1 /* 2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/dmapool.h> 34 #include <linux/kernel.h> 35 #include <linux/in.h> 36 #include <linux/slab.h> 37 #include <linux/vmalloc.h> 38 #include <linux/ratelimit.h> 39 #include <net/addrconf.h> 40 41 #include "rds_single_path.h" 42 #include "rds.h" 43 #include "ib.h" 44 #include "ib_mr.h" 45 46 /* 47 * Set the selected protocol version 48 */ 49 static void rds_ib_set_protocol(struct rds_connection *conn, unsigned int version) 50 { 51 conn->c_version = version; 52 } 53 54 /* 55 * Set up flow control 56 */ 57 static void rds_ib_set_flow_control(struct rds_connection *conn, u32 credits) 58 { 59 struct rds_ib_connection *ic = conn->c_transport_data; 60 61 if (rds_ib_sysctl_flow_control && credits != 0) { 62 /* We're doing flow control */ 63 ic->i_flowctl = 1; 64 rds_ib_send_add_credits(conn, credits); 65 } else { 66 ic->i_flowctl = 0; 67 } 68 } 69 70 /* 71 * Tune RNR behavior. Without flow control, we use a rather 72 * low timeout, but not the absolute minimum - this should 73 * be tunable. 74 * 75 * We already set the RNR retry count to 7 (which is the 76 * smallest infinite number :-) above. 77 * If flow control is off, we want to change this back to 0 78 * so that we learn quickly when our credit accounting is 79 * buggy. 80 * 81 * Caller passes in a qp_attr pointer - don't waste stack spacv 82 * by allocation this twice. 83 */ 84 static void 85 rds_ib_tune_rnr(struct rds_ib_connection *ic, struct ib_qp_attr *attr) 86 { 87 int ret; 88 89 attr->min_rnr_timer = IB_RNR_TIMER_000_32; 90 ret = ib_modify_qp(ic->i_cm_id->qp, attr, IB_QP_MIN_RNR_TIMER); 91 if (ret) 92 printk(KERN_NOTICE "ib_modify_qp(IB_QP_MIN_RNR_TIMER): err=%d\n", -ret); 93 } 94 95 /* 96 * Connection established. 97 * We get here for both outgoing and incoming connection. 98 */ 99 void rds_ib_cm_connect_complete(struct rds_connection *conn, struct rdma_cm_event *event) 100 { 101 struct rds_ib_connection *ic = conn->c_transport_data; 102 const union rds_ib_conn_priv *dp = NULL; 103 struct ib_qp_attr qp_attr; 104 __be64 ack_seq = 0; 105 __be32 credit = 0; 106 u8 major = 0; 107 u8 minor = 0; 108 int err; 109 110 dp = event->param.conn.private_data; 111 if (conn->c_isv6) { 112 if (event->param.conn.private_data_len >= 113 sizeof(struct rds6_ib_connect_private)) { 114 major = dp->ricp_v6.dp_protocol_major; 115 minor = dp->ricp_v6.dp_protocol_minor; 116 credit = dp->ricp_v6.dp_credit; 117 /* dp structure start is not guaranteed to be 8 bytes 118 * aligned. Since dp_ack_seq is 64-bit extended load 119 * operations can be used so go through get_unaligned 120 * to avoid unaligned errors. 121 */ 122 ack_seq = get_unaligned(&dp->ricp_v6.dp_ack_seq); 123 } 124 } else if (event->param.conn.private_data_len >= 125 sizeof(struct rds_ib_connect_private)) { 126 major = dp->ricp_v4.dp_protocol_major; 127 minor = dp->ricp_v4.dp_protocol_minor; 128 credit = dp->ricp_v4.dp_credit; 129 ack_seq = get_unaligned(&dp->ricp_v4.dp_ack_seq); 130 } 131 132 /* make sure it isn't empty data */ 133 if (major) { 134 rds_ib_set_protocol(conn, RDS_PROTOCOL(major, minor)); 135 rds_ib_set_flow_control(conn, be32_to_cpu(credit)); 136 } 137 138 if (conn->c_version < RDS_PROTOCOL_VERSION) { 139 if (conn->c_version != RDS_PROTOCOL_COMPAT_VERSION) { 140 pr_notice("RDS/IB: Connection <%pI6c,%pI6c> version %u.%u no longer supported\n", 141 &conn->c_laddr, &conn->c_faddr, 142 RDS_PROTOCOL_MAJOR(conn->c_version), 143 RDS_PROTOCOL_MINOR(conn->c_version)); 144 rds_conn_destroy(conn); 145 return; 146 } 147 } 148 149 pr_notice("RDS/IB: %s conn connected <%pI6c,%pI6c,%d> version %u.%u%s\n", 150 ic->i_active_side ? "Active" : "Passive", 151 &conn->c_laddr, &conn->c_faddr, conn->c_tos, 152 RDS_PROTOCOL_MAJOR(conn->c_version), 153 RDS_PROTOCOL_MINOR(conn->c_version), 154 ic->i_flowctl ? ", flow control" : ""); 155 156 /* receive sl from the peer */ 157 ic->i_sl = ic->i_cm_id->route.path_rec->sl; 158 159 atomic_set(&ic->i_cq_quiesce, 0); 160 161 /* Init rings and fill recv. this needs to wait until protocol 162 * negotiation is complete, since ring layout is different 163 * from 3.1 to 4.1. 164 */ 165 rds_ib_send_init_ring(ic); 166 rds_ib_recv_init_ring(ic); 167 /* Post receive buffers - as a side effect, this will update 168 * the posted credit count. */ 169 rds_ib_recv_refill(conn, 1, GFP_KERNEL); 170 171 /* Tune RNR behavior */ 172 rds_ib_tune_rnr(ic, &qp_attr); 173 174 qp_attr.qp_state = IB_QPS_RTS; 175 err = ib_modify_qp(ic->i_cm_id->qp, &qp_attr, IB_QP_STATE); 176 if (err) 177 printk(KERN_NOTICE "ib_modify_qp(IB_QP_STATE, RTS): err=%d\n", err); 178 179 /* update ib_device with this local ipaddr */ 180 err = rds_ib_update_ipaddr(ic->rds_ibdev, &conn->c_laddr); 181 if (err) 182 printk(KERN_ERR "rds_ib_update_ipaddr failed (%d)\n", 183 err); 184 185 /* If the peer gave us the last packet it saw, process this as if 186 * we had received a regular ACK. */ 187 if (dp) { 188 if (ack_seq) 189 rds_send_drop_acked(conn, be64_to_cpu(ack_seq), 190 NULL); 191 } 192 193 conn->c_proposed_version = conn->c_version; 194 rds_connect_complete(conn); 195 } 196 197 static void rds_ib_cm_fill_conn_param(struct rds_connection *conn, 198 struct rdma_conn_param *conn_param, 199 union rds_ib_conn_priv *dp, 200 u32 protocol_version, 201 u32 max_responder_resources, 202 u32 max_initiator_depth, 203 bool isv6) 204 { 205 struct rds_ib_connection *ic = conn->c_transport_data; 206 struct rds_ib_device *rds_ibdev = ic->rds_ibdev; 207 208 memset(conn_param, 0, sizeof(struct rdma_conn_param)); 209 210 conn_param->responder_resources = 211 min_t(u32, rds_ibdev->max_responder_resources, max_responder_resources); 212 conn_param->initiator_depth = 213 min_t(u32, rds_ibdev->max_initiator_depth, max_initiator_depth); 214 conn_param->retry_count = min_t(unsigned int, rds_ib_retry_count, 7); 215 conn_param->rnr_retry_count = 7; 216 217 if (dp) { 218 memset(dp, 0, sizeof(*dp)); 219 if (isv6) { 220 dp->ricp_v6.dp_saddr = conn->c_laddr; 221 dp->ricp_v6.dp_daddr = conn->c_faddr; 222 dp->ricp_v6.dp_protocol_major = 223 RDS_PROTOCOL_MAJOR(protocol_version); 224 dp->ricp_v6.dp_protocol_minor = 225 RDS_PROTOCOL_MINOR(protocol_version); 226 dp->ricp_v6.dp_protocol_minor_mask = 227 cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS); 228 dp->ricp_v6.dp_ack_seq = 229 cpu_to_be64(rds_ib_piggyb_ack(ic)); 230 dp->ricp_v6.dp_cmn.ricpc_dp_toss = conn->c_tos; 231 232 conn_param->private_data = &dp->ricp_v6; 233 conn_param->private_data_len = sizeof(dp->ricp_v6); 234 } else { 235 dp->ricp_v4.dp_saddr = conn->c_laddr.s6_addr32[3]; 236 dp->ricp_v4.dp_daddr = conn->c_faddr.s6_addr32[3]; 237 dp->ricp_v4.dp_protocol_major = 238 RDS_PROTOCOL_MAJOR(protocol_version); 239 dp->ricp_v4.dp_protocol_minor = 240 RDS_PROTOCOL_MINOR(protocol_version); 241 dp->ricp_v4.dp_protocol_minor_mask = 242 cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS); 243 dp->ricp_v4.dp_ack_seq = 244 cpu_to_be64(rds_ib_piggyb_ack(ic)); 245 dp->ricp_v4.dp_cmn.ricpc_dp_toss = conn->c_tos; 246 247 conn_param->private_data = &dp->ricp_v4; 248 conn_param->private_data_len = sizeof(dp->ricp_v4); 249 } 250 251 /* Advertise flow control */ 252 if (ic->i_flowctl) { 253 unsigned int credits; 254 255 credits = IB_GET_POST_CREDITS 256 (atomic_read(&ic->i_credits)); 257 if (isv6) 258 dp->ricp_v6.dp_credit = cpu_to_be32(credits); 259 else 260 dp->ricp_v4.dp_credit = cpu_to_be32(credits); 261 atomic_sub(IB_SET_POST_CREDITS(credits), 262 &ic->i_credits); 263 } 264 } 265 } 266 267 static void rds_ib_cq_event_handler(struct ib_event *event, void *data) 268 { 269 rdsdebug("event %u (%s) data %p\n", 270 event->event, ib_event_msg(event->event), data); 271 } 272 273 /* Plucking the oldest entry from the ring can be done concurrently with 274 * the thread refilling the ring. Each ring operation is protected by 275 * spinlocks and the transient state of refilling doesn't change the 276 * recording of which entry is oldest. 277 * 278 * This relies on IB only calling one cq comp_handler for each cq so that 279 * there will only be one caller of rds_recv_incoming() per RDS connection. 280 */ 281 static void rds_ib_cq_comp_handler_recv(struct ib_cq *cq, void *context) 282 { 283 struct rds_connection *conn = context; 284 struct rds_ib_connection *ic = conn->c_transport_data; 285 286 rdsdebug("conn %p cq %p\n", conn, cq); 287 288 rds_ib_stats_inc(s_ib_evt_handler_call); 289 290 tasklet_schedule(&ic->i_recv_tasklet); 291 } 292 293 static void poll_scq(struct rds_ib_connection *ic, struct ib_cq *cq, 294 struct ib_wc *wcs) 295 { 296 int nr, i; 297 struct ib_wc *wc; 298 299 while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) { 300 for (i = 0; i < nr; i++) { 301 wc = wcs + i; 302 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", 303 (unsigned long long)wc->wr_id, wc->status, 304 wc->byte_len, be32_to_cpu(wc->ex.imm_data)); 305 306 if (wc->wr_id <= ic->i_send_ring.w_nr || 307 wc->wr_id == RDS_IB_ACK_WR_ID) 308 rds_ib_send_cqe_handler(ic, wc); 309 else 310 rds_ib_mr_cqe_handler(ic, wc); 311 312 } 313 } 314 } 315 316 static void rds_ib_tasklet_fn_send(unsigned long data) 317 { 318 struct rds_ib_connection *ic = (struct rds_ib_connection *)data; 319 struct rds_connection *conn = ic->conn; 320 321 rds_ib_stats_inc(s_ib_tasklet_call); 322 323 /* if cq has been already reaped, ignore incoming cq event */ 324 if (atomic_read(&ic->i_cq_quiesce)) 325 return; 326 327 poll_scq(ic, ic->i_send_cq, ic->i_send_wc); 328 ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP); 329 poll_scq(ic, ic->i_send_cq, ic->i_send_wc); 330 331 if (rds_conn_up(conn) && 332 (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags) || 333 test_bit(0, &conn->c_map_queued))) 334 rds_send_xmit(&ic->conn->c_path[0]); 335 } 336 337 static void poll_rcq(struct rds_ib_connection *ic, struct ib_cq *cq, 338 struct ib_wc *wcs, 339 struct rds_ib_ack_state *ack_state) 340 { 341 int nr, i; 342 struct ib_wc *wc; 343 344 while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) { 345 for (i = 0; i < nr; i++) { 346 wc = wcs + i; 347 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", 348 (unsigned long long)wc->wr_id, wc->status, 349 wc->byte_len, be32_to_cpu(wc->ex.imm_data)); 350 351 rds_ib_recv_cqe_handler(ic, wc, ack_state); 352 } 353 } 354 } 355 356 static void rds_ib_tasklet_fn_recv(unsigned long data) 357 { 358 struct rds_ib_connection *ic = (struct rds_ib_connection *)data; 359 struct rds_connection *conn = ic->conn; 360 struct rds_ib_device *rds_ibdev = ic->rds_ibdev; 361 struct rds_ib_ack_state state; 362 363 if (!rds_ibdev) 364 rds_conn_drop(conn); 365 366 rds_ib_stats_inc(s_ib_tasklet_call); 367 368 /* if cq has been already reaped, ignore incoming cq event */ 369 if (atomic_read(&ic->i_cq_quiesce)) 370 return; 371 372 memset(&state, 0, sizeof(state)); 373 poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state); 374 ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED); 375 poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state); 376 377 if (state.ack_next_valid) 378 rds_ib_set_ack(ic, state.ack_next, state.ack_required); 379 if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) { 380 rds_send_drop_acked(conn, state.ack_recv, NULL); 381 ic->i_ack_recv = state.ack_recv; 382 } 383 384 if (rds_conn_up(conn)) 385 rds_ib_attempt_ack(ic); 386 } 387 388 static void rds_ib_qp_event_handler(struct ib_event *event, void *data) 389 { 390 struct rds_connection *conn = data; 391 struct rds_ib_connection *ic = conn->c_transport_data; 392 393 rdsdebug("conn %p ic %p event %u (%s)\n", conn, ic, event->event, 394 ib_event_msg(event->event)); 395 396 switch (event->event) { 397 case IB_EVENT_COMM_EST: 398 rdma_notify(ic->i_cm_id, IB_EVENT_COMM_EST); 399 break; 400 default: 401 rdsdebug("Fatal QP Event %u (%s) - connection %pI6c->%pI6c, reconnecting\n", 402 event->event, ib_event_msg(event->event), 403 &conn->c_laddr, &conn->c_faddr); 404 rds_conn_drop(conn); 405 break; 406 } 407 } 408 409 static void rds_ib_cq_comp_handler_send(struct ib_cq *cq, void *context) 410 { 411 struct rds_connection *conn = context; 412 struct rds_ib_connection *ic = conn->c_transport_data; 413 414 rdsdebug("conn %p cq %p\n", conn, cq); 415 416 rds_ib_stats_inc(s_ib_evt_handler_call); 417 418 tasklet_schedule(&ic->i_send_tasklet); 419 } 420 421 static inline int ibdev_get_unused_vector(struct rds_ib_device *rds_ibdev) 422 { 423 int min = rds_ibdev->vector_load[rds_ibdev->dev->num_comp_vectors - 1]; 424 int index = rds_ibdev->dev->num_comp_vectors - 1; 425 int i; 426 427 for (i = rds_ibdev->dev->num_comp_vectors - 1; i >= 0; i--) { 428 if (rds_ibdev->vector_load[i] < min) { 429 index = i; 430 min = rds_ibdev->vector_load[i]; 431 } 432 } 433 434 rds_ibdev->vector_load[index]++; 435 return index; 436 } 437 438 static inline void ibdev_put_vector(struct rds_ib_device *rds_ibdev, int index) 439 { 440 rds_ibdev->vector_load[index]--; 441 } 442 443 /* Allocate DMA coherent memory to be used to store struct rds_header for 444 * sending/receiving packets. The pointers to the DMA memory and the 445 * associated DMA addresses are stored in two arrays. 446 * 447 * @ibdev: the IB device 448 * @pool: the DMA memory pool 449 * @dma_addrs: pointer to the array for storing DMA addresses 450 * @num_hdrs: number of headers to allocate 451 * 452 * It returns the pointer to the array storing the DMA memory pointers. On 453 * error, NULL pointer is returned. 454 */ 455 struct rds_header **rds_dma_hdrs_alloc(struct ib_device *ibdev, 456 struct dma_pool *pool, 457 dma_addr_t **dma_addrs, u32 num_hdrs) 458 { 459 struct rds_header **hdrs; 460 dma_addr_t *hdr_daddrs; 461 u32 i; 462 463 hdrs = kvmalloc_node(sizeof(*hdrs) * num_hdrs, GFP_KERNEL, 464 ibdev_to_node(ibdev)); 465 if (!hdrs) 466 return NULL; 467 468 hdr_daddrs = kvmalloc_node(sizeof(*hdr_daddrs) * num_hdrs, GFP_KERNEL, 469 ibdev_to_node(ibdev)); 470 if (!hdr_daddrs) { 471 kvfree(hdrs); 472 return NULL; 473 } 474 475 for (i = 0; i < num_hdrs; i++) { 476 hdrs[i] = dma_pool_zalloc(pool, GFP_KERNEL, &hdr_daddrs[i]); 477 if (!hdrs[i]) { 478 rds_dma_hdrs_free(pool, hdrs, hdr_daddrs, i); 479 return NULL; 480 } 481 } 482 483 *dma_addrs = hdr_daddrs; 484 return hdrs; 485 } 486 487 /* Free the DMA memory used to store struct rds_header. 488 * 489 * @pool: the DMA memory pool 490 * @hdrs: pointer to the array storing DMA memory pointers 491 * @dma_addrs: pointer to the array storing DMA addresses 492 * @num_hdars: number of headers to free. 493 */ 494 void rds_dma_hdrs_free(struct dma_pool *pool, struct rds_header **hdrs, 495 dma_addr_t *dma_addrs, u32 num_hdrs) 496 { 497 u32 i; 498 499 for (i = 0; i < num_hdrs; i++) 500 dma_pool_free(pool, hdrs[i], dma_addrs[i]); 501 kvfree(hdrs); 502 kvfree(dma_addrs); 503 } 504 505 /* 506 * This needs to be very careful to not leave IS_ERR pointers around for 507 * cleanup to trip over. 508 */ 509 static int rds_ib_setup_qp(struct rds_connection *conn) 510 { 511 struct rds_ib_connection *ic = conn->c_transport_data; 512 struct ib_device *dev = ic->i_cm_id->device; 513 struct ib_qp_init_attr attr; 514 struct ib_cq_init_attr cq_attr = {}; 515 struct rds_ib_device *rds_ibdev; 516 unsigned long max_wrs; 517 int ret, fr_queue_space; 518 struct dma_pool *pool; 519 520 /* 521 * It's normal to see a null device if an incoming connection races 522 * with device removal, so we don't print a warning. 523 */ 524 rds_ibdev = rds_ib_get_client_data(dev); 525 if (!rds_ibdev) 526 return -EOPNOTSUPP; 527 528 /* The fr_queue_space is currently set to 512, to add extra space on 529 * completion queue and send queue. This extra space is used for FRMR 530 * registration and invalidation work requests 531 */ 532 fr_queue_space = (rds_ibdev->use_fastreg ? RDS_IB_DEFAULT_FR_WR : 0); 533 534 /* add the conn now so that connection establishment has the dev */ 535 rds_ib_add_conn(rds_ibdev, conn); 536 537 max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_send_wr + 1 ? 538 rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_send_wr; 539 if (ic->i_send_ring.w_nr != max_wrs) 540 rds_ib_ring_resize(&ic->i_send_ring, max_wrs); 541 542 max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_recv_wr + 1 ? 543 rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_recv_wr; 544 if (ic->i_recv_ring.w_nr != max_wrs) 545 rds_ib_ring_resize(&ic->i_recv_ring, max_wrs); 546 547 /* Protection domain and memory range */ 548 ic->i_pd = rds_ibdev->pd; 549 550 ic->i_scq_vector = ibdev_get_unused_vector(rds_ibdev); 551 cq_attr.cqe = ic->i_send_ring.w_nr + fr_queue_space + 1; 552 cq_attr.comp_vector = ic->i_scq_vector; 553 ic->i_send_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_send, 554 rds_ib_cq_event_handler, conn, 555 &cq_attr); 556 if (IS_ERR(ic->i_send_cq)) { 557 ret = PTR_ERR(ic->i_send_cq); 558 ic->i_send_cq = NULL; 559 ibdev_put_vector(rds_ibdev, ic->i_scq_vector); 560 rdsdebug("ib_create_cq send failed: %d\n", ret); 561 goto rds_ibdev_out; 562 } 563 564 ic->i_rcq_vector = ibdev_get_unused_vector(rds_ibdev); 565 cq_attr.cqe = ic->i_recv_ring.w_nr; 566 cq_attr.comp_vector = ic->i_rcq_vector; 567 ic->i_recv_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_recv, 568 rds_ib_cq_event_handler, conn, 569 &cq_attr); 570 if (IS_ERR(ic->i_recv_cq)) { 571 ret = PTR_ERR(ic->i_recv_cq); 572 ic->i_recv_cq = NULL; 573 ibdev_put_vector(rds_ibdev, ic->i_rcq_vector); 574 rdsdebug("ib_create_cq recv failed: %d\n", ret); 575 goto send_cq_out; 576 } 577 578 ret = ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP); 579 if (ret) { 580 rdsdebug("ib_req_notify_cq send failed: %d\n", ret); 581 goto recv_cq_out; 582 } 583 584 ret = ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED); 585 if (ret) { 586 rdsdebug("ib_req_notify_cq recv failed: %d\n", ret); 587 goto recv_cq_out; 588 } 589 590 /* XXX negotiate max send/recv with remote? */ 591 memset(&attr, 0, sizeof(attr)); 592 attr.event_handler = rds_ib_qp_event_handler; 593 attr.qp_context = conn; 594 /* + 1 to allow for the single ack message */ 595 attr.cap.max_send_wr = ic->i_send_ring.w_nr + fr_queue_space + 1; 596 attr.cap.max_recv_wr = ic->i_recv_ring.w_nr + 1; 597 attr.cap.max_send_sge = rds_ibdev->max_sge; 598 attr.cap.max_recv_sge = RDS_IB_RECV_SGE; 599 attr.sq_sig_type = IB_SIGNAL_REQ_WR; 600 attr.qp_type = IB_QPT_RC; 601 attr.send_cq = ic->i_send_cq; 602 attr.recv_cq = ic->i_recv_cq; 603 604 /* 605 * XXX this can fail if max_*_wr is too large? Are we supposed 606 * to back off until we get a value that the hardware can support? 607 */ 608 ret = rdma_create_qp(ic->i_cm_id, ic->i_pd, &attr); 609 if (ret) { 610 rdsdebug("rdma_create_qp failed: %d\n", ret); 611 goto recv_cq_out; 612 } 613 614 pool = rds_ibdev->rid_hdrs_pool; 615 ic->i_send_hdrs = rds_dma_hdrs_alloc(dev, pool, &ic->i_send_hdrs_dma, 616 ic->i_send_ring.w_nr); 617 if (!ic->i_send_hdrs) { 618 ret = -ENOMEM; 619 rdsdebug("DMA send hdrs alloc failed\n"); 620 goto qp_out; 621 } 622 623 ic->i_recv_hdrs = rds_dma_hdrs_alloc(dev, pool, &ic->i_recv_hdrs_dma, 624 ic->i_recv_ring.w_nr); 625 if (!ic->i_recv_hdrs) { 626 ret = -ENOMEM; 627 rdsdebug("DMA recv hdrs alloc failed\n"); 628 goto send_hdrs_dma_out; 629 } 630 631 ic->i_ack = dma_pool_zalloc(pool, GFP_KERNEL, 632 &ic->i_ack_dma); 633 if (!ic->i_ack) { 634 ret = -ENOMEM; 635 rdsdebug("DMA ack header alloc failed\n"); 636 goto recv_hdrs_dma_out; 637 } 638 639 ic->i_sends = vzalloc_node(array_size(sizeof(struct rds_ib_send_work), 640 ic->i_send_ring.w_nr), 641 ibdev_to_node(dev)); 642 if (!ic->i_sends) { 643 ret = -ENOMEM; 644 rdsdebug("send allocation failed\n"); 645 goto ack_dma_out; 646 } 647 648 ic->i_recvs = vzalloc_node(array_size(sizeof(struct rds_ib_recv_work), 649 ic->i_recv_ring.w_nr), 650 ibdev_to_node(dev)); 651 if (!ic->i_recvs) { 652 ret = -ENOMEM; 653 rdsdebug("recv allocation failed\n"); 654 goto sends_out; 655 } 656 657 rds_ib_recv_init_ack(ic); 658 659 rdsdebug("conn %p pd %p cq %p %p\n", conn, ic->i_pd, 660 ic->i_send_cq, ic->i_recv_cq); 661 662 goto out; 663 664 sends_out: 665 vfree(ic->i_sends); 666 667 ack_dma_out: 668 dma_pool_free(pool, ic->i_ack, ic->i_ack_dma); 669 ic->i_ack = NULL; 670 671 recv_hdrs_dma_out: 672 rds_dma_hdrs_free(pool, ic->i_recv_hdrs, ic->i_recv_hdrs_dma, 673 ic->i_recv_ring.w_nr); 674 ic->i_recv_hdrs = NULL; 675 ic->i_recv_hdrs_dma = NULL; 676 677 send_hdrs_dma_out: 678 rds_dma_hdrs_free(pool, ic->i_send_hdrs, ic->i_send_hdrs_dma, 679 ic->i_send_ring.w_nr); 680 ic->i_send_hdrs = NULL; 681 ic->i_send_hdrs_dma = NULL; 682 683 qp_out: 684 rdma_destroy_qp(ic->i_cm_id); 685 recv_cq_out: 686 ib_destroy_cq(ic->i_recv_cq); 687 ic->i_recv_cq = NULL; 688 send_cq_out: 689 ib_destroy_cq(ic->i_send_cq); 690 ic->i_send_cq = NULL; 691 rds_ibdev_out: 692 rds_ib_remove_conn(rds_ibdev, conn); 693 out: 694 rds_ib_dev_put(rds_ibdev); 695 696 return ret; 697 } 698 699 static u32 rds_ib_protocol_compatible(struct rdma_cm_event *event, bool isv6) 700 { 701 const union rds_ib_conn_priv *dp = event->param.conn.private_data; 702 u8 data_len, major, minor; 703 u32 version = 0; 704 __be16 mask; 705 u16 common; 706 707 /* 708 * rdma_cm private data is odd - when there is any private data in the 709 * request, we will be given a pretty large buffer without telling us the 710 * original size. The only way to tell the difference is by looking at 711 * the contents, which are initialized to zero. 712 * If the protocol version fields aren't set, this is a connection attempt 713 * from an older version. This could could be 3.0 or 2.0 - we can't tell. 714 * We really should have changed this for OFED 1.3 :-( 715 */ 716 717 /* Be paranoid. RDS always has privdata */ 718 if (!event->param.conn.private_data_len) { 719 printk(KERN_NOTICE "RDS incoming connection has no private data, " 720 "rejecting\n"); 721 return 0; 722 } 723 724 if (isv6) { 725 data_len = sizeof(struct rds6_ib_connect_private); 726 major = dp->ricp_v6.dp_protocol_major; 727 minor = dp->ricp_v6.dp_protocol_minor; 728 mask = dp->ricp_v6.dp_protocol_minor_mask; 729 } else { 730 data_len = sizeof(struct rds_ib_connect_private); 731 major = dp->ricp_v4.dp_protocol_major; 732 minor = dp->ricp_v4.dp_protocol_minor; 733 mask = dp->ricp_v4.dp_protocol_minor_mask; 734 } 735 736 /* Even if len is crap *now* I still want to check it. -ASG */ 737 if (event->param.conn.private_data_len < data_len || major == 0) 738 return RDS_PROTOCOL_4_0; 739 740 common = be16_to_cpu(mask) & RDS_IB_SUPPORTED_PROTOCOLS; 741 if (major == 4 && common) { 742 version = RDS_PROTOCOL_4_0; 743 while ((common >>= 1) != 0) 744 version++; 745 } else if (RDS_PROTOCOL_COMPAT_VERSION == 746 RDS_PROTOCOL(major, minor)) { 747 version = RDS_PROTOCOL_COMPAT_VERSION; 748 } else { 749 if (isv6) 750 printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI6c using incompatible protocol version %u.%u\n", 751 &dp->ricp_v6.dp_saddr, major, minor); 752 else 753 printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI4 using incompatible protocol version %u.%u\n", 754 &dp->ricp_v4.dp_saddr, major, minor); 755 } 756 return version; 757 } 758 759 #if IS_ENABLED(CONFIG_IPV6) 760 /* Given an IPv6 address, find the net_device which hosts that address and 761 * return its index. This is used by the rds_ib_cm_handle_connect() code to 762 * find the interface index of where an incoming request comes from when 763 * the request is using a link local address. 764 * 765 * Note one problem in this search. It is possible that two interfaces have 766 * the same link local address. Unfortunately, this cannot be solved unless 767 * the underlying layer gives us the interface which an incoming RDMA connect 768 * request comes from. 769 */ 770 static u32 __rds_find_ifindex(struct net *net, const struct in6_addr *addr) 771 { 772 struct net_device *dev; 773 int idx = 0; 774 775 rcu_read_lock(); 776 for_each_netdev_rcu(net, dev) { 777 if (ipv6_chk_addr(net, addr, dev, 1)) { 778 idx = dev->ifindex; 779 break; 780 } 781 } 782 rcu_read_unlock(); 783 784 return idx; 785 } 786 #endif 787 788 int rds_ib_cm_handle_connect(struct rdma_cm_id *cm_id, 789 struct rdma_cm_event *event, bool isv6) 790 { 791 __be64 lguid = cm_id->route.path_rec->sgid.global.interface_id; 792 __be64 fguid = cm_id->route.path_rec->dgid.global.interface_id; 793 const struct rds_ib_conn_priv_cmn *dp_cmn; 794 struct rds_connection *conn = NULL; 795 struct rds_ib_connection *ic = NULL; 796 struct rdma_conn_param conn_param; 797 const union rds_ib_conn_priv *dp; 798 union rds_ib_conn_priv dp_rep; 799 struct in6_addr s_mapped_addr; 800 struct in6_addr d_mapped_addr; 801 const struct in6_addr *saddr6; 802 const struct in6_addr *daddr6; 803 int destroy = 1; 804 u32 ifindex = 0; 805 u32 version; 806 int err = 1; 807 808 /* Check whether the remote protocol version matches ours. */ 809 version = rds_ib_protocol_compatible(event, isv6); 810 if (!version) { 811 err = RDS_RDMA_REJ_INCOMPAT; 812 goto out; 813 } 814 815 dp = event->param.conn.private_data; 816 if (isv6) { 817 #if IS_ENABLED(CONFIG_IPV6) 818 dp_cmn = &dp->ricp_v6.dp_cmn; 819 saddr6 = &dp->ricp_v6.dp_saddr; 820 daddr6 = &dp->ricp_v6.dp_daddr; 821 /* If either address is link local, need to find the 822 * interface index in order to create a proper RDS 823 * connection. 824 */ 825 if (ipv6_addr_type(daddr6) & IPV6_ADDR_LINKLOCAL) { 826 /* Using init_net for now .. */ 827 ifindex = __rds_find_ifindex(&init_net, daddr6); 828 /* No index found... Need to bail out. */ 829 if (ifindex == 0) { 830 err = -EOPNOTSUPP; 831 goto out; 832 } 833 } else if (ipv6_addr_type(saddr6) & IPV6_ADDR_LINKLOCAL) { 834 /* Use our address to find the correct index. */ 835 ifindex = __rds_find_ifindex(&init_net, daddr6); 836 /* No index found... Need to bail out. */ 837 if (ifindex == 0) { 838 err = -EOPNOTSUPP; 839 goto out; 840 } 841 } 842 #else 843 err = -EOPNOTSUPP; 844 goto out; 845 #endif 846 } else { 847 dp_cmn = &dp->ricp_v4.dp_cmn; 848 ipv6_addr_set_v4mapped(dp->ricp_v4.dp_saddr, &s_mapped_addr); 849 ipv6_addr_set_v4mapped(dp->ricp_v4.dp_daddr, &d_mapped_addr); 850 saddr6 = &s_mapped_addr; 851 daddr6 = &d_mapped_addr; 852 } 853 854 rdsdebug("saddr %pI6c daddr %pI6c RDSv%u.%u lguid 0x%llx fguid 0x%llx, tos:%d\n", 855 saddr6, daddr6, RDS_PROTOCOL_MAJOR(version), 856 RDS_PROTOCOL_MINOR(version), 857 (unsigned long long)be64_to_cpu(lguid), 858 (unsigned long long)be64_to_cpu(fguid), dp_cmn->ricpc_dp_toss); 859 860 /* RDS/IB is not currently netns aware, thus init_net */ 861 conn = rds_conn_create(&init_net, daddr6, saddr6, 862 &rds_ib_transport, dp_cmn->ricpc_dp_toss, 863 GFP_KERNEL, ifindex); 864 if (IS_ERR(conn)) { 865 rdsdebug("rds_conn_create failed (%ld)\n", PTR_ERR(conn)); 866 conn = NULL; 867 goto out; 868 } 869 870 /* 871 * The connection request may occur while the 872 * previous connection exist, e.g. in case of failover. 873 * But as connections may be initiated simultaneously 874 * by both hosts, we have a random backoff mechanism - 875 * see the comment above rds_queue_reconnect() 876 */ 877 mutex_lock(&conn->c_cm_lock); 878 if (!rds_conn_transition(conn, RDS_CONN_DOWN, RDS_CONN_CONNECTING)) { 879 if (rds_conn_state(conn) == RDS_CONN_UP) { 880 rdsdebug("incoming connect while connecting\n"); 881 rds_conn_drop(conn); 882 rds_ib_stats_inc(s_ib_listen_closed_stale); 883 } else 884 if (rds_conn_state(conn) == RDS_CONN_CONNECTING) { 885 /* Wait and see - our connect may still be succeeding */ 886 rds_ib_stats_inc(s_ib_connect_raced); 887 } 888 goto out; 889 } 890 891 ic = conn->c_transport_data; 892 893 rds_ib_set_protocol(conn, version); 894 rds_ib_set_flow_control(conn, be32_to_cpu(dp_cmn->ricpc_credit)); 895 896 /* If the peer gave us the last packet it saw, process this as if 897 * we had received a regular ACK. */ 898 if (dp_cmn->ricpc_ack_seq) 899 rds_send_drop_acked(conn, be64_to_cpu(dp_cmn->ricpc_ack_seq), 900 NULL); 901 902 BUG_ON(cm_id->context); 903 BUG_ON(ic->i_cm_id); 904 905 ic->i_cm_id = cm_id; 906 cm_id->context = conn; 907 908 /* We got halfway through setting up the ib_connection, if we 909 * fail now, we have to take the long route out of this mess. */ 910 destroy = 0; 911 912 err = rds_ib_setup_qp(conn); 913 if (err) { 914 rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", err); 915 goto out; 916 } 917 918 rds_ib_cm_fill_conn_param(conn, &conn_param, &dp_rep, version, 919 event->param.conn.responder_resources, 920 event->param.conn.initiator_depth, isv6); 921 922 /* rdma_accept() calls rdma_reject() internally if it fails */ 923 if (rdma_accept(cm_id, &conn_param)) 924 rds_ib_conn_error(conn, "rdma_accept failed\n"); 925 926 out: 927 if (conn) 928 mutex_unlock(&conn->c_cm_lock); 929 if (err) 930 rdma_reject(cm_id, &err, sizeof(int)); 931 return destroy; 932 } 933 934 935 int rds_ib_cm_initiate_connect(struct rdma_cm_id *cm_id, bool isv6) 936 { 937 struct rds_connection *conn = cm_id->context; 938 struct rds_ib_connection *ic = conn->c_transport_data; 939 struct rdma_conn_param conn_param; 940 union rds_ib_conn_priv dp; 941 int ret; 942 943 /* If the peer doesn't do protocol negotiation, we must 944 * default to RDSv3.0 */ 945 rds_ib_set_protocol(conn, RDS_PROTOCOL_4_1); 946 ic->i_flowctl = rds_ib_sysctl_flow_control; /* advertise flow control */ 947 948 ret = rds_ib_setup_qp(conn); 949 if (ret) { 950 rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", ret); 951 goto out; 952 } 953 954 rds_ib_cm_fill_conn_param(conn, &conn_param, &dp, 955 conn->c_proposed_version, 956 UINT_MAX, UINT_MAX, isv6); 957 ret = rdma_connect(cm_id, &conn_param); 958 if (ret) 959 rds_ib_conn_error(conn, "rdma_connect failed (%d)\n", ret); 960 961 out: 962 /* Beware - returning non-zero tells the rdma_cm to destroy 963 * the cm_id. We should certainly not do it as long as we still 964 * "own" the cm_id. */ 965 if (ret) { 966 if (ic->i_cm_id == cm_id) 967 ret = 0; 968 } 969 ic->i_active_side = true; 970 return ret; 971 } 972 973 int rds_ib_conn_path_connect(struct rds_conn_path *cp) 974 { 975 struct rds_connection *conn = cp->cp_conn; 976 struct sockaddr_storage src, dest; 977 rdma_cm_event_handler handler; 978 struct rds_ib_connection *ic; 979 int ret; 980 981 ic = conn->c_transport_data; 982 983 /* XXX I wonder what affect the port space has */ 984 /* delegate cm event handler to rdma_transport */ 985 #if IS_ENABLED(CONFIG_IPV6) 986 if (conn->c_isv6) 987 handler = rds6_rdma_cm_event_handler; 988 else 989 #endif 990 handler = rds_rdma_cm_event_handler; 991 ic->i_cm_id = rdma_create_id(&init_net, handler, conn, 992 RDMA_PS_TCP, IB_QPT_RC); 993 if (IS_ERR(ic->i_cm_id)) { 994 ret = PTR_ERR(ic->i_cm_id); 995 ic->i_cm_id = NULL; 996 rdsdebug("rdma_create_id() failed: %d\n", ret); 997 goto out; 998 } 999 1000 rdsdebug("created cm id %p for conn %p\n", ic->i_cm_id, conn); 1001 1002 if (ipv6_addr_v4mapped(&conn->c_faddr)) { 1003 struct sockaddr_in *sin; 1004 1005 sin = (struct sockaddr_in *)&src; 1006 sin->sin_family = AF_INET; 1007 sin->sin_addr.s_addr = conn->c_laddr.s6_addr32[3]; 1008 sin->sin_port = 0; 1009 1010 sin = (struct sockaddr_in *)&dest; 1011 sin->sin_family = AF_INET; 1012 sin->sin_addr.s_addr = conn->c_faddr.s6_addr32[3]; 1013 sin->sin_port = htons(RDS_PORT); 1014 } else { 1015 struct sockaddr_in6 *sin6; 1016 1017 sin6 = (struct sockaddr_in6 *)&src; 1018 sin6->sin6_family = AF_INET6; 1019 sin6->sin6_addr = conn->c_laddr; 1020 sin6->sin6_port = 0; 1021 sin6->sin6_scope_id = conn->c_dev_if; 1022 1023 sin6 = (struct sockaddr_in6 *)&dest; 1024 sin6->sin6_family = AF_INET6; 1025 sin6->sin6_addr = conn->c_faddr; 1026 sin6->sin6_port = htons(RDS_CM_PORT); 1027 sin6->sin6_scope_id = conn->c_dev_if; 1028 } 1029 1030 ret = rdma_resolve_addr(ic->i_cm_id, (struct sockaddr *)&src, 1031 (struct sockaddr *)&dest, 1032 RDS_RDMA_RESOLVE_TIMEOUT_MS); 1033 if (ret) { 1034 rdsdebug("addr resolve failed for cm id %p: %d\n", ic->i_cm_id, 1035 ret); 1036 rdma_destroy_id(ic->i_cm_id); 1037 ic->i_cm_id = NULL; 1038 } 1039 1040 out: 1041 return ret; 1042 } 1043 1044 /* 1045 * This is so careful about only cleaning up resources that were built up 1046 * so that it can be called at any point during startup. In fact it 1047 * can be called multiple times for a given connection. 1048 */ 1049 void rds_ib_conn_path_shutdown(struct rds_conn_path *cp) 1050 { 1051 struct rds_connection *conn = cp->cp_conn; 1052 struct rds_ib_connection *ic = conn->c_transport_data; 1053 int err = 0; 1054 1055 rdsdebug("cm %p pd %p cq %p %p qp %p\n", ic->i_cm_id, 1056 ic->i_pd, ic->i_send_cq, ic->i_recv_cq, 1057 ic->i_cm_id ? ic->i_cm_id->qp : NULL); 1058 1059 if (ic->i_cm_id) { 1060 rdsdebug("disconnecting cm %p\n", ic->i_cm_id); 1061 err = rdma_disconnect(ic->i_cm_id); 1062 if (err) { 1063 /* Actually this may happen quite frequently, when 1064 * an outgoing connect raced with an incoming connect. 1065 */ 1066 rdsdebug("failed to disconnect, cm: %p err %d\n", 1067 ic->i_cm_id, err); 1068 } 1069 1070 /* kick off "flush_worker" for all pools in order to reap 1071 * all FRMR registrations that are still marked "FRMR_IS_INUSE" 1072 */ 1073 rds_ib_flush_mrs(); 1074 1075 /* 1076 * We want to wait for tx and rx completion to finish 1077 * before we tear down the connection, but we have to be 1078 * careful not to get stuck waiting on a send ring that 1079 * only has unsignaled sends in it. We've shutdown new 1080 * sends before getting here so by waiting for signaled 1081 * sends to complete we're ensured that there will be no 1082 * more tx processing. 1083 */ 1084 wait_event(rds_ib_ring_empty_wait, 1085 rds_ib_ring_empty(&ic->i_recv_ring) && 1086 (atomic_read(&ic->i_signaled_sends) == 0) && 1087 (atomic_read(&ic->i_fastreg_inuse_count) == 0) && 1088 (atomic_read(&ic->i_fastreg_wrs) == RDS_IB_DEFAULT_FR_WR)); 1089 tasklet_kill(&ic->i_send_tasklet); 1090 tasklet_kill(&ic->i_recv_tasklet); 1091 1092 atomic_set(&ic->i_cq_quiesce, 1); 1093 1094 /* first destroy the ib state that generates callbacks */ 1095 if (ic->i_cm_id->qp) 1096 rdma_destroy_qp(ic->i_cm_id); 1097 if (ic->i_send_cq) { 1098 if (ic->rds_ibdev) 1099 ibdev_put_vector(ic->rds_ibdev, ic->i_scq_vector); 1100 ib_destroy_cq(ic->i_send_cq); 1101 } 1102 1103 if (ic->i_recv_cq) { 1104 if (ic->rds_ibdev) 1105 ibdev_put_vector(ic->rds_ibdev, ic->i_rcq_vector); 1106 ib_destroy_cq(ic->i_recv_cq); 1107 } 1108 1109 if (ic->rds_ibdev) { 1110 struct dma_pool *pool; 1111 1112 pool = ic->rds_ibdev->rid_hdrs_pool; 1113 1114 /* then free the resources that ib callbacks use */ 1115 if (ic->i_send_hdrs) { 1116 rds_dma_hdrs_free(pool, ic->i_send_hdrs, 1117 ic->i_send_hdrs_dma, 1118 ic->i_send_ring.w_nr); 1119 ic->i_send_hdrs = NULL; 1120 ic->i_send_hdrs_dma = NULL; 1121 } 1122 1123 if (ic->i_recv_hdrs) { 1124 rds_dma_hdrs_free(pool, ic->i_recv_hdrs, 1125 ic->i_recv_hdrs_dma, 1126 ic->i_recv_ring.w_nr); 1127 ic->i_recv_hdrs = NULL; 1128 ic->i_recv_hdrs_dma = NULL; 1129 } 1130 1131 if (ic->i_ack) { 1132 dma_pool_free(pool, ic->i_ack, ic->i_ack_dma); 1133 ic->i_ack = NULL; 1134 } 1135 } else { 1136 WARN_ON(ic->i_send_hdrs); 1137 WARN_ON(ic->i_send_hdrs_dma); 1138 WARN_ON(ic->i_recv_hdrs); 1139 WARN_ON(ic->i_recv_hdrs_dma); 1140 WARN_ON(ic->i_ack); 1141 } 1142 1143 if (ic->i_sends) 1144 rds_ib_send_clear_ring(ic); 1145 if (ic->i_recvs) 1146 rds_ib_recv_clear_ring(ic); 1147 1148 rdma_destroy_id(ic->i_cm_id); 1149 1150 /* 1151 * Move connection back to the nodev list. 1152 */ 1153 if (ic->rds_ibdev) 1154 rds_ib_remove_conn(ic->rds_ibdev, conn); 1155 1156 ic->i_cm_id = NULL; 1157 ic->i_pd = NULL; 1158 ic->i_send_cq = NULL; 1159 ic->i_recv_cq = NULL; 1160 } 1161 BUG_ON(ic->rds_ibdev); 1162 1163 /* Clear pending transmit */ 1164 if (ic->i_data_op) { 1165 struct rds_message *rm; 1166 1167 rm = container_of(ic->i_data_op, struct rds_message, data); 1168 rds_message_put(rm); 1169 ic->i_data_op = NULL; 1170 } 1171 1172 /* Clear the ACK state */ 1173 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 1174 #ifdef KERNEL_HAS_ATOMIC64 1175 atomic64_set(&ic->i_ack_next, 0); 1176 #else 1177 ic->i_ack_next = 0; 1178 #endif 1179 ic->i_ack_recv = 0; 1180 1181 /* Clear flow control state */ 1182 ic->i_flowctl = 0; 1183 atomic_set(&ic->i_credits, 0); 1184 1185 /* Re-init rings, but retain sizes. */ 1186 rds_ib_ring_init(&ic->i_send_ring, ic->i_send_ring.w_nr); 1187 rds_ib_ring_init(&ic->i_recv_ring, ic->i_recv_ring.w_nr); 1188 1189 if (ic->i_ibinc) { 1190 rds_inc_put(&ic->i_ibinc->ii_inc); 1191 ic->i_ibinc = NULL; 1192 } 1193 1194 vfree(ic->i_sends); 1195 ic->i_sends = NULL; 1196 vfree(ic->i_recvs); 1197 ic->i_recvs = NULL; 1198 ic->i_active_side = false; 1199 } 1200 1201 int rds_ib_conn_alloc(struct rds_connection *conn, gfp_t gfp) 1202 { 1203 struct rds_ib_connection *ic; 1204 unsigned long flags; 1205 int ret; 1206 1207 /* XXX too lazy? */ 1208 ic = kzalloc(sizeof(struct rds_ib_connection), gfp); 1209 if (!ic) 1210 return -ENOMEM; 1211 1212 ret = rds_ib_recv_alloc_caches(ic, gfp); 1213 if (ret) { 1214 kfree(ic); 1215 return ret; 1216 } 1217 1218 INIT_LIST_HEAD(&ic->ib_node); 1219 tasklet_init(&ic->i_send_tasklet, rds_ib_tasklet_fn_send, 1220 (unsigned long)ic); 1221 tasklet_init(&ic->i_recv_tasklet, rds_ib_tasklet_fn_recv, 1222 (unsigned long)ic); 1223 mutex_init(&ic->i_recv_mutex); 1224 #ifndef KERNEL_HAS_ATOMIC64 1225 spin_lock_init(&ic->i_ack_lock); 1226 #endif 1227 atomic_set(&ic->i_signaled_sends, 0); 1228 atomic_set(&ic->i_fastreg_wrs, RDS_IB_DEFAULT_FR_WR); 1229 1230 /* 1231 * rds_ib_conn_shutdown() waits for these to be emptied so they 1232 * must be initialized before it can be called. 1233 */ 1234 rds_ib_ring_init(&ic->i_send_ring, 0); 1235 rds_ib_ring_init(&ic->i_recv_ring, 0); 1236 1237 ic->conn = conn; 1238 conn->c_transport_data = ic; 1239 1240 spin_lock_irqsave(&ib_nodev_conns_lock, flags); 1241 list_add_tail(&ic->ib_node, &ib_nodev_conns); 1242 spin_unlock_irqrestore(&ib_nodev_conns_lock, flags); 1243 1244 1245 rdsdebug("conn %p conn ic %p\n", conn, conn->c_transport_data); 1246 return 0; 1247 } 1248 1249 /* 1250 * Free a connection. Connection must be shut down and not set for reconnect. 1251 */ 1252 void rds_ib_conn_free(void *arg) 1253 { 1254 struct rds_ib_connection *ic = arg; 1255 spinlock_t *lock_ptr; 1256 1257 rdsdebug("ic %p\n", ic); 1258 1259 /* 1260 * Conn is either on a dev's list or on the nodev list. 1261 * A race with shutdown() or connect() would cause problems 1262 * (since rds_ibdev would change) but that should never happen. 1263 */ 1264 lock_ptr = ic->rds_ibdev ? &ic->rds_ibdev->spinlock : &ib_nodev_conns_lock; 1265 1266 spin_lock_irq(lock_ptr); 1267 list_del(&ic->ib_node); 1268 spin_unlock_irq(lock_ptr); 1269 1270 rds_ib_recv_free_caches(ic); 1271 1272 kfree(ic); 1273 } 1274 1275 1276 /* 1277 * An error occurred on the connection 1278 */ 1279 void 1280 __rds_ib_conn_error(struct rds_connection *conn, const char *fmt, ...) 1281 { 1282 va_list ap; 1283 1284 rds_conn_drop(conn); 1285 1286 va_start(ap, fmt); 1287 vprintk(fmt, ap); 1288 va_end(ap); 1289 } 1290