1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * PACKET - implements raw packet sockets. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Alan Cox, <gw4pts@gw4pts.ampr.org> 11 * 12 * Fixes: 13 * Alan Cox : verify_area() now used correctly 14 * Alan Cox : new skbuff lists, look ma no backlogs! 15 * Alan Cox : tidied skbuff lists. 16 * Alan Cox : Now uses generic datagram routines I 17 * added. Also fixed the peek/read crash 18 * from all old Linux datagram code. 19 * Alan Cox : Uses the improved datagram code. 20 * Alan Cox : Added NULL's for socket options. 21 * Alan Cox : Re-commented the code. 22 * Alan Cox : Use new kernel side addressing 23 * Rob Janssen : Correct MTU usage. 24 * Dave Platt : Counter leaks caused by incorrect 25 * interrupt locking and some slightly 26 * dubious gcc output. Can you read 27 * compiler: it said _VOLATILE_ 28 * Richard Kooijman : Timestamp fixes. 29 * Alan Cox : New buffers. Use sk->mac.raw. 30 * Alan Cox : sendmsg/recvmsg support. 31 * Alan Cox : Protocol setting support 32 * Alexey Kuznetsov : Untied from IPv4 stack. 33 * Cyrus Durgin : Fixed kerneld for kmod. 34 * Michal Ostrowski : Module initialization cleanup. 35 * Ulises Alonso : Frame number limit removal and 36 * packet_set_ring memory leak. 37 * Eric Biederman : Allow for > 8 byte hardware addresses. 38 * The convention is that longer addresses 39 * will simply extend the hardware address 40 * byte arrays at the end of sockaddr_ll 41 * and packet_mreq. 42 * Johann Baudy : Added TX RING. 43 * Chetan Loke : Implemented TPACKET_V3 block abstraction 44 * layer. 45 * Copyright (C) 2011, <lokec@ccs.neu.edu> 46 * 47 * 48 * This program is free software; you can redistribute it and/or 49 * modify it under the terms of the GNU General Public License 50 * as published by the Free Software Foundation; either version 51 * 2 of the License, or (at your option) any later version. 52 * 53 */ 54 55 #include <linux/types.h> 56 #include <linux/mm.h> 57 #include <linux/capability.h> 58 #include <linux/fcntl.h> 59 #include <linux/socket.h> 60 #include <linux/in.h> 61 #include <linux/inet.h> 62 #include <linux/netdevice.h> 63 #include <linux/if_packet.h> 64 #include <linux/wireless.h> 65 #include <linux/kernel.h> 66 #include <linux/kmod.h> 67 #include <linux/slab.h> 68 #include <linux/vmalloc.h> 69 #include <net/net_namespace.h> 70 #include <net/ip.h> 71 #include <net/protocol.h> 72 #include <linux/skbuff.h> 73 #include <net/sock.h> 74 #include <linux/errno.h> 75 #include <linux/timer.h> 76 #include <asm/system.h> 77 #include <asm/uaccess.h> 78 #include <asm/ioctls.h> 79 #include <asm/page.h> 80 #include <asm/cacheflush.h> 81 #include <asm/io.h> 82 #include <linux/proc_fs.h> 83 #include <linux/seq_file.h> 84 #include <linux/poll.h> 85 #include <linux/module.h> 86 #include <linux/init.h> 87 #include <linux/mutex.h> 88 #include <linux/if_vlan.h> 89 #include <linux/virtio_net.h> 90 #include <linux/errqueue.h> 91 #include <linux/net_tstamp.h> 92 93 #ifdef CONFIG_INET 94 #include <net/inet_common.h> 95 #endif 96 97 /* 98 Assumptions: 99 - if device has no dev->hard_header routine, it adds and removes ll header 100 inside itself. In this case ll header is invisible outside of device, 101 but higher levels still should reserve dev->hard_header_len. 102 Some devices are enough clever to reallocate skb, when header 103 will not fit to reserved space (tunnel), another ones are silly 104 (PPP). 105 - packet socket receives packets with pulled ll header, 106 so that SOCK_RAW should push it back. 107 108 On receive: 109 ----------- 110 111 Incoming, dev->hard_header!=NULL 112 mac_header -> ll header 113 data -> data 114 115 Outgoing, dev->hard_header!=NULL 116 mac_header -> ll header 117 data -> ll header 118 119 Incoming, dev->hard_header==NULL 120 mac_header -> UNKNOWN position. It is very likely, that it points to ll 121 header. PPP makes it, that is wrong, because introduce 122 assymetry between rx and tx paths. 123 data -> data 124 125 Outgoing, dev->hard_header==NULL 126 mac_header -> data. ll header is still not built! 127 data -> data 128 129 Resume 130 If dev->hard_header==NULL we are unlikely to restore sensible ll header. 131 132 133 On transmit: 134 ------------ 135 136 dev->hard_header != NULL 137 mac_header -> ll header 138 data -> ll header 139 140 dev->hard_header == NULL (ll header is added by device, we cannot control it) 141 mac_header -> data 142 data -> data 143 144 We should set nh.raw on output to correct posistion, 145 packet classifier depends on it. 146 */ 147 148 /* Private packet socket structures. */ 149 150 struct packet_mclist { 151 struct packet_mclist *next; 152 int ifindex; 153 int count; 154 unsigned short type; 155 unsigned short alen; 156 unsigned char addr[MAX_ADDR_LEN]; 157 }; 158 /* identical to struct packet_mreq except it has 159 * a longer address field. 160 */ 161 struct packet_mreq_max { 162 int mr_ifindex; 163 unsigned short mr_type; 164 unsigned short mr_alen; 165 unsigned char mr_address[MAX_ADDR_LEN]; 166 }; 167 168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 169 int closing, int tx_ring); 170 171 172 #define V3_ALIGNMENT (8) 173 174 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 175 176 #define BLK_PLUS_PRIV(sz_of_priv) \ 177 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 178 179 /* kbdq - kernel block descriptor queue */ 180 struct tpacket_kbdq_core { 181 struct pgv *pkbdq; 182 unsigned int feature_req_word; 183 unsigned int hdrlen; 184 unsigned char reset_pending_on_curr_blk; 185 unsigned char delete_blk_timer; 186 unsigned short kactive_blk_num; 187 unsigned short blk_sizeof_priv; 188 189 /* last_kactive_blk_num: 190 * trick to see if user-space has caught up 191 * in order to avoid refreshing timer when every single pkt arrives. 192 */ 193 unsigned short last_kactive_blk_num; 194 195 char *pkblk_start; 196 char *pkblk_end; 197 int kblk_size; 198 unsigned int knum_blocks; 199 uint64_t knxt_seq_num; 200 char *prev; 201 char *nxt_offset; 202 struct sk_buff *skb; 203 204 atomic_t blk_fill_in_prog; 205 206 /* Default is set to 8ms */ 207 #define DEFAULT_PRB_RETIRE_TOV (8) 208 209 unsigned short retire_blk_tov; 210 unsigned short version; 211 unsigned long tov_in_jiffies; 212 213 /* timer to retire an outstanding block */ 214 struct timer_list retire_blk_timer; 215 }; 216 217 #define PGV_FROM_VMALLOC 1 218 struct pgv { 219 char *buffer; 220 }; 221 222 struct packet_ring_buffer { 223 struct pgv *pg_vec; 224 unsigned int head; 225 unsigned int frames_per_block; 226 unsigned int frame_size; 227 unsigned int frame_max; 228 229 unsigned int pg_vec_order; 230 unsigned int pg_vec_pages; 231 unsigned int pg_vec_len; 232 233 struct tpacket_kbdq_core prb_bdqc; 234 atomic_t pending; 235 }; 236 237 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 238 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 239 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 240 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 241 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 242 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 243 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x))) 244 245 struct packet_sock; 246 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg); 247 248 static void *packet_previous_frame(struct packet_sock *po, 249 struct packet_ring_buffer *rb, 250 int status); 251 static void packet_increment_head(struct packet_ring_buffer *buff); 252 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *, 253 struct tpacket_block_desc *); 254 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 255 struct packet_sock *); 256 static void prb_retire_current_block(struct tpacket_kbdq_core *, 257 struct packet_sock *, unsigned int status); 258 static int prb_queue_frozen(struct tpacket_kbdq_core *); 259 static void prb_open_block(struct tpacket_kbdq_core *, 260 struct tpacket_block_desc *); 261 static void prb_retire_rx_blk_timer_expired(unsigned long); 262 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 263 static void prb_init_blk_timer(struct packet_sock *, 264 struct tpacket_kbdq_core *, 265 void (*func) (unsigned long)); 266 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 267 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 268 struct tpacket3_hdr *); 269 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 270 struct tpacket3_hdr *); 271 static void packet_flush_mclist(struct sock *sk); 272 273 struct packet_fanout; 274 struct packet_sock { 275 /* struct sock has to be the first member of packet_sock */ 276 struct sock sk; 277 struct packet_fanout *fanout; 278 struct tpacket_stats stats; 279 union tpacket_stats_u stats_u; 280 struct packet_ring_buffer rx_ring; 281 struct packet_ring_buffer tx_ring; 282 int copy_thresh; 283 spinlock_t bind_lock; 284 struct mutex pg_vec_lock; 285 unsigned int running:1, /* prot_hook is attached*/ 286 auxdata:1, 287 origdev:1, 288 has_vnet_hdr:1; 289 int ifindex; /* bound device */ 290 __be16 num; 291 struct packet_mclist *mclist; 292 atomic_t mapped; 293 enum tpacket_versions tp_version; 294 unsigned int tp_hdrlen; 295 unsigned int tp_reserve; 296 unsigned int tp_loss:1; 297 unsigned int tp_tstamp; 298 struct packet_type prot_hook ____cacheline_aligned_in_smp; 299 }; 300 301 #define PACKET_FANOUT_MAX 256 302 303 struct packet_fanout { 304 #ifdef CONFIG_NET_NS 305 struct net *net; 306 #endif 307 unsigned int num_members; 308 u16 id; 309 u8 type; 310 u8 defrag; 311 atomic_t rr_cur; 312 struct list_head list; 313 struct sock *arr[PACKET_FANOUT_MAX]; 314 spinlock_t lock; 315 atomic_t sk_ref; 316 struct packet_type prot_hook ____cacheline_aligned_in_smp; 317 }; 318 319 struct packet_skb_cb { 320 unsigned int origlen; 321 union { 322 struct sockaddr_pkt pkt; 323 struct sockaddr_ll ll; 324 } sa; 325 }; 326 327 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 328 329 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 330 #define GET_PBLOCK_DESC(x, bid) \ 331 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 332 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 333 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 334 #define GET_NEXT_PRB_BLK_NUM(x) \ 335 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 336 ((x)->kactive_blk_num+1) : 0) 337 338 static struct packet_sock *pkt_sk(struct sock *sk) 339 { 340 return (struct packet_sock *)sk; 341 } 342 343 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 344 static void __fanout_link(struct sock *sk, struct packet_sock *po); 345 346 /* register_prot_hook must be invoked with the po->bind_lock held, 347 * or from a context in which asynchronous accesses to the packet 348 * socket is not possible (packet_create()). 349 */ 350 static void register_prot_hook(struct sock *sk) 351 { 352 struct packet_sock *po = pkt_sk(sk); 353 if (!po->running) { 354 if (po->fanout) 355 __fanout_link(sk, po); 356 else 357 dev_add_pack(&po->prot_hook); 358 sock_hold(sk); 359 po->running = 1; 360 } 361 } 362 363 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock 364 * held. If the sync parameter is true, we will temporarily drop 365 * the po->bind_lock and do a synchronize_net to make sure no 366 * asynchronous packet processing paths still refer to the elements 367 * of po->prot_hook. If the sync parameter is false, it is the 368 * callers responsibility to take care of this. 369 */ 370 static void __unregister_prot_hook(struct sock *sk, bool sync) 371 { 372 struct packet_sock *po = pkt_sk(sk); 373 374 po->running = 0; 375 if (po->fanout) 376 __fanout_unlink(sk, po); 377 else 378 __dev_remove_pack(&po->prot_hook); 379 __sock_put(sk); 380 381 if (sync) { 382 spin_unlock(&po->bind_lock); 383 synchronize_net(); 384 spin_lock(&po->bind_lock); 385 } 386 } 387 388 static void unregister_prot_hook(struct sock *sk, bool sync) 389 { 390 struct packet_sock *po = pkt_sk(sk); 391 392 if (po->running) 393 __unregister_prot_hook(sk, sync); 394 } 395 396 static inline __pure struct page *pgv_to_page(void *addr) 397 { 398 if (is_vmalloc_addr(addr)) 399 return vmalloc_to_page(addr); 400 return virt_to_page(addr); 401 } 402 403 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 404 { 405 union { 406 struct tpacket_hdr *h1; 407 struct tpacket2_hdr *h2; 408 void *raw; 409 } h; 410 411 h.raw = frame; 412 switch (po->tp_version) { 413 case TPACKET_V1: 414 h.h1->tp_status = status; 415 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 416 break; 417 case TPACKET_V2: 418 h.h2->tp_status = status; 419 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 420 break; 421 case TPACKET_V3: 422 default: 423 WARN(1, "TPACKET version not supported.\n"); 424 BUG(); 425 } 426 427 smp_wmb(); 428 } 429 430 static int __packet_get_status(struct packet_sock *po, void *frame) 431 { 432 union { 433 struct tpacket_hdr *h1; 434 struct tpacket2_hdr *h2; 435 void *raw; 436 } h; 437 438 smp_rmb(); 439 440 h.raw = frame; 441 switch (po->tp_version) { 442 case TPACKET_V1: 443 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 444 return h.h1->tp_status; 445 case TPACKET_V2: 446 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 447 return h.h2->tp_status; 448 case TPACKET_V3: 449 default: 450 WARN(1, "TPACKET version not supported.\n"); 451 BUG(); 452 return 0; 453 } 454 } 455 456 static void *packet_lookup_frame(struct packet_sock *po, 457 struct packet_ring_buffer *rb, 458 unsigned int position, 459 int status) 460 { 461 unsigned int pg_vec_pos, frame_offset; 462 union { 463 struct tpacket_hdr *h1; 464 struct tpacket2_hdr *h2; 465 void *raw; 466 } h; 467 468 pg_vec_pos = position / rb->frames_per_block; 469 frame_offset = position % rb->frames_per_block; 470 471 h.raw = rb->pg_vec[pg_vec_pos].buffer + 472 (frame_offset * rb->frame_size); 473 474 if (status != __packet_get_status(po, h.raw)) 475 return NULL; 476 477 return h.raw; 478 } 479 480 static void *packet_current_frame(struct packet_sock *po, 481 struct packet_ring_buffer *rb, 482 int status) 483 { 484 return packet_lookup_frame(po, rb, rb->head, status); 485 } 486 487 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 488 { 489 del_timer_sync(&pkc->retire_blk_timer); 490 } 491 492 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 493 int tx_ring, 494 struct sk_buff_head *rb_queue) 495 { 496 struct tpacket_kbdq_core *pkc; 497 498 pkc = tx_ring ? &po->tx_ring.prb_bdqc : &po->rx_ring.prb_bdqc; 499 500 spin_lock(&rb_queue->lock); 501 pkc->delete_blk_timer = 1; 502 spin_unlock(&rb_queue->lock); 503 504 prb_del_retire_blk_timer(pkc); 505 } 506 507 static void prb_init_blk_timer(struct packet_sock *po, 508 struct tpacket_kbdq_core *pkc, 509 void (*func) (unsigned long)) 510 { 511 init_timer(&pkc->retire_blk_timer); 512 pkc->retire_blk_timer.data = (long)po; 513 pkc->retire_blk_timer.function = func; 514 pkc->retire_blk_timer.expires = jiffies; 515 } 516 517 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring) 518 { 519 struct tpacket_kbdq_core *pkc; 520 521 if (tx_ring) 522 BUG(); 523 524 pkc = tx_ring ? &po->tx_ring.prb_bdqc : &po->rx_ring.prb_bdqc; 525 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired); 526 } 527 528 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 529 int blk_size_in_bytes) 530 { 531 struct net_device *dev; 532 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0; 533 struct ethtool_cmd ecmd; 534 int err; 535 536 rtnl_lock(); 537 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 538 if (unlikely(!dev)) { 539 rtnl_unlock(); 540 return DEFAULT_PRB_RETIRE_TOV; 541 } 542 err = __ethtool_get_settings(dev, &ecmd); 543 rtnl_unlock(); 544 if (!err) { 545 switch (ecmd.speed) { 546 case SPEED_10000: 547 msec = 1; 548 div = 10000/1000; 549 break; 550 case SPEED_1000: 551 msec = 1; 552 div = 1000/1000; 553 break; 554 /* 555 * If the link speed is so slow you don't really 556 * need to worry about perf anyways 557 */ 558 case SPEED_100: 559 case SPEED_10: 560 default: 561 return DEFAULT_PRB_RETIRE_TOV; 562 } 563 } 564 565 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 566 567 if (div) 568 mbits /= div; 569 570 tmo = mbits * msec; 571 572 if (div) 573 return tmo+1; 574 return tmo; 575 } 576 577 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 578 union tpacket_req_u *req_u) 579 { 580 p1->feature_req_word = req_u->req3.tp_feature_req_word; 581 } 582 583 static void init_prb_bdqc(struct packet_sock *po, 584 struct packet_ring_buffer *rb, 585 struct pgv *pg_vec, 586 union tpacket_req_u *req_u, int tx_ring) 587 { 588 struct tpacket_kbdq_core *p1 = &rb->prb_bdqc; 589 struct tpacket_block_desc *pbd; 590 591 memset(p1, 0x0, sizeof(*p1)); 592 593 p1->knxt_seq_num = 1; 594 p1->pkbdq = pg_vec; 595 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 596 p1->pkblk_start = (char *)pg_vec[0].buffer; 597 p1->kblk_size = req_u->req3.tp_block_size; 598 p1->knum_blocks = req_u->req3.tp_block_nr; 599 p1->hdrlen = po->tp_hdrlen; 600 p1->version = po->tp_version; 601 p1->last_kactive_blk_num = 0; 602 po->stats_u.stats3.tp_freeze_q_cnt = 0; 603 if (req_u->req3.tp_retire_blk_tov) 604 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 605 else 606 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 607 req_u->req3.tp_block_size); 608 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 609 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 610 611 prb_init_ft_ops(p1, req_u); 612 prb_setup_retire_blk_timer(po, tx_ring); 613 prb_open_block(p1, pbd); 614 } 615 616 /* Do NOT update the last_blk_num first. 617 * Assumes sk_buff_head lock is held. 618 */ 619 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 620 { 621 mod_timer(&pkc->retire_blk_timer, 622 jiffies + pkc->tov_in_jiffies); 623 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 624 } 625 626 /* 627 * Timer logic: 628 * 1) We refresh the timer only when we open a block. 629 * By doing this we don't waste cycles refreshing the timer 630 * on packet-by-packet basis. 631 * 632 * With a 1MB block-size, on a 1Gbps line, it will take 633 * i) ~8 ms to fill a block + ii) memcpy etc. 634 * In this cut we are not accounting for the memcpy time. 635 * 636 * So, if the user sets the 'tmo' to 10ms then the timer 637 * will never fire while the block is still getting filled 638 * (which is what we want). However, the user could choose 639 * to close a block early and that's fine. 640 * 641 * But when the timer does fire, we check whether or not to refresh it. 642 * Since the tmo granularity is in msecs, it is not too expensive 643 * to refresh the timer, lets say every '8' msecs. 644 * Either the user can set the 'tmo' or we can derive it based on 645 * a) line-speed and b) block-size. 646 * prb_calc_retire_blk_tmo() calculates the tmo. 647 * 648 */ 649 static void prb_retire_rx_blk_timer_expired(unsigned long data) 650 { 651 struct packet_sock *po = (struct packet_sock *)data; 652 struct tpacket_kbdq_core *pkc = &po->rx_ring.prb_bdqc; 653 unsigned int frozen; 654 struct tpacket_block_desc *pbd; 655 656 spin_lock(&po->sk.sk_receive_queue.lock); 657 658 frozen = prb_queue_frozen(pkc); 659 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 660 661 if (unlikely(pkc->delete_blk_timer)) 662 goto out; 663 664 /* We only need to plug the race when the block is partially filled. 665 * tpacket_rcv: 666 * lock(); increment BLOCK_NUM_PKTS; unlock() 667 * copy_bits() is in progress ... 668 * timer fires on other cpu: 669 * we can't retire the current block because copy_bits 670 * is in progress. 671 * 672 */ 673 if (BLOCK_NUM_PKTS(pbd)) { 674 while (atomic_read(&pkc->blk_fill_in_prog)) { 675 /* Waiting for skb_copy_bits to finish... */ 676 cpu_relax(); 677 } 678 } 679 680 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 681 if (!frozen) { 682 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 683 if (!prb_dispatch_next_block(pkc, po)) 684 goto refresh_timer; 685 else 686 goto out; 687 } else { 688 /* Case 1. Queue was frozen because user-space was 689 * lagging behind. 690 */ 691 if (prb_curr_blk_in_use(pkc, pbd)) { 692 /* 693 * Ok, user-space is still behind. 694 * So just refresh the timer. 695 */ 696 goto refresh_timer; 697 } else { 698 /* Case 2. queue was frozen,user-space caught up, 699 * now the link went idle && the timer fired. 700 * We don't have a block to close.So we open this 701 * block and restart the timer. 702 * opening a block thaws the queue,restarts timer 703 * Thawing/timer-refresh is a side effect. 704 */ 705 prb_open_block(pkc, pbd); 706 goto out; 707 } 708 } 709 } 710 711 refresh_timer: 712 _prb_refresh_rx_retire_blk_timer(pkc); 713 714 out: 715 spin_unlock(&po->sk.sk_receive_queue.lock); 716 } 717 718 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 719 struct tpacket_block_desc *pbd1, __u32 status) 720 { 721 /* Flush everything minus the block header */ 722 723 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 724 u8 *start, *end; 725 726 start = (u8 *)pbd1; 727 728 /* Skip the block header(we know header WILL fit in 4K) */ 729 start += PAGE_SIZE; 730 731 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 732 for (; start < end; start += PAGE_SIZE) 733 flush_dcache_page(pgv_to_page(start)); 734 735 smp_wmb(); 736 #endif 737 738 /* Now update the block status. */ 739 740 BLOCK_STATUS(pbd1) = status; 741 742 /* Flush the block header */ 743 744 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 745 start = (u8 *)pbd1; 746 flush_dcache_page(pgv_to_page(start)); 747 748 smp_wmb(); 749 #endif 750 } 751 752 /* 753 * Side effect: 754 * 755 * 1) flush the block 756 * 2) Increment active_blk_num 757 * 758 * Note:We DONT refresh the timer on purpose. 759 * Because almost always the next block will be opened. 760 */ 761 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 762 struct tpacket_block_desc *pbd1, 763 struct packet_sock *po, unsigned int stat) 764 { 765 __u32 status = TP_STATUS_USER | stat; 766 767 struct tpacket3_hdr *last_pkt; 768 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 769 770 if (po->stats.tp_drops) 771 status |= TP_STATUS_LOSING; 772 773 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 774 last_pkt->tp_next_offset = 0; 775 776 /* Get the ts of the last pkt */ 777 if (BLOCK_NUM_PKTS(pbd1)) { 778 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 779 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 780 } else { 781 /* Ok, we tmo'd - so get the current time */ 782 struct timespec ts; 783 getnstimeofday(&ts); 784 h1->ts_last_pkt.ts_sec = ts.tv_sec; 785 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 786 } 787 788 smp_wmb(); 789 790 /* Flush the block */ 791 prb_flush_block(pkc1, pbd1, status); 792 793 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 794 } 795 796 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 797 { 798 pkc->reset_pending_on_curr_blk = 0; 799 } 800 801 /* 802 * Side effect of opening a block: 803 * 804 * 1) prb_queue is thawed. 805 * 2) retire_blk_timer is refreshed. 806 * 807 */ 808 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 809 struct tpacket_block_desc *pbd1) 810 { 811 struct timespec ts; 812 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 813 814 smp_rmb(); 815 816 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd1))) { 817 818 /* We could have just memset this but we will lose the 819 * flexibility of making the priv area sticky 820 */ 821 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 822 BLOCK_NUM_PKTS(pbd1) = 0; 823 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 824 getnstimeofday(&ts); 825 h1->ts_first_pkt.ts_sec = ts.tv_sec; 826 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 827 pkc1->pkblk_start = (char *)pbd1; 828 pkc1->nxt_offset = (char *)(pkc1->pkblk_start + 829 BLK_PLUS_PRIV(pkc1->blk_sizeof_priv)); 830 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 831 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 832 pbd1->version = pkc1->version; 833 pkc1->prev = pkc1->nxt_offset; 834 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 835 prb_thaw_queue(pkc1); 836 _prb_refresh_rx_retire_blk_timer(pkc1); 837 838 smp_wmb(); 839 840 return; 841 } 842 843 WARN(1, "ERROR block:%p is NOT FREE status:%d kactive_blk_num:%d\n", 844 pbd1, BLOCK_STATUS(pbd1), pkc1->kactive_blk_num); 845 dump_stack(); 846 BUG(); 847 } 848 849 /* 850 * Queue freeze logic: 851 * 1) Assume tp_block_nr = 8 blocks. 852 * 2) At time 't0', user opens Rx ring. 853 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 854 * 4) user-space is either sleeping or processing block '0'. 855 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 856 * it will close block-7,loop around and try to fill block '0'. 857 * call-flow: 858 * __packet_lookup_frame_in_block 859 * prb_retire_current_block() 860 * prb_dispatch_next_block() 861 * |->(BLOCK_STATUS == USER) evaluates to true 862 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 863 * 6) Now there are two cases: 864 * 6.1) Link goes idle right after the queue is frozen. 865 * But remember, the last open_block() refreshed the timer. 866 * When this timer expires,it will refresh itself so that we can 867 * re-open block-0 in near future. 868 * 6.2) Link is busy and keeps on receiving packets. This is a simple 869 * case and __packet_lookup_frame_in_block will check if block-0 870 * is free and can now be re-used. 871 */ 872 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 873 struct packet_sock *po) 874 { 875 pkc->reset_pending_on_curr_blk = 1; 876 po->stats_u.stats3.tp_freeze_q_cnt++; 877 } 878 879 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 880 881 /* 882 * If the next block is free then we will dispatch it 883 * and return a good offset. 884 * Else, we will freeze the queue. 885 * So, caller must check the return value. 886 */ 887 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 888 struct packet_sock *po) 889 { 890 struct tpacket_block_desc *pbd; 891 892 smp_rmb(); 893 894 /* 1. Get current block num */ 895 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 896 897 /* 2. If this block is currently in_use then freeze the queue */ 898 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 899 prb_freeze_queue(pkc, po); 900 return NULL; 901 } 902 903 /* 904 * 3. 905 * open this block and return the offset where the first packet 906 * needs to get stored. 907 */ 908 prb_open_block(pkc, pbd); 909 return (void *)pkc->nxt_offset; 910 } 911 912 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 913 struct packet_sock *po, unsigned int status) 914 { 915 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 916 917 /* retire/close the current block */ 918 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 919 /* 920 * Plug the case where copy_bits() is in progress on 921 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 922 * have space to copy the pkt in the current block and 923 * called prb_retire_current_block() 924 * 925 * We don't need to worry about the TMO case because 926 * the timer-handler already handled this case. 927 */ 928 if (!(status & TP_STATUS_BLK_TMO)) { 929 while (atomic_read(&pkc->blk_fill_in_prog)) { 930 /* Waiting for skb_copy_bits to finish... */ 931 cpu_relax(); 932 } 933 } 934 prb_close_block(pkc, pbd, po, status); 935 return; 936 } 937 938 WARN(1, "ERROR-pbd[%d]:%p\n", pkc->kactive_blk_num, pbd); 939 dump_stack(); 940 BUG(); 941 } 942 943 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc, 944 struct tpacket_block_desc *pbd) 945 { 946 return TP_STATUS_USER & BLOCK_STATUS(pbd); 947 } 948 949 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 950 { 951 return pkc->reset_pending_on_curr_blk; 952 } 953 954 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 955 { 956 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 957 atomic_dec(&pkc->blk_fill_in_prog); 958 } 959 960 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 961 struct tpacket3_hdr *ppd) 962 { 963 ppd->hv1.tp_rxhash = skb_get_rxhash(pkc->skb); 964 } 965 966 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 967 struct tpacket3_hdr *ppd) 968 { 969 ppd->hv1.tp_rxhash = 0; 970 } 971 972 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 973 struct tpacket3_hdr *ppd) 974 { 975 if (vlan_tx_tag_present(pkc->skb)) { 976 ppd->hv1.tp_vlan_tci = vlan_tx_tag_get(pkc->skb); 977 ppd->tp_status = TP_STATUS_VLAN_VALID; 978 } else { 979 ppd->hv1.tp_vlan_tci = ppd->tp_status = 0; 980 } 981 } 982 983 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 984 struct tpacket3_hdr *ppd) 985 { 986 prb_fill_vlan_info(pkc, ppd); 987 988 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 989 prb_fill_rxhash(pkc, ppd); 990 else 991 prb_clear_rxhash(pkc, ppd); 992 } 993 994 static void prb_fill_curr_block(char *curr, 995 struct tpacket_kbdq_core *pkc, 996 struct tpacket_block_desc *pbd, 997 unsigned int len) 998 { 999 struct tpacket3_hdr *ppd; 1000 1001 ppd = (struct tpacket3_hdr *)curr; 1002 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 1003 pkc->prev = curr; 1004 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 1005 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1006 BLOCK_NUM_PKTS(pbd) += 1; 1007 atomic_inc(&pkc->blk_fill_in_prog); 1008 prb_run_all_ft_ops(pkc, ppd); 1009 } 1010 1011 /* Assumes caller has the sk->rx_queue.lock */ 1012 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1013 struct sk_buff *skb, 1014 int status, 1015 unsigned int len 1016 ) 1017 { 1018 struct tpacket_kbdq_core *pkc; 1019 struct tpacket_block_desc *pbd; 1020 char *curr, *end; 1021 1022 pkc = GET_PBDQC_FROM_RB(((struct packet_ring_buffer *)&po->rx_ring)); 1023 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1024 1025 /* Queue is frozen when user space is lagging behind */ 1026 if (prb_queue_frozen(pkc)) { 1027 /* 1028 * Check if that last block which caused the queue to freeze, 1029 * is still in_use by user-space. 1030 */ 1031 if (prb_curr_blk_in_use(pkc, pbd)) { 1032 /* Can't record this packet */ 1033 return NULL; 1034 } else { 1035 /* 1036 * Ok, the block was released by user-space. 1037 * Now let's open that block. 1038 * opening a block also thaws the queue. 1039 * Thawing is a side effect. 1040 */ 1041 prb_open_block(pkc, pbd); 1042 } 1043 } 1044 1045 smp_mb(); 1046 curr = pkc->nxt_offset; 1047 pkc->skb = skb; 1048 end = (char *) ((char *)pbd + pkc->kblk_size); 1049 1050 /* first try the current block */ 1051 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1052 prb_fill_curr_block(curr, pkc, pbd, len); 1053 return (void *)curr; 1054 } 1055 1056 /* Ok, close the current block */ 1057 prb_retire_current_block(pkc, po, 0); 1058 1059 /* Now, try to dispatch the next block */ 1060 curr = (char *)prb_dispatch_next_block(pkc, po); 1061 if (curr) { 1062 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1063 prb_fill_curr_block(curr, pkc, pbd, len); 1064 return (void *)curr; 1065 } 1066 1067 /* 1068 * No free blocks are available.user_space hasn't caught up yet. 1069 * Queue was just frozen and now this packet will get dropped. 1070 */ 1071 return NULL; 1072 } 1073 1074 static void *packet_current_rx_frame(struct packet_sock *po, 1075 struct sk_buff *skb, 1076 int status, unsigned int len) 1077 { 1078 char *curr = NULL; 1079 switch (po->tp_version) { 1080 case TPACKET_V1: 1081 case TPACKET_V2: 1082 curr = packet_lookup_frame(po, &po->rx_ring, 1083 po->rx_ring.head, status); 1084 return curr; 1085 case TPACKET_V3: 1086 return __packet_lookup_frame_in_block(po, skb, status, len); 1087 default: 1088 WARN(1, "TPACKET version not supported\n"); 1089 BUG(); 1090 return 0; 1091 } 1092 } 1093 1094 static void *prb_lookup_block(struct packet_sock *po, 1095 struct packet_ring_buffer *rb, 1096 unsigned int previous, 1097 int status) 1098 { 1099 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1100 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, previous); 1101 1102 if (status != BLOCK_STATUS(pbd)) 1103 return NULL; 1104 return pbd; 1105 } 1106 1107 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1108 { 1109 unsigned int prev; 1110 if (rb->prb_bdqc.kactive_blk_num) 1111 prev = rb->prb_bdqc.kactive_blk_num-1; 1112 else 1113 prev = rb->prb_bdqc.knum_blocks-1; 1114 return prev; 1115 } 1116 1117 /* Assumes caller has held the rx_queue.lock */ 1118 static void *__prb_previous_block(struct packet_sock *po, 1119 struct packet_ring_buffer *rb, 1120 int status) 1121 { 1122 unsigned int previous = prb_previous_blk_num(rb); 1123 return prb_lookup_block(po, rb, previous, status); 1124 } 1125 1126 static void *packet_previous_rx_frame(struct packet_sock *po, 1127 struct packet_ring_buffer *rb, 1128 int status) 1129 { 1130 if (po->tp_version <= TPACKET_V2) 1131 return packet_previous_frame(po, rb, status); 1132 1133 return __prb_previous_block(po, rb, status); 1134 } 1135 1136 static void packet_increment_rx_head(struct packet_sock *po, 1137 struct packet_ring_buffer *rb) 1138 { 1139 switch (po->tp_version) { 1140 case TPACKET_V1: 1141 case TPACKET_V2: 1142 return packet_increment_head(rb); 1143 case TPACKET_V3: 1144 default: 1145 WARN(1, "TPACKET version not supported.\n"); 1146 BUG(); 1147 return; 1148 } 1149 } 1150 1151 static void *packet_previous_frame(struct packet_sock *po, 1152 struct packet_ring_buffer *rb, 1153 int status) 1154 { 1155 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1156 return packet_lookup_frame(po, rb, previous, status); 1157 } 1158 1159 static void packet_increment_head(struct packet_ring_buffer *buff) 1160 { 1161 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1162 } 1163 1164 static void packet_sock_destruct(struct sock *sk) 1165 { 1166 skb_queue_purge(&sk->sk_error_queue); 1167 1168 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1169 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 1170 1171 if (!sock_flag(sk, SOCK_DEAD)) { 1172 pr_err("Attempt to release alive packet socket: %p\n", sk); 1173 return; 1174 } 1175 1176 sk_refcnt_debug_dec(sk); 1177 } 1178 1179 static int fanout_rr_next(struct packet_fanout *f, unsigned int num) 1180 { 1181 int x = atomic_read(&f->rr_cur) + 1; 1182 1183 if (x >= num) 1184 x = 0; 1185 1186 return x; 1187 } 1188 1189 static struct sock *fanout_demux_hash(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) 1190 { 1191 u32 idx, hash = skb->rxhash; 1192 1193 idx = ((u64)hash * num) >> 32; 1194 1195 return f->arr[idx]; 1196 } 1197 1198 static struct sock *fanout_demux_lb(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) 1199 { 1200 int cur, old; 1201 1202 cur = atomic_read(&f->rr_cur); 1203 while ((old = atomic_cmpxchg(&f->rr_cur, cur, 1204 fanout_rr_next(f, num))) != cur) 1205 cur = old; 1206 return f->arr[cur]; 1207 } 1208 1209 static struct sock *fanout_demux_cpu(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) 1210 { 1211 unsigned int cpu = smp_processor_id(); 1212 1213 return f->arr[cpu % num]; 1214 } 1215 1216 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1217 struct packet_type *pt, struct net_device *orig_dev) 1218 { 1219 struct packet_fanout *f = pt->af_packet_priv; 1220 unsigned int num = f->num_members; 1221 struct packet_sock *po; 1222 struct sock *sk; 1223 1224 if (!net_eq(dev_net(dev), read_pnet(&f->net)) || 1225 !num) { 1226 kfree_skb(skb); 1227 return 0; 1228 } 1229 1230 switch (f->type) { 1231 case PACKET_FANOUT_HASH: 1232 default: 1233 if (f->defrag) { 1234 skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET); 1235 if (!skb) 1236 return 0; 1237 } 1238 skb_get_rxhash(skb); 1239 sk = fanout_demux_hash(f, skb, num); 1240 break; 1241 case PACKET_FANOUT_LB: 1242 sk = fanout_demux_lb(f, skb, num); 1243 break; 1244 case PACKET_FANOUT_CPU: 1245 sk = fanout_demux_cpu(f, skb, num); 1246 break; 1247 } 1248 1249 po = pkt_sk(sk); 1250 1251 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1252 } 1253 1254 static DEFINE_MUTEX(fanout_mutex); 1255 static LIST_HEAD(fanout_list); 1256 1257 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1258 { 1259 struct packet_fanout *f = po->fanout; 1260 1261 spin_lock(&f->lock); 1262 f->arr[f->num_members] = sk; 1263 smp_wmb(); 1264 f->num_members++; 1265 spin_unlock(&f->lock); 1266 } 1267 1268 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1269 { 1270 struct packet_fanout *f = po->fanout; 1271 int i; 1272 1273 spin_lock(&f->lock); 1274 for (i = 0; i < f->num_members; i++) { 1275 if (f->arr[i] == sk) 1276 break; 1277 } 1278 BUG_ON(i >= f->num_members); 1279 f->arr[i] = f->arr[f->num_members - 1]; 1280 f->num_members--; 1281 spin_unlock(&f->lock); 1282 } 1283 1284 static int fanout_add(struct sock *sk, u16 id, u16 type_flags) 1285 { 1286 struct packet_sock *po = pkt_sk(sk); 1287 struct packet_fanout *f, *match; 1288 u8 type = type_flags & 0xff; 1289 u8 defrag = (type_flags & PACKET_FANOUT_FLAG_DEFRAG) ? 1 : 0; 1290 int err; 1291 1292 switch (type) { 1293 case PACKET_FANOUT_HASH: 1294 case PACKET_FANOUT_LB: 1295 case PACKET_FANOUT_CPU: 1296 break; 1297 default: 1298 return -EINVAL; 1299 } 1300 1301 if (!po->running) 1302 return -EINVAL; 1303 1304 if (po->fanout) 1305 return -EALREADY; 1306 1307 mutex_lock(&fanout_mutex); 1308 match = NULL; 1309 list_for_each_entry(f, &fanout_list, list) { 1310 if (f->id == id && 1311 read_pnet(&f->net) == sock_net(sk)) { 1312 match = f; 1313 break; 1314 } 1315 } 1316 err = -EINVAL; 1317 if (match && match->defrag != defrag) 1318 goto out; 1319 if (!match) { 1320 err = -ENOMEM; 1321 match = kzalloc(sizeof(*match), GFP_KERNEL); 1322 if (!match) 1323 goto out; 1324 write_pnet(&match->net, sock_net(sk)); 1325 match->id = id; 1326 match->type = type; 1327 match->defrag = defrag; 1328 atomic_set(&match->rr_cur, 0); 1329 INIT_LIST_HEAD(&match->list); 1330 spin_lock_init(&match->lock); 1331 atomic_set(&match->sk_ref, 0); 1332 match->prot_hook.type = po->prot_hook.type; 1333 match->prot_hook.dev = po->prot_hook.dev; 1334 match->prot_hook.func = packet_rcv_fanout; 1335 match->prot_hook.af_packet_priv = match; 1336 dev_add_pack(&match->prot_hook); 1337 list_add(&match->list, &fanout_list); 1338 } 1339 err = -EINVAL; 1340 if (match->type == type && 1341 match->prot_hook.type == po->prot_hook.type && 1342 match->prot_hook.dev == po->prot_hook.dev) { 1343 err = -ENOSPC; 1344 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) { 1345 __dev_remove_pack(&po->prot_hook); 1346 po->fanout = match; 1347 atomic_inc(&match->sk_ref); 1348 __fanout_link(sk, po); 1349 err = 0; 1350 } 1351 } 1352 out: 1353 mutex_unlock(&fanout_mutex); 1354 return err; 1355 } 1356 1357 static void fanout_release(struct sock *sk) 1358 { 1359 struct packet_sock *po = pkt_sk(sk); 1360 struct packet_fanout *f; 1361 1362 f = po->fanout; 1363 if (!f) 1364 return; 1365 1366 po->fanout = NULL; 1367 1368 mutex_lock(&fanout_mutex); 1369 if (atomic_dec_and_test(&f->sk_ref)) { 1370 list_del(&f->list); 1371 dev_remove_pack(&f->prot_hook); 1372 kfree(f); 1373 } 1374 mutex_unlock(&fanout_mutex); 1375 } 1376 1377 static const struct proto_ops packet_ops; 1378 1379 static const struct proto_ops packet_ops_spkt; 1380 1381 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1382 struct packet_type *pt, struct net_device *orig_dev) 1383 { 1384 struct sock *sk; 1385 struct sockaddr_pkt *spkt; 1386 1387 /* 1388 * When we registered the protocol we saved the socket in the data 1389 * field for just this event. 1390 */ 1391 1392 sk = pt->af_packet_priv; 1393 1394 /* 1395 * Yank back the headers [hope the device set this 1396 * right or kerboom...] 1397 * 1398 * Incoming packets have ll header pulled, 1399 * push it back. 1400 * 1401 * For outgoing ones skb->data == skb_mac_header(skb) 1402 * so that this procedure is noop. 1403 */ 1404 1405 if (skb->pkt_type == PACKET_LOOPBACK) 1406 goto out; 1407 1408 if (!net_eq(dev_net(dev), sock_net(sk))) 1409 goto out; 1410 1411 skb = skb_share_check(skb, GFP_ATOMIC); 1412 if (skb == NULL) 1413 goto oom; 1414 1415 /* drop any routing info */ 1416 skb_dst_drop(skb); 1417 1418 /* drop conntrack reference */ 1419 nf_reset(skb); 1420 1421 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1422 1423 skb_push(skb, skb->data - skb_mac_header(skb)); 1424 1425 /* 1426 * The SOCK_PACKET socket receives _all_ frames. 1427 */ 1428 1429 spkt->spkt_family = dev->type; 1430 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1431 spkt->spkt_protocol = skb->protocol; 1432 1433 /* 1434 * Charge the memory to the socket. This is done specifically 1435 * to prevent sockets using all the memory up. 1436 */ 1437 1438 if (sock_queue_rcv_skb(sk, skb) == 0) 1439 return 0; 1440 1441 out: 1442 kfree_skb(skb); 1443 oom: 1444 return 0; 1445 } 1446 1447 1448 /* 1449 * Output a raw packet to a device layer. This bypasses all the other 1450 * protocol layers and you must therefore supply it with a complete frame 1451 */ 1452 1453 static int packet_sendmsg_spkt(struct kiocb *iocb, struct socket *sock, 1454 struct msghdr *msg, size_t len) 1455 { 1456 struct sock *sk = sock->sk; 1457 struct sockaddr_pkt *saddr = (struct sockaddr_pkt *)msg->msg_name; 1458 struct sk_buff *skb = NULL; 1459 struct net_device *dev; 1460 __be16 proto = 0; 1461 int err; 1462 1463 /* 1464 * Get and verify the address. 1465 */ 1466 1467 if (saddr) { 1468 if (msg->msg_namelen < sizeof(struct sockaddr)) 1469 return -EINVAL; 1470 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1471 proto = saddr->spkt_protocol; 1472 } else 1473 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1474 1475 /* 1476 * Find the device first to size check it 1477 */ 1478 1479 saddr->spkt_device[13] = 0; 1480 retry: 1481 rcu_read_lock(); 1482 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1483 err = -ENODEV; 1484 if (dev == NULL) 1485 goto out_unlock; 1486 1487 err = -ENETDOWN; 1488 if (!(dev->flags & IFF_UP)) 1489 goto out_unlock; 1490 1491 /* 1492 * You may not queue a frame bigger than the mtu. This is the lowest level 1493 * raw protocol and you must do your own fragmentation at this level. 1494 */ 1495 1496 err = -EMSGSIZE; 1497 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN) 1498 goto out_unlock; 1499 1500 if (!skb) { 1501 size_t reserved = LL_RESERVED_SPACE(dev); 1502 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 1503 1504 rcu_read_unlock(); 1505 skb = sock_wmalloc(sk, len + reserved, 0, GFP_KERNEL); 1506 if (skb == NULL) 1507 return -ENOBUFS; 1508 /* FIXME: Save some space for broken drivers that write a hard 1509 * header at transmission time by themselves. PPP is the notable 1510 * one here. This should really be fixed at the driver level. 1511 */ 1512 skb_reserve(skb, reserved); 1513 skb_reset_network_header(skb); 1514 1515 /* Try to align data part correctly */ 1516 if (hhlen) { 1517 skb->data -= hhlen; 1518 skb->tail -= hhlen; 1519 if (len < hhlen) 1520 skb_reset_network_header(skb); 1521 } 1522 err = memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len); 1523 if (err) 1524 goto out_free; 1525 goto retry; 1526 } 1527 1528 if (len > (dev->mtu + dev->hard_header_len)) { 1529 /* Earlier code assumed this would be a VLAN pkt, 1530 * double-check this now that we have the actual 1531 * packet in hand. 1532 */ 1533 struct ethhdr *ehdr; 1534 skb_reset_mac_header(skb); 1535 ehdr = eth_hdr(skb); 1536 if (ehdr->h_proto != htons(ETH_P_8021Q)) { 1537 err = -EMSGSIZE; 1538 goto out_unlock; 1539 } 1540 } 1541 1542 skb->protocol = proto; 1543 skb->dev = dev; 1544 skb->priority = sk->sk_priority; 1545 skb->mark = sk->sk_mark; 1546 err = sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags); 1547 if (err < 0) 1548 goto out_unlock; 1549 1550 dev_queue_xmit(skb); 1551 rcu_read_unlock(); 1552 return len; 1553 1554 out_unlock: 1555 rcu_read_unlock(); 1556 out_free: 1557 kfree_skb(skb); 1558 return err; 1559 } 1560 1561 static unsigned int run_filter(const struct sk_buff *skb, 1562 const struct sock *sk, 1563 unsigned int res) 1564 { 1565 struct sk_filter *filter; 1566 1567 rcu_read_lock(); 1568 filter = rcu_dereference(sk->sk_filter); 1569 if (filter != NULL) 1570 res = SK_RUN_FILTER(filter, skb); 1571 rcu_read_unlock(); 1572 1573 return res; 1574 } 1575 1576 /* 1577 * This function makes lazy skb cloning in hope that most of packets 1578 * are discarded by BPF. 1579 * 1580 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 1581 * and skb->cb are mangled. It works because (and until) packets 1582 * falling here are owned by current CPU. Output packets are cloned 1583 * by dev_queue_xmit_nit(), input packets are processed by net_bh 1584 * sequencially, so that if we return skb to original state on exit, 1585 * we will not harm anyone. 1586 */ 1587 1588 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 1589 struct packet_type *pt, struct net_device *orig_dev) 1590 { 1591 struct sock *sk; 1592 struct sockaddr_ll *sll; 1593 struct packet_sock *po; 1594 u8 *skb_head = skb->data; 1595 int skb_len = skb->len; 1596 unsigned int snaplen, res; 1597 1598 if (skb->pkt_type == PACKET_LOOPBACK) 1599 goto drop; 1600 1601 sk = pt->af_packet_priv; 1602 po = pkt_sk(sk); 1603 1604 if (!net_eq(dev_net(dev), sock_net(sk))) 1605 goto drop; 1606 1607 skb->dev = dev; 1608 1609 if (dev->header_ops) { 1610 /* The device has an explicit notion of ll header, 1611 * exported to higher levels. 1612 * 1613 * Otherwise, the device hides details of its frame 1614 * structure, so that corresponding packet head is 1615 * never delivered to user. 1616 */ 1617 if (sk->sk_type != SOCK_DGRAM) 1618 skb_push(skb, skb->data - skb_mac_header(skb)); 1619 else if (skb->pkt_type == PACKET_OUTGOING) { 1620 /* Special case: outgoing packets have ll header at head */ 1621 skb_pull(skb, skb_network_offset(skb)); 1622 } 1623 } 1624 1625 snaplen = skb->len; 1626 1627 res = run_filter(skb, sk, snaplen); 1628 if (!res) 1629 goto drop_n_restore; 1630 if (snaplen > res) 1631 snaplen = res; 1632 1633 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 1634 (unsigned)sk->sk_rcvbuf) 1635 goto drop_n_acct; 1636 1637 if (skb_shared(skb)) { 1638 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 1639 if (nskb == NULL) 1640 goto drop_n_acct; 1641 1642 if (skb_head != skb->data) { 1643 skb->data = skb_head; 1644 skb->len = skb_len; 1645 } 1646 kfree_skb(skb); 1647 skb = nskb; 1648 } 1649 1650 BUILD_BUG_ON(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8 > 1651 sizeof(skb->cb)); 1652 1653 sll = &PACKET_SKB_CB(skb)->sa.ll; 1654 sll->sll_family = AF_PACKET; 1655 sll->sll_hatype = dev->type; 1656 sll->sll_protocol = skb->protocol; 1657 sll->sll_pkttype = skb->pkt_type; 1658 if (unlikely(po->origdev)) 1659 sll->sll_ifindex = orig_dev->ifindex; 1660 else 1661 sll->sll_ifindex = dev->ifindex; 1662 1663 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 1664 1665 PACKET_SKB_CB(skb)->origlen = skb->len; 1666 1667 if (pskb_trim(skb, snaplen)) 1668 goto drop_n_acct; 1669 1670 skb_set_owner_r(skb, sk); 1671 skb->dev = NULL; 1672 skb_dst_drop(skb); 1673 1674 /* drop conntrack reference */ 1675 nf_reset(skb); 1676 1677 spin_lock(&sk->sk_receive_queue.lock); 1678 po->stats.tp_packets++; 1679 skb->dropcount = atomic_read(&sk->sk_drops); 1680 __skb_queue_tail(&sk->sk_receive_queue, skb); 1681 spin_unlock(&sk->sk_receive_queue.lock); 1682 sk->sk_data_ready(sk, skb->len); 1683 return 0; 1684 1685 drop_n_acct: 1686 spin_lock(&sk->sk_receive_queue.lock); 1687 po->stats.tp_drops++; 1688 atomic_inc(&sk->sk_drops); 1689 spin_unlock(&sk->sk_receive_queue.lock); 1690 1691 drop_n_restore: 1692 if (skb_head != skb->data && skb_shared(skb)) { 1693 skb->data = skb_head; 1694 skb->len = skb_len; 1695 } 1696 drop: 1697 consume_skb(skb); 1698 return 0; 1699 } 1700 1701 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 1702 struct packet_type *pt, struct net_device *orig_dev) 1703 { 1704 struct sock *sk; 1705 struct packet_sock *po; 1706 struct sockaddr_ll *sll; 1707 union { 1708 struct tpacket_hdr *h1; 1709 struct tpacket2_hdr *h2; 1710 struct tpacket3_hdr *h3; 1711 void *raw; 1712 } h; 1713 u8 *skb_head = skb->data; 1714 int skb_len = skb->len; 1715 unsigned int snaplen, res; 1716 unsigned long status = TP_STATUS_USER; 1717 unsigned short macoff, netoff, hdrlen; 1718 struct sk_buff *copy_skb = NULL; 1719 struct timeval tv; 1720 struct timespec ts; 1721 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 1722 1723 if (skb->pkt_type == PACKET_LOOPBACK) 1724 goto drop; 1725 1726 sk = pt->af_packet_priv; 1727 po = pkt_sk(sk); 1728 1729 if (!net_eq(dev_net(dev), sock_net(sk))) 1730 goto drop; 1731 1732 if (dev->header_ops) { 1733 if (sk->sk_type != SOCK_DGRAM) 1734 skb_push(skb, skb->data - skb_mac_header(skb)); 1735 else if (skb->pkt_type == PACKET_OUTGOING) { 1736 /* Special case: outgoing packets have ll header at head */ 1737 skb_pull(skb, skb_network_offset(skb)); 1738 } 1739 } 1740 1741 if (skb->ip_summed == CHECKSUM_PARTIAL) 1742 status |= TP_STATUS_CSUMNOTREADY; 1743 1744 snaplen = skb->len; 1745 1746 res = run_filter(skb, sk, snaplen); 1747 if (!res) 1748 goto drop_n_restore; 1749 if (snaplen > res) 1750 snaplen = res; 1751 1752 if (sk->sk_type == SOCK_DGRAM) { 1753 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 1754 po->tp_reserve; 1755 } else { 1756 unsigned maclen = skb_network_offset(skb); 1757 netoff = TPACKET_ALIGN(po->tp_hdrlen + 1758 (maclen < 16 ? 16 : maclen)) + 1759 po->tp_reserve; 1760 macoff = netoff - maclen; 1761 } 1762 if (po->tp_version <= TPACKET_V2) { 1763 if (macoff + snaplen > po->rx_ring.frame_size) { 1764 if (po->copy_thresh && 1765 atomic_read(&sk->sk_rmem_alloc) + skb->truesize 1766 < (unsigned)sk->sk_rcvbuf) { 1767 if (skb_shared(skb)) { 1768 copy_skb = skb_clone(skb, GFP_ATOMIC); 1769 } else { 1770 copy_skb = skb_get(skb); 1771 skb_head = skb->data; 1772 } 1773 if (copy_skb) 1774 skb_set_owner_r(copy_skb, sk); 1775 } 1776 snaplen = po->rx_ring.frame_size - macoff; 1777 if ((int)snaplen < 0) 1778 snaplen = 0; 1779 } 1780 } 1781 spin_lock(&sk->sk_receive_queue.lock); 1782 h.raw = packet_current_rx_frame(po, skb, 1783 TP_STATUS_KERNEL, (macoff+snaplen)); 1784 if (!h.raw) 1785 goto ring_is_full; 1786 if (po->tp_version <= TPACKET_V2) { 1787 packet_increment_rx_head(po, &po->rx_ring); 1788 /* 1789 * LOSING will be reported till you read the stats, 1790 * because it's COR - Clear On Read. 1791 * Anyways, moving it for V1/V2 only as V3 doesn't need this 1792 * at packet level. 1793 */ 1794 if (po->stats.tp_drops) 1795 status |= TP_STATUS_LOSING; 1796 } 1797 po->stats.tp_packets++; 1798 if (copy_skb) { 1799 status |= TP_STATUS_COPY; 1800 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 1801 } 1802 spin_unlock(&sk->sk_receive_queue.lock); 1803 1804 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 1805 1806 switch (po->tp_version) { 1807 case TPACKET_V1: 1808 h.h1->tp_len = skb->len; 1809 h.h1->tp_snaplen = snaplen; 1810 h.h1->tp_mac = macoff; 1811 h.h1->tp_net = netoff; 1812 if ((po->tp_tstamp & SOF_TIMESTAMPING_SYS_HARDWARE) 1813 && shhwtstamps->syststamp.tv64) 1814 tv = ktime_to_timeval(shhwtstamps->syststamp); 1815 else if ((po->tp_tstamp & SOF_TIMESTAMPING_RAW_HARDWARE) 1816 && shhwtstamps->hwtstamp.tv64) 1817 tv = ktime_to_timeval(shhwtstamps->hwtstamp); 1818 else if (skb->tstamp.tv64) 1819 tv = ktime_to_timeval(skb->tstamp); 1820 else 1821 do_gettimeofday(&tv); 1822 h.h1->tp_sec = tv.tv_sec; 1823 h.h1->tp_usec = tv.tv_usec; 1824 hdrlen = sizeof(*h.h1); 1825 break; 1826 case TPACKET_V2: 1827 h.h2->tp_len = skb->len; 1828 h.h2->tp_snaplen = snaplen; 1829 h.h2->tp_mac = macoff; 1830 h.h2->tp_net = netoff; 1831 if ((po->tp_tstamp & SOF_TIMESTAMPING_SYS_HARDWARE) 1832 && shhwtstamps->syststamp.tv64) 1833 ts = ktime_to_timespec(shhwtstamps->syststamp); 1834 else if ((po->tp_tstamp & SOF_TIMESTAMPING_RAW_HARDWARE) 1835 && shhwtstamps->hwtstamp.tv64) 1836 ts = ktime_to_timespec(shhwtstamps->hwtstamp); 1837 else if (skb->tstamp.tv64) 1838 ts = ktime_to_timespec(skb->tstamp); 1839 else 1840 getnstimeofday(&ts); 1841 h.h2->tp_sec = ts.tv_sec; 1842 h.h2->tp_nsec = ts.tv_nsec; 1843 if (vlan_tx_tag_present(skb)) { 1844 h.h2->tp_vlan_tci = vlan_tx_tag_get(skb); 1845 status |= TP_STATUS_VLAN_VALID; 1846 } else { 1847 h.h2->tp_vlan_tci = 0; 1848 } 1849 h.h2->tp_padding = 0; 1850 hdrlen = sizeof(*h.h2); 1851 break; 1852 case TPACKET_V3: 1853 /* tp_nxt_offset,vlan are already populated above. 1854 * So DONT clear those fields here 1855 */ 1856 h.h3->tp_status |= status; 1857 h.h3->tp_len = skb->len; 1858 h.h3->tp_snaplen = snaplen; 1859 h.h3->tp_mac = macoff; 1860 h.h3->tp_net = netoff; 1861 if ((po->tp_tstamp & SOF_TIMESTAMPING_SYS_HARDWARE) 1862 && shhwtstamps->syststamp.tv64) 1863 ts = ktime_to_timespec(shhwtstamps->syststamp); 1864 else if ((po->tp_tstamp & SOF_TIMESTAMPING_RAW_HARDWARE) 1865 && shhwtstamps->hwtstamp.tv64) 1866 ts = ktime_to_timespec(shhwtstamps->hwtstamp); 1867 else if (skb->tstamp.tv64) 1868 ts = ktime_to_timespec(skb->tstamp); 1869 else 1870 getnstimeofday(&ts); 1871 h.h3->tp_sec = ts.tv_sec; 1872 h.h3->tp_nsec = ts.tv_nsec; 1873 hdrlen = sizeof(*h.h3); 1874 break; 1875 default: 1876 BUG(); 1877 } 1878 1879 sll = h.raw + TPACKET_ALIGN(hdrlen); 1880 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 1881 sll->sll_family = AF_PACKET; 1882 sll->sll_hatype = dev->type; 1883 sll->sll_protocol = skb->protocol; 1884 sll->sll_pkttype = skb->pkt_type; 1885 if (unlikely(po->origdev)) 1886 sll->sll_ifindex = orig_dev->ifindex; 1887 else 1888 sll->sll_ifindex = dev->ifindex; 1889 1890 smp_mb(); 1891 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 1892 { 1893 u8 *start, *end; 1894 1895 if (po->tp_version <= TPACKET_V2) { 1896 end = (u8 *)PAGE_ALIGN((unsigned long)h.raw 1897 + macoff + snaplen); 1898 for (start = h.raw; start < end; start += PAGE_SIZE) 1899 flush_dcache_page(pgv_to_page(start)); 1900 } 1901 smp_wmb(); 1902 } 1903 #endif 1904 if (po->tp_version <= TPACKET_V2) 1905 __packet_set_status(po, h.raw, status); 1906 else 1907 prb_clear_blk_fill_status(&po->rx_ring); 1908 1909 sk->sk_data_ready(sk, 0); 1910 1911 drop_n_restore: 1912 if (skb_head != skb->data && skb_shared(skb)) { 1913 skb->data = skb_head; 1914 skb->len = skb_len; 1915 } 1916 drop: 1917 kfree_skb(skb); 1918 return 0; 1919 1920 ring_is_full: 1921 po->stats.tp_drops++; 1922 spin_unlock(&sk->sk_receive_queue.lock); 1923 1924 sk->sk_data_ready(sk, 0); 1925 kfree_skb(copy_skb); 1926 goto drop_n_restore; 1927 } 1928 1929 static void tpacket_destruct_skb(struct sk_buff *skb) 1930 { 1931 struct packet_sock *po = pkt_sk(skb->sk); 1932 void *ph; 1933 1934 if (likely(po->tx_ring.pg_vec)) { 1935 ph = skb_shinfo(skb)->destructor_arg; 1936 BUG_ON(__packet_get_status(po, ph) != TP_STATUS_SENDING); 1937 BUG_ON(atomic_read(&po->tx_ring.pending) == 0); 1938 atomic_dec(&po->tx_ring.pending); 1939 __packet_set_status(po, ph, TP_STATUS_AVAILABLE); 1940 } 1941 1942 sock_wfree(skb); 1943 } 1944 1945 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 1946 void *frame, struct net_device *dev, int size_max, 1947 __be16 proto, unsigned char *addr) 1948 { 1949 union { 1950 struct tpacket_hdr *h1; 1951 struct tpacket2_hdr *h2; 1952 void *raw; 1953 } ph; 1954 int to_write, offset, len, tp_len, nr_frags, len_max; 1955 struct socket *sock = po->sk.sk_socket; 1956 struct page *page; 1957 void *data; 1958 int err; 1959 1960 ph.raw = frame; 1961 1962 skb->protocol = proto; 1963 skb->dev = dev; 1964 skb->priority = po->sk.sk_priority; 1965 skb->mark = po->sk.sk_mark; 1966 skb_shinfo(skb)->destructor_arg = ph.raw; 1967 1968 switch (po->tp_version) { 1969 case TPACKET_V2: 1970 tp_len = ph.h2->tp_len; 1971 break; 1972 default: 1973 tp_len = ph.h1->tp_len; 1974 break; 1975 } 1976 if (unlikely(tp_len > size_max)) { 1977 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 1978 return -EMSGSIZE; 1979 } 1980 1981 skb_reserve(skb, LL_RESERVED_SPACE(dev)); 1982 skb_reset_network_header(skb); 1983 1984 data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll); 1985 to_write = tp_len; 1986 1987 if (sock->type == SOCK_DGRAM) { 1988 err = dev_hard_header(skb, dev, ntohs(proto), addr, 1989 NULL, tp_len); 1990 if (unlikely(err < 0)) 1991 return -EINVAL; 1992 } else if (dev->hard_header_len) { 1993 /* net device doesn't like empty head */ 1994 if (unlikely(tp_len <= dev->hard_header_len)) { 1995 pr_err("packet size is too short (%d < %d)\n", 1996 tp_len, dev->hard_header_len); 1997 return -EINVAL; 1998 } 1999 2000 skb_push(skb, dev->hard_header_len); 2001 err = skb_store_bits(skb, 0, data, 2002 dev->hard_header_len); 2003 if (unlikely(err)) 2004 return err; 2005 2006 data += dev->hard_header_len; 2007 to_write -= dev->hard_header_len; 2008 } 2009 2010 err = -EFAULT; 2011 offset = offset_in_page(data); 2012 len_max = PAGE_SIZE - offset; 2013 len = ((to_write > len_max) ? len_max : to_write); 2014 2015 skb->data_len = to_write; 2016 skb->len += to_write; 2017 skb->truesize += to_write; 2018 atomic_add(to_write, &po->sk.sk_wmem_alloc); 2019 2020 while (likely(to_write)) { 2021 nr_frags = skb_shinfo(skb)->nr_frags; 2022 2023 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2024 pr_err("Packet exceed the number of skb frags(%lu)\n", 2025 MAX_SKB_FRAGS); 2026 return -EFAULT; 2027 } 2028 2029 page = pgv_to_page(data); 2030 data += len; 2031 flush_dcache_page(page); 2032 get_page(page); 2033 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2034 to_write -= len; 2035 offset = 0; 2036 len_max = PAGE_SIZE; 2037 len = ((to_write > len_max) ? len_max : to_write); 2038 } 2039 2040 return tp_len; 2041 } 2042 2043 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2044 { 2045 struct sk_buff *skb; 2046 struct net_device *dev; 2047 __be16 proto; 2048 bool need_rls_dev = false; 2049 int err, reserve = 0; 2050 void *ph; 2051 struct sockaddr_ll *saddr = (struct sockaddr_ll *)msg->msg_name; 2052 int tp_len, size_max; 2053 unsigned char *addr; 2054 int len_sum = 0; 2055 int status = 0; 2056 2057 mutex_lock(&po->pg_vec_lock); 2058 2059 err = -EBUSY; 2060 if (saddr == NULL) { 2061 dev = po->prot_hook.dev; 2062 proto = po->num; 2063 addr = NULL; 2064 } else { 2065 err = -EINVAL; 2066 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2067 goto out; 2068 if (msg->msg_namelen < (saddr->sll_halen 2069 + offsetof(struct sockaddr_ll, 2070 sll_addr))) 2071 goto out; 2072 proto = saddr->sll_protocol; 2073 addr = saddr->sll_addr; 2074 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2075 need_rls_dev = true; 2076 } 2077 2078 err = -ENXIO; 2079 if (unlikely(dev == NULL)) 2080 goto out; 2081 2082 reserve = dev->hard_header_len; 2083 2084 err = -ENETDOWN; 2085 if (unlikely(!(dev->flags & IFF_UP))) 2086 goto out_put; 2087 2088 size_max = po->tx_ring.frame_size 2089 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2090 2091 if (size_max > dev->mtu + reserve) 2092 size_max = dev->mtu + reserve; 2093 2094 do { 2095 ph = packet_current_frame(po, &po->tx_ring, 2096 TP_STATUS_SEND_REQUEST); 2097 2098 if (unlikely(ph == NULL)) { 2099 schedule(); 2100 continue; 2101 } 2102 2103 status = TP_STATUS_SEND_REQUEST; 2104 skb = sock_alloc_send_skb(&po->sk, 2105 LL_ALLOCATED_SPACE(dev) 2106 + sizeof(struct sockaddr_ll), 2107 0, &err); 2108 2109 if (unlikely(skb == NULL)) 2110 goto out_status; 2111 2112 tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto, 2113 addr); 2114 2115 if (unlikely(tp_len < 0)) { 2116 if (po->tp_loss) { 2117 __packet_set_status(po, ph, 2118 TP_STATUS_AVAILABLE); 2119 packet_increment_head(&po->tx_ring); 2120 kfree_skb(skb); 2121 continue; 2122 } else { 2123 status = TP_STATUS_WRONG_FORMAT; 2124 err = tp_len; 2125 goto out_status; 2126 } 2127 } 2128 2129 skb->destructor = tpacket_destruct_skb; 2130 __packet_set_status(po, ph, TP_STATUS_SENDING); 2131 atomic_inc(&po->tx_ring.pending); 2132 2133 status = TP_STATUS_SEND_REQUEST; 2134 err = dev_queue_xmit(skb); 2135 if (unlikely(err > 0)) { 2136 err = net_xmit_errno(err); 2137 if (err && __packet_get_status(po, ph) == 2138 TP_STATUS_AVAILABLE) { 2139 /* skb was destructed already */ 2140 skb = NULL; 2141 goto out_status; 2142 } 2143 /* 2144 * skb was dropped but not destructed yet; 2145 * let's treat it like congestion or err < 0 2146 */ 2147 err = 0; 2148 } 2149 packet_increment_head(&po->tx_ring); 2150 len_sum += tp_len; 2151 } while (likely((ph != NULL) || 2152 ((!(msg->msg_flags & MSG_DONTWAIT)) && 2153 (atomic_read(&po->tx_ring.pending)))) 2154 ); 2155 2156 err = len_sum; 2157 goto out_put; 2158 2159 out_status: 2160 __packet_set_status(po, ph, status); 2161 kfree_skb(skb); 2162 out_put: 2163 if (need_rls_dev) 2164 dev_put(dev); 2165 out: 2166 mutex_unlock(&po->pg_vec_lock); 2167 return err; 2168 } 2169 2170 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2171 size_t reserve, size_t len, 2172 size_t linear, int noblock, 2173 int *err) 2174 { 2175 struct sk_buff *skb; 2176 2177 /* Under a page? Don't bother with paged skb. */ 2178 if (prepad + len < PAGE_SIZE || !linear) 2179 linear = len; 2180 2181 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2182 err); 2183 if (!skb) 2184 return NULL; 2185 2186 skb_reserve(skb, reserve); 2187 skb_put(skb, linear); 2188 skb->data_len = len - linear; 2189 skb->len += len - linear; 2190 2191 return skb; 2192 } 2193 2194 static int packet_snd(struct socket *sock, 2195 struct msghdr *msg, size_t len) 2196 { 2197 struct sock *sk = sock->sk; 2198 struct sockaddr_ll *saddr = (struct sockaddr_ll *)msg->msg_name; 2199 struct sk_buff *skb; 2200 struct net_device *dev; 2201 __be16 proto; 2202 bool need_rls_dev = false; 2203 unsigned char *addr; 2204 int err, reserve = 0; 2205 struct virtio_net_hdr vnet_hdr = { 0 }; 2206 int offset = 0; 2207 int vnet_hdr_len; 2208 struct packet_sock *po = pkt_sk(sk); 2209 unsigned short gso_type = 0; 2210 2211 /* 2212 * Get and verify the address. 2213 */ 2214 2215 if (saddr == NULL) { 2216 dev = po->prot_hook.dev; 2217 proto = po->num; 2218 addr = NULL; 2219 } else { 2220 err = -EINVAL; 2221 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2222 goto out; 2223 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2224 goto out; 2225 proto = saddr->sll_protocol; 2226 addr = saddr->sll_addr; 2227 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2228 need_rls_dev = true; 2229 } 2230 2231 err = -ENXIO; 2232 if (dev == NULL) 2233 goto out_unlock; 2234 if (sock->type == SOCK_RAW) 2235 reserve = dev->hard_header_len; 2236 2237 err = -ENETDOWN; 2238 if (!(dev->flags & IFF_UP)) 2239 goto out_unlock; 2240 2241 if (po->has_vnet_hdr) { 2242 vnet_hdr_len = sizeof(vnet_hdr); 2243 2244 err = -EINVAL; 2245 if (len < vnet_hdr_len) 2246 goto out_unlock; 2247 2248 len -= vnet_hdr_len; 2249 2250 err = memcpy_fromiovec((void *)&vnet_hdr, msg->msg_iov, 2251 vnet_hdr_len); 2252 if (err < 0) 2253 goto out_unlock; 2254 2255 if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2256 (vnet_hdr.csum_start + vnet_hdr.csum_offset + 2 > 2257 vnet_hdr.hdr_len)) 2258 vnet_hdr.hdr_len = vnet_hdr.csum_start + 2259 vnet_hdr.csum_offset + 2; 2260 2261 err = -EINVAL; 2262 if (vnet_hdr.hdr_len > len) 2263 goto out_unlock; 2264 2265 if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) { 2266 switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { 2267 case VIRTIO_NET_HDR_GSO_TCPV4: 2268 gso_type = SKB_GSO_TCPV4; 2269 break; 2270 case VIRTIO_NET_HDR_GSO_TCPV6: 2271 gso_type = SKB_GSO_TCPV6; 2272 break; 2273 case VIRTIO_NET_HDR_GSO_UDP: 2274 gso_type = SKB_GSO_UDP; 2275 break; 2276 default: 2277 goto out_unlock; 2278 } 2279 2280 if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN) 2281 gso_type |= SKB_GSO_TCP_ECN; 2282 2283 if (vnet_hdr.gso_size == 0) 2284 goto out_unlock; 2285 2286 } 2287 } 2288 2289 err = -EMSGSIZE; 2290 if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN)) 2291 goto out_unlock; 2292 2293 err = -ENOBUFS; 2294 skb = packet_alloc_skb(sk, LL_ALLOCATED_SPACE(dev), 2295 LL_RESERVED_SPACE(dev), len, vnet_hdr.hdr_len, 2296 msg->msg_flags & MSG_DONTWAIT, &err); 2297 if (skb == NULL) 2298 goto out_unlock; 2299 2300 skb_set_network_header(skb, reserve); 2301 2302 err = -EINVAL; 2303 if (sock->type == SOCK_DGRAM && 2304 (offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len)) < 0) 2305 goto out_free; 2306 2307 /* Returns -EFAULT on error */ 2308 err = skb_copy_datagram_from_iovec(skb, offset, msg->msg_iov, 0, len); 2309 if (err) 2310 goto out_free; 2311 err = sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags); 2312 if (err < 0) 2313 goto out_free; 2314 2315 if (!gso_type && (len > dev->mtu + reserve)) { 2316 /* Earlier code assumed this would be a VLAN pkt, 2317 * double-check this now that we have the actual 2318 * packet in hand. 2319 */ 2320 struct ethhdr *ehdr; 2321 skb_reset_mac_header(skb); 2322 ehdr = eth_hdr(skb); 2323 if (ehdr->h_proto != htons(ETH_P_8021Q)) { 2324 err = -EMSGSIZE; 2325 goto out_free; 2326 } 2327 } 2328 2329 skb->protocol = proto; 2330 skb->dev = dev; 2331 skb->priority = sk->sk_priority; 2332 skb->mark = sk->sk_mark; 2333 2334 if (po->has_vnet_hdr) { 2335 if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { 2336 if (!skb_partial_csum_set(skb, vnet_hdr.csum_start, 2337 vnet_hdr.csum_offset)) { 2338 err = -EINVAL; 2339 goto out_free; 2340 } 2341 } 2342 2343 skb_shinfo(skb)->gso_size = vnet_hdr.gso_size; 2344 skb_shinfo(skb)->gso_type = gso_type; 2345 2346 /* Header must be checked, and gso_segs computed. */ 2347 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2348 skb_shinfo(skb)->gso_segs = 0; 2349 2350 len += vnet_hdr_len; 2351 } 2352 2353 /* 2354 * Now send it 2355 */ 2356 2357 err = dev_queue_xmit(skb); 2358 if (err > 0 && (err = net_xmit_errno(err)) != 0) 2359 goto out_unlock; 2360 2361 if (need_rls_dev) 2362 dev_put(dev); 2363 2364 return len; 2365 2366 out_free: 2367 kfree_skb(skb); 2368 out_unlock: 2369 if (dev && need_rls_dev) 2370 dev_put(dev); 2371 out: 2372 return err; 2373 } 2374 2375 static int packet_sendmsg(struct kiocb *iocb, struct socket *sock, 2376 struct msghdr *msg, size_t len) 2377 { 2378 struct sock *sk = sock->sk; 2379 struct packet_sock *po = pkt_sk(sk); 2380 if (po->tx_ring.pg_vec) 2381 return tpacket_snd(po, msg); 2382 else 2383 return packet_snd(sock, msg, len); 2384 } 2385 2386 /* 2387 * Close a PACKET socket. This is fairly simple. We immediately go 2388 * to 'closed' state and remove our protocol entry in the device list. 2389 */ 2390 2391 static int packet_release(struct socket *sock) 2392 { 2393 struct sock *sk = sock->sk; 2394 struct packet_sock *po; 2395 struct net *net; 2396 union tpacket_req_u req_u; 2397 2398 if (!sk) 2399 return 0; 2400 2401 net = sock_net(sk); 2402 po = pkt_sk(sk); 2403 2404 spin_lock_bh(&net->packet.sklist_lock); 2405 sk_del_node_init_rcu(sk); 2406 sock_prot_inuse_add(net, sk->sk_prot, -1); 2407 spin_unlock_bh(&net->packet.sklist_lock); 2408 2409 spin_lock(&po->bind_lock); 2410 unregister_prot_hook(sk, false); 2411 if (po->prot_hook.dev) { 2412 dev_put(po->prot_hook.dev); 2413 po->prot_hook.dev = NULL; 2414 } 2415 spin_unlock(&po->bind_lock); 2416 2417 packet_flush_mclist(sk); 2418 2419 memset(&req_u, 0, sizeof(req_u)); 2420 2421 if (po->rx_ring.pg_vec) 2422 packet_set_ring(sk, &req_u, 1, 0); 2423 2424 if (po->tx_ring.pg_vec) 2425 packet_set_ring(sk, &req_u, 1, 1); 2426 2427 fanout_release(sk); 2428 2429 synchronize_net(); 2430 /* 2431 * Now the socket is dead. No more input will appear. 2432 */ 2433 sock_orphan(sk); 2434 sock->sk = NULL; 2435 2436 /* Purge queues */ 2437 2438 skb_queue_purge(&sk->sk_receive_queue); 2439 sk_refcnt_debug_release(sk); 2440 2441 sock_put(sk); 2442 return 0; 2443 } 2444 2445 /* 2446 * Attach a packet hook. 2447 */ 2448 2449 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 protocol) 2450 { 2451 struct packet_sock *po = pkt_sk(sk); 2452 2453 if (po->fanout) 2454 return -EINVAL; 2455 2456 lock_sock(sk); 2457 2458 spin_lock(&po->bind_lock); 2459 unregister_prot_hook(sk, true); 2460 po->num = protocol; 2461 po->prot_hook.type = protocol; 2462 if (po->prot_hook.dev) 2463 dev_put(po->prot_hook.dev); 2464 po->prot_hook.dev = dev; 2465 2466 po->ifindex = dev ? dev->ifindex : 0; 2467 2468 if (protocol == 0) 2469 goto out_unlock; 2470 2471 if (!dev || (dev->flags & IFF_UP)) { 2472 register_prot_hook(sk); 2473 } else { 2474 sk->sk_err = ENETDOWN; 2475 if (!sock_flag(sk, SOCK_DEAD)) 2476 sk->sk_error_report(sk); 2477 } 2478 2479 out_unlock: 2480 spin_unlock(&po->bind_lock); 2481 release_sock(sk); 2482 return 0; 2483 } 2484 2485 /* 2486 * Bind a packet socket to a device 2487 */ 2488 2489 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 2490 int addr_len) 2491 { 2492 struct sock *sk = sock->sk; 2493 char name[15]; 2494 struct net_device *dev; 2495 int err = -ENODEV; 2496 2497 /* 2498 * Check legality 2499 */ 2500 2501 if (addr_len != sizeof(struct sockaddr)) 2502 return -EINVAL; 2503 strlcpy(name, uaddr->sa_data, sizeof(name)); 2504 2505 dev = dev_get_by_name(sock_net(sk), name); 2506 if (dev) 2507 err = packet_do_bind(sk, dev, pkt_sk(sk)->num); 2508 return err; 2509 } 2510 2511 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 2512 { 2513 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 2514 struct sock *sk = sock->sk; 2515 struct net_device *dev = NULL; 2516 int err; 2517 2518 2519 /* 2520 * Check legality 2521 */ 2522 2523 if (addr_len < sizeof(struct sockaddr_ll)) 2524 return -EINVAL; 2525 if (sll->sll_family != AF_PACKET) 2526 return -EINVAL; 2527 2528 if (sll->sll_ifindex) { 2529 err = -ENODEV; 2530 dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex); 2531 if (dev == NULL) 2532 goto out; 2533 } 2534 err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num); 2535 2536 out: 2537 return err; 2538 } 2539 2540 static struct proto packet_proto = { 2541 .name = "PACKET", 2542 .owner = THIS_MODULE, 2543 .obj_size = sizeof(struct packet_sock), 2544 }; 2545 2546 /* 2547 * Create a packet of type SOCK_PACKET. 2548 */ 2549 2550 static int packet_create(struct net *net, struct socket *sock, int protocol, 2551 int kern) 2552 { 2553 struct sock *sk; 2554 struct packet_sock *po; 2555 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 2556 int err; 2557 2558 if (!capable(CAP_NET_RAW)) 2559 return -EPERM; 2560 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 2561 sock->type != SOCK_PACKET) 2562 return -ESOCKTNOSUPPORT; 2563 2564 sock->state = SS_UNCONNECTED; 2565 2566 err = -ENOBUFS; 2567 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto); 2568 if (sk == NULL) 2569 goto out; 2570 2571 sock->ops = &packet_ops; 2572 if (sock->type == SOCK_PACKET) 2573 sock->ops = &packet_ops_spkt; 2574 2575 sock_init_data(sock, sk); 2576 2577 po = pkt_sk(sk); 2578 sk->sk_family = PF_PACKET; 2579 po->num = proto; 2580 2581 sk->sk_destruct = packet_sock_destruct; 2582 sk_refcnt_debug_inc(sk); 2583 2584 /* 2585 * Attach a protocol block 2586 */ 2587 2588 spin_lock_init(&po->bind_lock); 2589 mutex_init(&po->pg_vec_lock); 2590 po->prot_hook.func = packet_rcv; 2591 2592 if (sock->type == SOCK_PACKET) 2593 po->prot_hook.func = packet_rcv_spkt; 2594 2595 po->prot_hook.af_packet_priv = sk; 2596 2597 if (proto) { 2598 po->prot_hook.type = proto; 2599 register_prot_hook(sk); 2600 } 2601 2602 spin_lock_bh(&net->packet.sklist_lock); 2603 sk_add_node_rcu(sk, &net->packet.sklist); 2604 sock_prot_inuse_add(net, &packet_proto, 1); 2605 spin_unlock_bh(&net->packet.sklist_lock); 2606 2607 return 0; 2608 out: 2609 return err; 2610 } 2611 2612 static int packet_recv_error(struct sock *sk, struct msghdr *msg, int len) 2613 { 2614 struct sock_exterr_skb *serr; 2615 struct sk_buff *skb, *skb2; 2616 int copied, err; 2617 2618 err = -EAGAIN; 2619 skb = skb_dequeue(&sk->sk_error_queue); 2620 if (skb == NULL) 2621 goto out; 2622 2623 copied = skb->len; 2624 if (copied > len) { 2625 msg->msg_flags |= MSG_TRUNC; 2626 copied = len; 2627 } 2628 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2629 if (err) 2630 goto out_free_skb; 2631 2632 sock_recv_timestamp(msg, sk, skb); 2633 2634 serr = SKB_EXT_ERR(skb); 2635 put_cmsg(msg, SOL_PACKET, PACKET_TX_TIMESTAMP, 2636 sizeof(serr->ee), &serr->ee); 2637 2638 msg->msg_flags |= MSG_ERRQUEUE; 2639 err = copied; 2640 2641 /* Reset and regenerate socket error */ 2642 spin_lock_bh(&sk->sk_error_queue.lock); 2643 sk->sk_err = 0; 2644 if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) { 2645 sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno; 2646 spin_unlock_bh(&sk->sk_error_queue.lock); 2647 sk->sk_error_report(sk); 2648 } else 2649 spin_unlock_bh(&sk->sk_error_queue.lock); 2650 2651 out_free_skb: 2652 kfree_skb(skb); 2653 out: 2654 return err; 2655 } 2656 2657 /* 2658 * Pull a packet from our receive queue and hand it to the user. 2659 * If necessary we block. 2660 */ 2661 2662 static int packet_recvmsg(struct kiocb *iocb, struct socket *sock, 2663 struct msghdr *msg, size_t len, int flags) 2664 { 2665 struct sock *sk = sock->sk; 2666 struct sk_buff *skb; 2667 int copied, err; 2668 struct sockaddr_ll *sll; 2669 int vnet_hdr_len = 0; 2670 2671 err = -EINVAL; 2672 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 2673 goto out; 2674 2675 #if 0 2676 /* What error should we return now? EUNATTACH? */ 2677 if (pkt_sk(sk)->ifindex < 0) 2678 return -ENODEV; 2679 #endif 2680 2681 if (flags & MSG_ERRQUEUE) { 2682 err = packet_recv_error(sk, msg, len); 2683 goto out; 2684 } 2685 2686 /* 2687 * Call the generic datagram receiver. This handles all sorts 2688 * of horrible races and re-entrancy so we can forget about it 2689 * in the protocol layers. 2690 * 2691 * Now it will return ENETDOWN, if device have just gone down, 2692 * but then it will block. 2693 */ 2694 2695 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 2696 2697 /* 2698 * An error occurred so return it. Because skb_recv_datagram() 2699 * handles the blocking we don't see and worry about blocking 2700 * retries. 2701 */ 2702 2703 if (skb == NULL) 2704 goto out; 2705 2706 if (pkt_sk(sk)->has_vnet_hdr) { 2707 struct virtio_net_hdr vnet_hdr = { 0 }; 2708 2709 err = -EINVAL; 2710 vnet_hdr_len = sizeof(vnet_hdr); 2711 if (len < vnet_hdr_len) 2712 goto out_free; 2713 2714 len -= vnet_hdr_len; 2715 2716 if (skb_is_gso(skb)) { 2717 struct skb_shared_info *sinfo = skb_shinfo(skb); 2718 2719 /* This is a hint as to how much should be linear. */ 2720 vnet_hdr.hdr_len = skb_headlen(skb); 2721 vnet_hdr.gso_size = sinfo->gso_size; 2722 if (sinfo->gso_type & SKB_GSO_TCPV4) 2723 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4; 2724 else if (sinfo->gso_type & SKB_GSO_TCPV6) 2725 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6; 2726 else if (sinfo->gso_type & SKB_GSO_UDP) 2727 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP; 2728 else if (sinfo->gso_type & SKB_GSO_FCOE) 2729 goto out_free; 2730 else 2731 BUG(); 2732 if (sinfo->gso_type & SKB_GSO_TCP_ECN) 2733 vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN; 2734 } else 2735 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE; 2736 2737 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2738 vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; 2739 vnet_hdr.csum_start = skb_checksum_start_offset(skb); 2740 vnet_hdr.csum_offset = skb->csum_offset; 2741 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2742 vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID; 2743 } /* else everything is zero */ 2744 2745 err = memcpy_toiovec(msg->msg_iov, (void *)&vnet_hdr, 2746 vnet_hdr_len); 2747 if (err < 0) 2748 goto out_free; 2749 } 2750 2751 /* 2752 * If the address length field is there to be filled in, we fill 2753 * it in now. 2754 */ 2755 2756 sll = &PACKET_SKB_CB(skb)->sa.ll; 2757 if (sock->type == SOCK_PACKET) 2758 msg->msg_namelen = sizeof(struct sockaddr_pkt); 2759 else 2760 msg->msg_namelen = sll->sll_halen + offsetof(struct sockaddr_ll, sll_addr); 2761 2762 /* 2763 * You lose any data beyond the buffer you gave. If it worries a 2764 * user program they can ask the device for its MTU anyway. 2765 */ 2766 2767 copied = skb->len; 2768 if (copied > len) { 2769 copied = len; 2770 msg->msg_flags |= MSG_TRUNC; 2771 } 2772 2773 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2774 if (err) 2775 goto out_free; 2776 2777 sock_recv_ts_and_drops(msg, sk, skb); 2778 2779 if (msg->msg_name) 2780 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, 2781 msg->msg_namelen); 2782 2783 if (pkt_sk(sk)->auxdata) { 2784 struct tpacket_auxdata aux; 2785 2786 aux.tp_status = TP_STATUS_USER; 2787 if (skb->ip_summed == CHECKSUM_PARTIAL) 2788 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 2789 aux.tp_len = PACKET_SKB_CB(skb)->origlen; 2790 aux.tp_snaplen = skb->len; 2791 aux.tp_mac = 0; 2792 aux.tp_net = skb_network_offset(skb); 2793 if (vlan_tx_tag_present(skb)) { 2794 aux.tp_vlan_tci = vlan_tx_tag_get(skb); 2795 aux.tp_status |= TP_STATUS_VLAN_VALID; 2796 } else { 2797 aux.tp_vlan_tci = 0; 2798 } 2799 aux.tp_padding = 0; 2800 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 2801 } 2802 2803 /* 2804 * Free or return the buffer as appropriate. Again this 2805 * hides all the races and re-entrancy issues from us. 2806 */ 2807 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 2808 2809 out_free: 2810 skb_free_datagram(sk, skb); 2811 out: 2812 return err; 2813 } 2814 2815 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 2816 int *uaddr_len, int peer) 2817 { 2818 struct net_device *dev; 2819 struct sock *sk = sock->sk; 2820 2821 if (peer) 2822 return -EOPNOTSUPP; 2823 2824 uaddr->sa_family = AF_PACKET; 2825 rcu_read_lock(); 2826 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex); 2827 if (dev) 2828 strncpy(uaddr->sa_data, dev->name, 14); 2829 else 2830 memset(uaddr->sa_data, 0, 14); 2831 rcu_read_unlock(); 2832 *uaddr_len = sizeof(*uaddr); 2833 2834 return 0; 2835 } 2836 2837 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 2838 int *uaddr_len, int peer) 2839 { 2840 struct net_device *dev; 2841 struct sock *sk = sock->sk; 2842 struct packet_sock *po = pkt_sk(sk); 2843 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 2844 2845 if (peer) 2846 return -EOPNOTSUPP; 2847 2848 sll->sll_family = AF_PACKET; 2849 sll->sll_ifindex = po->ifindex; 2850 sll->sll_protocol = po->num; 2851 sll->sll_pkttype = 0; 2852 rcu_read_lock(); 2853 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex); 2854 if (dev) { 2855 sll->sll_hatype = dev->type; 2856 sll->sll_halen = dev->addr_len; 2857 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 2858 } else { 2859 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 2860 sll->sll_halen = 0; 2861 } 2862 rcu_read_unlock(); 2863 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 2864 2865 return 0; 2866 } 2867 2868 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 2869 int what) 2870 { 2871 switch (i->type) { 2872 case PACKET_MR_MULTICAST: 2873 if (i->alen != dev->addr_len) 2874 return -EINVAL; 2875 if (what > 0) 2876 return dev_mc_add(dev, i->addr); 2877 else 2878 return dev_mc_del(dev, i->addr); 2879 break; 2880 case PACKET_MR_PROMISC: 2881 return dev_set_promiscuity(dev, what); 2882 break; 2883 case PACKET_MR_ALLMULTI: 2884 return dev_set_allmulti(dev, what); 2885 break; 2886 case PACKET_MR_UNICAST: 2887 if (i->alen != dev->addr_len) 2888 return -EINVAL; 2889 if (what > 0) 2890 return dev_uc_add(dev, i->addr); 2891 else 2892 return dev_uc_del(dev, i->addr); 2893 break; 2894 default: 2895 break; 2896 } 2897 return 0; 2898 } 2899 2900 static void packet_dev_mclist(struct net_device *dev, struct packet_mclist *i, int what) 2901 { 2902 for ( ; i; i = i->next) { 2903 if (i->ifindex == dev->ifindex) 2904 packet_dev_mc(dev, i, what); 2905 } 2906 } 2907 2908 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 2909 { 2910 struct packet_sock *po = pkt_sk(sk); 2911 struct packet_mclist *ml, *i; 2912 struct net_device *dev; 2913 int err; 2914 2915 rtnl_lock(); 2916 2917 err = -ENODEV; 2918 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 2919 if (!dev) 2920 goto done; 2921 2922 err = -EINVAL; 2923 if (mreq->mr_alen > dev->addr_len) 2924 goto done; 2925 2926 err = -ENOBUFS; 2927 i = kmalloc(sizeof(*i), GFP_KERNEL); 2928 if (i == NULL) 2929 goto done; 2930 2931 err = 0; 2932 for (ml = po->mclist; ml; ml = ml->next) { 2933 if (ml->ifindex == mreq->mr_ifindex && 2934 ml->type == mreq->mr_type && 2935 ml->alen == mreq->mr_alen && 2936 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 2937 ml->count++; 2938 /* Free the new element ... */ 2939 kfree(i); 2940 goto done; 2941 } 2942 } 2943 2944 i->type = mreq->mr_type; 2945 i->ifindex = mreq->mr_ifindex; 2946 i->alen = mreq->mr_alen; 2947 memcpy(i->addr, mreq->mr_address, i->alen); 2948 i->count = 1; 2949 i->next = po->mclist; 2950 po->mclist = i; 2951 err = packet_dev_mc(dev, i, 1); 2952 if (err) { 2953 po->mclist = i->next; 2954 kfree(i); 2955 } 2956 2957 done: 2958 rtnl_unlock(); 2959 return err; 2960 } 2961 2962 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 2963 { 2964 struct packet_mclist *ml, **mlp; 2965 2966 rtnl_lock(); 2967 2968 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 2969 if (ml->ifindex == mreq->mr_ifindex && 2970 ml->type == mreq->mr_type && 2971 ml->alen == mreq->mr_alen && 2972 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 2973 if (--ml->count == 0) { 2974 struct net_device *dev; 2975 *mlp = ml->next; 2976 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 2977 if (dev) 2978 packet_dev_mc(dev, ml, -1); 2979 kfree(ml); 2980 } 2981 rtnl_unlock(); 2982 return 0; 2983 } 2984 } 2985 rtnl_unlock(); 2986 return -EADDRNOTAVAIL; 2987 } 2988 2989 static void packet_flush_mclist(struct sock *sk) 2990 { 2991 struct packet_sock *po = pkt_sk(sk); 2992 struct packet_mclist *ml; 2993 2994 if (!po->mclist) 2995 return; 2996 2997 rtnl_lock(); 2998 while ((ml = po->mclist) != NULL) { 2999 struct net_device *dev; 3000 3001 po->mclist = ml->next; 3002 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3003 if (dev != NULL) 3004 packet_dev_mc(dev, ml, -1); 3005 kfree(ml); 3006 } 3007 rtnl_unlock(); 3008 } 3009 3010 static int 3011 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) 3012 { 3013 struct sock *sk = sock->sk; 3014 struct packet_sock *po = pkt_sk(sk); 3015 int ret; 3016 3017 if (level != SOL_PACKET) 3018 return -ENOPROTOOPT; 3019 3020 switch (optname) { 3021 case PACKET_ADD_MEMBERSHIP: 3022 case PACKET_DROP_MEMBERSHIP: 3023 { 3024 struct packet_mreq_max mreq; 3025 int len = optlen; 3026 memset(&mreq, 0, sizeof(mreq)); 3027 if (len < sizeof(struct packet_mreq)) 3028 return -EINVAL; 3029 if (len > sizeof(mreq)) 3030 len = sizeof(mreq); 3031 if (copy_from_user(&mreq, optval, len)) 3032 return -EFAULT; 3033 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3034 return -EINVAL; 3035 if (optname == PACKET_ADD_MEMBERSHIP) 3036 ret = packet_mc_add(sk, &mreq); 3037 else 3038 ret = packet_mc_drop(sk, &mreq); 3039 return ret; 3040 } 3041 3042 case PACKET_RX_RING: 3043 case PACKET_TX_RING: 3044 { 3045 union tpacket_req_u req_u; 3046 int len; 3047 3048 switch (po->tp_version) { 3049 case TPACKET_V1: 3050 case TPACKET_V2: 3051 len = sizeof(req_u.req); 3052 break; 3053 case TPACKET_V3: 3054 default: 3055 len = sizeof(req_u.req3); 3056 break; 3057 } 3058 if (optlen < len) 3059 return -EINVAL; 3060 if (pkt_sk(sk)->has_vnet_hdr) 3061 return -EINVAL; 3062 if (copy_from_user(&req_u.req, optval, len)) 3063 return -EFAULT; 3064 return packet_set_ring(sk, &req_u, 0, 3065 optname == PACKET_TX_RING); 3066 } 3067 case PACKET_COPY_THRESH: 3068 { 3069 int val; 3070 3071 if (optlen != sizeof(val)) 3072 return -EINVAL; 3073 if (copy_from_user(&val, optval, sizeof(val))) 3074 return -EFAULT; 3075 3076 pkt_sk(sk)->copy_thresh = val; 3077 return 0; 3078 } 3079 case PACKET_VERSION: 3080 { 3081 int val; 3082 3083 if (optlen != sizeof(val)) 3084 return -EINVAL; 3085 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3086 return -EBUSY; 3087 if (copy_from_user(&val, optval, sizeof(val))) 3088 return -EFAULT; 3089 switch (val) { 3090 case TPACKET_V1: 3091 case TPACKET_V2: 3092 case TPACKET_V3: 3093 po->tp_version = val; 3094 return 0; 3095 default: 3096 return -EINVAL; 3097 } 3098 } 3099 case PACKET_RESERVE: 3100 { 3101 unsigned int val; 3102 3103 if (optlen != sizeof(val)) 3104 return -EINVAL; 3105 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3106 return -EBUSY; 3107 if (copy_from_user(&val, optval, sizeof(val))) 3108 return -EFAULT; 3109 po->tp_reserve = val; 3110 return 0; 3111 } 3112 case PACKET_LOSS: 3113 { 3114 unsigned int val; 3115 3116 if (optlen != sizeof(val)) 3117 return -EINVAL; 3118 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3119 return -EBUSY; 3120 if (copy_from_user(&val, optval, sizeof(val))) 3121 return -EFAULT; 3122 po->tp_loss = !!val; 3123 return 0; 3124 } 3125 case PACKET_AUXDATA: 3126 { 3127 int val; 3128 3129 if (optlen < sizeof(val)) 3130 return -EINVAL; 3131 if (copy_from_user(&val, optval, sizeof(val))) 3132 return -EFAULT; 3133 3134 po->auxdata = !!val; 3135 return 0; 3136 } 3137 case PACKET_ORIGDEV: 3138 { 3139 int val; 3140 3141 if (optlen < sizeof(val)) 3142 return -EINVAL; 3143 if (copy_from_user(&val, optval, sizeof(val))) 3144 return -EFAULT; 3145 3146 po->origdev = !!val; 3147 return 0; 3148 } 3149 case PACKET_VNET_HDR: 3150 { 3151 int val; 3152 3153 if (sock->type != SOCK_RAW) 3154 return -EINVAL; 3155 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3156 return -EBUSY; 3157 if (optlen < sizeof(val)) 3158 return -EINVAL; 3159 if (copy_from_user(&val, optval, sizeof(val))) 3160 return -EFAULT; 3161 3162 po->has_vnet_hdr = !!val; 3163 return 0; 3164 } 3165 case PACKET_TIMESTAMP: 3166 { 3167 int val; 3168 3169 if (optlen != sizeof(val)) 3170 return -EINVAL; 3171 if (copy_from_user(&val, optval, sizeof(val))) 3172 return -EFAULT; 3173 3174 po->tp_tstamp = val; 3175 return 0; 3176 } 3177 case PACKET_FANOUT: 3178 { 3179 int val; 3180 3181 if (optlen != sizeof(val)) 3182 return -EINVAL; 3183 if (copy_from_user(&val, optval, sizeof(val))) 3184 return -EFAULT; 3185 3186 return fanout_add(sk, val & 0xffff, val >> 16); 3187 } 3188 default: 3189 return -ENOPROTOOPT; 3190 } 3191 } 3192 3193 static int packet_getsockopt(struct socket *sock, int level, int optname, 3194 char __user *optval, int __user *optlen) 3195 { 3196 int len; 3197 int val; 3198 struct sock *sk = sock->sk; 3199 struct packet_sock *po = pkt_sk(sk); 3200 void *data; 3201 struct tpacket_stats st; 3202 union tpacket_stats_u st_u; 3203 3204 if (level != SOL_PACKET) 3205 return -ENOPROTOOPT; 3206 3207 if (get_user(len, optlen)) 3208 return -EFAULT; 3209 3210 if (len < 0) 3211 return -EINVAL; 3212 3213 switch (optname) { 3214 case PACKET_STATISTICS: 3215 if (po->tp_version == TPACKET_V3) { 3216 len = sizeof(struct tpacket_stats_v3); 3217 } else { 3218 if (len > sizeof(struct tpacket_stats)) 3219 len = sizeof(struct tpacket_stats); 3220 } 3221 spin_lock_bh(&sk->sk_receive_queue.lock); 3222 if (po->tp_version == TPACKET_V3) { 3223 memcpy(&st_u.stats3, &po->stats, 3224 sizeof(struct tpacket_stats)); 3225 st_u.stats3.tp_freeze_q_cnt = 3226 po->stats_u.stats3.tp_freeze_q_cnt; 3227 st_u.stats3.tp_packets += po->stats.tp_drops; 3228 data = &st_u.stats3; 3229 } else { 3230 st = po->stats; 3231 st.tp_packets += st.tp_drops; 3232 data = &st; 3233 } 3234 memset(&po->stats, 0, sizeof(st)); 3235 spin_unlock_bh(&sk->sk_receive_queue.lock); 3236 break; 3237 case PACKET_AUXDATA: 3238 if (len > sizeof(int)) 3239 len = sizeof(int); 3240 val = po->auxdata; 3241 3242 data = &val; 3243 break; 3244 case PACKET_ORIGDEV: 3245 if (len > sizeof(int)) 3246 len = sizeof(int); 3247 val = po->origdev; 3248 3249 data = &val; 3250 break; 3251 case PACKET_VNET_HDR: 3252 if (len > sizeof(int)) 3253 len = sizeof(int); 3254 val = po->has_vnet_hdr; 3255 3256 data = &val; 3257 break; 3258 case PACKET_VERSION: 3259 if (len > sizeof(int)) 3260 len = sizeof(int); 3261 val = po->tp_version; 3262 data = &val; 3263 break; 3264 case PACKET_HDRLEN: 3265 if (len > sizeof(int)) 3266 len = sizeof(int); 3267 if (copy_from_user(&val, optval, len)) 3268 return -EFAULT; 3269 switch (val) { 3270 case TPACKET_V1: 3271 val = sizeof(struct tpacket_hdr); 3272 break; 3273 case TPACKET_V2: 3274 val = sizeof(struct tpacket2_hdr); 3275 break; 3276 case TPACKET_V3: 3277 val = sizeof(struct tpacket3_hdr); 3278 break; 3279 default: 3280 return -EINVAL; 3281 } 3282 data = &val; 3283 break; 3284 case PACKET_RESERVE: 3285 if (len > sizeof(unsigned int)) 3286 len = sizeof(unsigned int); 3287 val = po->tp_reserve; 3288 data = &val; 3289 break; 3290 case PACKET_LOSS: 3291 if (len > sizeof(unsigned int)) 3292 len = sizeof(unsigned int); 3293 val = po->tp_loss; 3294 data = &val; 3295 break; 3296 case PACKET_TIMESTAMP: 3297 if (len > sizeof(int)) 3298 len = sizeof(int); 3299 val = po->tp_tstamp; 3300 data = &val; 3301 break; 3302 case PACKET_FANOUT: 3303 if (len > sizeof(int)) 3304 len = sizeof(int); 3305 val = (po->fanout ? 3306 ((u32)po->fanout->id | 3307 ((u32)po->fanout->type << 16)) : 3308 0); 3309 data = &val; 3310 break; 3311 default: 3312 return -ENOPROTOOPT; 3313 } 3314 3315 if (put_user(len, optlen)) 3316 return -EFAULT; 3317 if (copy_to_user(optval, data, len)) 3318 return -EFAULT; 3319 return 0; 3320 } 3321 3322 3323 static int packet_notifier(struct notifier_block *this, unsigned long msg, void *data) 3324 { 3325 struct sock *sk; 3326 struct hlist_node *node; 3327 struct net_device *dev = data; 3328 struct net *net = dev_net(dev); 3329 3330 rcu_read_lock(); 3331 sk_for_each_rcu(sk, node, &net->packet.sklist) { 3332 struct packet_sock *po = pkt_sk(sk); 3333 3334 switch (msg) { 3335 case NETDEV_UNREGISTER: 3336 if (po->mclist) 3337 packet_dev_mclist(dev, po->mclist, -1); 3338 /* fallthrough */ 3339 3340 case NETDEV_DOWN: 3341 if (dev->ifindex == po->ifindex) { 3342 spin_lock(&po->bind_lock); 3343 if (po->running) { 3344 __unregister_prot_hook(sk, false); 3345 sk->sk_err = ENETDOWN; 3346 if (!sock_flag(sk, SOCK_DEAD)) 3347 sk->sk_error_report(sk); 3348 } 3349 if (msg == NETDEV_UNREGISTER) { 3350 po->ifindex = -1; 3351 if (po->prot_hook.dev) 3352 dev_put(po->prot_hook.dev); 3353 po->prot_hook.dev = NULL; 3354 } 3355 spin_unlock(&po->bind_lock); 3356 } 3357 break; 3358 case NETDEV_UP: 3359 if (dev->ifindex == po->ifindex) { 3360 spin_lock(&po->bind_lock); 3361 if (po->num) 3362 register_prot_hook(sk); 3363 spin_unlock(&po->bind_lock); 3364 } 3365 break; 3366 } 3367 } 3368 rcu_read_unlock(); 3369 return NOTIFY_DONE; 3370 } 3371 3372 3373 static int packet_ioctl(struct socket *sock, unsigned int cmd, 3374 unsigned long arg) 3375 { 3376 struct sock *sk = sock->sk; 3377 3378 switch (cmd) { 3379 case SIOCOUTQ: 3380 { 3381 int amount = sk_wmem_alloc_get(sk); 3382 3383 return put_user(amount, (int __user *)arg); 3384 } 3385 case SIOCINQ: 3386 { 3387 struct sk_buff *skb; 3388 int amount = 0; 3389 3390 spin_lock_bh(&sk->sk_receive_queue.lock); 3391 skb = skb_peek(&sk->sk_receive_queue); 3392 if (skb) 3393 amount = skb->len; 3394 spin_unlock_bh(&sk->sk_receive_queue.lock); 3395 return put_user(amount, (int __user *)arg); 3396 } 3397 case SIOCGSTAMP: 3398 return sock_get_timestamp(sk, (struct timeval __user *)arg); 3399 case SIOCGSTAMPNS: 3400 return sock_get_timestampns(sk, (struct timespec __user *)arg); 3401 3402 #ifdef CONFIG_INET 3403 case SIOCADDRT: 3404 case SIOCDELRT: 3405 case SIOCDARP: 3406 case SIOCGARP: 3407 case SIOCSARP: 3408 case SIOCGIFADDR: 3409 case SIOCSIFADDR: 3410 case SIOCGIFBRDADDR: 3411 case SIOCSIFBRDADDR: 3412 case SIOCGIFNETMASK: 3413 case SIOCSIFNETMASK: 3414 case SIOCGIFDSTADDR: 3415 case SIOCSIFDSTADDR: 3416 case SIOCSIFFLAGS: 3417 return inet_dgram_ops.ioctl(sock, cmd, arg); 3418 #endif 3419 3420 default: 3421 return -ENOIOCTLCMD; 3422 } 3423 return 0; 3424 } 3425 3426 static unsigned int packet_poll(struct file *file, struct socket *sock, 3427 poll_table *wait) 3428 { 3429 struct sock *sk = sock->sk; 3430 struct packet_sock *po = pkt_sk(sk); 3431 unsigned int mask = datagram_poll(file, sock, wait); 3432 3433 spin_lock_bh(&sk->sk_receive_queue.lock); 3434 if (po->rx_ring.pg_vec) { 3435 if (!packet_previous_rx_frame(po, &po->rx_ring, 3436 TP_STATUS_KERNEL)) 3437 mask |= POLLIN | POLLRDNORM; 3438 } 3439 spin_unlock_bh(&sk->sk_receive_queue.lock); 3440 spin_lock_bh(&sk->sk_write_queue.lock); 3441 if (po->tx_ring.pg_vec) { 3442 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 3443 mask |= POLLOUT | POLLWRNORM; 3444 } 3445 spin_unlock_bh(&sk->sk_write_queue.lock); 3446 return mask; 3447 } 3448 3449 3450 /* Dirty? Well, I still did not learn better way to account 3451 * for user mmaps. 3452 */ 3453 3454 static void packet_mm_open(struct vm_area_struct *vma) 3455 { 3456 struct file *file = vma->vm_file; 3457 struct socket *sock = file->private_data; 3458 struct sock *sk = sock->sk; 3459 3460 if (sk) 3461 atomic_inc(&pkt_sk(sk)->mapped); 3462 } 3463 3464 static void packet_mm_close(struct vm_area_struct *vma) 3465 { 3466 struct file *file = vma->vm_file; 3467 struct socket *sock = file->private_data; 3468 struct sock *sk = sock->sk; 3469 3470 if (sk) 3471 atomic_dec(&pkt_sk(sk)->mapped); 3472 } 3473 3474 static const struct vm_operations_struct packet_mmap_ops = { 3475 .open = packet_mm_open, 3476 .close = packet_mm_close, 3477 }; 3478 3479 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 3480 unsigned int len) 3481 { 3482 int i; 3483 3484 for (i = 0; i < len; i++) { 3485 if (likely(pg_vec[i].buffer)) { 3486 if (is_vmalloc_addr(pg_vec[i].buffer)) 3487 vfree(pg_vec[i].buffer); 3488 else 3489 free_pages((unsigned long)pg_vec[i].buffer, 3490 order); 3491 pg_vec[i].buffer = NULL; 3492 } 3493 } 3494 kfree(pg_vec); 3495 } 3496 3497 static char *alloc_one_pg_vec_page(unsigned long order) 3498 { 3499 char *buffer = NULL; 3500 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 3501 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 3502 3503 buffer = (char *) __get_free_pages(gfp_flags, order); 3504 3505 if (buffer) 3506 return buffer; 3507 3508 /* 3509 * __get_free_pages failed, fall back to vmalloc 3510 */ 3511 buffer = vzalloc((1 << order) * PAGE_SIZE); 3512 3513 if (buffer) 3514 return buffer; 3515 3516 /* 3517 * vmalloc failed, lets dig into swap here 3518 */ 3519 gfp_flags &= ~__GFP_NORETRY; 3520 buffer = (char *)__get_free_pages(gfp_flags, order); 3521 if (buffer) 3522 return buffer; 3523 3524 /* 3525 * complete and utter failure 3526 */ 3527 return NULL; 3528 } 3529 3530 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 3531 { 3532 unsigned int block_nr = req->tp_block_nr; 3533 struct pgv *pg_vec; 3534 int i; 3535 3536 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL); 3537 if (unlikely(!pg_vec)) 3538 goto out; 3539 3540 for (i = 0; i < block_nr; i++) { 3541 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 3542 if (unlikely(!pg_vec[i].buffer)) 3543 goto out_free_pgvec; 3544 } 3545 3546 out: 3547 return pg_vec; 3548 3549 out_free_pgvec: 3550 free_pg_vec(pg_vec, order, block_nr); 3551 pg_vec = NULL; 3552 goto out; 3553 } 3554 3555 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 3556 int closing, int tx_ring) 3557 { 3558 struct pgv *pg_vec = NULL; 3559 struct packet_sock *po = pkt_sk(sk); 3560 int was_running, order = 0; 3561 struct packet_ring_buffer *rb; 3562 struct sk_buff_head *rb_queue; 3563 __be16 num; 3564 int err = -EINVAL; 3565 /* Added to avoid minimal code churn */ 3566 struct tpacket_req *req = &req_u->req; 3567 3568 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */ 3569 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) { 3570 WARN(1, "Tx-ring is not supported.\n"); 3571 goto out; 3572 } 3573 3574 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 3575 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 3576 3577 err = -EBUSY; 3578 if (!closing) { 3579 if (atomic_read(&po->mapped)) 3580 goto out; 3581 if (atomic_read(&rb->pending)) 3582 goto out; 3583 } 3584 3585 if (req->tp_block_nr) { 3586 /* Sanity tests and some calculations */ 3587 err = -EBUSY; 3588 if (unlikely(rb->pg_vec)) 3589 goto out; 3590 3591 switch (po->tp_version) { 3592 case TPACKET_V1: 3593 po->tp_hdrlen = TPACKET_HDRLEN; 3594 break; 3595 case TPACKET_V2: 3596 po->tp_hdrlen = TPACKET2_HDRLEN; 3597 break; 3598 case TPACKET_V3: 3599 po->tp_hdrlen = TPACKET3_HDRLEN; 3600 break; 3601 } 3602 3603 err = -EINVAL; 3604 if (unlikely((int)req->tp_block_size <= 0)) 3605 goto out; 3606 if (unlikely(req->tp_block_size & (PAGE_SIZE - 1))) 3607 goto out; 3608 if (unlikely(req->tp_frame_size < po->tp_hdrlen + 3609 po->tp_reserve)) 3610 goto out; 3611 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 3612 goto out; 3613 3614 rb->frames_per_block = req->tp_block_size/req->tp_frame_size; 3615 if (unlikely(rb->frames_per_block <= 0)) 3616 goto out; 3617 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 3618 req->tp_frame_nr)) 3619 goto out; 3620 3621 err = -ENOMEM; 3622 order = get_order(req->tp_block_size); 3623 pg_vec = alloc_pg_vec(req, order); 3624 if (unlikely(!pg_vec)) 3625 goto out; 3626 switch (po->tp_version) { 3627 case TPACKET_V3: 3628 /* Transmit path is not supported. We checked 3629 * it above but just being paranoid 3630 */ 3631 if (!tx_ring) 3632 init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring); 3633 break; 3634 default: 3635 break; 3636 } 3637 } 3638 /* Done */ 3639 else { 3640 err = -EINVAL; 3641 if (unlikely(req->tp_frame_nr)) 3642 goto out; 3643 } 3644 3645 lock_sock(sk); 3646 3647 /* Detach socket from network */ 3648 spin_lock(&po->bind_lock); 3649 was_running = po->running; 3650 num = po->num; 3651 if (was_running) { 3652 po->num = 0; 3653 __unregister_prot_hook(sk, false); 3654 } 3655 spin_unlock(&po->bind_lock); 3656 3657 synchronize_net(); 3658 3659 err = -EBUSY; 3660 mutex_lock(&po->pg_vec_lock); 3661 if (closing || atomic_read(&po->mapped) == 0) { 3662 err = 0; 3663 spin_lock_bh(&rb_queue->lock); 3664 swap(rb->pg_vec, pg_vec); 3665 rb->frame_max = (req->tp_frame_nr - 1); 3666 rb->head = 0; 3667 rb->frame_size = req->tp_frame_size; 3668 spin_unlock_bh(&rb_queue->lock); 3669 3670 swap(rb->pg_vec_order, order); 3671 swap(rb->pg_vec_len, req->tp_block_nr); 3672 3673 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 3674 po->prot_hook.func = (po->rx_ring.pg_vec) ? 3675 tpacket_rcv : packet_rcv; 3676 skb_queue_purge(rb_queue); 3677 if (atomic_read(&po->mapped)) 3678 pr_err("packet_mmap: vma is busy: %d\n", 3679 atomic_read(&po->mapped)); 3680 } 3681 mutex_unlock(&po->pg_vec_lock); 3682 3683 spin_lock(&po->bind_lock); 3684 if (was_running) { 3685 po->num = num; 3686 register_prot_hook(sk); 3687 } 3688 spin_unlock(&po->bind_lock); 3689 if (closing && (po->tp_version > TPACKET_V2)) { 3690 /* Because we don't support block-based V3 on tx-ring */ 3691 if (!tx_ring) 3692 prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue); 3693 } 3694 release_sock(sk); 3695 3696 if (pg_vec) 3697 free_pg_vec(pg_vec, order, req->tp_block_nr); 3698 out: 3699 return err; 3700 } 3701 3702 static int packet_mmap(struct file *file, struct socket *sock, 3703 struct vm_area_struct *vma) 3704 { 3705 struct sock *sk = sock->sk; 3706 struct packet_sock *po = pkt_sk(sk); 3707 unsigned long size, expected_size; 3708 struct packet_ring_buffer *rb; 3709 unsigned long start; 3710 int err = -EINVAL; 3711 int i; 3712 3713 if (vma->vm_pgoff) 3714 return -EINVAL; 3715 3716 mutex_lock(&po->pg_vec_lock); 3717 3718 expected_size = 0; 3719 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 3720 if (rb->pg_vec) { 3721 expected_size += rb->pg_vec_len 3722 * rb->pg_vec_pages 3723 * PAGE_SIZE; 3724 } 3725 } 3726 3727 if (expected_size == 0) 3728 goto out; 3729 3730 size = vma->vm_end - vma->vm_start; 3731 if (size != expected_size) 3732 goto out; 3733 3734 start = vma->vm_start; 3735 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 3736 if (rb->pg_vec == NULL) 3737 continue; 3738 3739 for (i = 0; i < rb->pg_vec_len; i++) { 3740 struct page *page; 3741 void *kaddr = rb->pg_vec[i].buffer; 3742 int pg_num; 3743 3744 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 3745 page = pgv_to_page(kaddr); 3746 err = vm_insert_page(vma, start, page); 3747 if (unlikely(err)) 3748 goto out; 3749 start += PAGE_SIZE; 3750 kaddr += PAGE_SIZE; 3751 } 3752 } 3753 } 3754 3755 atomic_inc(&po->mapped); 3756 vma->vm_ops = &packet_mmap_ops; 3757 err = 0; 3758 3759 out: 3760 mutex_unlock(&po->pg_vec_lock); 3761 return err; 3762 } 3763 3764 static const struct proto_ops packet_ops_spkt = { 3765 .family = PF_PACKET, 3766 .owner = THIS_MODULE, 3767 .release = packet_release, 3768 .bind = packet_bind_spkt, 3769 .connect = sock_no_connect, 3770 .socketpair = sock_no_socketpair, 3771 .accept = sock_no_accept, 3772 .getname = packet_getname_spkt, 3773 .poll = datagram_poll, 3774 .ioctl = packet_ioctl, 3775 .listen = sock_no_listen, 3776 .shutdown = sock_no_shutdown, 3777 .setsockopt = sock_no_setsockopt, 3778 .getsockopt = sock_no_getsockopt, 3779 .sendmsg = packet_sendmsg_spkt, 3780 .recvmsg = packet_recvmsg, 3781 .mmap = sock_no_mmap, 3782 .sendpage = sock_no_sendpage, 3783 }; 3784 3785 static const struct proto_ops packet_ops = { 3786 .family = PF_PACKET, 3787 .owner = THIS_MODULE, 3788 .release = packet_release, 3789 .bind = packet_bind, 3790 .connect = sock_no_connect, 3791 .socketpair = sock_no_socketpair, 3792 .accept = sock_no_accept, 3793 .getname = packet_getname, 3794 .poll = packet_poll, 3795 .ioctl = packet_ioctl, 3796 .listen = sock_no_listen, 3797 .shutdown = sock_no_shutdown, 3798 .setsockopt = packet_setsockopt, 3799 .getsockopt = packet_getsockopt, 3800 .sendmsg = packet_sendmsg, 3801 .recvmsg = packet_recvmsg, 3802 .mmap = packet_mmap, 3803 .sendpage = sock_no_sendpage, 3804 }; 3805 3806 static const struct net_proto_family packet_family_ops = { 3807 .family = PF_PACKET, 3808 .create = packet_create, 3809 .owner = THIS_MODULE, 3810 }; 3811 3812 static struct notifier_block packet_netdev_notifier = { 3813 .notifier_call = packet_notifier, 3814 }; 3815 3816 #ifdef CONFIG_PROC_FS 3817 3818 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 3819 __acquires(RCU) 3820 { 3821 struct net *net = seq_file_net(seq); 3822 3823 rcu_read_lock(); 3824 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 3825 } 3826 3827 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3828 { 3829 struct net *net = seq_file_net(seq); 3830 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 3831 } 3832 3833 static void packet_seq_stop(struct seq_file *seq, void *v) 3834 __releases(RCU) 3835 { 3836 rcu_read_unlock(); 3837 } 3838 3839 static int packet_seq_show(struct seq_file *seq, void *v) 3840 { 3841 if (v == SEQ_START_TOKEN) 3842 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n"); 3843 else { 3844 struct sock *s = sk_entry(v); 3845 const struct packet_sock *po = pkt_sk(s); 3846 3847 seq_printf(seq, 3848 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 3849 s, 3850 atomic_read(&s->sk_refcnt), 3851 s->sk_type, 3852 ntohs(po->num), 3853 po->ifindex, 3854 po->running, 3855 atomic_read(&s->sk_rmem_alloc), 3856 sock_i_uid(s), 3857 sock_i_ino(s)); 3858 } 3859 3860 return 0; 3861 } 3862 3863 static const struct seq_operations packet_seq_ops = { 3864 .start = packet_seq_start, 3865 .next = packet_seq_next, 3866 .stop = packet_seq_stop, 3867 .show = packet_seq_show, 3868 }; 3869 3870 static int packet_seq_open(struct inode *inode, struct file *file) 3871 { 3872 return seq_open_net(inode, file, &packet_seq_ops, 3873 sizeof(struct seq_net_private)); 3874 } 3875 3876 static const struct file_operations packet_seq_fops = { 3877 .owner = THIS_MODULE, 3878 .open = packet_seq_open, 3879 .read = seq_read, 3880 .llseek = seq_lseek, 3881 .release = seq_release_net, 3882 }; 3883 3884 #endif 3885 3886 static int __net_init packet_net_init(struct net *net) 3887 { 3888 spin_lock_init(&net->packet.sklist_lock); 3889 INIT_HLIST_HEAD(&net->packet.sklist); 3890 3891 if (!proc_net_fops_create(net, "packet", 0, &packet_seq_fops)) 3892 return -ENOMEM; 3893 3894 return 0; 3895 } 3896 3897 static void __net_exit packet_net_exit(struct net *net) 3898 { 3899 proc_net_remove(net, "packet"); 3900 } 3901 3902 static struct pernet_operations packet_net_ops = { 3903 .init = packet_net_init, 3904 .exit = packet_net_exit, 3905 }; 3906 3907 3908 static void __exit packet_exit(void) 3909 { 3910 unregister_netdevice_notifier(&packet_netdev_notifier); 3911 unregister_pernet_subsys(&packet_net_ops); 3912 sock_unregister(PF_PACKET); 3913 proto_unregister(&packet_proto); 3914 } 3915 3916 static int __init packet_init(void) 3917 { 3918 int rc = proto_register(&packet_proto, 0); 3919 3920 if (rc != 0) 3921 goto out; 3922 3923 sock_register(&packet_family_ops); 3924 register_pernet_subsys(&packet_net_ops); 3925 register_netdevice_notifier(&packet_netdev_notifier); 3926 out: 3927 return rc; 3928 } 3929 3930 module_init(packet_init); 3931 module_exit(packet_exit); 3932 MODULE_LICENSE("GPL"); 3933 MODULE_ALIAS_NETPROTO(PF_PACKET); 3934