xref: /linux/net/rds/ib.c (revision fe810b509c5f62b5b3d5681ea6f5d36349ced979)
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/dmapool.h>
34 #include <linux/kernel.h>
35 #include <linux/in.h>
36 #include <linux/if.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/if_arp.h>
40 #include <linux/delay.h>
41 #include <linux/slab.h>
42 #include <linux/module.h>
43 #include <net/addrconf.h>
44 
45 #include "rds_single_path.h"
46 #include "rds.h"
47 #include "ib.h"
48 #include "ib_mr.h"
49 
50 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE;
51 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE;
52 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
53 static atomic_t rds_ib_unloading;
54 
55 module_param(rds_ib_mr_1m_pool_size, int, 0444);
56 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA");
57 module_param(rds_ib_mr_8k_pool_size, int, 0444);
58 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA");
59 module_param(rds_ib_retry_count, int, 0444);
60 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
61 
62 /*
63  * we have a clumsy combination of RCU and a rwsem protecting this list
64  * because it is used both in the get_mr fast path and while blocking in
65  * the FMR flushing path.
66  */
67 DECLARE_RWSEM(rds_ib_devices_lock);
68 struct list_head rds_ib_devices;
69 
70 /* NOTE: if also grabbing ibdev lock, grab this first */
71 DEFINE_SPINLOCK(ib_nodev_conns_lock);
72 LIST_HEAD(ib_nodev_conns);
73 
74 static void rds_ib_nodev_connect(void)
75 {
76 	struct rds_ib_connection *ic;
77 
78 	spin_lock(&ib_nodev_conns_lock);
79 	list_for_each_entry(ic, &ib_nodev_conns, ib_node)
80 		rds_conn_connect_if_down(ic->conn);
81 	spin_unlock(&ib_nodev_conns_lock);
82 }
83 
84 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
85 {
86 	struct rds_ib_connection *ic;
87 	unsigned long flags;
88 
89 	spin_lock_irqsave(&rds_ibdev->spinlock, flags);
90 	list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
91 		rds_conn_path_drop(&ic->conn->c_path[0], true);
92 	spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
93 }
94 
95 /*
96  * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
97  * from interrupt context so we push freing off into a work struct in krdsd.
98  */
99 static void rds_ib_dev_free(struct work_struct *work)
100 {
101 	struct rds_ib_ipaddr *i_ipaddr, *i_next;
102 	struct rds_ib_device *rds_ibdev = container_of(work,
103 					struct rds_ib_device, free_work);
104 
105 	if (rds_ibdev->mr_8k_pool)
106 		rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool);
107 	if (rds_ibdev->mr_1m_pool)
108 		rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool);
109 	if (rds_ibdev->pd)
110 		ib_dealloc_pd(rds_ibdev->pd);
111 	dma_pool_destroy(rds_ibdev->rid_hdrs_pool);
112 
113 	list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
114 		list_del(&i_ipaddr->list);
115 		kfree(i_ipaddr);
116 	}
117 
118 	kfree(rds_ibdev->vector_load);
119 
120 	kfree(rds_ibdev);
121 }
122 
123 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
124 {
125 	BUG_ON(refcount_read(&rds_ibdev->refcount) == 0);
126 	if (refcount_dec_and_test(&rds_ibdev->refcount))
127 		queue_work(rds_wq, &rds_ibdev->free_work);
128 }
129 
130 static int rds_ib_add_one(struct ib_device *device)
131 {
132 	struct rds_ib_device *rds_ibdev;
133 	bool has_fr, has_fmr;
134 	int ret;
135 
136 	/* Only handle IB (no iWARP) devices */
137 	if (device->node_type != RDMA_NODE_IB_CA)
138 		return -EOPNOTSUPP;
139 
140 	rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
141 				 ibdev_to_node(device));
142 	if (!rds_ibdev)
143 		return -ENOMEM;
144 
145 	spin_lock_init(&rds_ibdev->spinlock);
146 	refcount_set(&rds_ibdev->refcount, 1);
147 	INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
148 
149 	INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
150 	INIT_LIST_HEAD(&rds_ibdev->conn_list);
151 
152 	rds_ibdev->max_wrs = device->attrs.max_qp_wr;
153 	rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE);
154 
155 	has_fr = (device->attrs.device_cap_flags &
156 		  IB_DEVICE_MEM_MGT_EXTENSIONS);
157 	has_fmr = (device->ops.alloc_fmr && device->ops.dealloc_fmr &&
158 		   device->ops.map_phys_fmr && device->ops.unmap_fmr);
159 	rds_ibdev->use_fastreg = (has_fr && !has_fmr);
160 	rds_ibdev->odp_capable =
161 		!!(device->attrs.device_cap_flags &
162 		   IB_DEVICE_ON_DEMAND_PAGING) &&
163 		!!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps &
164 		   IB_ODP_SUPPORT_WRITE) &&
165 		!!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps &
166 		   IB_ODP_SUPPORT_READ);
167 
168 	rds_ibdev->fmr_max_remaps = device->attrs.max_map_per_fmr?: 32;
169 	rds_ibdev->max_1m_mrs = device->attrs.max_mr ?
170 		min_t(unsigned int, (device->attrs.max_mr / 2),
171 		      rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size;
172 
173 	rds_ibdev->max_8k_mrs = device->attrs.max_mr ?
174 		min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE),
175 		      rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size;
176 
177 	rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom;
178 	rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom;
179 
180 	rds_ibdev->vector_load = kcalloc(device->num_comp_vectors,
181 					 sizeof(int),
182 					 GFP_KERNEL);
183 	if (!rds_ibdev->vector_load) {
184 		pr_err("RDS/IB: %s failed to allocate vector memory\n",
185 			__func__);
186 		ret = -ENOMEM;
187 		goto put_dev;
188 	}
189 
190 	rds_ibdev->dev = device;
191 	rds_ibdev->pd = ib_alloc_pd(device, 0);
192 	if (IS_ERR(rds_ibdev->pd)) {
193 		ret = PTR_ERR(rds_ibdev->pd);
194 		rds_ibdev->pd = NULL;
195 		goto put_dev;
196 	}
197 	rds_ibdev->rid_hdrs_pool = dma_pool_create(device->name,
198 						   device->dma_device,
199 						   sizeof(struct rds_header),
200 						   L1_CACHE_BYTES, 0);
201 	if (!rds_ibdev->rid_hdrs_pool) {
202 		ret = -ENOMEM;
203 		goto put_dev;
204 	}
205 
206 	rds_ibdev->mr_1m_pool =
207 		rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL);
208 	if (IS_ERR(rds_ibdev->mr_1m_pool)) {
209 		ret = PTR_ERR(rds_ibdev->mr_1m_pool);
210 		rds_ibdev->mr_1m_pool = NULL;
211 		goto put_dev;
212 	}
213 
214 	rds_ibdev->mr_8k_pool =
215 		rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL);
216 	if (IS_ERR(rds_ibdev->mr_8k_pool)) {
217 		ret = PTR_ERR(rds_ibdev->mr_8k_pool);
218 		rds_ibdev->mr_8k_pool = NULL;
219 		goto put_dev;
220 	}
221 
222 	rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, fmr_max_remaps = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
223 		 device->attrs.max_fmr, rds_ibdev->max_wrs, rds_ibdev->max_sge,
224 		 rds_ibdev->fmr_max_remaps, rds_ibdev->max_1m_mrs,
225 		 rds_ibdev->max_8k_mrs);
226 
227 	pr_info("RDS/IB: %s: %s supported and preferred\n",
228 		device->name,
229 		rds_ibdev->use_fastreg ? "FRMR" : "FMR");
230 
231 	down_write(&rds_ib_devices_lock);
232 	list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
233 	up_write(&rds_ib_devices_lock);
234 	refcount_inc(&rds_ibdev->refcount);
235 
236 	ib_set_client_data(device, &rds_ib_client, rds_ibdev);
237 
238 	rds_ib_nodev_connect();
239 	return 0;
240 
241 put_dev:
242 	rds_ib_dev_put(rds_ibdev);
243 	return ret;
244 }
245 
246 /*
247  * New connections use this to find the device to associate with the
248  * connection.  It's not in the fast path so we're not concerned about the
249  * performance of the IB call.  (As of this writing, it uses an interrupt
250  * blocking spinlock to serialize walking a per-device list of all registered
251  * clients.)
252  *
253  * RCU is used to handle incoming connections racing with device teardown.
254  * Rather than use a lock to serialize removal from the client_data and
255  * getting a new reference, we use an RCU grace period.  The destruction
256  * path removes the device from client_data and then waits for all RCU
257  * readers to finish.
258  *
259  * A new connection can get NULL from this if its arriving on a
260  * device that is in the process of being removed.
261  */
262 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
263 {
264 	struct rds_ib_device *rds_ibdev;
265 
266 	rcu_read_lock();
267 	rds_ibdev = ib_get_client_data(device, &rds_ib_client);
268 	if (rds_ibdev)
269 		refcount_inc(&rds_ibdev->refcount);
270 	rcu_read_unlock();
271 	return rds_ibdev;
272 }
273 
274 /*
275  * The IB stack is letting us know that a device is going away.  This can
276  * happen if the underlying HCA driver is removed or if PCI hotplug is removing
277  * the pci function, for example.
278  *
279  * This can be called at any time and can be racing with any other RDS path.
280  */
281 static void rds_ib_remove_one(struct ib_device *device, void *client_data)
282 {
283 	struct rds_ib_device *rds_ibdev = client_data;
284 
285 	rds_ib_dev_shutdown(rds_ibdev);
286 
287 	/* stop connection attempts from getting a reference to this device. */
288 	ib_set_client_data(device, &rds_ib_client, NULL);
289 
290 	down_write(&rds_ib_devices_lock);
291 	list_del_rcu(&rds_ibdev->list);
292 	up_write(&rds_ib_devices_lock);
293 
294 	/*
295 	 * This synchronize rcu is waiting for readers of both the ib
296 	 * client data and the devices list to finish before we drop
297 	 * both of those references.
298 	 */
299 	synchronize_rcu();
300 	rds_ib_dev_put(rds_ibdev);
301 	rds_ib_dev_put(rds_ibdev);
302 }
303 
304 struct ib_client rds_ib_client = {
305 	.name   = "rds_ib",
306 	.add    = rds_ib_add_one,
307 	.remove = rds_ib_remove_one
308 };
309 
310 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
311 				    void *buffer)
312 {
313 	struct rds_info_rdma_connection *iinfo = buffer;
314 	struct rds_ib_connection *ic = conn->c_transport_data;
315 
316 	/* We will only ever look at IB transports */
317 	if (conn->c_trans != &rds_ib_transport)
318 		return 0;
319 	if (conn->c_isv6)
320 		return 0;
321 
322 	iinfo->src_addr = conn->c_laddr.s6_addr32[3];
323 	iinfo->dst_addr = conn->c_faddr.s6_addr32[3];
324 	if (ic) {
325 		iinfo->tos = conn->c_tos;
326 		iinfo->sl = ic->i_sl;
327 	}
328 
329 	memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
330 	memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
331 	if (rds_conn_state(conn) == RDS_CONN_UP) {
332 		struct rds_ib_device *rds_ibdev;
333 
334 		rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid,
335 			       (union ib_gid *)&iinfo->dst_gid);
336 
337 		rds_ibdev = ic->rds_ibdev;
338 		iinfo->max_send_wr = ic->i_send_ring.w_nr;
339 		iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
340 		iinfo->max_send_sge = rds_ibdev->max_sge;
341 		rds_ib_get_mr_info(rds_ibdev, iinfo);
342 		iinfo->cache_allocs = atomic_read(&ic->i_cache_allocs);
343 	}
344 	return 1;
345 }
346 
347 #if IS_ENABLED(CONFIG_IPV6)
348 /* IPv6 version of rds_ib_conn_info_visitor(). */
349 static int rds6_ib_conn_info_visitor(struct rds_connection *conn,
350 				     void *buffer)
351 {
352 	struct rds6_info_rdma_connection *iinfo6 = buffer;
353 	struct rds_ib_connection *ic = conn->c_transport_data;
354 
355 	/* We will only ever look at IB transports */
356 	if (conn->c_trans != &rds_ib_transport)
357 		return 0;
358 
359 	iinfo6->src_addr = conn->c_laddr;
360 	iinfo6->dst_addr = conn->c_faddr;
361 	if (ic) {
362 		iinfo6->tos = conn->c_tos;
363 		iinfo6->sl = ic->i_sl;
364 	}
365 
366 	memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid));
367 	memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid));
368 
369 	if (rds_conn_state(conn) == RDS_CONN_UP) {
370 		struct rds_ib_device *rds_ibdev;
371 
372 		rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid,
373 			       (union ib_gid *)&iinfo6->dst_gid);
374 		rds_ibdev = ic->rds_ibdev;
375 		iinfo6->max_send_wr = ic->i_send_ring.w_nr;
376 		iinfo6->max_recv_wr = ic->i_recv_ring.w_nr;
377 		iinfo6->max_send_sge = rds_ibdev->max_sge;
378 		rds6_ib_get_mr_info(rds_ibdev, iinfo6);
379 		iinfo6->cache_allocs = atomic_read(&ic->i_cache_allocs);
380 	}
381 	return 1;
382 }
383 #endif
384 
385 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
386 			   struct rds_info_iterator *iter,
387 			   struct rds_info_lengths *lens)
388 {
389 	u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8];
390 
391 	rds_for_each_conn_info(sock, len, iter, lens,
392 				rds_ib_conn_info_visitor,
393 				buffer,
394 				sizeof(struct rds_info_rdma_connection));
395 }
396 
397 #if IS_ENABLED(CONFIG_IPV6)
398 /* IPv6 version of rds_ib_ic_info(). */
399 static void rds6_ib_ic_info(struct socket *sock, unsigned int len,
400 			    struct rds_info_iterator *iter,
401 			    struct rds_info_lengths *lens)
402 {
403 	u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8];
404 
405 	rds_for_each_conn_info(sock, len, iter, lens,
406 			       rds6_ib_conn_info_visitor,
407 			       buffer,
408 			       sizeof(struct rds6_info_rdma_connection));
409 }
410 #endif
411 
412 /*
413  * Early RDS/IB was built to only bind to an address if there is an IPoIB
414  * device with that address set.
415  *
416  * If it were me, I'd advocate for something more flexible.  Sending and
417  * receiving should be device-agnostic.  Transports would try and maintain
418  * connections between peers who have messages queued.  Userspace would be
419  * allowed to influence which paths have priority.  We could call userspace
420  * asserting this policy "routing".
421  */
422 static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr,
423 			      __u32 scope_id)
424 {
425 	int ret;
426 	struct rdma_cm_id *cm_id;
427 #if IS_ENABLED(CONFIG_IPV6)
428 	struct sockaddr_in6 sin6;
429 #endif
430 	struct sockaddr_in sin;
431 	struct sockaddr *sa;
432 	bool isv4;
433 
434 	isv4 = ipv6_addr_v4mapped(addr);
435 	/* Create a CMA ID and try to bind it. This catches both
436 	 * IB and iWARP capable NICs.
437 	 */
438 	cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler,
439 			       NULL, RDMA_PS_TCP, IB_QPT_RC);
440 	if (IS_ERR(cm_id))
441 		return PTR_ERR(cm_id);
442 
443 	if (isv4) {
444 		memset(&sin, 0, sizeof(sin));
445 		sin.sin_family = AF_INET;
446 		sin.sin_addr.s_addr = addr->s6_addr32[3];
447 		sa = (struct sockaddr *)&sin;
448 	} else {
449 #if IS_ENABLED(CONFIG_IPV6)
450 		memset(&sin6, 0, sizeof(sin6));
451 		sin6.sin6_family = AF_INET6;
452 		sin6.sin6_addr = *addr;
453 		sin6.sin6_scope_id = scope_id;
454 		sa = (struct sockaddr *)&sin6;
455 
456 		/* XXX Do a special IPv6 link local address check here.  The
457 		 * reason is that rdma_bind_addr() always succeeds with IPv6
458 		 * link local address regardless it is indeed configured in a
459 		 * system.
460 		 */
461 		if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) {
462 			struct net_device *dev;
463 
464 			if (scope_id == 0) {
465 				ret = -EADDRNOTAVAIL;
466 				goto out;
467 			}
468 
469 			/* Use init_net for now as RDS is not network
470 			 * name space aware.
471 			 */
472 			dev = dev_get_by_index(&init_net, scope_id);
473 			if (!dev) {
474 				ret = -EADDRNOTAVAIL;
475 				goto out;
476 			}
477 			if (!ipv6_chk_addr(&init_net, addr, dev, 1)) {
478 				dev_put(dev);
479 				ret = -EADDRNOTAVAIL;
480 				goto out;
481 			}
482 			dev_put(dev);
483 		}
484 #else
485 		ret = -EADDRNOTAVAIL;
486 		goto out;
487 #endif
488 	}
489 
490 	/* rdma_bind_addr will only succeed for IB & iWARP devices */
491 	ret = rdma_bind_addr(cm_id, sa);
492 	/* due to this, we will claim to support iWARP devices unless we
493 	   check node_type. */
494 	if (ret || !cm_id->device ||
495 	    cm_id->device->node_type != RDMA_NODE_IB_CA)
496 		ret = -EADDRNOTAVAIL;
497 
498 	rdsdebug("addr %pI6c%%%u ret %d node type %d\n",
499 		 addr, scope_id, ret,
500 		 cm_id->device ? cm_id->device->node_type : -1);
501 
502 out:
503 	rdma_destroy_id(cm_id);
504 
505 	return ret;
506 }
507 
508 static void rds_ib_unregister_client(void)
509 {
510 	ib_unregister_client(&rds_ib_client);
511 	/* wait for rds_ib_dev_free() to complete */
512 	flush_workqueue(rds_wq);
513 }
514 
515 static void rds_ib_set_unloading(void)
516 {
517 	atomic_set(&rds_ib_unloading, 1);
518 }
519 
520 static bool rds_ib_is_unloading(struct rds_connection *conn)
521 {
522 	struct rds_conn_path *cp = &conn->c_path[0];
523 
524 	return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) ||
525 		atomic_read(&rds_ib_unloading) != 0);
526 }
527 
528 void rds_ib_exit(void)
529 {
530 	rds_ib_set_unloading();
531 	synchronize_rcu();
532 	rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
533 #if IS_ENABLED(CONFIG_IPV6)
534 	rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
535 #endif
536 	rds_ib_unregister_client();
537 	rds_ib_destroy_nodev_conns();
538 	rds_ib_sysctl_exit();
539 	rds_ib_recv_exit();
540 	rds_trans_unregister(&rds_ib_transport);
541 	rds_ib_mr_exit();
542 }
543 
544 static u8 rds_ib_get_tos_map(u8 tos)
545 {
546 	/* 1:1 user to transport map for RDMA transport.
547 	 * In future, if custom map is desired, hook can export
548 	 * user configurable map.
549 	 */
550 	return tos;
551 }
552 
553 struct rds_transport rds_ib_transport = {
554 	.laddr_check		= rds_ib_laddr_check,
555 	.xmit_path_complete	= rds_ib_xmit_path_complete,
556 	.xmit			= rds_ib_xmit,
557 	.xmit_rdma		= rds_ib_xmit_rdma,
558 	.xmit_atomic		= rds_ib_xmit_atomic,
559 	.recv_path		= rds_ib_recv_path,
560 	.conn_alloc		= rds_ib_conn_alloc,
561 	.conn_free		= rds_ib_conn_free,
562 	.conn_path_connect	= rds_ib_conn_path_connect,
563 	.conn_path_shutdown	= rds_ib_conn_path_shutdown,
564 	.inc_copy_to_user	= rds_ib_inc_copy_to_user,
565 	.inc_free		= rds_ib_inc_free,
566 	.cm_initiate_connect	= rds_ib_cm_initiate_connect,
567 	.cm_handle_connect	= rds_ib_cm_handle_connect,
568 	.cm_connect_complete	= rds_ib_cm_connect_complete,
569 	.stats_info_copy	= rds_ib_stats_info_copy,
570 	.exit			= rds_ib_exit,
571 	.get_mr			= rds_ib_get_mr,
572 	.sync_mr		= rds_ib_sync_mr,
573 	.free_mr		= rds_ib_free_mr,
574 	.flush_mrs		= rds_ib_flush_mrs,
575 	.get_tos_map		= rds_ib_get_tos_map,
576 	.t_owner		= THIS_MODULE,
577 	.t_name			= "infiniband",
578 	.t_unloading		= rds_ib_is_unloading,
579 	.t_type			= RDS_TRANS_IB
580 };
581 
582 int rds_ib_init(void)
583 {
584 	int ret;
585 
586 	INIT_LIST_HEAD(&rds_ib_devices);
587 
588 	ret = rds_ib_mr_init();
589 	if (ret)
590 		goto out;
591 
592 	ret = ib_register_client(&rds_ib_client);
593 	if (ret)
594 		goto out_mr_exit;
595 
596 	ret = rds_ib_sysctl_init();
597 	if (ret)
598 		goto out_ibreg;
599 
600 	ret = rds_ib_recv_init();
601 	if (ret)
602 		goto out_sysctl;
603 
604 	rds_trans_register(&rds_ib_transport);
605 
606 	rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
607 #if IS_ENABLED(CONFIG_IPV6)
608 	rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
609 #endif
610 
611 	goto out;
612 
613 out_sysctl:
614 	rds_ib_sysctl_exit();
615 out_ibreg:
616 	rds_ib_unregister_client();
617 out_mr_exit:
618 	rds_ib_mr_exit();
619 out:
620 	return ret;
621 }
622 
623 MODULE_LICENSE("GPL");
624