xref: /linux/net/rds/ib.c (revision 9a379e77033f02c4a071891afdf0f0a01eff8ccb)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/if.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/if_arp.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 
43 #include "rds_single_path.h"
44 #include "rds.h"
45 #include "ib.h"
46 #include "ib_mr.h"
47 
48 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE;
49 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE;
50 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
51 static atomic_t rds_ib_unloading;
52 
53 module_param(rds_ib_mr_1m_pool_size, int, 0444);
54 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA");
55 module_param(rds_ib_mr_8k_pool_size, int, 0444);
56 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA");
57 module_param(rds_ib_retry_count, int, 0444);
58 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
59 
60 /*
61  * we have a clumsy combination of RCU and a rwsem protecting this list
62  * because it is used both in the get_mr fast path and while blocking in
63  * the FMR flushing path.
64  */
65 DECLARE_RWSEM(rds_ib_devices_lock);
66 struct list_head rds_ib_devices;
67 
68 /* NOTE: if also grabbing ibdev lock, grab this first */
69 DEFINE_SPINLOCK(ib_nodev_conns_lock);
70 LIST_HEAD(ib_nodev_conns);
71 
72 static void rds_ib_nodev_connect(void)
73 {
74 	struct rds_ib_connection *ic;
75 
76 	spin_lock(&ib_nodev_conns_lock);
77 	list_for_each_entry(ic, &ib_nodev_conns, ib_node)
78 		rds_conn_connect_if_down(ic->conn);
79 	spin_unlock(&ib_nodev_conns_lock);
80 }
81 
82 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
83 {
84 	struct rds_ib_connection *ic;
85 	unsigned long flags;
86 
87 	spin_lock_irqsave(&rds_ibdev->spinlock, flags);
88 	list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
89 		rds_conn_drop(ic->conn);
90 	spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
91 }
92 
93 /*
94  * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
95  * from interrupt context so we push freing off into a work struct in krdsd.
96  */
97 static void rds_ib_dev_free(struct work_struct *work)
98 {
99 	struct rds_ib_ipaddr *i_ipaddr, *i_next;
100 	struct rds_ib_device *rds_ibdev = container_of(work,
101 					struct rds_ib_device, free_work);
102 
103 	if (rds_ibdev->mr_8k_pool)
104 		rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool);
105 	if (rds_ibdev->mr_1m_pool)
106 		rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool);
107 	if (rds_ibdev->pd)
108 		ib_dealloc_pd(rds_ibdev->pd);
109 
110 	list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
111 		list_del(&i_ipaddr->list);
112 		kfree(i_ipaddr);
113 	}
114 
115 	kfree(rds_ibdev->vector_load);
116 
117 	kfree(rds_ibdev);
118 }
119 
120 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
121 {
122 	BUG_ON(refcount_read(&rds_ibdev->refcount) == 0);
123 	if (refcount_dec_and_test(&rds_ibdev->refcount))
124 		queue_work(rds_wq, &rds_ibdev->free_work);
125 }
126 
127 static void rds_ib_add_one(struct ib_device *device)
128 {
129 	struct rds_ib_device *rds_ibdev;
130 	bool has_fr, has_fmr;
131 
132 	/* Only handle IB (no iWARP) devices */
133 	if (device->node_type != RDMA_NODE_IB_CA)
134 		return;
135 
136 	rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
137 				 ibdev_to_node(device));
138 	if (!rds_ibdev)
139 		return;
140 
141 	spin_lock_init(&rds_ibdev->spinlock);
142 	refcount_set(&rds_ibdev->refcount, 1);
143 	INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
144 
145 	rds_ibdev->max_wrs = device->attrs.max_qp_wr;
146 	rds_ibdev->max_sge = min(device->attrs.max_sge, RDS_IB_MAX_SGE);
147 
148 	has_fr = (device->attrs.device_cap_flags &
149 		  IB_DEVICE_MEM_MGT_EXTENSIONS);
150 	has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
151 		   device->map_phys_fmr && device->unmap_fmr);
152 	rds_ibdev->use_fastreg = (has_fr && !has_fmr);
153 
154 	rds_ibdev->fmr_max_remaps = device->attrs.max_map_per_fmr?: 32;
155 	rds_ibdev->max_1m_mrs = device->attrs.max_mr ?
156 		min_t(unsigned int, (device->attrs.max_mr / 2),
157 		      rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size;
158 
159 	rds_ibdev->max_8k_mrs = device->attrs.max_mr ?
160 		min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE),
161 		      rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size;
162 
163 	rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom;
164 	rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom;
165 
166 	rds_ibdev->vector_load = kzalloc(sizeof(int) * device->num_comp_vectors,
167 					 GFP_KERNEL);
168 	if (!rds_ibdev->vector_load) {
169 		pr_err("RDS/IB: %s failed to allocate vector memory\n",
170 			__func__);
171 		goto put_dev;
172 	}
173 
174 	rds_ibdev->dev = device;
175 	rds_ibdev->pd = ib_alloc_pd(device, 0);
176 	if (IS_ERR(rds_ibdev->pd)) {
177 		rds_ibdev->pd = NULL;
178 		goto put_dev;
179 	}
180 
181 	rds_ibdev->mr_1m_pool =
182 		rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL);
183 	if (IS_ERR(rds_ibdev->mr_1m_pool)) {
184 		rds_ibdev->mr_1m_pool = NULL;
185 		goto put_dev;
186 	}
187 
188 	rds_ibdev->mr_8k_pool =
189 		rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL);
190 	if (IS_ERR(rds_ibdev->mr_8k_pool)) {
191 		rds_ibdev->mr_8k_pool = NULL;
192 		goto put_dev;
193 	}
194 
195 	rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, fmr_max_remaps = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
196 		 device->attrs.max_fmr, rds_ibdev->max_wrs, rds_ibdev->max_sge,
197 		 rds_ibdev->fmr_max_remaps, rds_ibdev->max_1m_mrs,
198 		 rds_ibdev->max_8k_mrs);
199 
200 	pr_info("RDS/IB: %s: %s supported and preferred\n",
201 		device->name,
202 		rds_ibdev->use_fastreg ? "FRMR" : "FMR");
203 
204 	INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
205 	INIT_LIST_HEAD(&rds_ibdev->conn_list);
206 
207 	down_write(&rds_ib_devices_lock);
208 	list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
209 	up_write(&rds_ib_devices_lock);
210 	refcount_inc(&rds_ibdev->refcount);
211 
212 	ib_set_client_data(device, &rds_ib_client, rds_ibdev);
213 	refcount_inc(&rds_ibdev->refcount);
214 
215 	rds_ib_nodev_connect();
216 
217 put_dev:
218 	rds_ib_dev_put(rds_ibdev);
219 }
220 
221 /*
222  * New connections use this to find the device to associate with the
223  * connection.  It's not in the fast path so we're not concerned about the
224  * performance of the IB call.  (As of this writing, it uses an interrupt
225  * blocking spinlock to serialize walking a per-device list of all registered
226  * clients.)
227  *
228  * RCU is used to handle incoming connections racing with device teardown.
229  * Rather than use a lock to serialize removal from the client_data and
230  * getting a new reference, we use an RCU grace period.  The destruction
231  * path removes the device from client_data and then waits for all RCU
232  * readers to finish.
233  *
234  * A new connection can get NULL from this if its arriving on a
235  * device that is in the process of being removed.
236  */
237 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
238 {
239 	struct rds_ib_device *rds_ibdev;
240 
241 	rcu_read_lock();
242 	rds_ibdev = ib_get_client_data(device, &rds_ib_client);
243 	if (rds_ibdev)
244 		refcount_inc(&rds_ibdev->refcount);
245 	rcu_read_unlock();
246 	return rds_ibdev;
247 }
248 
249 /*
250  * The IB stack is letting us know that a device is going away.  This can
251  * happen if the underlying HCA driver is removed or if PCI hotplug is removing
252  * the pci function, for example.
253  *
254  * This can be called at any time and can be racing with any other RDS path.
255  */
256 static void rds_ib_remove_one(struct ib_device *device, void *client_data)
257 {
258 	struct rds_ib_device *rds_ibdev = client_data;
259 
260 	if (!rds_ibdev)
261 		return;
262 
263 	rds_ib_dev_shutdown(rds_ibdev);
264 
265 	/* stop connection attempts from getting a reference to this device. */
266 	ib_set_client_data(device, &rds_ib_client, NULL);
267 
268 	down_write(&rds_ib_devices_lock);
269 	list_del_rcu(&rds_ibdev->list);
270 	up_write(&rds_ib_devices_lock);
271 
272 	/*
273 	 * This synchronize rcu is waiting for readers of both the ib
274 	 * client data and the devices list to finish before we drop
275 	 * both of those references.
276 	 */
277 	synchronize_rcu();
278 	rds_ib_dev_put(rds_ibdev);
279 	rds_ib_dev_put(rds_ibdev);
280 }
281 
282 struct ib_client rds_ib_client = {
283 	.name   = "rds_ib",
284 	.add    = rds_ib_add_one,
285 	.remove = rds_ib_remove_one
286 };
287 
288 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
289 				    void *buffer)
290 {
291 	struct rds_info_rdma_connection *iinfo = buffer;
292 	struct rds_ib_connection *ic;
293 
294 	/* We will only ever look at IB transports */
295 	if (conn->c_trans != &rds_ib_transport)
296 		return 0;
297 
298 	iinfo->src_addr = conn->c_laddr;
299 	iinfo->dst_addr = conn->c_faddr;
300 
301 	memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
302 	memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
303 	if (rds_conn_state(conn) == RDS_CONN_UP) {
304 		struct rds_ib_device *rds_ibdev;
305 
306 		ic = conn->c_transport_data;
307 
308 		rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid,
309 			       (union ib_gid *)&iinfo->dst_gid);
310 
311 		rds_ibdev = ic->rds_ibdev;
312 		iinfo->max_send_wr = ic->i_send_ring.w_nr;
313 		iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
314 		iinfo->max_send_sge = rds_ibdev->max_sge;
315 		rds_ib_get_mr_info(rds_ibdev, iinfo);
316 	}
317 	return 1;
318 }
319 
320 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
321 			   struct rds_info_iterator *iter,
322 			   struct rds_info_lengths *lens)
323 {
324 	rds_for_each_conn_info(sock, len, iter, lens,
325 				rds_ib_conn_info_visitor,
326 				sizeof(struct rds_info_rdma_connection));
327 }
328 
329 
330 /*
331  * Early RDS/IB was built to only bind to an address if there is an IPoIB
332  * device with that address set.
333  *
334  * If it were me, I'd advocate for something more flexible.  Sending and
335  * receiving should be device-agnostic.  Transports would try and maintain
336  * connections between peers who have messages queued.  Userspace would be
337  * allowed to influence which paths have priority.  We could call userspace
338  * asserting this policy "routing".
339  */
340 static int rds_ib_laddr_check(struct net *net, __be32 addr)
341 {
342 	int ret;
343 	struct rdma_cm_id *cm_id;
344 	struct sockaddr_in sin;
345 
346 	/* Create a CMA ID and try to bind it. This catches both
347 	 * IB and iWARP capable NICs.
348 	 */
349 	cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler,
350 			       NULL, RDMA_PS_TCP, IB_QPT_RC);
351 	if (IS_ERR(cm_id))
352 		return PTR_ERR(cm_id);
353 
354 	memset(&sin, 0, sizeof(sin));
355 	sin.sin_family = AF_INET;
356 	sin.sin_addr.s_addr = addr;
357 
358 	/* rdma_bind_addr will only succeed for IB & iWARP devices */
359 	ret = rdma_bind_addr(cm_id, (struct sockaddr *)&sin);
360 	/* due to this, we will claim to support iWARP devices unless we
361 	   check node_type. */
362 	if (ret || !cm_id->device ||
363 	    cm_id->device->node_type != RDMA_NODE_IB_CA)
364 		ret = -EADDRNOTAVAIL;
365 
366 	rdsdebug("addr %pI4 ret %d node type %d\n",
367 		&addr, ret,
368 		cm_id->device ? cm_id->device->node_type : -1);
369 
370 	rdma_destroy_id(cm_id);
371 
372 	return ret;
373 }
374 
375 static void rds_ib_unregister_client(void)
376 {
377 	ib_unregister_client(&rds_ib_client);
378 	/* wait for rds_ib_dev_free() to complete */
379 	flush_workqueue(rds_wq);
380 }
381 
382 static void rds_ib_set_unloading(void)
383 {
384 	atomic_set(&rds_ib_unloading, 1);
385 }
386 
387 static bool rds_ib_is_unloading(struct rds_connection *conn)
388 {
389 	struct rds_conn_path *cp = &conn->c_path[0];
390 
391 	return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) ||
392 		atomic_read(&rds_ib_unloading) != 0);
393 }
394 
395 void rds_ib_exit(void)
396 {
397 	rds_ib_set_unloading();
398 	synchronize_rcu();
399 	rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
400 	rds_ib_unregister_client();
401 	rds_ib_destroy_nodev_conns();
402 	rds_ib_sysctl_exit();
403 	rds_ib_recv_exit();
404 	rds_trans_unregister(&rds_ib_transport);
405 	rds_ib_mr_exit();
406 }
407 
408 struct rds_transport rds_ib_transport = {
409 	.laddr_check		= rds_ib_laddr_check,
410 	.xmit_path_complete	= rds_ib_xmit_path_complete,
411 	.xmit			= rds_ib_xmit,
412 	.xmit_rdma		= rds_ib_xmit_rdma,
413 	.xmit_atomic		= rds_ib_xmit_atomic,
414 	.recv_path		= rds_ib_recv_path,
415 	.conn_alloc		= rds_ib_conn_alloc,
416 	.conn_free		= rds_ib_conn_free,
417 	.conn_path_connect	= rds_ib_conn_path_connect,
418 	.conn_path_shutdown	= rds_ib_conn_path_shutdown,
419 	.inc_copy_to_user	= rds_ib_inc_copy_to_user,
420 	.inc_free		= rds_ib_inc_free,
421 	.cm_initiate_connect	= rds_ib_cm_initiate_connect,
422 	.cm_handle_connect	= rds_ib_cm_handle_connect,
423 	.cm_connect_complete	= rds_ib_cm_connect_complete,
424 	.stats_info_copy	= rds_ib_stats_info_copy,
425 	.exit			= rds_ib_exit,
426 	.get_mr			= rds_ib_get_mr,
427 	.sync_mr		= rds_ib_sync_mr,
428 	.free_mr		= rds_ib_free_mr,
429 	.flush_mrs		= rds_ib_flush_mrs,
430 	.t_owner		= THIS_MODULE,
431 	.t_name			= "infiniband",
432 	.t_unloading		= rds_ib_is_unloading,
433 	.t_type			= RDS_TRANS_IB
434 };
435 
436 int rds_ib_init(void)
437 {
438 	int ret;
439 
440 	INIT_LIST_HEAD(&rds_ib_devices);
441 
442 	ret = rds_ib_mr_init();
443 	if (ret)
444 		goto out;
445 
446 	ret = ib_register_client(&rds_ib_client);
447 	if (ret)
448 		goto out_mr_exit;
449 
450 	ret = rds_ib_sysctl_init();
451 	if (ret)
452 		goto out_ibreg;
453 
454 	ret = rds_ib_recv_init();
455 	if (ret)
456 		goto out_sysctl;
457 
458 	rds_trans_register(&rds_ib_transport);
459 
460 	rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
461 
462 	goto out;
463 
464 out_sysctl:
465 	rds_ib_sysctl_exit();
466 out_ibreg:
467 	rds_ib_unregister_client();
468 out_mr_exit:
469 	rds_ib_mr_exit();
470 out:
471 	return ret;
472 }
473 
474 MODULE_LICENSE("GPL");
475 
476