xref: /linux/net/qrtr/af_qrtr.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Sony Mobile Communications Inc.
4  * Copyright (c) 2013, The Linux Foundation. All rights reserved.
5  */
6 #include <linux/module.h>
7 #include <linux/netlink.h>
8 #include <linux/qrtr.h>
9 #include <linux/termios.h>	/* For TIOCINQ/OUTQ */
10 #include <linux/spinlock.h>
11 #include <linux/wait.h>
12 
13 #include <net/sock.h>
14 
15 #include "qrtr.h"
16 
17 #define QRTR_PROTO_VER_1 1
18 #define QRTR_PROTO_VER_2 3
19 
20 /* auto-bind range */
21 #define QRTR_MIN_EPH_SOCKET 0x4000
22 #define QRTR_MAX_EPH_SOCKET 0x7fff
23 #define QRTR_EPH_PORT_RANGE \
24 		XA_LIMIT(QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET)
25 
26 #define QRTR_PORT_CTRL_LEGACY 0xffff
27 
28 /**
29  * struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1
30  * @version: protocol version
31  * @type: packet type; one of QRTR_TYPE_*
32  * @src_node_id: source node
33  * @src_port_id: source port
34  * @confirm_rx: boolean; whether a resume-tx packet should be send in reply
35  * @size: length of packet, excluding this header
36  * @dst_node_id: destination node
37  * @dst_port_id: destination port
38  */
39 struct qrtr_hdr_v1 {
40 	__le32 version;
41 	__le32 type;
42 	__le32 src_node_id;
43 	__le32 src_port_id;
44 	__le32 confirm_rx;
45 	__le32 size;
46 	__le32 dst_node_id;
47 	__le32 dst_port_id;
48 } __packed;
49 
50 /**
51  * struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions
52  * @version: protocol version
53  * @type: packet type; one of QRTR_TYPE_*
54  * @flags: bitmask of QRTR_FLAGS_*
55  * @optlen: length of optional header data
56  * @size: length of packet, excluding this header and optlen
57  * @src_node_id: source node
58  * @src_port_id: source port
59  * @dst_node_id: destination node
60  * @dst_port_id: destination port
61  */
62 struct qrtr_hdr_v2 {
63 	u8 version;
64 	u8 type;
65 	u8 flags;
66 	u8 optlen;
67 	__le32 size;
68 	__le16 src_node_id;
69 	__le16 src_port_id;
70 	__le16 dst_node_id;
71 	__le16 dst_port_id;
72 };
73 
74 #define QRTR_FLAGS_CONFIRM_RX	BIT(0)
75 
76 struct qrtr_cb {
77 	u32 src_node;
78 	u32 src_port;
79 	u32 dst_node;
80 	u32 dst_port;
81 
82 	u8 type;
83 	u8 confirm_rx;
84 };
85 
86 #define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \
87 					sizeof(struct qrtr_hdr_v2))
88 
89 struct qrtr_sock {
90 	/* WARNING: sk must be the first member */
91 	struct sock sk;
92 	struct sockaddr_qrtr us;
93 	struct sockaddr_qrtr peer;
94 };
95 
96 static inline struct qrtr_sock *qrtr_sk(struct sock *sk)
97 {
98 	BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0);
99 	return container_of(sk, struct qrtr_sock, sk);
100 }
101 
102 static unsigned int qrtr_local_nid = 1;
103 
104 /* for node ids */
105 static RADIX_TREE(qrtr_nodes, GFP_ATOMIC);
106 static DEFINE_SPINLOCK(qrtr_nodes_lock);
107 /* broadcast list */
108 static LIST_HEAD(qrtr_all_nodes);
109 /* lock for qrtr_all_nodes and node reference */
110 static DEFINE_MUTEX(qrtr_node_lock);
111 
112 /* local port allocation management */
113 static DEFINE_XARRAY_ALLOC(qrtr_ports);
114 
115 /**
116  * struct qrtr_node - endpoint node
117  * @ep_lock: lock for endpoint management and callbacks
118  * @ep: endpoint
119  * @ref: reference count for node
120  * @nid: node id
121  * @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port
122  * @qrtr_tx_lock: lock for qrtr_tx_flow inserts
123  * @rx_queue: receive queue
124  * @item: list item for broadcast list
125  */
126 struct qrtr_node {
127 	struct mutex ep_lock;
128 	struct qrtr_endpoint *ep;
129 	struct kref ref;
130 	unsigned int nid;
131 
132 	struct radix_tree_root qrtr_tx_flow;
133 	struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */
134 
135 	struct sk_buff_head rx_queue;
136 	struct list_head item;
137 };
138 
139 /**
140  * struct qrtr_tx_flow - tx flow control
141  * @resume_tx: waiters for a resume tx from the remote
142  * @pending: number of waiting senders
143  * @tx_failed: indicates that a message with confirm_rx flag was lost
144  */
145 struct qrtr_tx_flow {
146 	struct wait_queue_head resume_tx;
147 	int pending;
148 	int tx_failed;
149 };
150 
151 #define QRTR_TX_FLOW_HIGH	10
152 #define QRTR_TX_FLOW_LOW	5
153 
154 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
155 			      int type, struct sockaddr_qrtr *from,
156 			      struct sockaddr_qrtr *to);
157 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
158 			      int type, struct sockaddr_qrtr *from,
159 			      struct sockaddr_qrtr *to);
160 static struct qrtr_sock *qrtr_port_lookup(int port);
161 static void qrtr_port_put(struct qrtr_sock *ipc);
162 
163 /* Release node resources and free the node.
164  *
165  * Do not call directly, use qrtr_node_release.  To be used with
166  * kref_put_mutex.  As such, the node mutex is expected to be locked on call.
167  */
168 static void __qrtr_node_release(struct kref *kref)
169 {
170 	struct qrtr_node *node = container_of(kref, struct qrtr_node, ref);
171 	struct radix_tree_iter iter;
172 	struct qrtr_tx_flow *flow;
173 	unsigned long flags;
174 	void __rcu **slot;
175 
176 	spin_lock_irqsave(&qrtr_nodes_lock, flags);
177 	/* If the node is a bridge for other nodes, there are possibly
178 	 * multiple entries pointing to our released node, delete them all.
179 	 */
180 	radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) {
181 		if (*slot == node)
182 			radix_tree_iter_delete(&qrtr_nodes, &iter, slot);
183 	}
184 	spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
185 
186 	list_del(&node->item);
187 	mutex_unlock(&qrtr_node_lock);
188 
189 	skb_queue_purge(&node->rx_queue);
190 
191 	/* Free tx flow counters */
192 	radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
193 		flow = *slot;
194 		radix_tree_iter_delete(&node->qrtr_tx_flow, &iter, slot);
195 		kfree(flow);
196 	}
197 	kfree(node);
198 }
199 
200 /* Increment reference to node. */
201 static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node)
202 {
203 	if (node)
204 		kref_get(&node->ref);
205 	return node;
206 }
207 
208 /* Decrement reference to node and release as necessary. */
209 static void qrtr_node_release(struct qrtr_node *node)
210 {
211 	if (!node)
212 		return;
213 	kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock);
214 }
215 
216 /**
217  * qrtr_tx_resume() - reset flow control counter
218  * @node:	qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on
219  * @skb:	resume_tx packet
220  */
221 static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb)
222 {
223 	struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data;
224 	u64 remote_node = le32_to_cpu(pkt->client.node);
225 	u32 remote_port = le32_to_cpu(pkt->client.port);
226 	struct qrtr_tx_flow *flow;
227 	unsigned long key;
228 
229 	key = remote_node << 32 | remote_port;
230 
231 	rcu_read_lock();
232 	flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
233 	rcu_read_unlock();
234 	if (flow) {
235 		spin_lock(&flow->resume_tx.lock);
236 		flow->pending = 0;
237 		spin_unlock(&flow->resume_tx.lock);
238 		wake_up_interruptible_all(&flow->resume_tx);
239 	}
240 
241 	consume_skb(skb);
242 }
243 
244 /**
245  * qrtr_tx_wait() - flow control for outgoing packets
246  * @node:	qrtr_node that the packet is to be send to
247  * @dest_node:	node id of the destination
248  * @dest_port:	port number of the destination
249  * @type:	type of message
250  *
251  * The flow control scheme is based around the low and high "watermarks". When
252  * the low watermark is passed the confirm_rx flag is set on the outgoing
253  * message, which will trigger the remote to send a control message of the type
254  * QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit
255  * further transmision should be paused.
256  *
257  * Return: 1 if confirm_rx should be set, 0 otherwise or errno failure
258  */
259 static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port,
260 			int type)
261 {
262 	unsigned long key = (u64)dest_node << 32 | dest_port;
263 	struct qrtr_tx_flow *flow;
264 	int confirm_rx = 0;
265 	int ret;
266 
267 	/* Never set confirm_rx on non-data packets */
268 	if (type != QRTR_TYPE_DATA)
269 		return 0;
270 
271 	mutex_lock(&node->qrtr_tx_lock);
272 	flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
273 	if (!flow) {
274 		flow = kzalloc(sizeof(*flow), GFP_KERNEL);
275 		if (flow) {
276 			init_waitqueue_head(&flow->resume_tx);
277 			if (radix_tree_insert(&node->qrtr_tx_flow, key, flow)) {
278 				kfree(flow);
279 				flow = NULL;
280 			}
281 		}
282 	}
283 	mutex_unlock(&node->qrtr_tx_lock);
284 
285 	/* Set confirm_rx if we where unable to find and allocate a flow */
286 	if (!flow)
287 		return 1;
288 
289 	spin_lock_irq(&flow->resume_tx.lock);
290 	ret = wait_event_interruptible_locked_irq(flow->resume_tx,
291 						  flow->pending < QRTR_TX_FLOW_HIGH ||
292 						  flow->tx_failed ||
293 						  !node->ep);
294 	if (ret < 0) {
295 		confirm_rx = ret;
296 	} else if (!node->ep) {
297 		confirm_rx = -EPIPE;
298 	} else if (flow->tx_failed) {
299 		flow->tx_failed = 0;
300 		confirm_rx = 1;
301 	} else {
302 		flow->pending++;
303 		confirm_rx = flow->pending == QRTR_TX_FLOW_LOW;
304 	}
305 	spin_unlock_irq(&flow->resume_tx.lock);
306 
307 	return confirm_rx;
308 }
309 
310 /**
311  * qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed
312  * @node:	qrtr_node that the packet is to be send to
313  * @dest_node:	node id of the destination
314  * @dest_port:	port number of the destination
315  *
316  * Signal that the transmission of a message with confirm_rx flag failed. The
317  * flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH,
318  * at which point transmission would stall forever waiting for the resume TX
319  * message associated with the dropped confirm_rx message.
320  * Work around this by marking the flow as having a failed transmission and
321  * cause the next transmission attempt to be sent with the confirm_rx.
322  */
323 static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node,
324 				int dest_port)
325 {
326 	unsigned long key = (u64)dest_node << 32 | dest_port;
327 	struct qrtr_tx_flow *flow;
328 
329 	rcu_read_lock();
330 	flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
331 	rcu_read_unlock();
332 	if (flow) {
333 		spin_lock_irq(&flow->resume_tx.lock);
334 		flow->tx_failed = 1;
335 		spin_unlock_irq(&flow->resume_tx.lock);
336 	}
337 }
338 
339 /* Pass an outgoing packet socket buffer to the endpoint driver. */
340 static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb,
341 			     int type, struct sockaddr_qrtr *from,
342 			     struct sockaddr_qrtr *to)
343 {
344 	struct qrtr_hdr_v1 *hdr;
345 	size_t len = skb->len;
346 	int rc, confirm_rx;
347 
348 	confirm_rx = qrtr_tx_wait(node, to->sq_node, to->sq_port, type);
349 	if (confirm_rx < 0) {
350 		kfree_skb(skb);
351 		return confirm_rx;
352 	}
353 
354 	hdr = skb_push(skb, sizeof(*hdr));
355 	hdr->version = cpu_to_le32(QRTR_PROTO_VER_1);
356 	hdr->type = cpu_to_le32(type);
357 	hdr->src_node_id = cpu_to_le32(from->sq_node);
358 	hdr->src_port_id = cpu_to_le32(from->sq_port);
359 	if (to->sq_port == QRTR_PORT_CTRL) {
360 		hdr->dst_node_id = cpu_to_le32(node->nid);
361 		hdr->dst_port_id = cpu_to_le32(QRTR_PORT_CTRL);
362 	} else {
363 		hdr->dst_node_id = cpu_to_le32(to->sq_node);
364 		hdr->dst_port_id = cpu_to_le32(to->sq_port);
365 	}
366 
367 	hdr->size = cpu_to_le32(len);
368 	hdr->confirm_rx = !!confirm_rx;
369 
370 	rc = skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr));
371 
372 	if (!rc) {
373 		mutex_lock(&node->ep_lock);
374 		rc = -ENODEV;
375 		if (node->ep)
376 			rc = node->ep->xmit(node->ep, skb);
377 		else
378 			kfree_skb(skb);
379 		mutex_unlock(&node->ep_lock);
380 	}
381 	/* Need to ensure that a subsequent message carries the otherwise lost
382 	 * confirm_rx flag if we dropped this one */
383 	if (rc && confirm_rx)
384 		qrtr_tx_flow_failed(node, to->sq_node, to->sq_port);
385 
386 	return rc;
387 }
388 
389 /* Lookup node by id.
390  *
391  * callers must release with qrtr_node_release()
392  */
393 static struct qrtr_node *qrtr_node_lookup(unsigned int nid)
394 {
395 	struct qrtr_node *node;
396 	unsigned long flags;
397 
398 	mutex_lock(&qrtr_node_lock);
399 	spin_lock_irqsave(&qrtr_nodes_lock, flags);
400 	node = radix_tree_lookup(&qrtr_nodes, nid);
401 	node = qrtr_node_acquire(node);
402 	spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
403 	mutex_unlock(&qrtr_node_lock);
404 
405 	return node;
406 }
407 
408 /* Assign node id to node.
409  *
410  * This is mostly useful for automatic node id assignment, based on
411  * the source id in the incoming packet.
412  */
413 static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid)
414 {
415 	unsigned long flags;
416 
417 	if (nid == QRTR_EP_NID_AUTO)
418 		return;
419 
420 	spin_lock_irqsave(&qrtr_nodes_lock, flags);
421 	radix_tree_insert(&qrtr_nodes, nid, node);
422 	if (node->nid == QRTR_EP_NID_AUTO)
423 		node->nid = nid;
424 	spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
425 }
426 
427 /**
428  * qrtr_endpoint_post() - post incoming data
429  * @ep: endpoint handle
430  * @data: data pointer
431  * @len: size of data in bytes
432  *
433  * Return: 0 on success; negative error code on failure
434  */
435 int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len)
436 {
437 	struct qrtr_node *node = ep->node;
438 	const struct qrtr_hdr_v1 *v1;
439 	const struct qrtr_hdr_v2 *v2;
440 	struct qrtr_sock *ipc;
441 	struct sk_buff *skb;
442 	struct qrtr_cb *cb;
443 	size_t size;
444 	unsigned int ver;
445 	size_t hdrlen;
446 
447 	if (len == 0 || len & 3)
448 		return -EINVAL;
449 
450 	skb = __netdev_alloc_skb(NULL, len, GFP_ATOMIC | __GFP_NOWARN);
451 	if (!skb)
452 		return -ENOMEM;
453 
454 	cb = (struct qrtr_cb *)skb->cb;
455 
456 	/* Version field in v1 is little endian, so this works for both cases */
457 	ver = *(u8*)data;
458 
459 	switch (ver) {
460 	case QRTR_PROTO_VER_1:
461 		if (len < sizeof(*v1))
462 			goto err;
463 		v1 = data;
464 		hdrlen = sizeof(*v1);
465 
466 		cb->type = le32_to_cpu(v1->type);
467 		cb->src_node = le32_to_cpu(v1->src_node_id);
468 		cb->src_port = le32_to_cpu(v1->src_port_id);
469 		cb->confirm_rx = !!v1->confirm_rx;
470 		cb->dst_node = le32_to_cpu(v1->dst_node_id);
471 		cb->dst_port = le32_to_cpu(v1->dst_port_id);
472 
473 		size = le32_to_cpu(v1->size);
474 		break;
475 	case QRTR_PROTO_VER_2:
476 		if (len < sizeof(*v2))
477 			goto err;
478 		v2 = data;
479 		hdrlen = sizeof(*v2) + v2->optlen;
480 
481 		cb->type = v2->type;
482 		cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX);
483 		cb->src_node = le16_to_cpu(v2->src_node_id);
484 		cb->src_port = le16_to_cpu(v2->src_port_id);
485 		cb->dst_node = le16_to_cpu(v2->dst_node_id);
486 		cb->dst_port = le16_to_cpu(v2->dst_port_id);
487 
488 		if (cb->src_port == (u16)QRTR_PORT_CTRL)
489 			cb->src_port = QRTR_PORT_CTRL;
490 		if (cb->dst_port == (u16)QRTR_PORT_CTRL)
491 			cb->dst_port = QRTR_PORT_CTRL;
492 
493 		size = le32_to_cpu(v2->size);
494 		break;
495 	default:
496 		pr_err("qrtr: Invalid version %d\n", ver);
497 		goto err;
498 	}
499 
500 	if (cb->dst_port == QRTR_PORT_CTRL_LEGACY)
501 		cb->dst_port = QRTR_PORT_CTRL;
502 
503 	if (!size || len != ALIGN(size, 4) + hdrlen)
504 		goto err;
505 
506 	if ((cb->type == QRTR_TYPE_NEW_SERVER ||
507 	     cb->type == QRTR_TYPE_RESUME_TX) &&
508 	    size < sizeof(struct qrtr_ctrl_pkt))
509 		goto err;
510 
511 	if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA &&
512 	    cb->type != QRTR_TYPE_RESUME_TX)
513 		goto err;
514 
515 	skb_put_data(skb, data + hdrlen, size);
516 
517 	qrtr_node_assign(node, cb->src_node);
518 
519 	if (cb->type == QRTR_TYPE_NEW_SERVER) {
520 		/* Remote node endpoint can bridge other distant nodes */
521 		const struct qrtr_ctrl_pkt *pkt;
522 
523 		pkt = data + hdrlen;
524 		qrtr_node_assign(node, le32_to_cpu(pkt->server.node));
525 	}
526 
527 	if (cb->type == QRTR_TYPE_RESUME_TX) {
528 		qrtr_tx_resume(node, skb);
529 	} else {
530 		ipc = qrtr_port_lookup(cb->dst_port);
531 		if (!ipc)
532 			goto err;
533 
534 		if (sock_queue_rcv_skb(&ipc->sk, skb)) {
535 			qrtr_port_put(ipc);
536 			goto err;
537 		}
538 
539 		qrtr_port_put(ipc);
540 	}
541 
542 	return 0;
543 
544 err:
545 	kfree_skb(skb);
546 	return -EINVAL;
547 
548 }
549 EXPORT_SYMBOL_GPL(qrtr_endpoint_post);
550 
551 /**
552  * qrtr_alloc_ctrl_packet() - allocate control packet skb
553  * @pkt: reference to qrtr_ctrl_pkt pointer
554  * @flags: the type of memory to allocate
555  *
556  * Returns newly allocated sk_buff, or NULL on failure
557  *
558  * This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and
559  * on success returns a reference to the control packet in @pkt.
560  */
561 static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt,
562 					      gfp_t flags)
563 {
564 	const int pkt_len = sizeof(struct qrtr_ctrl_pkt);
565 	struct sk_buff *skb;
566 
567 	skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, flags);
568 	if (!skb)
569 		return NULL;
570 
571 	skb_reserve(skb, QRTR_HDR_MAX_SIZE);
572 	*pkt = skb_put_zero(skb, pkt_len);
573 
574 	return skb;
575 }
576 
577 /**
578  * qrtr_endpoint_register() - register a new endpoint
579  * @ep: endpoint to register
580  * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment
581  * Return: 0 on success; negative error code on failure
582  *
583  * The specified endpoint must have the xmit function pointer set on call.
584  */
585 int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid)
586 {
587 	struct qrtr_node *node;
588 
589 	if (!ep || !ep->xmit)
590 		return -EINVAL;
591 
592 	node = kzalloc(sizeof(*node), GFP_KERNEL);
593 	if (!node)
594 		return -ENOMEM;
595 
596 	kref_init(&node->ref);
597 	mutex_init(&node->ep_lock);
598 	skb_queue_head_init(&node->rx_queue);
599 	node->nid = QRTR_EP_NID_AUTO;
600 	node->ep = ep;
601 
602 	INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL);
603 	mutex_init(&node->qrtr_tx_lock);
604 
605 	qrtr_node_assign(node, nid);
606 
607 	mutex_lock(&qrtr_node_lock);
608 	list_add(&node->item, &qrtr_all_nodes);
609 	mutex_unlock(&qrtr_node_lock);
610 	ep->node = node;
611 
612 	return 0;
613 }
614 EXPORT_SYMBOL_GPL(qrtr_endpoint_register);
615 
616 /**
617  * qrtr_endpoint_unregister - unregister endpoint
618  * @ep: endpoint to unregister
619  */
620 void qrtr_endpoint_unregister(struct qrtr_endpoint *ep)
621 {
622 	struct qrtr_node *node = ep->node;
623 	struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL};
624 	struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL};
625 	struct radix_tree_iter iter;
626 	struct qrtr_ctrl_pkt *pkt;
627 	struct qrtr_tx_flow *flow;
628 	struct sk_buff *skb;
629 	unsigned long flags;
630 	void __rcu **slot;
631 
632 	mutex_lock(&node->ep_lock);
633 	node->ep = NULL;
634 	mutex_unlock(&node->ep_lock);
635 
636 	/* Notify the local controller about the event */
637 	spin_lock_irqsave(&qrtr_nodes_lock, flags);
638 	radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) {
639 		if (*slot != node)
640 			continue;
641 		src.sq_node = iter.index;
642 		skb = qrtr_alloc_ctrl_packet(&pkt, GFP_ATOMIC);
643 		if (skb) {
644 			pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE);
645 			qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst);
646 		}
647 	}
648 	spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
649 
650 	/* Wake up any transmitters waiting for resume-tx from the node */
651 	mutex_lock(&node->qrtr_tx_lock);
652 	radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
653 		flow = *slot;
654 		wake_up_interruptible_all(&flow->resume_tx);
655 	}
656 	mutex_unlock(&node->qrtr_tx_lock);
657 
658 	qrtr_node_release(node);
659 	ep->node = NULL;
660 }
661 EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister);
662 
663 /* Lookup socket by port.
664  *
665  * Callers must release with qrtr_port_put()
666  */
667 static struct qrtr_sock *qrtr_port_lookup(int port)
668 {
669 	struct qrtr_sock *ipc;
670 
671 	if (port == QRTR_PORT_CTRL)
672 		port = 0;
673 
674 	rcu_read_lock();
675 	ipc = xa_load(&qrtr_ports, port);
676 	if (ipc)
677 		sock_hold(&ipc->sk);
678 	rcu_read_unlock();
679 
680 	return ipc;
681 }
682 
683 /* Release acquired socket. */
684 static void qrtr_port_put(struct qrtr_sock *ipc)
685 {
686 	sock_put(&ipc->sk);
687 }
688 
689 /* Remove port assignment. */
690 static void qrtr_port_remove(struct qrtr_sock *ipc)
691 {
692 	struct qrtr_ctrl_pkt *pkt;
693 	struct sk_buff *skb;
694 	int port = ipc->us.sq_port;
695 	struct sockaddr_qrtr to;
696 
697 	to.sq_family = AF_QIPCRTR;
698 	to.sq_node = QRTR_NODE_BCAST;
699 	to.sq_port = QRTR_PORT_CTRL;
700 
701 	skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL);
702 	if (skb) {
703 		pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT);
704 		pkt->client.node = cpu_to_le32(ipc->us.sq_node);
705 		pkt->client.port = cpu_to_le32(ipc->us.sq_port);
706 
707 		skb_set_owner_w(skb, &ipc->sk);
708 		qrtr_bcast_enqueue(NULL, skb, QRTR_TYPE_DEL_CLIENT, &ipc->us,
709 				   &to);
710 	}
711 
712 	if (port == QRTR_PORT_CTRL)
713 		port = 0;
714 
715 	__sock_put(&ipc->sk);
716 
717 	xa_erase(&qrtr_ports, port);
718 
719 	/* Ensure that if qrtr_port_lookup() did enter the RCU read section we
720 	 * wait for it to up increment the refcount */
721 	synchronize_rcu();
722 }
723 
724 /* Assign port number to socket.
725  *
726  * Specify port in the integer pointed to by port, and it will be adjusted
727  * on return as necesssary.
728  *
729  * Port may be:
730  *   0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET]
731  *   <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN
732  *   >QRTR_MIN_EPH_SOCKET: Specified; available to all
733  */
734 static int qrtr_port_assign(struct qrtr_sock *ipc, int *port)
735 {
736 	int rc;
737 
738 	if (!*port) {
739 		rc = xa_alloc(&qrtr_ports, port, ipc, QRTR_EPH_PORT_RANGE,
740 				GFP_KERNEL);
741 	} else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) {
742 		rc = -EACCES;
743 	} else if (*port == QRTR_PORT_CTRL) {
744 		rc = xa_insert(&qrtr_ports, 0, ipc, GFP_KERNEL);
745 	} else {
746 		rc = xa_insert(&qrtr_ports, *port, ipc, GFP_KERNEL);
747 	}
748 
749 	if (rc == -EBUSY)
750 		return -EADDRINUSE;
751 	else if (rc < 0)
752 		return rc;
753 
754 	sock_hold(&ipc->sk);
755 
756 	return 0;
757 }
758 
759 /* Reset all non-control ports */
760 static void qrtr_reset_ports(void)
761 {
762 	struct qrtr_sock *ipc;
763 	unsigned long index;
764 
765 	rcu_read_lock();
766 	xa_for_each_start(&qrtr_ports, index, ipc, 1) {
767 		sock_hold(&ipc->sk);
768 		ipc->sk.sk_err = ENETRESET;
769 		sk_error_report(&ipc->sk);
770 		sock_put(&ipc->sk);
771 	}
772 	rcu_read_unlock();
773 }
774 
775 /* Bind socket to address.
776  *
777  * Socket should be locked upon call.
778  */
779 static int __qrtr_bind(struct socket *sock,
780 		       const struct sockaddr_qrtr *addr, int zapped)
781 {
782 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
783 	struct sock *sk = sock->sk;
784 	int port;
785 	int rc;
786 
787 	/* rebinding ok */
788 	if (!zapped && addr->sq_port == ipc->us.sq_port)
789 		return 0;
790 
791 	port = addr->sq_port;
792 	rc = qrtr_port_assign(ipc, &port);
793 	if (rc)
794 		return rc;
795 
796 	/* unbind previous, if any */
797 	if (!zapped)
798 		qrtr_port_remove(ipc);
799 	ipc->us.sq_port = port;
800 
801 	sock_reset_flag(sk, SOCK_ZAPPED);
802 
803 	/* Notify all open ports about the new controller */
804 	if (port == QRTR_PORT_CTRL)
805 		qrtr_reset_ports();
806 
807 	return 0;
808 }
809 
810 /* Auto bind to an ephemeral port. */
811 static int qrtr_autobind(struct socket *sock)
812 {
813 	struct sock *sk = sock->sk;
814 	struct sockaddr_qrtr addr;
815 
816 	if (!sock_flag(sk, SOCK_ZAPPED))
817 		return 0;
818 
819 	addr.sq_family = AF_QIPCRTR;
820 	addr.sq_node = qrtr_local_nid;
821 	addr.sq_port = 0;
822 
823 	return __qrtr_bind(sock, &addr, 1);
824 }
825 
826 /* Bind socket to specified sockaddr. */
827 static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len)
828 {
829 	DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
830 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
831 	struct sock *sk = sock->sk;
832 	int rc;
833 
834 	if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
835 		return -EINVAL;
836 
837 	if (addr->sq_node != ipc->us.sq_node)
838 		return -EINVAL;
839 
840 	lock_sock(sk);
841 	rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED));
842 	release_sock(sk);
843 
844 	return rc;
845 }
846 
847 /* Queue packet to local peer socket. */
848 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
849 			      int type, struct sockaddr_qrtr *from,
850 			      struct sockaddr_qrtr *to)
851 {
852 	struct qrtr_sock *ipc;
853 	struct qrtr_cb *cb;
854 
855 	ipc = qrtr_port_lookup(to->sq_port);
856 	if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */
857 		if (ipc)
858 			qrtr_port_put(ipc);
859 		kfree_skb(skb);
860 		return -ENODEV;
861 	}
862 
863 	cb = (struct qrtr_cb *)skb->cb;
864 	cb->src_node = from->sq_node;
865 	cb->src_port = from->sq_port;
866 
867 	if (sock_queue_rcv_skb(&ipc->sk, skb)) {
868 		qrtr_port_put(ipc);
869 		kfree_skb(skb);
870 		return -ENOSPC;
871 	}
872 
873 	qrtr_port_put(ipc);
874 
875 	return 0;
876 }
877 
878 /* Queue packet for broadcast. */
879 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
880 			      int type, struct sockaddr_qrtr *from,
881 			      struct sockaddr_qrtr *to)
882 {
883 	struct sk_buff *skbn;
884 
885 	mutex_lock(&qrtr_node_lock);
886 	list_for_each_entry(node, &qrtr_all_nodes, item) {
887 		skbn = skb_clone(skb, GFP_KERNEL);
888 		if (!skbn)
889 			break;
890 		skb_set_owner_w(skbn, skb->sk);
891 		qrtr_node_enqueue(node, skbn, type, from, to);
892 	}
893 	mutex_unlock(&qrtr_node_lock);
894 
895 	qrtr_local_enqueue(NULL, skb, type, from, to);
896 
897 	return 0;
898 }
899 
900 static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
901 {
902 	DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
903 	int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int,
904 			  struct sockaddr_qrtr *, struct sockaddr_qrtr *);
905 	__le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA);
906 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
907 	struct sock *sk = sock->sk;
908 	struct qrtr_node *node;
909 	struct sk_buff *skb;
910 	size_t plen;
911 	u32 type;
912 	int rc;
913 
914 	if (msg->msg_flags & ~(MSG_DONTWAIT))
915 		return -EINVAL;
916 
917 	if (len > 65535)
918 		return -EMSGSIZE;
919 
920 	lock_sock(sk);
921 
922 	if (addr) {
923 		if (msg->msg_namelen < sizeof(*addr)) {
924 			release_sock(sk);
925 			return -EINVAL;
926 		}
927 
928 		if (addr->sq_family != AF_QIPCRTR) {
929 			release_sock(sk);
930 			return -EINVAL;
931 		}
932 
933 		rc = qrtr_autobind(sock);
934 		if (rc) {
935 			release_sock(sk);
936 			return rc;
937 		}
938 	} else if (sk->sk_state == TCP_ESTABLISHED) {
939 		addr = &ipc->peer;
940 	} else {
941 		release_sock(sk);
942 		return -ENOTCONN;
943 	}
944 
945 	node = NULL;
946 	if (addr->sq_node == QRTR_NODE_BCAST) {
947 		if (addr->sq_port != QRTR_PORT_CTRL &&
948 		    qrtr_local_nid != QRTR_NODE_BCAST) {
949 			release_sock(sk);
950 			return -ENOTCONN;
951 		}
952 		enqueue_fn = qrtr_bcast_enqueue;
953 	} else if (addr->sq_node == ipc->us.sq_node) {
954 		enqueue_fn = qrtr_local_enqueue;
955 	} else {
956 		node = qrtr_node_lookup(addr->sq_node);
957 		if (!node) {
958 			release_sock(sk);
959 			return -ECONNRESET;
960 		}
961 		enqueue_fn = qrtr_node_enqueue;
962 	}
963 
964 	plen = (len + 3) & ~3;
965 	skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE,
966 				  msg->msg_flags & MSG_DONTWAIT, &rc);
967 	if (!skb) {
968 		rc = -ENOMEM;
969 		goto out_node;
970 	}
971 
972 	skb_reserve(skb, QRTR_HDR_MAX_SIZE);
973 
974 	rc = memcpy_from_msg(skb_put(skb, len), msg, len);
975 	if (rc) {
976 		kfree_skb(skb);
977 		goto out_node;
978 	}
979 
980 	if (ipc->us.sq_port == QRTR_PORT_CTRL) {
981 		if (len < 4) {
982 			rc = -EINVAL;
983 			kfree_skb(skb);
984 			goto out_node;
985 		}
986 
987 		/* control messages already require the type as 'command' */
988 		skb_copy_bits(skb, 0, &qrtr_type, 4);
989 	}
990 
991 	type = le32_to_cpu(qrtr_type);
992 	rc = enqueue_fn(node, skb, type, &ipc->us, addr);
993 	if (rc >= 0)
994 		rc = len;
995 
996 out_node:
997 	qrtr_node_release(node);
998 	release_sock(sk);
999 
1000 	return rc;
1001 }
1002 
1003 static int qrtr_send_resume_tx(struct qrtr_cb *cb)
1004 {
1005 	struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port };
1006 	struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port };
1007 	struct qrtr_ctrl_pkt *pkt;
1008 	struct qrtr_node *node;
1009 	struct sk_buff *skb;
1010 	int ret;
1011 
1012 	node = qrtr_node_lookup(remote.sq_node);
1013 	if (!node)
1014 		return -EINVAL;
1015 
1016 	skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL);
1017 	if (!skb)
1018 		return -ENOMEM;
1019 
1020 	pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX);
1021 	pkt->client.node = cpu_to_le32(cb->dst_node);
1022 	pkt->client.port = cpu_to_le32(cb->dst_port);
1023 
1024 	ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote);
1025 
1026 	qrtr_node_release(node);
1027 
1028 	return ret;
1029 }
1030 
1031 static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg,
1032 			size_t size, int flags)
1033 {
1034 	DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
1035 	struct sock *sk = sock->sk;
1036 	struct sk_buff *skb;
1037 	struct qrtr_cb *cb;
1038 	int copied, rc;
1039 
1040 	lock_sock(sk);
1041 
1042 	if (sock_flag(sk, SOCK_ZAPPED)) {
1043 		release_sock(sk);
1044 		return -EADDRNOTAVAIL;
1045 	}
1046 
1047 	skb = skb_recv_datagram(sk, flags, &rc);
1048 	if (!skb) {
1049 		release_sock(sk);
1050 		return rc;
1051 	}
1052 	cb = (struct qrtr_cb *)skb->cb;
1053 
1054 	copied = skb->len;
1055 	if (copied > size) {
1056 		copied = size;
1057 		msg->msg_flags |= MSG_TRUNC;
1058 	}
1059 
1060 	rc = skb_copy_datagram_msg(skb, 0, msg, copied);
1061 	if (rc < 0)
1062 		goto out;
1063 	rc = copied;
1064 
1065 	if (addr) {
1066 		/* There is an anonymous 2-byte hole after sq_family,
1067 		 * make sure to clear it.
1068 		 */
1069 		memset(addr, 0, sizeof(*addr));
1070 
1071 		addr->sq_family = AF_QIPCRTR;
1072 		addr->sq_node = cb->src_node;
1073 		addr->sq_port = cb->src_port;
1074 		msg->msg_namelen = sizeof(*addr);
1075 	}
1076 
1077 out:
1078 	if (cb->confirm_rx)
1079 		qrtr_send_resume_tx(cb);
1080 
1081 	skb_free_datagram(sk, skb);
1082 	release_sock(sk);
1083 
1084 	return rc;
1085 }
1086 
1087 static int qrtr_connect(struct socket *sock, struct sockaddr *saddr,
1088 			int len, int flags)
1089 {
1090 	DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
1091 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1092 	struct sock *sk = sock->sk;
1093 	int rc;
1094 
1095 	if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
1096 		return -EINVAL;
1097 
1098 	lock_sock(sk);
1099 
1100 	sk->sk_state = TCP_CLOSE;
1101 	sock->state = SS_UNCONNECTED;
1102 
1103 	rc = qrtr_autobind(sock);
1104 	if (rc) {
1105 		release_sock(sk);
1106 		return rc;
1107 	}
1108 
1109 	ipc->peer = *addr;
1110 	sock->state = SS_CONNECTED;
1111 	sk->sk_state = TCP_ESTABLISHED;
1112 
1113 	release_sock(sk);
1114 
1115 	return 0;
1116 }
1117 
1118 static int qrtr_getname(struct socket *sock, struct sockaddr *saddr,
1119 			int peer)
1120 {
1121 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1122 	struct sockaddr_qrtr qaddr;
1123 	struct sock *sk = sock->sk;
1124 
1125 	lock_sock(sk);
1126 	if (peer) {
1127 		if (sk->sk_state != TCP_ESTABLISHED) {
1128 			release_sock(sk);
1129 			return -ENOTCONN;
1130 		}
1131 
1132 		qaddr = ipc->peer;
1133 	} else {
1134 		qaddr = ipc->us;
1135 	}
1136 	release_sock(sk);
1137 
1138 	qaddr.sq_family = AF_QIPCRTR;
1139 
1140 	memcpy(saddr, &qaddr, sizeof(qaddr));
1141 
1142 	return sizeof(qaddr);
1143 }
1144 
1145 static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1146 {
1147 	void __user *argp = (void __user *)arg;
1148 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1149 	struct sock *sk = sock->sk;
1150 	struct sockaddr_qrtr *sq;
1151 	struct sk_buff *skb;
1152 	struct ifreq ifr;
1153 	long len = 0;
1154 	int rc = 0;
1155 
1156 	lock_sock(sk);
1157 
1158 	switch (cmd) {
1159 	case TIOCOUTQ:
1160 		len = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1161 		if (len < 0)
1162 			len = 0;
1163 		rc = put_user(len, (int __user *)argp);
1164 		break;
1165 	case TIOCINQ:
1166 		skb = skb_peek(&sk->sk_receive_queue);
1167 		if (skb)
1168 			len = skb->len;
1169 		rc = put_user(len, (int __user *)argp);
1170 		break;
1171 	case SIOCGIFADDR:
1172 		if (get_user_ifreq(&ifr, NULL, argp)) {
1173 			rc = -EFAULT;
1174 			break;
1175 		}
1176 
1177 		sq = (struct sockaddr_qrtr *)&ifr.ifr_addr;
1178 		*sq = ipc->us;
1179 		if (put_user_ifreq(&ifr, argp)) {
1180 			rc = -EFAULT;
1181 			break;
1182 		}
1183 		break;
1184 	case SIOCADDRT:
1185 	case SIOCDELRT:
1186 	case SIOCSIFADDR:
1187 	case SIOCGIFDSTADDR:
1188 	case SIOCSIFDSTADDR:
1189 	case SIOCGIFBRDADDR:
1190 	case SIOCSIFBRDADDR:
1191 	case SIOCGIFNETMASK:
1192 	case SIOCSIFNETMASK:
1193 		rc = -EINVAL;
1194 		break;
1195 	default:
1196 		rc = -ENOIOCTLCMD;
1197 		break;
1198 	}
1199 
1200 	release_sock(sk);
1201 
1202 	return rc;
1203 }
1204 
1205 static int qrtr_release(struct socket *sock)
1206 {
1207 	struct sock *sk = sock->sk;
1208 	struct qrtr_sock *ipc;
1209 
1210 	if (!sk)
1211 		return 0;
1212 
1213 	lock_sock(sk);
1214 
1215 	ipc = qrtr_sk(sk);
1216 	sk->sk_shutdown = SHUTDOWN_MASK;
1217 	if (!sock_flag(sk, SOCK_DEAD))
1218 		sk->sk_state_change(sk);
1219 
1220 	sock_set_flag(sk, SOCK_DEAD);
1221 	sock_orphan(sk);
1222 	sock->sk = NULL;
1223 
1224 	if (!sock_flag(sk, SOCK_ZAPPED))
1225 		qrtr_port_remove(ipc);
1226 
1227 	skb_queue_purge(&sk->sk_receive_queue);
1228 
1229 	release_sock(sk);
1230 	sock_put(sk);
1231 
1232 	return 0;
1233 }
1234 
1235 static const struct proto_ops qrtr_proto_ops = {
1236 	.owner		= THIS_MODULE,
1237 	.family		= AF_QIPCRTR,
1238 	.bind		= qrtr_bind,
1239 	.connect	= qrtr_connect,
1240 	.socketpair	= sock_no_socketpair,
1241 	.accept		= sock_no_accept,
1242 	.listen		= sock_no_listen,
1243 	.sendmsg	= qrtr_sendmsg,
1244 	.recvmsg	= qrtr_recvmsg,
1245 	.getname	= qrtr_getname,
1246 	.ioctl		= qrtr_ioctl,
1247 	.gettstamp	= sock_gettstamp,
1248 	.poll		= datagram_poll,
1249 	.shutdown	= sock_no_shutdown,
1250 	.release	= qrtr_release,
1251 	.mmap		= sock_no_mmap,
1252 };
1253 
1254 static struct proto qrtr_proto = {
1255 	.name		= "QIPCRTR",
1256 	.owner		= THIS_MODULE,
1257 	.obj_size	= sizeof(struct qrtr_sock),
1258 };
1259 
1260 static int qrtr_create(struct net *net, struct socket *sock,
1261 		       int protocol, int kern)
1262 {
1263 	struct qrtr_sock *ipc;
1264 	struct sock *sk;
1265 
1266 	if (sock->type != SOCK_DGRAM)
1267 		return -EPROTOTYPE;
1268 
1269 	sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern);
1270 	if (!sk)
1271 		return -ENOMEM;
1272 
1273 	sock_set_flag(sk, SOCK_ZAPPED);
1274 
1275 	sock_init_data(sock, sk);
1276 	sock->ops = &qrtr_proto_ops;
1277 
1278 	ipc = qrtr_sk(sk);
1279 	ipc->us.sq_family = AF_QIPCRTR;
1280 	ipc->us.sq_node = qrtr_local_nid;
1281 	ipc->us.sq_port = 0;
1282 
1283 	return 0;
1284 }
1285 
1286 static const struct net_proto_family qrtr_family = {
1287 	.owner	= THIS_MODULE,
1288 	.family	= AF_QIPCRTR,
1289 	.create	= qrtr_create,
1290 };
1291 
1292 static int __init qrtr_proto_init(void)
1293 {
1294 	int rc;
1295 
1296 	rc = proto_register(&qrtr_proto, 1);
1297 	if (rc)
1298 		return rc;
1299 
1300 	rc = sock_register(&qrtr_family);
1301 	if (rc)
1302 		goto err_proto;
1303 
1304 	rc = qrtr_ns_init();
1305 	if (rc)
1306 		goto err_sock;
1307 
1308 	return 0;
1309 
1310 err_sock:
1311 	sock_unregister(qrtr_family.family);
1312 err_proto:
1313 	proto_unregister(&qrtr_proto);
1314 	return rc;
1315 }
1316 postcore_initcall(qrtr_proto_init);
1317 
1318 static void __exit qrtr_proto_fini(void)
1319 {
1320 	qrtr_ns_remove();
1321 	sock_unregister(qrtr_family.family);
1322 	proto_unregister(&qrtr_proto);
1323 }
1324 module_exit(qrtr_proto_fini);
1325 
1326 MODULE_DESCRIPTION("Qualcomm IPC-router driver");
1327 MODULE_LICENSE("GPL v2");
1328 MODULE_ALIAS_NETPROTO(PF_QIPCRTR);
1329