1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/in.h> 35 #include <linux/if.h> 36 #include <linux/netdevice.h> 37 #include <linux/inetdevice.h> 38 #include <linux/if_arp.h> 39 #include <linux/delay.h> 40 #include <linux/slab.h> 41 #include <linux/module.h> 42 43 #include "rds.h" 44 #include "ib.h" 45 46 unsigned int rds_ib_fmr_1m_pool_size = RDS_FMR_1M_POOL_SIZE; 47 unsigned int rds_ib_fmr_8k_pool_size = RDS_FMR_8K_POOL_SIZE; 48 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT; 49 50 module_param(rds_ib_fmr_1m_pool_size, int, 0444); 51 MODULE_PARM_DESC(rds_ib_fmr_1m_pool_size, " Max number of 1M fmr per HCA"); 52 module_param(rds_ib_fmr_8k_pool_size, int, 0444); 53 MODULE_PARM_DESC(rds_ib_fmr_8k_pool_size, " Max number of 8K fmr per HCA"); 54 module_param(rds_ib_retry_count, int, 0444); 55 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error"); 56 57 /* 58 * we have a clumsy combination of RCU and a rwsem protecting this list 59 * because it is used both in the get_mr fast path and while blocking in 60 * the FMR flushing path. 61 */ 62 DECLARE_RWSEM(rds_ib_devices_lock); 63 struct list_head rds_ib_devices; 64 65 /* NOTE: if also grabbing ibdev lock, grab this first */ 66 DEFINE_SPINLOCK(ib_nodev_conns_lock); 67 LIST_HEAD(ib_nodev_conns); 68 69 static void rds_ib_nodev_connect(void) 70 { 71 struct rds_ib_connection *ic; 72 73 spin_lock(&ib_nodev_conns_lock); 74 list_for_each_entry(ic, &ib_nodev_conns, ib_node) 75 rds_conn_connect_if_down(ic->conn); 76 spin_unlock(&ib_nodev_conns_lock); 77 } 78 79 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev) 80 { 81 struct rds_ib_connection *ic; 82 unsigned long flags; 83 84 spin_lock_irqsave(&rds_ibdev->spinlock, flags); 85 list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node) 86 rds_conn_drop(ic->conn); 87 spin_unlock_irqrestore(&rds_ibdev->spinlock, flags); 88 } 89 90 /* 91 * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references 92 * from interrupt context so we push freing off into a work struct in krdsd. 93 */ 94 static void rds_ib_dev_free(struct work_struct *work) 95 { 96 struct rds_ib_ipaddr *i_ipaddr, *i_next; 97 struct rds_ib_device *rds_ibdev = container_of(work, 98 struct rds_ib_device, free_work); 99 100 if (rds_ibdev->mr_8k_pool) 101 rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool); 102 if (rds_ibdev->mr_1m_pool) 103 rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool); 104 if (rds_ibdev->pd) 105 ib_dealloc_pd(rds_ibdev->pd); 106 107 list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) { 108 list_del(&i_ipaddr->list); 109 kfree(i_ipaddr); 110 } 111 112 kfree(rds_ibdev); 113 } 114 115 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev) 116 { 117 BUG_ON(atomic_read(&rds_ibdev->refcount) <= 0); 118 if (atomic_dec_and_test(&rds_ibdev->refcount)) 119 queue_work(rds_wq, &rds_ibdev->free_work); 120 } 121 122 static void rds_ib_add_one(struct ib_device *device) 123 { 124 struct rds_ib_device *rds_ibdev; 125 126 /* Only handle IB (no iWARP) devices */ 127 if (device->node_type != RDMA_NODE_IB_CA) 128 return; 129 130 rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL, 131 ibdev_to_node(device)); 132 if (!rds_ibdev) 133 return; 134 135 spin_lock_init(&rds_ibdev->spinlock); 136 atomic_set(&rds_ibdev->refcount, 1); 137 INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free); 138 139 rds_ibdev->max_wrs = device->attrs.max_qp_wr; 140 rds_ibdev->max_sge = min(device->attrs.max_sge, RDS_IB_MAX_SGE); 141 142 rds_ibdev->fmr_max_remaps = device->attrs.max_map_per_fmr?: 32; 143 rds_ibdev->max_1m_fmrs = device->attrs.max_mr ? 144 min_t(unsigned int, (device->attrs.max_mr / 2), 145 rds_ib_fmr_1m_pool_size) : rds_ib_fmr_1m_pool_size; 146 147 rds_ibdev->max_8k_fmrs = device->attrs.max_mr ? 148 min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE), 149 rds_ib_fmr_8k_pool_size) : rds_ib_fmr_8k_pool_size; 150 151 rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom; 152 rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom; 153 154 rds_ibdev->dev = device; 155 rds_ibdev->pd = ib_alloc_pd(device); 156 if (IS_ERR(rds_ibdev->pd)) { 157 rds_ibdev->pd = NULL; 158 goto put_dev; 159 } 160 161 rds_ibdev->mr_1m_pool = 162 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL); 163 if (IS_ERR(rds_ibdev->mr_1m_pool)) { 164 rds_ibdev->mr_1m_pool = NULL; 165 goto put_dev; 166 } 167 168 rds_ibdev->mr_8k_pool = 169 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL); 170 if (IS_ERR(rds_ibdev->mr_8k_pool)) { 171 rds_ibdev->mr_8k_pool = NULL; 172 goto put_dev; 173 } 174 175 rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, fmr_max_remaps = %d, max_1m_fmrs = %d, max_8k_fmrs = %d\n", 176 device->attrs.max_fmr, rds_ibdev->max_wrs, rds_ibdev->max_sge, 177 rds_ibdev->fmr_max_remaps, rds_ibdev->max_1m_fmrs, 178 rds_ibdev->max_8k_fmrs); 179 180 INIT_LIST_HEAD(&rds_ibdev->ipaddr_list); 181 INIT_LIST_HEAD(&rds_ibdev->conn_list); 182 183 down_write(&rds_ib_devices_lock); 184 list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices); 185 up_write(&rds_ib_devices_lock); 186 atomic_inc(&rds_ibdev->refcount); 187 188 ib_set_client_data(device, &rds_ib_client, rds_ibdev); 189 atomic_inc(&rds_ibdev->refcount); 190 191 rds_ib_nodev_connect(); 192 193 put_dev: 194 rds_ib_dev_put(rds_ibdev); 195 } 196 197 /* 198 * New connections use this to find the device to associate with the 199 * connection. It's not in the fast path so we're not concerned about the 200 * performance of the IB call. (As of this writing, it uses an interrupt 201 * blocking spinlock to serialize walking a per-device list of all registered 202 * clients.) 203 * 204 * RCU is used to handle incoming connections racing with device teardown. 205 * Rather than use a lock to serialize removal from the client_data and 206 * getting a new reference, we use an RCU grace period. The destruction 207 * path removes the device from client_data and then waits for all RCU 208 * readers to finish. 209 * 210 * A new connection can get NULL from this if its arriving on a 211 * device that is in the process of being removed. 212 */ 213 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device) 214 { 215 struct rds_ib_device *rds_ibdev; 216 217 rcu_read_lock(); 218 rds_ibdev = ib_get_client_data(device, &rds_ib_client); 219 if (rds_ibdev) 220 atomic_inc(&rds_ibdev->refcount); 221 rcu_read_unlock(); 222 return rds_ibdev; 223 } 224 225 /* 226 * The IB stack is letting us know that a device is going away. This can 227 * happen if the underlying HCA driver is removed or if PCI hotplug is removing 228 * the pci function, for example. 229 * 230 * This can be called at any time and can be racing with any other RDS path. 231 */ 232 static void rds_ib_remove_one(struct ib_device *device, void *client_data) 233 { 234 struct rds_ib_device *rds_ibdev = client_data; 235 236 if (!rds_ibdev) 237 return; 238 239 rds_ib_dev_shutdown(rds_ibdev); 240 241 /* stop connection attempts from getting a reference to this device. */ 242 ib_set_client_data(device, &rds_ib_client, NULL); 243 244 down_write(&rds_ib_devices_lock); 245 list_del_rcu(&rds_ibdev->list); 246 up_write(&rds_ib_devices_lock); 247 248 /* 249 * This synchronize rcu is waiting for readers of both the ib 250 * client data and the devices list to finish before we drop 251 * both of those references. 252 */ 253 synchronize_rcu(); 254 rds_ib_dev_put(rds_ibdev); 255 rds_ib_dev_put(rds_ibdev); 256 } 257 258 struct ib_client rds_ib_client = { 259 .name = "rds_ib", 260 .add = rds_ib_add_one, 261 .remove = rds_ib_remove_one 262 }; 263 264 static int rds_ib_conn_info_visitor(struct rds_connection *conn, 265 void *buffer) 266 { 267 struct rds_info_rdma_connection *iinfo = buffer; 268 struct rds_ib_connection *ic; 269 270 /* We will only ever look at IB transports */ 271 if (conn->c_trans != &rds_ib_transport) 272 return 0; 273 274 iinfo->src_addr = conn->c_laddr; 275 iinfo->dst_addr = conn->c_faddr; 276 277 memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid)); 278 memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid)); 279 if (rds_conn_state(conn) == RDS_CONN_UP) { 280 struct rds_ib_device *rds_ibdev; 281 struct rdma_dev_addr *dev_addr; 282 283 ic = conn->c_transport_data; 284 dev_addr = &ic->i_cm_id->route.addr.dev_addr; 285 286 rdma_addr_get_sgid(dev_addr, (union ib_gid *) &iinfo->src_gid); 287 rdma_addr_get_dgid(dev_addr, (union ib_gid *) &iinfo->dst_gid); 288 289 rds_ibdev = ic->rds_ibdev; 290 iinfo->max_send_wr = ic->i_send_ring.w_nr; 291 iinfo->max_recv_wr = ic->i_recv_ring.w_nr; 292 iinfo->max_send_sge = rds_ibdev->max_sge; 293 rds_ib_get_mr_info(rds_ibdev, iinfo); 294 } 295 return 1; 296 } 297 298 static void rds_ib_ic_info(struct socket *sock, unsigned int len, 299 struct rds_info_iterator *iter, 300 struct rds_info_lengths *lens) 301 { 302 rds_for_each_conn_info(sock, len, iter, lens, 303 rds_ib_conn_info_visitor, 304 sizeof(struct rds_info_rdma_connection)); 305 } 306 307 308 /* 309 * Early RDS/IB was built to only bind to an address if there is an IPoIB 310 * device with that address set. 311 * 312 * If it were me, I'd advocate for something more flexible. Sending and 313 * receiving should be device-agnostic. Transports would try and maintain 314 * connections between peers who have messages queued. Userspace would be 315 * allowed to influence which paths have priority. We could call userspace 316 * asserting this policy "routing". 317 */ 318 static int rds_ib_laddr_check(struct net *net, __be32 addr) 319 { 320 int ret; 321 struct rdma_cm_id *cm_id; 322 struct sockaddr_in sin; 323 324 /* Create a CMA ID and try to bind it. This catches both 325 * IB and iWARP capable NICs. 326 */ 327 cm_id = rdma_create_id(&init_net, NULL, NULL, RDMA_PS_TCP, IB_QPT_RC); 328 if (IS_ERR(cm_id)) 329 return PTR_ERR(cm_id); 330 331 memset(&sin, 0, sizeof(sin)); 332 sin.sin_family = AF_INET; 333 sin.sin_addr.s_addr = addr; 334 335 /* rdma_bind_addr will only succeed for IB & iWARP devices */ 336 ret = rdma_bind_addr(cm_id, (struct sockaddr *)&sin); 337 /* due to this, we will claim to support iWARP devices unless we 338 check node_type. */ 339 if (ret || !cm_id->device || 340 cm_id->device->node_type != RDMA_NODE_IB_CA) 341 ret = -EADDRNOTAVAIL; 342 343 rdsdebug("addr %pI4 ret %d node type %d\n", 344 &addr, ret, 345 cm_id->device ? cm_id->device->node_type : -1); 346 347 rdma_destroy_id(cm_id); 348 349 return ret; 350 } 351 352 static void rds_ib_unregister_client(void) 353 { 354 ib_unregister_client(&rds_ib_client); 355 /* wait for rds_ib_dev_free() to complete */ 356 flush_workqueue(rds_wq); 357 } 358 359 void rds_ib_exit(void) 360 { 361 rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); 362 rds_ib_unregister_client(); 363 rds_ib_destroy_nodev_conns(); 364 rds_ib_sysctl_exit(); 365 rds_ib_recv_exit(); 366 rds_trans_unregister(&rds_ib_transport); 367 rds_ib_fmr_exit(); 368 } 369 370 struct rds_transport rds_ib_transport = { 371 .laddr_check = rds_ib_laddr_check, 372 .xmit_complete = rds_ib_xmit_complete, 373 .xmit = rds_ib_xmit, 374 .xmit_rdma = rds_ib_xmit_rdma, 375 .xmit_atomic = rds_ib_xmit_atomic, 376 .recv = rds_ib_recv, 377 .conn_alloc = rds_ib_conn_alloc, 378 .conn_free = rds_ib_conn_free, 379 .conn_connect = rds_ib_conn_connect, 380 .conn_shutdown = rds_ib_conn_shutdown, 381 .inc_copy_to_user = rds_ib_inc_copy_to_user, 382 .inc_free = rds_ib_inc_free, 383 .cm_initiate_connect = rds_ib_cm_initiate_connect, 384 .cm_handle_connect = rds_ib_cm_handle_connect, 385 .cm_connect_complete = rds_ib_cm_connect_complete, 386 .stats_info_copy = rds_ib_stats_info_copy, 387 .exit = rds_ib_exit, 388 .get_mr = rds_ib_get_mr, 389 .sync_mr = rds_ib_sync_mr, 390 .free_mr = rds_ib_free_mr, 391 .flush_mrs = rds_ib_flush_mrs, 392 .t_owner = THIS_MODULE, 393 .t_name = "infiniband", 394 .t_type = RDS_TRANS_IB 395 }; 396 397 int rds_ib_init(void) 398 { 399 int ret; 400 401 INIT_LIST_HEAD(&rds_ib_devices); 402 403 ret = rds_ib_fmr_init(); 404 if (ret) 405 goto out; 406 407 ret = ib_register_client(&rds_ib_client); 408 if (ret) 409 goto out_fmr_exit; 410 411 ret = rds_ib_sysctl_init(); 412 if (ret) 413 goto out_ibreg; 414 415 ret = rds_ib_recv_init(); 416 if (ret) 417 goto out_sysctl; 418 419 ret = rds_trans_register(&rds_ib_transport); 420 if (ret) 421 goto out_recv; 422 423 rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); 424 425 goto out; 426 427 out_recv: 428 rds_ib_recv_exit(); 429 out_sysctl: 430 rds_ib_sysctl_exit(); 431 out_ibreg: 432 rds_ib_unregister_client(); 433 out_fmr_exit: 434 rds_ib_fmr_exit(); 435 out: 436 return ret; 437 } 438 439 MODULE_LICENSE("GPL"); 440 441