the clean list would race with other cpus trying 408 * to pull items off. The llist would explode if we managed to 409 * remove something from the clean list and then add it back again 410 * while another CPU was spinning on that same item in llist_del_first. 411 * 412 * This is pretty unlikely, but just in case wait for an llist grace period 413 * here before adding anything back into the clean list. 414 */ 415 wait_clean_list_grace(); 416 417 list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail); 418 if (ibmr_ret) 419 *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode); 420 421 /* more than one entry in llist nodes */ 422 if (clean_nodes->next) 423 llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list); 424 425 } 426 427 atomic_sub(unpinned, &pool->free_pinned); 428 atomic_sub(dirty_to_clean, &pool->dirty_count); 429 atomic_sub(nfreed, &pool->item_count); 430 431 out: 432 mutex_unlock(&pool->flush_lock); 433 if (waitqueue_active(&pool->flush_wait)) 434 wake_up(&pool->flush_wait); 435 out_nolock: 436 return 0; 437 } 438 439 struct rds_ib_mr *rds_ib_try_reuse_ibmr(struct rds_ib_mr_pool *pool) 440 { 441 struct rds_ib_mr *ibmr = NULL; 442 int iter = 0; 443 444 if (atomic_read(&pool->dirty_count) >= pool->max_items_soft / 10) 445 queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10); 446 447 while (1) { 448 ibmr = rds_ib_reuse_mr(pool); 449 if (ibmr) 450 return ibmr; 451 452 if (atomic_inc_return(&pool->item_count) <= pool->max_items) 453 break; 454 455 atomic_dec(&pool->item_count); 456 457 if (++iter > 2) { 458 if (pool->pool_type == RDS_IB_MR_8K_POOL) 459 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_depleted); 460 else 461 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_depleted); 462 return ERR_PTR(-EAGAIN); 463 } 464 465 /* We do have some empty MRs. Flush them out. */ 466 if (pool->pool_type == RDS_IB_MR_8K_POOL) 467 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_wait); 468 else 469 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_wait); 470 471 rds_ib_flush_mr_pool(pool, 0, &ibmr); 472 if (ibmr) 473 return ibmr; 474 } 475 476 return ibmr; 477 } 478 479 static void rds_ib_mr_pool_flush_worker(struct work_struct *work) 480 { 481 struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work); 482 483 rds_ib_flush_mr_pool(pool, 0, NULL); 484 } 485 486 void rds_ib_free_mr(void *trans_private, int invalidate) 487 { 488 struct rds_ib_mr *ibmr = trans_private; 489 struct rds_ib_mr_pool *pool = ibmr->pool; 490 struct rds_ib_device *rds_ibdev = ibmr->device; 491 492 rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len); 493 494 /* Return it to the pool's free list */ 495 if (rds_ibdev->use_fastreg) 496 rds_ib_free_frmr_list(ibmr); 497 else 498 rds_ib_free_fmr_list(ibmr); 499 500 atomic_add(ibmr->sg_len, &pool->free_pinned); 501 atomic_inc(&pool->dirty_count); 502 503 /* If we've pinned too many pages, request a flush */ 504 if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned || 505 atomic_read(&pool->dirty_count) >= pool->max_items / 5) 506 queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10); 507 508 if (invalidate) { 509 if (likely(!in_interrupt())) { 510 rds_ib_flush_mr_pool(pool, 0, NULL); 511 } else { 512 /* We get here if the user created a MR marked 513 * as use_once and invalidate at the same time. 514 */ 515 queue_delayed_work(rds_ib_mr_wq, 516 &pool->flush_worker, 10); 517 } 518 } 519 520 rds_ib_dev_put(rds_ibdev); 521 } 522 523 void rds_ib_flush_mrs(void) 524 { 525 struct rds_ib_device *rds_ibdev; 526 527 down_read(&rds_ib_devices_lock); 528 list_for_each_entry(rds_ibdev, &rds_ib_devices, list) { 529 if (rds_ibdev->mr_8k_pool) 530 rds_ib_flush_mr_pool(rds_ibdev->mr_8k_pool, 0, NULL); 531 532 if (rds_ibdev->mr_1m_pool) 533 rds_ib_flush_mr_pool(rds_ibdev->mr_1m_pool, 0, NULL); 534 } 535 up_read(&rds_ib_devices_lock); 536 } 537 538 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents, 539 struct rds_sock *rs, u32 *key_ret) 540 { 541 struct rds_ib_device *rds_ibdev; 542 struct rds_ib_mr *ibmr = NULL; 543 struct rds_ib_connection *ic = rs->rs_conn->c_transport_data; 544 int ret; 545 546 rds_ibdev = rds_ib_get_device(rs->rs_bound_addr); 547 if (!rds_ibdev) { 548 ret = -ENODEV; 549 goto out; 550 } 551 552 if (!rds_ibdev->mr_8k_pool || !rds_ibdev->mr_1m_pool) { 553 ret = -ENODEV; 554 goto out; 555 } 556 557 if (rds_ibdev->use_fastreg) 558 ibmr = rds_ib_reg_frmr(rds_ibdev, ic, sg, nents, key_ret); 559 else 560 ibmr = rds_ib_reg_fmr(rds_ibdev, sg, nents, key_ret); 561 if (ibmr) 562 rds_ibdev = NULL; 563 564 out: 565 if (!ibmr) 566 pr_warn("RDS/IB: rds_ib_get_mr failed (errno=%d)\n", ret); 567 568 if (rds_ibdev) 569 rds_ib_dev_put(rds_ibdev); 570 571 return ibmr; 572 } 573 574 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool) 575 { 576 cancel_delayed_work_sync(&pool->flush_worker); 577 rds_ib_flush_mr_pool(pool, 1, NULL); 578 WARN_ON(atomic_read(&pool->item_count)); 579 WARN_ON(atomic_read(&pool->free_pinned)); 580 kfree(pool); 581 } 582 583 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev, 584 int pool_type) 585 { 586 struct rds_ib_mr_pool *pool; 587 588 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 589 if (!pool) 590 return ERR_PTR(-ENOMEM); 591 592 pool->pool_type = pool_type; 593 init_llist_head(&pool->free_list); 594 init_llist_head(&pool->drop_list); 595 init_llist_head(&pool->clean_list); 596 mutex_init(&pool->flush_lock); 597 init_waitqueue_head(&pool->flush_wait); 598 INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker); 599 600 if (pool_type == RDS_IB_MR_1M_POOL) { 601 /* +1 allows for unaligned MRs */ 602 pool->fmr_attr.max_pages = RDS_MR_1M_MSG_SIZE + 1; 603 pool->max_items = RDS_MR_1M_POOL_SIZE; 604 } else { 605 /* pool_type == RDS_IB_MR_8K_POOL */ 606 pool->fmr_attr.max_pages = RDS_MR_8K_MSG_SIZE + 1; 607 pool->max_items = RDS_MR_8K_POOL_SIZE; 608 } 609 610 pool->max_free_pinned = pool->max_items * pool->fmr_attr.max_pages / 4; 611 pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps; 612 pool->fmr_attr.page_shift = PAGE_SHIFT; 613 pool->max_items_soft = rds_ibdev->max_mrs * 3 / 4; 614 pool->use_fastreg = rds_ibdev->use_fastreg; 615 616 return pool; 617 } 618 619 int rds_ib_mr_init(void) 620 { 621 rds_ib_mr_wq = create_workqueue("rds_mr_flushd"); 622 if (!rds_ib_mr_wq) 623 return -ENOMEM; 624 return 0; 625 } 626 627 /* By the time this is called all the IB devices should have been torn down and 628 * had their pools freed. As each pool is freed its work struct is waited on, 629 * so the pool flushing work queue should be idle by the time we get here. 630 */ 631 void rds_ib_mr_exit(void) 632 { 633 destroy_workqueue(rds_ib_mr_wq); 634 } 635