1 /* 2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/dmapool.h> 34 #include <linux/kernel.h> 35 #include <linux/in.h> 36 #include <linux/if.h> 37 #include <linux/netdevice.h> 38 #include <linux/inetdevice.h> 39 #include <linux/if_arp.h> 40 #include <linux/delay.h> 41 #include <linux/slab.h> 42 #include <linux/module.h> 43 #include <net/addrconf.h> 44 45 #include "rds_single_path.h" 46 #include "rds.h" 47 #include "ib.h" 48 #include "ib_mr.h" 49 50 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE; 51 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE; 52 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT; 53 static atomic_t rds_ib_unloading; 54 55 module_param(rds_ib_mr_1m_pool_size, int, 0444); 56 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA"); 57 module_param(rds_ib_mr_8k_pool_size, int, 0444); 58 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA"); 59 module_param(rds_ib_retry_count, int, 0444); 60 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error"); 61 62 /* 63 * we have a clumsy combination of RCU and a rwsem protecting this list 64 * because it is used both in the get_mr fast path and while blocking in 65 * the FMR flushing path. 66 */ 67 DECLARE_RWSEM(rds_ib_devices_lock); 68 struct list_head rds_ib_devices; 69 70 /* NOTE: if also grabbing ibdev lock, grab this first */ 71 DEFINE_SPINLOCK(ib_nodev_conns_lock); 72 LIST_HEAD(ib_nodev_conns); 73 74 static void rds_ib_nodev_connect(void) 75 { 76 struct rds_ib_connection *ic; 77 78 spin_lock(&ib_nodev_conns_lock); 79 list_for_each_entry(ic, &ib_nodev_conns, ib_node) 80 rds_conn_connect_if_down(ic->conn); 81 spin_unlock(&ib_nodev_conns_lock); 82 } 83 84 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev) 85 { 86 struct rds_ib_connection *ic; 87 unsigned long flags; 88 89 spin_lock_irqsave(&rds_ibdev->spinlock, flags); 90 list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node) 91 rds_conn_path_drop(&ic->conn->c_path[0], true); 92 spin_unlock_irqrestore(&rds_ibdev->spinlock, flags); 93 } 94 95 /* 96 * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references 97 * from interrupt context so we push freing off into a work struct in krdsd. 98 */ 99 static void rds_ib_dev_free(struct work_struct *work) 100 { 101 struct rds_ib_ipaddr *i_ipaddr, *i_next; 102 struct rds_ib_device *rds_ibdev = container_of(work, 103 struct rds_ib_device, free_work); 104 105 if (rds_ibdev->mr_8k_pool) 106 rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool); 107 if (rds_ibdev->mr_1m_pool) 108 rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool); 109 if (rds_ibdev->pd) 110 ib_dealloc_pd(rds_ibdev->pd); 111 dma_pool_destroy(rds_ibdev->rid_hdrs_pool); 112 113 list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) { 114 list_del(&i_ipaddr->list); 115 kfree(i_ipaddr); 116 } 117 118 kfree(rds_ibdev->vector_load); 119 120 kfree(rds_ibdev); 121 } 122 123 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev) 124 { 125 BUG_ON(refcount_read(&rds_ibdev->refcount) == 0); 126 if (refcount_dec_and_test(&rds_ibdev->refcount)) 127 queue_work(rds_wq, &rds_ibdev->free_work); 128 } 129 130 static int rds_ib_add_one(struct ib_device *device) 131 { 132 struct rds_ib_device *rds_ibdev; 133 bool has_fr, has_fmr; 134 int ret; 135 136 /* Only handle IB (no iWARP) devices */ 137 if (device->node_type != RDMA_NODE_IB_CA) 138 return -EOPNOTSUPP; 139 140 rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL, 141 ibdev_to_node(device)); 142 if (!rds_ibdev) 143 return -ENOMEM; 144 145 spin_lock_init(&rds_ibdev->spinlock); 146 refcount_set(&rds_ibdev->refcount, 1); 147 INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free); 148 149 INIT_LIST_HEAD(&rds_ibdev->ipaddr_list); 150 INIT_LIST_HEAD(&rds_ibdev->conn_list); 151 152 rds_ibdev->max_wrs = device->attrs.max_qp_wr; 153 rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE); 154 155 has_fr = (device->attrs.device_cap_flags & 156 IB_DEVICE_MEM_MGT_EXTENSIONS); 157 has_fmr = (device->ops.alloc_fmr && device->ops.dealloc_fmr && 158 device->ops.map_phys_fmr && device->ops.unmap_fmr); 159 rds_ibdev->use_fastreg = (has_fr && !has_fmr); 160 rds_ibdev->odp_capable = 161 !!(device->attrs.device_cap_flags & 162 IB_DEVICE_ON_DEMAND_PAGING) && 163 !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps & 164 IB_ODP_SUPPORT_WRITE) && 165 !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps & 166 IB_ODP_SUPPORT_READ); 167 168 rds_ibdev->fmr_max_remaps = device->attrs.max_map_per_fmr?: 32; 169 rds_ibdev->max_1m_mrs = device->attrs.max_mr ? 170 min_t(unsigned int, (device->attrs.max_mr / 2), 171 rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size; 172 173 rds_ibdev->max_8k_mrs = device->attrs.max_mr ? 174 min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE), 175 rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size; 176 177 rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom; 178 rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom; 179 180 rds_ibdev->vector_load = kcalloc(device->num_comp_vectors, 181 sizeof(int), 182 GFP_KERNEL); 183 if (!rds_ibdev->vector_load) { 184 pr_err("RDS/IB: %s failed to allocate vector memory\n", 185 __func__); 186 ret = -ENOMEM; 187 goto put_dev; 188 } 189 190 rds_ibdev->dev = device; 191 rds_ibdev->pd = ib_alloc_pd(device, 0); 192 if (IS_ERR(rds_ibdev->pd)) { 193 ret = PTR_ERR(rds_ibdev->pd); 194 rds_ibdev->pd = NULL; 195 goto put_dev; 196 } 197 rds_ibdev->rid_hdrs_pool = dma_pool_create(device->name, 198 device->dma_device, 199 sizeof(struct rds_header), 200 L1_CACHE_BYTES, 0); 201 if (!rds_ibdev->rid_hdrs_pool) { 202 ret = -ENOMEM; 203 goto put_dev; 204 } 205 206 rds_ibdev->mr_1m_pool = 207 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL); 208 if (IS_ERR(rds_ibdev->mr_1m_pool)) { 209 ret = PTR_ERR(rds_ibdev->mr_1m_pool); 210 rds_ibdev->mr_1m_pool = NULL; 211 goto put_dev; 212 } 213 214 rds_ibdev->mr_8k_pool = 215 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL); 216 if (IS_ERR(rds_ibdev->mr_8k_pool)) { 217 ret = PTR_ERR(rds_ibdev->mr_8k_pool); 218 rds_ibdev->mr_8k_pool = NULL; 219 goto put_dev; 220 } 221 222 rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, fmr_max_remaps = %d, max_1m_mrs = %d, max_8k_mrs = %d\n", 223 device->attrs.max_fmr, rds_ibdev->max_wrs, rds_ibdev->max_sge, 224 rds_ibdev->fmr_max_remaps, rds_ibdev->max_1m_mrs, 225 rds_ibdev->max_8k_mrs); 226 227 pr_info("RDS/IB: %s: %s supported and preferred\n", 228 device->name, 229 rds_ibdev->use_fastreg ? "FRMR" : "FMR"); 230 231 down_write(&rds_ib_devices_lock); 232 list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices); 233 up_write(&rds_ib_devices_lock); 234 refcount_inc(&rds_ibdev->refcount); 235 236 ib_set_client_data(device, &rds_ib_client, rds_ibdev); 237 238 rds_ib_nodev_connect(); 239 return 0; 240 241 put_dev: 242 rds_ib_dev_put(rds_ibdev); 243 return ret; 244 } 245 246 /* 247 * New connections use this to find the device to associate with the 248 * connection. It's not in the fast path so we're not concerned about the 249 * performance of the IB call. (As of this writing, it uses an interrupt 250 * blocking spinlock to serialize walking a per-device list of all registered 251 * clients.) 252 * 253 * RCU is used to handle incoming connections racing with device teardown. 254 * Rather than use a lock to serialize removal from the client_data and 255 * getting a new reference, we use an RCU grace period. The destruction 256 * path removes the device from client_data and then waits for all RCU 257 * readers to finish. 258 * 259 * A new connection can get NULL from this if its arriving on a 260 * device that is in the process of being removed. 261 */ 262 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device) 263 { 264 struct rds_ib_device *rds_ibdev; 265 266 rcu_read_lock(); 267 rds_ibdev = ib_get_client_data(device, &rds_ib_client); 268 if (rds_ibdev) 269 refcount_inc(&rds_ibdev->refcount); 270 rcu_read_unlock(); 271 return rds_ibdev; 272 } 273 274 /* 275 * The IB stack is letting us know that a device is going away. This can 276 * happen if the underlying HCA driver is removed or if PCI hotplug is removing 277 * the pci function, for example. 278 * 279 * This can be called at any time and can be racing with any other RDS path. 280 */ 281 static void rds_ib_remove_one(struct ib_device *device, void *client_data) 282 { 283 struct rds_ib_device *rds_ibdev = client_data; 284 285 rds_ib_dev_shutdown(rds_ibdev); 286 287 /* stop connection attempts from getting a reference to this device. */ 288 ib_set_client_data(device, &rds_ib_client, NULL); 289 290 down_write(&rds_ib_devices_lock); 291 list_del_rcu(&rds_ibdev->list); 292 up_write(&rds_ib_devices_lock); 293 294 /* 295 * This synchronize rcu is waiting for readers of both the ib 296 * client data and the devices list to finish before we drop 297 * both of those references. 298 */ 299 synchronize_rcu(); 300 rds_ib_dev_put(rds_ibdev); 301 rds_ib_dev_put(rds_ibdev); 302 } 303 304 struct ib_client rds_ib_client = { 305 .name = "rds_ib", 306 .add = rds_ib_add_one, 307 .remove = rds_ib_remove_one 308 }; 309 310 static int rds_ib_conn_info_visitor(struct rds_connection *conn, 311 void *buffer) 312 { 313 struct rds_info_rdma_connection *iinfo = buffer; 314 struct rds_ib_connection *ic = conn->c_transport_data; 315 316 /* We will only ever look at IB transports */ 317 if (conn->c_trans != &rds_ib_transport) 318 return 0; 319 if (conn->c_isv6) 320 return 0; 321 322 iinfo->src_addr = conn->c_laddr.s6_addr32[3]; 323 iinfo->dst_addr = conn->c_faddr.s6_addr32[3]; 324 if (ic) { 325 iinfo->tos = conn->c_tos; 326 iinfo->sl = ic->i_sl; 327 } 328 329 memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid)); 330 memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid)); 331 if (rds_conn_state(conn) == RDS_CONN_UP) { 332 struct rds_ib_device *rds_ibdev; 333 334 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid, 335 (union ib_gid *)&iinfo->dst_gid); 336 337 rds_ibdev = ic->rds_ibdev; 338 iinfo->max_send_wr = ic->i_send_ring.w_nr; 339 iinfo->max_recv_wr = ic->i_recv_ring.w_nr; 340 iinfo->max_send_sge = rds_ibdev->max_sge; 341 rds_ib_get_mr_info(rds_ibdev, iinfo); 342 iinfo->cache_allocs = atomic_read(&ic->i_cache_allocs); 343 } 344 return 1; 345 } 346 347 #if IS_ENABLED(CONFIG_IPV6) 348 /* IPv6 version of rds_ib_conn_info_visitor(). */ 349 static int rds6_ib_conn_info_visitor(struct rds_connection *conn, 350 void *buffer) 351 { 352 struct rds6_info_rdma_connection *iinfo6 = buffer; 353 struct rds_ib_connection *ic = conn->c_transport_data; 354 355 /* We will only ever look at IB transports */ 356 if (conn->c_trans != &rds_ib_transport) 357 return 0; 358 359 iinfo6->src_addr = conn->c_laddr; 360 iinfo6->dst_addr = conn->c_faddr; 361 if (ic) { 362 iinfo6->tos = conn->c_tos; 363 iinfo6->sl = ic->i_sl; 364 } 365 366 memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid)); 367 memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid)); 368 369 if (rds_conn_state(conn) == RDS_CONN_UP) { 370 struct rds_ib_device *rds_ibdev; 371 372 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid, 373 (union ib_gid *)&iinfo6->dst_gid); 374 rds_ibdev = ic->rds_ibdev; 375 iinfo6->max_send_wr = ic->i_send_ring.w_nr; 376 iinfo6->max_recv_wr = ic->i_recv_ring.w_nr; 377 iinfo6->max_send_sge = rds_ibdev->max_sge; 378 rds6_ib_get_mr_info(rds_ibdev, iinfo6); 379 iinfo6->cache_allocs = atomic_read(&ic->i_cache_allocs); 380 } 381 return 1; 382 } 383 #endif 384 385 static void rds_ib_ic_info(struct socket *sock, unsigned int len, 386 struct rds_info_iterator *iter, 387 struct rds_info_lengths *lens) 388 { 389 u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8]; 390 391 rds_for_each_conn_info(sock, len, iter, lens, 392 rds_ib_conn_info_visitor, 393 buffer, 394 sizeof(struct rds_info_rdma_connection)); 395 } 396 397 #if IS_ENABLED(CONFIG_IPV6) 398 /* IPv6 version of rds_ib_ic_info(). */ 399 static void rds6_ib_ic_info(struct socket *sock, unsigned int len, 400 struct rds_info_iterator *iter, 401 struct rds_info_lengths *lens) 402 { 403 u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8]; 404 405 rds_for_each_conn_info(sock, len, iter, lens, 406 rds6_ib_conn_info_visitor, 407 buffer, 408 sizeof(struct rds6_info_rdma_connection)); 409 } 410 #endif 411 412 /* 413 * Early RDS/IB was built to only bind to an address if there is an IPoIB 414 * device with that address set. 415 * 416 * If it were me, I'd advocate for something more flexible. Sending and 417 * receiving should be device-agnostic. Transports would try and maintain 418 * connections between peers who have messages queued. Userspace would be 419 * allowed to influence which paths have priority. We could call userspace 420 * asserting this policy "routing". 421 */ 422 static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr, 423 __u32 scope_id) 424 { 425 int ret; 426 struct rdma_cm_id *cm_id; 427 #if IS_ENABLED(CONFIG_IPV6) 428 struct sockaddr_in6 sin6; 429 #endif 430 struct sockaddr_in sin; 431 struct sockaddr *sa; 432 bool isv4; 433 434 isv4 = ipv6_addr_v4mapped(addr); 435 /* Create a CMA ID and try to bind it. This catches both 436 * IB and iWARP capable NICs. 437 */ 438 cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler, 439 NULL, RDMA_PS_TCP, IB_QPT_RC); 440 if (IS_ERR(cm_id)) 441 return PTR_ERR(cm_id); 442 443 if (isv4) { 444 memset(&sin, 0, sizeof(sin)); 445 sin.sin_family = AF_INET; 446 sin.sin_addr.s_addr = addr->s6_addr32[3]; 447 sa = (struct sockaddr *)&sin; 448 } else { 449 #if IS_ENABLED(CONFIG_IPV6) 450 memset(&sin6, 0, sizeof(sin6)); 451 sin6.sin6_family = AF_INET6; 452 sin6.sin6_addr = *addr; 453 sin6.sin6_scope_id = scope_id; 454 sa = (struct sockaddr *)&sin6; 455 456 /* XXX Do a special IPv6 link local address check here. The 457 * reason is that rdma_bind_addr() always succeeds with IPv6 458 * link local address regardless it is indeed configured in a 459 * system. 460 */ 461 if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) { 462 struct net_device *dev; 463 464 if (scope_id == 0) { 465 ret = -EADDRNOTAVAIL; 466 goto out; 467 } 468 469 /* Use init_net for now as RDS is not network 470 * name space aware. 471 */ 472 dev = dev_get_by_index(&init_net, scope_id); 473 if (!dev) { 474 ret = -EADDRNOTAVAIL; 475 goto out; 476 } 477 if (!ipv6_chk_addr(&init_net, addr, dev, 1)) { 478 dev_put(dev); 479 ret = -EADDRNOTAVAIL; 480 goto out; 481 } 482 dev_put(dev); 483 } 484 #else 485 ret = -EADDRNOTAVAIL; 486 goto out; 487 #endif 488 } 489 490 /* rdma_bind_addr will only succeed for IB & iWARP devices */ 491 ret = rdma_bind_addr(cm_id, sa); 492 /* due to this, we will claim to support iWARP devices unless we 493 check node_type. */ 494 if (ret || !cm_id->device || 495 cm_id->device->node_type != RDMA_NODE_IB_CA) 496 ret = -EADDRNOTAVAIL; 497 498 rdsdebug("addr %pI6c%%%u ret %d node type %d\n", 499 addr, scope_id, ret, 500 cm_id->device ? cm_id->device->node_type : -1); 501 502 out: 503 rdma_destroy_id(cm_id); 504 505 return ret; 506 } 507 508 static void rds_ib_unregister_client(void) 509 { 510 ib_unregister_client(&rds_ib_client); 511 /* wait for rds_ib_dev_free() to complete */ 512 flush_workqueue(rds_wq); 513 } 514 515 static void rds_ib_set_unloading(void) 516 { 517 atomic_set(&rds_ib_unloading, 1); 518 } 519 520 static bool rds_ib_is_unloading(struct rds_connection *conn) 521 { 522 struct rds_conn_path *cp = &conn->c_path[0]; 523 524 return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) || 525 atomic_read(&rds_ib_unloading) != 0); 526 } 527 528 void rds_ib_exit(void) 529 { 530 rds_ib_set_unloading(); 531 synchronize_rcu(); 532 rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); 533 #if IS_ENABLED(CONFIG_IPV6) 534 rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info); 535 #endif 536 rds_ib_unregister_client(); 537 rds_ib_destroy_nodev_conns(); 538 rds_ib_sysctl_exit(); 539 rds_ib_recv_exit(); 540 rds_trans_unregister(&rds_ib_transport); 541 rds_ib_mr_exit(); 542 } 543 544 static u8 rds_ib_get_tos_map(u8 tos) 545 { 546 /* 1:1 user to transport map for RDMA transport. 547 * In future, if custom map is desired, hook can export 548 * user configurable map. 549 */ 550 return tos; 551 } 552 553 struct rds_transport rds_ib_transport = { 554 .laddr_check = rds_ib_laddr_check, 555 .xmit_path_complete = rds_ib_xmit_path_complete, 556 .xmit = rds_ib_xmit, 557 .xmit_rdma = rds_ib_xmit_rdma, 558 .xmit_atomic = rds_ib_xmit_atomic, 559 .recv_path = rds_ib_recv_path, 560 .conn_alloc = rds_ib_conn_alloc, 561 .conn_free = rds_ib_conn_free, 562 .conn_path_connect = rds_ib_conn_path_connect, 563 .conn_path_shutdown = rds_ib_conn_path_shutdown, 564 .inc_copy_to_user = rds_ib_inc_copy_to_user, 565 .inc_free = rds_ib_inc_free, 566 .cm_initiate_connect = rds_ib_cm_initiate_connect, 567 .cm_handle_connect = rds_ib_cm_handle_connect, 568 .cm_connect_complete = rds_ib_cm_connect_complete, 569 .stats_info_copy = rds_ib_stats_info_copy, 570 .exit = rds_ib_exit, 571 .get_mr = rds_ib_get_mr, 572 .sync_mr = rds_ib_sync_mr, 573 .free_mr = rds_ib_free_mr, 574 .flush_mrs = rds_ib_flush_mrs, 575 .get_tos_map = rds_ib_get_tos_map, 576 .t_owner = THIS_MODULE, 577 .t_name = "infiniband", 578 .t_unloading = rds_ib_is_unloading, 579 .t_type = RDS_TRANS_IB 580 }; 581 582 int rds_ib_init(void) 583 { 584 int ret; 585 586 INIT_LIST_HEAD(&rds_ib_devices); 587 588 ret = rds_ib_mr_init(); 589 if (ret) 590 goto out; 591 592 ret = ib_register_client(&rds_ib_client); 593 if (ret) 594 goto out_mr_exit; 595 596 ret = rds_ib_sysctl_init(); 597 if (ret) 598 goto out_ibreg; 599 600 ret = rds_ib_recv_init(); 601 if (ret) 602 goto out_sysctl; 603 604 rds_trans_register(&rds_ib_transport); 605 606 rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); 607 #if IS_ENABLED(CONFIG_IPV6) 608 rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info); 609 #endif 610 611 goto out; 612 613 out_sysctl: 614 rds_ib_sysctl_exit(); 615 out_ibreg: 616 rds_ib_unregister_client(); 617 out_mr_exit: 618 rds_ib_mr_exit(); 619 out: 620 return ret; 621 } 622 623 MODULE_LICENSE("GPL"); 624