xref: /linux/net/rds/af_rds.c (revision bfd5bb6f90af092aa345b15cd78143956a13c2a8)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/module.h>
34 #include <linux/errno.h>
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/in.h>
38 #include <linux/poll.h>
39 #include <net/sock.h>
40 
41 #include "rds.h"
42 
43 /* this is just used for stats gathering :/ */
44 static DEFINE_SPINLOCK(rds_sock_lock);
45 static unsigned long rds_sock_count;
46 static LIST_HEAD(rds_sock_list);
47 DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
48 
49 /*
50  * This is called as the final descriptor referencing this socket is closed.
51  * We have to unbind the socket so that another socket can be bound to the
52  * address it was using.
53  *
54  * We have to be careful about racing with the incoming path.  sock_orphan()
55  * sets SOCK_DEAD and we use that as an indicator to the rx path that new
56  * messages shouldn't be queued.
57  */
58 static int rds_release(struct socket *sock)
59 {
60 	struct sock *sk = sock->sk;
61 	struct rds_sock *rs;
62 
63 	if (!sk)
64 		goto out;
65 
66 	rs = rds_sk_to_rs(sk);
67 
68 	sock_orphan(sk);
69 	/* Note - rds_clear_recv_queue grabs rs_recv_lock, so
70 	 * that ensures the recv path has completed messing
71 	 * with the socket. */
72 	rds_clear_recv_queue(rs);
73 	rds_cong_remove_socket(rs);
74 
75 	rds_remove_bound(rs);
76 
77 	rds_send_drop_to(rs, NULL);
78 	rds_rdma_drop_keys(rs);
79 	rds_notify_queue_get(rs, NULL);
80 	rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);
81 
82 	spin_lock_bh(&rds_sock_lock);
83 	list_del_init(&rs->rs_item);
84 	rds_sock_count--;
85 	spin_unlock_bh(&rds_sock_lock);
86 
87 	rds_trans_put(rs->rs_transport);
88 
89 	sock->sk = NULL;
90 	sock_put(sk);
91 out:
92 	return 0;
93 }
94 
95 /*
96  * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
97  * _bh() isn't OK here, we're called from interrupt handlers.  It's probably OK
98  * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
99  * this seems more conservative.
100  * NB - normally, one would use sk_callback_lock for this, but we can
101  * get here from interrupts, whereas the network code grabs sk_callback_lock
102  * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
103  */
104 void rds_wake_sk_sleep(struct rds_sock *rs)
105 {
106 	unsigned long flags;
107 
108 	read_lock_irqsave(&rs->rs_recv_lock, flags);
109 	__rds_wake_sk_sleep(rds_rs_to_sk(rs));
110 	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
111 }
112 
113 static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
114 		       int peer)
115 {
116 	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
117 	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
118 
119 	memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
120 
121 	/* racey, don't care */
122 	if (peer) {
123 		if (!rs->rs_conn_addr)
124 			return -ENOTCONN;
125 
126 		sin->sin_port = rs->rs_conn_port;
127 		sin->sin_addr.s_addr = rs->rs_conn_addr;
128 	} else {
129 		sin->sin_port = rs->rs_bound_port;
130 		sin->sin_addr.s_addr = rs->rs_bound_addr;
131 	}
132 
133 	sin->sin_family = AF_INET;
134 
135 	return sizeof(*sin);
136 }
137 
138 /*
139  * RDS' poll is without a doubt the least intuitive part of the interface,
140  * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
141  * a network protocol.
142  *
143  * EPOLLIN is asserted if
144  *  -	there is data on the receive queue.
145  *  -	to signal that a previously congested destination may have become
146  *	uncongested
147  *  -	A notification has been queued to the socket (this can be a congestion
148  *	update, or a RDMA completion, or a MSG_ZEROCOPY completion).
149  *
150  * EPOLLOUT is asserted if there is room on the send queue. This does not mean
151  * however, that the next sendmsg() call will succeed. If the application tries
152  * to send to a congested destination, the system call may still fail (and
153  * return ENOBUFS).
154  */
155 static __poll_t rds_poll(struct file *file, struct socket *sock,
156 			     poll_table *wait)
157 {
158 	struct sock *sk = sock->sk;
159 	struct rds_sock *rs = rds_sk_to_rs(sk);
160 	__poll_t mask = 0;
161 	unsigned long flags;
162 
163 	poll_wait(file, sk_sleep(sk), wait);
164 
165 	if (rs->rs_seen_congestion)
166 		poll_wait(file, &rds_poll_waitq, wait);
167 
168 	read_lock_irqsave(&rs->rs_recv_lock, flags);
169 	if (!rs->rs_cong_monitor) {
170 		/* When a congestion map was updated, we signal EPOLLIN for
171 		 * "historical" reasons. Applications can also poll for
172 		 * WRBAND instead. */
173 		if (rds_cong_updated_since(&rs->rs_cong_track))
174 			mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
175 	} else {
176 		spin_lock(&rs->rs_lock);
177 		if (rs->rs_cong_notify)
178 			mask |= (EPOLLIN | EPOLLRDNORM);
179 		spin_unlock(&rs->rs_lock);
180 	}
181 	if (!list_empty(&rs->rs_recv_queue) ||
182 	    !list_empty(&rs->rs_notify_queue) ||
183 	    !list_empty(&rs->rs_zcookie_queue.zcookie_head))
184 		mask |= (EPOLLIN | EPOLLRDNORM);
185 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
186 		mask |= (EPOLLOUT | EPOLLWRNORM);
187 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
188 		mask |= POLLERR;
189 	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
190 
191 	/* clear state any time we wake a seen-congested socket */
192 	if (mask)
193 		rs->rs_seen_congestion = 0;
194 
195 	return mask;
196 }
197 
198 static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
199 {
200 	return -ENOIOCTLCMD;
201 }
202 
203 static int rds_cancel_sent_to(struct rds_sock *rs, char __user *optval,
204 			      int len)
205 {
206 	struct sockaddr_in sin;
207 	int ret = 0;
208 
209 	/* racing with another thread binding seems ok here */
210 	if (rs->rs_bound_addr == 0) {
211 		ret = -ENOTCONN; /* XXX not a great errno */
212 		goto out;
213 	}
214 
215 	if (len < sizeof(struct sockaddr_in)) {
216 		ret = -EINVAL;
217 		goto out;
218 	}
219 
220 	if (copy_from_user(&sin, optval, sizeof(sin))) {
221 		ret = -EFAULT;
222 		goto out;
223 	}
224 
225 	rds_send_drop_to(rs, &sin);
226 out:
227 	return ret;
228 }
229 
230 static int rds_set_bool_option(unsigned char *optvar, char __user *optval,
231 			       int optlen)
232 {
233 	int value;
234 
235 	if (optlen < sizeof(int))
236 		return -EINVAL;
237 	if (get_user(value, (int __user *) optval))
238 		return -EFAULT;
239 	*optvar = !!value;
240 	return 0;
241 }
242 
243 static int rds_cong_monitor(struct rds_sock *rs, char __user *optval,
244 			    int optlen)
245 {
246 	int ret;
247 
248 	ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
249 	if (ret == 0) {
250 		if (rs->rs_cong_monitor) {
251 			rds_cong_add_socket(rs);
252 		} else {
253 			rds_cong_remove_socket(rs);
254 			rs->rs_cong_mask = 0;
255 			rs->rs_cong_notify = 0;
256 		}
257 	}
258 	return ret;
259 }
260 
261 static int rds_set_transport(struct rds_sock *rs, char __user *optval,
262 			     int optlen)
263 {
264 	int t_type;
265 
266 	if (rs->rs_transport)
267 		return -EOPNOTSUPP; /* previously attached to transport */
268 
269 	if (optlen != sizeof(int))
270 		return -EINVAL;
271 
272 	if (copy_from_user(&t_type, (int __user *)optval, sizeof(t_type)))
273 		return -EFAULT;
274 
275 	if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
276 		return -EINVAL;
277 
278 	rs->rs_transport = rds_trans_get(t_type);
279 
280 	return rs->rs_transport ? 0 : -ENOPROTOOPT;
281 }
282 
283 static int rds_enable_recvtstamp(struct sock *sk, char __user *optval,
284 				 int optlen)
285 {
286 	int val, valbool;
287 
288 	if (optlen != sizeof(int))
289 		return -EFAULT;
290 
291 	if (get_user(val, (int __user *)optval))
292 		return -EFAULT;
293 
294 	valbool = val ? 1 : 0;
295 
296 	if (valbool)
297 		sock_set_flag(sk, SOCK_RCVTSTAMP);
298 	else
299 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
300 
301 	return 0;
302 }
303 
304 static int rds_recv_track_latency(struct rds_sock *rs, char __user *optval,
305 				  int optlen)
306 {
307 	struct rds_rx_trace_so trace;
308 	int i;
309 
310 	if (optlen != sizeof(struct rds_rx_trace_so))
311 		return -EFAULT;
312 
313 	if (copy_from_user(&trace, optval, sizeof(trace)))
314 		return -EFAULT;
315 
316 	if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
317 		return -EFAULT;
318 
319 	rs->rs_rx_traces = trace.rx_traces;
320 	for (i = 0; i < rs->rs_rx_traces; i++) {
321 		if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) {
322 			rs->rs_rx_traces = 0;
323 			return -EFAULT;
324 		}
325 		rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
326 	}
327 
328 	return 0;
329 }
330 
331 static int rds_setsockopt(struct socket *sock, int level, int optname,
332 			  char __user *optval, unsigned int optlen)
333 {
334 	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
335 	int ret;
336 
337 	if (level != SOL_RDS) {
338 		ret = -ENOPROTOOPT;
339 		goto out;
340 	}
341 
342 	switch (optname) {
343 	case RDS_CANCEL_SENT_TO:
344 		ret = rds_cancel_sent_to(rs, optval, optlen);
345 		break;
346 	case RDS_GET_MR:
347 		ret = rds_get_mr(rs, optval, optlen);
348 		break;
349 	case RDS_GET_MR_FOR_DEST:
350 		ret = rds_get_mr_for_dest(rs, optval, optlen);
351 		break;
352 	case RDS_FREE_MR:
353 		ret = rds_free_mr(rs, optval, optlen);
354 		break;
355 	case RDS_RECVERR:
356 		ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
357 		break;
358 	case RDS_CONG_MONITOR:
359 		ret = rds_cong_monitor(rs, optval, optlen);
360 		break;
361 	case SO_RDS_TRANSPORT:
362 		lock_sock(sock->sk);
363 		ret = rds_set_transport(rs, optval, optlen);
364 		release_sock(sock->sk);
365 		break;
366 	case SO_TIMESTAMP:
367 		lock_sock(sock->sk);
368 		ret = rds_enable_recvtstamp(sock->sk, optval, optlen);
369 		release_sock(sock->sk);
370 		break;
371 	case SO_RDS_MSG_RXPATH_LATENCY:
372 		ret = rds_recv_track_latency(rs, optval, optlen);
373 		break;
374 	default:
375 		ret = -ENOPROTOOPT;
376 	}
377 out:
378 	return ret;
379 }
380 
381 static int rds_getsockopt(struct socket *sock, int level, int optname,
382 			  char __user *optval, int __user *optlen)
383 {
384 	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
385 	int ret = -ENOPROTOOPT, len;
386 	int trans;
387 
388 	if (level != SOL_RDS)
389 		goto out;
390 
391 	if (get_user(len, optlen)) {
392 		ret = -EFAULT;
393 		goto out;
394 	}
395 
396 	switch (optname) {
397 	case RDS_INFO_FIRST ... RDS_INFO_LAST:
398 		ret = rds_info_getsockopt(sock, optname, optval,
399 					  optlen);
400 		break;
401 
402 	case RDS_RECVERR:
403 		if (len < sizeof(int))
404 			ret = -EINVAL;
405 		else
406 		if (put_user(rs->rs_recverr, (int __user *) optval) ||
407 		    put_user(sizeof(int), optlen))
408 			ret = -EFAULT;
409 		else
410 			ret = 0;
411 		break;
412 	case SO_RDS_TRANSPORT:
413 		if (len < sizeof(int)) {
414 			ret = -EINVAL;
415 			break;
416 		}
417 		trans = (rs->rs_transport ? rs->rs_transport->t_type :
418 			 RDS_TRANS_NONE); /* unbound */
419 		if (put_user(trans, (int __user *)optval) ||
420 		    put_user(sizeof(int), optlen))
421 			ret = -EFAULT;
422 		else
423 			ret = 0;
424 		break;
425 	default:
426 		break;
427 	}
428 
429 out:
430 	return ret;
431 
432 }
433 
434 static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
435 		       int addr_len, int flags)
436 {
437 	struct sock *sk = sock->sk;
438 	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
439 	struct rds_sock *rs = rds_sk_to_rs(sk);
440 	int ret = 0;
441 
442 	lock_sock(sk);
443 
444 	if (addr_len != sizeof(struct sockaddr_in)) {
445 		ret = -EINVAL;
446 		goto out;
447 	}
448 
449 	if (sin->sin_family != AF_INET) {
450 		ret = -EAFNOSUPPORT;
451 		goto out;
452 	}
453 
454 	if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
455 		ret = -EDESTADDRREQ;
456 		goto out;
457 	}
458 
459 	rs->rs_conn_addr = sin->sin_addr.s_addr;
460 	rs->rs_conn_port = sin->sin_port;
461 
462 out:
463 	release_sock(sk);
464 	return ret;
465 }
466 
467 static struct proto rds_proto = {
468 	.name	  = "RDS",
469 	.owner	  = THIS_MODULE,
470 	.obj_size = sizeof(struct rds_sock),
471 };
472 
473 static const struct proto_ops rds_proto_ops = {
474 	.family =	AF_RDS,
475 	.owner =	THIS_MODULE,
476 	.release =	rds_release,
477 	.bind =		rds_bind,
478 	.connect =	rds_connect,
479 	.socketpair =	sock_no_socketpair,
480 	.accept =	sock_no_accept,
481 	.getname =	rds_getname,
482 	.poll =		rds_poll,
483 	.ioctl =	rds_ioctl,
484 	.listen =	sock_no_listen,
485 	.shutdown =	sock_no_shutdown,
486 	.setsockopt =	rds_setsockopt,
487 	.getsockopt =	rds_getsockopt,
488 	.sendmsg =	rds_sendmsg,
489 	.recvmsg =	rds_recvmsg,
490 	.mmap =		sock_no_mmap,
491 	.sendpage =	sock_no_sendpage,
492 };
493 
494 static void rds_sock_destruct(struct sock *sk)
495 {
496 	struct rds_sock *rs = rds_sk_to_rs(sk);
497 
498 	WARN_ON((&rs->rs_item != rs->rs_item.next ||
499 		 &rs->rs_item != rs->rs_item.prev));
500 }
501 
502 static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
503 {
504 	struct rds_sock *rs;
505 
506 	sock_init_data(sock, sk);
507 	sock->ops		= &rds_proto_ops;
508 	sk->sk_protocol		= protocol;
509 	sk->sk_destruct		= rds_sock_destruct;
510 
511 	rs = rds_sk_to_rs(sk);
512 	spin_lock_init(&rs->rs_lock);
513 	rwlock_init(&rs->rs_recv_lock);
514 	INIT_LIST_HEAD(&rs->rs_send_queue);
515 	INIT_LIST_HEAD(&rs->rs_recv_queue);
516 	INIT_LIST_HEAD(&rs->rs_notify_queue);
517 	INIT_LIST_HEAD(&rs->rs_cong_list);
518 	rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
519 	spin_lock_init(&rs->rs_rdma_lock);
520 	rs->rs_rdma_keys = RB_ROOT;
521 	rs->rs_rx_traces = 0;
522 
523 	spin_lock_bh(&rds_sock_lock);
524 	list_add_tail(&rs->rs_item, &rds_sock_list);
525 	rds_sock_count++;
526 	spin_unlock_bh(&rds_sock_lock);
527 
528 	return 0;
529 }
530 
531 static int rds_create(struct net *net, struct socket *sock, int protocol,
532 		      int kern)
533 {
534 	struct sock *sk;
535 
536 	if (sock->type != SOCK_SEQPACKET || protocol)
537 		return -ESOCKTNOSUPPORT;
538 
539 	sk = sk_alloc(net, AF_RDS, GFP_ATOMIC, &rds_proto, kern);
540 	if (!sk)
541 		return -ENOMEM;
542 
543 	return __rds_create(sock, sk, protocol);
544 }
545 
546 void rds_sock_addref(struct rds_sock *rs)
547 {
548 	sock_hold(rds_rs_to_sk(rs));
549 }
550 
551 void rds_sock_put(struct rds_sock *rs)
552 {
553 	sock_put(rds_rs_to_sk(rs));
554 }
555 
556 static const struct net_proto_family rds_family_ops = {
557 	.family =	AF_RDS,
558 	.create =	rds_create,
559 	.owner	=	THIS_MODULE,
560 };
561 
562 static void rds_sock_inc_info(struct socket *sock, unsigned int len,
563 			      struct rds_info_iterator *iter,
564 			      struct rds_info_lengths *lens)
565 {
566 	struct rds_sock *rs;
567 	struct rds_incoming *inc;
568 	unsigned int total = 0;
569 
570 	len /= sizeof(struct rds_info_message);
571 
572 	spin_lock_bh(&rds_sock_lock);
573 
574 	list_for_each_entry(rs, &rds_sock_list, rs_item) {
575 		read_lock(&rs->rs_recv_lock);
576 
577 		/* XXX too lazy to maintain counts.. */
578 		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
579 			total++;
580 			if (total <= len)
581 				rds_inc_info_copy(inc, iter, inc->i_saddr,
582 						  rs->rs_bound_addr, 1);
583 		}
584 
585 		read_unlock(&rs->rs_recv_lock);
586 	}
587 
588 	spin_unlock_bh(&rds_sock_lock);
589 
590 	lens->nr = total;
591 	lens->each = sizeof(struct rds_info_message);
592 }
593 
594 static void rds_sock_info(struct socket *sock, unsigned int len,
595 			  struct rds_info_iterator *iter,
596 			  struct rds_info_lengths *lens)
597 {
598 	struct rds_info_socket sinfo;
599 	struct rds_sock *rs;
600 
601 	len /= sizeof(struct rds_info_socket);
602 
603 	spin_lock_bh(&rds_sock_lock);
604 
605 	if (len < rds_sock_count)
606 		goto out;
607 
608 	list_for_each_entry(rs, &rds_sock_list, rs_item) {
609 		sinfo.sndbuf = rds_sk_sndbuf(rs);
610 		sinfo.rcvbuf = rds_sk_rcvbuf(rs);
611 		sinfo.bound_addr = rs->rs_bound_addr;
612 		sinfo.connected_addr = rs->rs_conn_addr;
613 		sinfo.bound_port = rs->rs_bound_port;
614 		sinfo.connected_port = rs->rs_conn_port;
615 		sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
616 
617 		rds_info_copy(iter, &sinfo, sizeof(sinfo));
618 	}
619 
620 out:
621 	lens->nr = rds_sock_count;
622 	lens->each = sizeof(struct rds_info_socket);
623 
624 	spin_unlock_bh(&rds_sock_lock);
625 }
626 
627 static void rds_exit(void)
628 {
629 	sock_unregister(rds_family_ops.family);
630 	proto_unregister(&rds_proto);
631 	rds_conn_exit();
632 	rds_cong_exit();
633 	rds_sysctl_exit();
634 	rds_threads_exit();
635 	rds_stats_exit();
636 	rds_page_exit();
637 	rds_bind_lock_destroy();
638 	rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
639 	rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
640 }
641 module_exit(rds_exit);
642 
643 u32 rds_gen_num;
644 
645 static int rds_init(void)
646 {
647 	int ret;
648 
649 	net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
650 
651 	ret = rds_bind_lock_init();
652 	if (ret)
653 		goto out;
654 
655 	ret = rds_conn_init();
656 	if (ret)
657 		goto out_bind;
658 
659 	ret = rds_threads_init();
660 	if (ret)
661 		goto out_conn;
662 	ret = rds_sysctl_init();
663 	if (ret)
664 		goto out_threads;
665 	ret = rds_stats_init();
666 	if (ret)
667 		goto out_sysctl;
668 	ret = proto_register(&rds_proto, 1);
669 	if (ret)
670 		goto out_stats;
671 	ret = sock_register(&rds_family_ops);
672 	if (ret)
673 		goto out_proto;
674 
675 	rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
676 	rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
677 
678 	goto out;
679 
680 out_proto:
681 	proto_unregister(&rds_proto);
682 out_stats:
683 	rds_stats_exit();
684 out_sysctl:
685 	rds_sysctl_exit();
686 out_threads:
687 	rds_threads_exit();
688 out_conn:
689 	rds_conn_exit();
690 	rds_cong_exit();
691 	rds_page_exit();
692 out_bind:
693 	rds_bind_lock_destroy();
694 out:
695 	return ret;
696 }
697 module_init(rds_init);
698 
699 #define DRV_VERSION     "4.0"
700 #define DRV_RELDATE     "Feb 12, 2009"
701 
702 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
703 MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
704 		   " v" DRV_VERSION " (" DRV_RELDATE ")");
705 MODULE_VERSION(DRV_VERSION);
706 MODULE_LICENSE("Dual BSD/GPL");
707 MODULE_ALIAS_NETPROTO(PF_RDS);
708