1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * PACKET - implements raw packet sockets. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Alan Cox, <gw4pts@gw4pts.ampr.org> 11 * 12 * Fixes: 13 * Alan Cox : verify_area() now used correctly 14 * Alan Cox : new skbuff lists, look ma no backlogs! 15 * Alan Cox : tidied skbuff lists. 16 * Alan Cox : Now uses generic datagram routines I 17 * added. Also fixed the peek/read crash 18 * from all old Linux datagram code. 19 * Alan Cox : Uses the improved datagram code. 20 * Alan Cox : Added NULL's for socket options. 21 * Alan Cox : Re-commented the code. 22 * Alan Cox : Use new kernel side addressing 23 * Rob Janssen : Correct MTU usage. 24 * Dave Platt : Counter leaks caused by incorrect 25 * interrupt locking and some slightly 26 * dubious gcc output. Can you read 27 * compiler: it said _VOLATILE_ 28 * Richard Kooijman : Timestamp fixes. 29 * Alan Cox : New buffers. Use sk->mac.raw. 30 * Alan Cox : sendmsg/recvmsg support. 31 * Alan Cox : Protocol setting support 32 * Alexey Kuznetsov : Untied from IPv4 stack. 33 * Cyrus Durgin : Fixed kerneld for kmod. 34 * Michal Ostrowski : Module initialization cleanup. 35 * Ulises Alonso : Frame number limit removal and 36 * packet_set_ring memory leak. 37 * Eric Biederman : Allow for > 8 byte hardware addresses. 38 * The convention is that longer addresses 39 * will simply extend the hardware address 40 * byte arrays at the end of sockaddr_ll 41 * and packet_mreq. 42 * Johann Baudy : Added TX RING. 43 * Chetan Loke : Implemented TPACKET_V3 block abstraction 44 * layer. 45 * Copyright (C) 2011, <lokec@ccs.neu.edu> 46 * 47 * 48 * This program is free software; you can redistribute it and/or 49 * modify it under the terms of the GNU General Public License 50 * as published by the Free Software Foundation; either version 51 * 2 of the License, or (at your option) any later version. 52 * 53 */ 54 55 #include <linux/types.h> 56 #include <linux/mm.h> 57 #include <linux/capability.h> 58 #include <linux/fcntl.h> 59 #include <linux/socket.h> 60 #include <linux/in.h> 61 #include <linux/inet.h> 62 #include <linux/netdevice.h> 63 #include <linux/if_packet.h> 64 #include <linux/wireless.h> 65 #include <linux/kernel.h> 66 #include <linux/kmod.h> 67 #include <linux/slab.h> 68 #include <linux/vmalloc.h> 69 #include <net/net_namespace.h> 70 #include <net/ip.h> 71 #include <net/protocol.h> 72 #include <linux/skbuff.h> 73 #include <net/sock.h> 74 #include <linux/errno.h> 75 #include <linux/timer.h> 76 #include <asm/uaccess.h> 77 #include <asm/ioctls.h> 78 #include <asm/page.h> 79 #include <asm/cacheflush.h> 80 #include <asm/io.h> 81 #include <linux/proc_fs.h> 82 #include <linux/seq_file.h> 83 #include <linux/poll.h> 84 #include <linux/module.h> 85 #include <linux/init.h> 86 #include <linux/mutex.h> 87 #include <linux/if_vlan.h> 88 #include <linux/virtio_net.h> 89 #include <linux/errqueue.h> 90 #include <linux/net_tstamp.h> 91 #include <linux/percpu.h> 92 #ifdef CONFIG_INET 93 #include <net/inet_common.h> 94 #endif 95 96 #include "internal.h" 97 98 /* 99 Assumptions: 100 - if device has no dev->hard_header routine, it adds and removes ll header 101 inside itself. In this case ll header is invisible outside of device, 102 but higher levels still should reserve dev->hard_header_len. 103 Some devices are enough clever to reallocate skb, when header 104 will not fit to reserved space (tunnel), another ones are silly 105 (PPP). 106 - packet socket receives packets with pulled ll header, 107 so that SOCK_RAW should push it back. 108 109 On receive: 110 ----------- 111 112 Incoming, dev->hard_header!=NULL 113 mac_header -> ll header 114 data -> data 115 116 Outgoing, dev->hard_header!=NULL 117 mac_header -> ll header 118 data -> ll header 119 120 Incoming, dev->hard_header==NULL 121 mac_header -> UNKNOWN position. It is very likely, that it points to ll 122 header. PPP makes it, that is wrong, because introduce 123 assymetry between rx and tx paths. 124 data -> data 125 126 Outgoing, dev->hard_header==NULL 127 mac_header -> data. ll header is still not built! 128 data -> data 129 130 Resume 131 If dev->hard_header==NULL we are unlikely to restore sensible ll header. 132 133 134 On transmit: 135 ------------ 136 137 dev->hard_header != NULL 138 mac_header -> ll header 139 data -> ll header 140 141 dev->hard_header == NULL (ll header is added by device, we cannot control it) 142 mac_header -> data 143 data -> data 144 145 We should set nh.raw on output to correct posistion, 146 packet classifier depends on it. 147 */ 148 149 /* Private packet socket structures. */ 150 151 /* identical to struct packet_mreq except it has 152 * a longer address field. 153 */ 154 struct packet_mreq_max { 155 int mr_ifindex; 156 unsigned short mr_type; 157 unsigned short mr_alen; 158 unsigned char mr_address[MAX_ADDR_LEN]; 159 }; 160 161 union tpacket_uhdr { 162 struct tpacket_hdr *h1; 163 struct tpacket2_hdr *h2; 164 struct tpacket3_hdr *h3; 165 void *raw; 166 }; 167 168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 169 int closing, int tx_ring); 170 171 #define V3_ALIGNMENT (8) 172 173 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 174 175 #define BLK_PLUS_PRIV(sz_of_priv) \ 176 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 177 178 #define PGV_FROM_VMALLOC 1 179 180 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 181 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 182 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 183 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 184 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 185 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 186 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x))) 187 188 struct packet_sock; 189 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg); 190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 191 struct packet_type *pt, struct net_device *orig_dev); 192 193 static void *packet_previous_frame(struct packet_sock *po, 194 struct packet_ring_buffer *rb, 195 int status); 196 static void packet_increment_head(struct packet_ring_buffer *buff); 197 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *, 198 struct tpacket_block_desc *); 199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 200 struct packet_sock *); 201 static void prb_retire_current_block(struct tpacket_kbdq_core *, 202 struct packet_sock *, unsigned int status); 203 static int prb_queue_frozen(struct tpacket_kbdq_core *); 204 static void prb_open_block(struct tpacket_kbdq_core *, 205 struct tpacket_block_desc *); 206 static void prb_retire_rx_blk_timer_expired(unsigned long); 207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 208 static void prb_init_blk_timer(struct packet_sock *, 209 struct tpacket_kbdq_core *, 210 void (*func) (unsigned long)); 211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 212 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 213 struct tpacket3_hdr *); 214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 215 struct tpacket3_hdr *); 216 static void packet_flush_mclist(struct sock *sk); 217 218 struct packet_skb_cb { 219 union { 220 struct sockaddr_pkt pkt; 221 union { 222 /* Trick: alias skb original length with 223 * ll.sll_family and ll.protocol in order 224 * to save room. 225 */ 226 unsigned int origlen; 227 struct sockaddr_ll ll; 228 }; 229 } sa; 230 }; 231 232 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 233 234 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 235 #define GET_PBLOCK_DESC(x, bid) \ 236 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 237 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 238 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 239 #define GET_NEXT_PRB_BLK_NUM(x) \ 240 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 241 ((x)->kactive_blk_num+1) : 0) 242 243 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 244 static void __fanout_link(struct sock *sk, struct packet_sock *po); 245 246 static int packet_direct_xmit(struct sk_buff *skb) 247 { 248 struct net_device *dev = skb->dev; 249 netdev_features_t features; 250 struct netdev_queue *txq; 251 int ret = NETDEV_TX_BUSY; 252 253 if (unlikely(!netif_running(dev) || 254 !netif_carrier_ok(dev))) 255 goto drop; 256 257 features = netif_skb_features(skb); 258 if (skb_needs_linearize(skb, features) && 259 __skb_linearize(skb)) 260 goto drop; 261 262 txq = skb_get_tx_queue(dev, skb); 263 264 local_bh_disable(); 265 266 HARD_TX_LOCK(dev, txq, smp_processor_id()); 267 if (!netif_xmit_frozen_or_drv_stopped(txq)) 268 ret = netdev_start_xmit(skb, dev, txq, false); 269 HARD_TX_UNLOCK(dev, txq); 270 271 local_bh_enable(); 272 273 if (!dev_xmit_complete(ret)) 274 kfree_skb(skb); 275 276 return ret; 277 drop: 278 atomic_long_inc(&dev->tx_dropped); 279 kfree_skb(skb); 280 return NET_XMIT_DROP; 281 } 282 283 static struct net_device *packet_cached_dev_get(struct packet_sock *po) 284 { 285 struct net_device *dev; 286 287 rcu_read_lock(); 288 dev = rcu_dereference(po->cached_dev); 289 if (likely(dev)) 290 dev_hold(dev); 291 rcu_read_unlock(); 292 293 return dev; 294 } 295 296 static void packet_cached_dev_assign(struct packet_sock *po, 297 struct net_device *dev) 298 { 299 rcu_assign_pointer(po->cached_dev, dev); 300 } 301 302 static void packet_cached_dev_reset(struct packet_sock *po) 303 { 304 RCU_INIT_POINTER(po->cached_dev, NULL); 305 } 306 307 static bool packet_use_direct_xmit(const struct packet_sock *po) 308 { 309 return po->xmit == packet_direct_xmit; 310 } 311 312 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb) 313 { 314 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues; 315 } 316 317 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb) 318 { 319 const struct net_device_ops *ops = dev->netdev_ops; 320 u16 queue_index; 321 322 if (ops->ndo_select_queue) { 323 queue_index = ops->ndo_select_queue(dev, skb, NULL, 324 __packet_pick_tx_queue); 325 queue_index = netdev_cap_txqueue(dev, queue_index); 326 } else { 327 queue_index = __packet_pick_tx_queue(dev, skb); 328 } 329 330 skb_set_queue_mapping(skb, queue_index); 331 } 332 333 /* register_prot_hook must be invoked with the po->bind_lock held, 334 * or from a context in which asynchronous accesses to the packet 335 * socket is not possible (packet_create()). 336 */ 337 static void register_prot_hook(struct sock *sk) 338 { 339 struct packet_sock *po = pkt_sk(sk); 340 341 if (!po->running) { 342 if (po->fanout) 343 __fanout_link(sk, po); 344 else 345 dev_add_pack(&po->prot_hook); 346 347 sock_hold(sk); 348 po->running = 1; 349 } 350 } 351 352 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock 353 * held. If the sync parameter is true, we will temporarily drop 354 * the po->bind_lock and do a synchronize_net to make sure no 355 * asynchronous packet processing paths still refer to the elements 356 * of po->prot_hook. If the sync parameter is false, it is the 357 * callers responsibility to take care of this. 358 */ 359 static void __unregister_prot_hook(struct sock *sk, bool sync) 360 { 361 struct packet_sock *po = pkt_sk(sk); 362 363 po->running = 0; 364 365 if (po->fanout) 366 __fanout_unlink(sk, po); 367 else 368 __dev_remove_pack(&po->prot_hook); 369 370 __sock_put(sk); 371 372 if (sync) { 373 spin_unlock(&po->bind_lock); 374 synchronize_net(); 375 spin_lock(&po->bind_lock); 376 } 377 } 378 379 static void unregister_prot_hook(struct sock *sk, bool sync) 380 { 381 struct packet_sock *po = pkt_sk(sk); 382 383 if (po->running) 384 __unregister_prot_hook(sk, sync); 385 } 386 387 static inline struct page * __pure pgv_to_page(void *addr) 388 { 389 if (is_vmalloc_addr(addr)) 390 return vmalloc_to_page(addr); 391 return virt_to_page(addr); 392 } 393 394 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 395 { 396 union tpacket_uhdr h; 397 398 h.raw = frame; 399 switch (po->tp_version) { 400 case TPACKET_V1: 401 h.h1->tp_status = status; 402 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 403 break; 404 case TPACKET_V2: 405 h.h2->tp_status = status; 406 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 407 break; 408 case TPACKET_V3: 409 default: 410 WARN(1, "TPACKET version not supported.\n"); 411 BUG(); 412 } 413 414 smp_wmb(); 415 } 416 417 static int __packet_get_status(struct packet_sock *po, void *frame) 418 { 419 union tpacket_uhdr h; 420 421 smp_rmb(); 422 423 h.raw = frame; 424 switch (po->tp_version) { 425 case TPACKET_V1: 426 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 427 return h.h1->tp_status; 428 case TPACKET_V2: 429 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 430 return h.h2->tp_status; 431 case TPACKET_V3: 432 default: 433 WARN(1, "TPACKET version not supported.\n"); 434 BUG(); 435 return 0; 436 } 437 } 438 439 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts, 440 unsigned int flags) 441 { 442 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 443 444 if (shhwtstamps && 445 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && 446 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts)) 447 return TP_STATUS_TS_RAW_HARDWARE; 448 449 if (ktime_to_timespec_cond(skb->tstamp, ts)) 450 return TP_STATUS_TS_SOFTWARE; 451 452 return 0; 453 } 454 455 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, 456 struct sk_buff *skb) 457 { 458 union tpacket_uhdr h; 459 struct timespec ts; 460 __u32 ts_status; 461 462 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 463 return 0; 464 465 h.raw = frame; 466 switch (po->tp_version) { 467 case TPACKET_V1: 468 h.h1->tp_sec = ts.tv_sec; 469 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 470 break; 471 case TPACKET_V2: 472 h.h2->tp_sec = ts.tv_sec; 473 h.h2->tp_nsec = ts.tv_nsec; 474 break; 475 case TPACKET_V3: 476 default: 477 WARN(1, "TPACKET version not supported.\n"); 478 BUG(); 479 } 480 481 /* one flush is safe, as both fields always lie on the same cacheline */ 482 flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); 483 smp_wmb(); 484 485 return ts_status; 486 } 487 488 static void *packet_lookup_frame(struct packet_sock *po, 489 struct packet_ring_buffer *rb, 490 unsigned int position, 491 int status) 492 { 493 unsigned int pg_vec_pos, frame_offset; 494 union tpacket_uhdr h; 495 496 pg_vec_pos = position / rb->frames_per_block; 497 frame_offset = position % rb->frames_per_block; 498 499 h.raw = rb->pg_vec[pg_vec_pos].buffer + 500 (frame_offset * rb->frame_size); 501 502 if (status != __packet_get_status(po, h.raw)) 503 return NULL; 504 505 return h.raw; 506 } 507 508 static void *packet_current_frame(struct packet_sock *po, 509 struct packet_ring_buffer *rb, 510 int status) 511 { 512 return packet_lookup_frame(po, rb, rb->head, status); 513 } 514 515 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 516 { 517 del_timer_sync(&pkc->retire_blk_timer); 518 } 519 520 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 521 struct sk_buff_head *rb_queue) 522 { 523 struct tpacket_kbdq_core *pkc; 524 525 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 526 527 spin_lock_bh(&rb_queue->lock); 528 pkc->delete_blk_timer = 1; 529 spin_unlock_bh(&rb_queue->lock); 530 531 prb_del_retire_blk_timer(pkc); 532 } 533 534 static void prb_init_blk_timer(struct packet_sock *po, 535 struct tpacket_kbdq_core *pkc, 536 void (*func) (unsigned long)) 537 { 538 init_timer(&pkc->retire_blk_timer); 539 pkc->retire_blk_timer.data = (long)po; 540 pkc->retire_blk_timer.function = func; 541 pkc->retire_blk_timer.expires = jiffies; 542 } 543 544 static void prb_setup_retire_blk_timer(struct packet_sock *po) 545 { 546 struct tpacket_kbdq_core *pkc; 547 548 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 549 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired); 550 } 551 552 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 553 int blk_size_in_bytes) 554 { 555 struct net_device *dev; 556 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0; 557 struct ethtool_cmd ecmd; 558 int err; 559 u32 speed; 560 561 rtnl_lock(); 562 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 563 if (unlikely(!dev)) { 564 rtnl_unlock(); 565 return DEFAULT_PRB_RETIRE_TOV; 566 } 567 err = __ethtool_get_settings(dev, &ecmd); 568 speed = ethtool_cmd_speed(&ecmd); 569 rtnl_unlock(); 570 if (!err) { 571 /* 572 * If the link speed is so slow you don't really 573 * need to worry about perf anyways 574 */ 575 if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) { 576 return DEFAULT_PRB_RETIRE_TOV; 577 } else { 578 msec = 1; 579 div = speed / 1000; 580 } 581 } 582 583 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 584 585 if (div) 586 mbits /= div; 587 588 tmo = mbits * msec; 589 590 if (div) 591 return tmo+1; 592 return tmo; 593 } 594 595 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 596 union tpacket_req_u *req_u) 597 { 598 p1->feature_req_word = req_u->req3.tp_feature_req_word; 599 } 600 601 static void init_prb_bdqc(struct packet_sock *po, 602 struct packet_ring_buffer *rb, 603 struct pgv *pg_vec, 604 union tpacket_req_u *req_u) 605 { 606 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); 607 struct tpacket_block_desc *pbd; 608 609 memset(p1, 0x0, sizeof(*p1)); 610 611 p1->knxt_seq_num = 1; 612 p1->pkbdq = pg_vec; 613 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 614 p1->pkblk_start = pg_vec[0].buffer; 615 p1->kblk_size = req_u->req3.tp_block_size; 616 p1->knum_blocks = req_u->req3.tp_block_nr; 617 p1->hdrlen = po->tp_hdrlen; 618 p1->version = po->tp_version; 619 p1->last_kactive_blk_num = 0; 620 po->stats.stats3.tp_freeze_q_cnt = 0; 621 if (req_u->req3.tp_retire_blk_tov) 622 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 623 else 624 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 625 req_u->req3.tp_block_size); 626 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 627 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 628 629 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); 630 prb_init_ft_ops(p1, req_u); 631 prb_setup_retire_blk_timer(po); 632 prb_open_block(p1, pbd); 633 } 634 635 /* Do NOT update the last_blk_num first. 636 * Assumes sk_buff_head lock is held. 637 */ 638 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 639 { 640 mod_timer(&pkc->retire_blk_timer, 641 jiffies + pkc->tov_in_jiffies); 642 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 643 } 644 645 /* 646 * Timer logic: 647 * 1) We refresh the timer only when we open a block. 648 * By doing this we don't waste cycles refreshing the timer 649 * on packet-by-packet basis. 650 * 651 * With a 1MB block-size, on a 1Gbps line, it will take 652 * i) ~8 ms to fill a block + ii) memcpy etc. 653 * In this cut we are not accounting for the memcpy time. 654 * 655 * So, if the user sets the 'tmo' to 10ms then the timer 656 * will never fire while the block is still getting filled 657 * (which is what we want). However, the user could choose 658 * to close a block early and that's fine. 659 * 660 * But when the timer does fire, we check whether or not to refresh it. 661 * Since the tmo granularity is in msecs, it is not too expensive 662 * to refresh the timer, lets say every '8' msecs. 663 * Either the user can set the 'tmo' or we can derive it based on 664 * a) line-speed and b) block-size. 665 * prb_calc_retire_blk_tmo() calculates the tmo. 666 * 667 */ 668 static void prb_retire_rx_blk_timer_expired(unsigned long data) 669 { 670 struct packet_sock *po = (struct packet_sock *)data; 671 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 672 unsigned int frozen; 673 struct tpacket_block_desc *pbd; 674 675 spin_lock(&po->sk.sk_receive_queue.lock); 676 677 frozen = prb_queue_frozen(pkc); 678 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 679 680 if (unlikely(pkc->delete_blk_timer)) 681 goto out; 682 683 /* We only need to plug the race when the block is partially filled. 684 * tpacket_rcv: 685 * lock(); increment BLOCK_NUM_PKTS; unlock() 686 * copy_bits() is in progress ... 687 * timer fires on other cpu: 688 * we can't retire the current block because copy_bits 689 * is in progress. 690 * 691 */ 692 if (BLOCK_NUM_PKTS(pbd)) { 693 while (atomic_read(&pkc->blk_fill_in_prog)) { 694 /* Waiting for skb_copy_bits to finish... */ 695 cpu_relax(); 696 } 697 } 698 699 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 700 if (!frozen) { 701 if (!BLOCK_NUM_PKTS(pbd)) { 702 /* An empty block. Just refresh the timer. */ 703 goto refresh_timer; 704 } 705 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 706 if (!prb_dispatch_next_block(pkc, po)) 707 goto refresh_timer; 708 else 709 goto out; 710 } else { 711 /* Case 1. Queue was frozen because user-space was 712 * lagging behind. 713 */ 714 if (prb_curr_blk_in_use(pkc, pbd)) { 715 /* 716 * Ok, user-space is still behind. 717 * So just refresh the timer. 718 */ 719 goto refresh_timer; 720 } else { 721 /* Case 2. queue was frozen,user-space caught up, 722 * now the link went idle && the timer fired. 723 * We don't have a block to close.So we open this 724 * block and restart the timer. 725 * opening a block thaws the queue,restarts timer 726 * Thawing/timer-refresh is a side effect. 727 */ 728 prb_open_block(pkc, pbd); 729 goto out; 730 } 731 } 732 } 733 734 refresh_timer: 735 _prb_refresh_rx_retire_blk_timer(pkc); 736 737 out: 738 spin_unlock(&po->sk.sk_receive_queue.lock); 739 } 740 741 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 742 struct tpacket_block_desc *pbd1, __u32 status) 743 { 744 /* Flush everything minus the block header */ 745 746 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 747 u8 *start, *end; 748 749 start = (u8 *)pbd1; 750 751 /* Skip the block header(we know header WILL fit in 4K) */ 752 start += PAGE_SIZE; 753 754 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 755 for (; start < end; start += PAGE_SIZE) 756 flush_dcache_page(pgv_to_page(start)); 757 758 smp_wmb(); 759 #endif 760 761 /* Now update the block status. */ 762 763 BLOCK_STATUS(pbd1) = status; 764 765 /* Flush the block header */ 766 767 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 768 start = (u8 *)pbd1; 769 flush_dcache_page(pgv_to_page(start)); 770 771 smp_wmb(); 772 #endif 773 } 774 775 /* 776 * Side effect: 777 * 778 * 1) flush the block 779 * 2) Increment active_blk_num 780 * 781 * Note:We DONT refresh the timer on purpose. 782 * Because almost always the next block will be opened. 783 */ 784 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 785 struct tpacket_block_desc *pbd1, 786 struct packet_sock *po, unsigned int stat) 787 { 788 __u32 status = TP_STATUS_USER | stat; 789 790 struct tpacket3_hdr *last_pkt; 791 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 792 struct sock *sk = &po->sk; 793 794 if (po->stats.stats3.tp_drops) 795 status |= TP_STATUS_LOSING; 796 797 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 798 last_pkt->tp_next_offset = 0; 799 800 /* Get the ts of the last pkt */ 801 if (BLOCK_NUM_PKTS(pbd1)) { 802 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 803 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 804 } else { 805 /* Ok, we tmo'd - so get the current time. 806 * 807 * It shouldn't really happen as we don't close empty 808 * blocks. See prb_retire_rx_blk_timer_expired(). 809 */ 810 struct timespec ts; 811 getnstimeofday(&ts); 812 h1->ts_last_pkt.ts_sec = ts.tv_sec; 813 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 814 } 815 816 smp_wmb(); 817 818 /* Flush the block */ 819 prb_flush_block(pkc1, pbd1, status); 820 821 sk->sk_data_ready(sk); 822 823 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 824 } 825 826 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 827 { 828 pkc->reset_pending_on_curr_blk = 0; 829 } 830 831 /* 832 * Side effect of opening a block: 833 * 834 * 1) prb_queue is thawed. 835 * 2) retire_blk_timer is refreshed. 836 * 837 */ 838 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 839 struct tpacket_block_desc *pbd1) 840 { 841 struct timespec ts; 842 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 843 844 smp_rmb(); 845 846 /* We could have just memset this but we will lose the 847 * flexibility of making the priv area sticky 848 */ 849 850 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 851 BLOCK_NUM_PKTS(pbd1) = 0; 852 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 853 854 getnstimeofday(&ts); 855 856 h1->ts_first_pkt.ts_sec = ts.tv_sec; 857 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 858 859 pkc1->pkblk_start = (char *)pbd1; 860 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 861 862 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 863 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 864 865 pbd1->version = pkc1->version; 866 pkc1->prev = pkc1->nxt_offset; 867 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 868 869 prb_thaw_queue(pkc1); 870 _prb_refresh_rx_retire_blk_timer(pkc1); 871 872 smp_wmb(); 873 } 874 875 /* 876 * Queue freeze logic: 877 * 1) Assume tp_block_nr = 8 blocks. 878 * 2) At time 't0', user opens Rx ring. 879 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 880 * 4) user-space is either sleeping or processing block '0'. 881 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 882 * it will close block-7,loop around and try to fill block '0'. 883 * call-flow: 884 * __packet_lookup_frame_in_block 885 * prb_retire_current_block() 886 * prb_dispatch_next_block() 887 * |->(BLOCK_STATUS == USER) evaluates to true 888 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 889 * 6) Now there are two cases: 890 * 6.1) Link goes idle right after the queue is frozen. 891 * But remember, the last open_block() refreshed the timer. 892 * When this timer expires,it will refresh itself so that we can 893 * re-open block-0 in near future. 894 * 6.2) Link is busy and keeps on receiving packets. This is a simple 895 * case and __packet_lookup_frame_in_block will check if block-0 896 * is free and can now be re-used. 897 */ 898 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 899 struct packet_sock *po) 900 { 901 pkc->reset_pending_on_curr_blk = 1; 902 po->stats.stats3.tp_freeze_q_cnt++; 903 } 904 905 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 906 907 /* 908 * If the next block is free then we will dispatch it 909 * and return a good offset. 910 * Else, we will freeze the queue. 911 * So, caller must check the return value. 912 */ 913 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 914 struct packet_sock *po) 915 { 916 struct tpacket_block_desc *pbd; 917 918 smp_rmb(); 919 920 /* 1. Get current block num */ 921 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 922 923 /* 2. If this block is currently in_use then freeze the queue */ 924 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 925 prb_freeze_queue(pkc, po); 926 return NULL; 927 } 928 929 /* 930 * 3. 931 * open this block and return the offset where the first packet 932 * needs to get stored. 933 */ 934 prb_open_block(pkc, pbd); 935 return (void *)pkc->nxt_offset; 936 } 937 938 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 939 struct packet_sock *po, unsigned int status) 940 { 941 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 942 943 /* retire/close the current block */ 944 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 945 /* 946 * Plug the case where copy_bits() is in progress on 947 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 948 * have space to copy the pkt in the current block and 949 * called prb_retire_current_block() 950 * 951 * We don't need to worry about the TMO case because 952 * the timer-handler already handled this case. 953 */ 954 if (!(status & TP_STATUS_BLK_TMO)) { 955 while (atomic_read(&pkc->blk_fill_in_prog)) { 956 /* Waiting for skb_copy_bits to finish... */ 957 cpu_relax(); 958 } 959 } 960 prb_close_block(pkc, pbd, po, status); 961 return; 962 } 963 } 964 965 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc, 966 struct tpacket_block_desc *pbd) 967 { 968 return TP_STATUS_USER & BLOCK_STATUS(pbd); 969 } 970 971 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 972 { 973 return pkc->reset_pending_on_curr_blk; 974 } 975 976 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 977 { 978 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 979 atomic_dec(&pkc->blk_fill_in_prog); 980 } 981 982 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 983 struct tpacket3_hdr *ppd) 984 { 985 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); 986 } 987 988 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 989 struct tpacket3_hdr *ppd) 990 { 991 ppd->hv1.tp_rxhash = 0; 992 } 993 994 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 995 struct tpacket3_hdr *ppd) 996 { 997 if (skb_vlan_tag_present(pkc->skb)) { 998 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); 999 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); 1000 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 1001 } else { 1002 ppd->hv1.tp_vlan_tci = 0; 1003 ppd->hv1.tp_vlan_tpid = 0; 1004 ppd->tp_status = TP_STATUS_AVAILABLE; 1005 } 1006 } 1007 1008 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 1009 struct tpacket3_hdr *ppd) 1010 { 1011 ppd->hv1.tp_padding = 0; 1012 prb_fill_vlan_info(pkc, ppd); 1013 1014 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 1015 prb_fill_rxhash(pkc, ppd); 1016 else 1017 prb_clear_rxhash(pkc, ppd); 1018 } 1019 1020 static void prb_fill_curr_block(char *curr, 1021 struct tpacket_kbdq_core *pkc, 1022 struct tpacket_block_desc *pbd, 1023 unsigned int len) 1024 { 1025 struct tpacket3_hdr *ppd; 1026 1027 ppd = (struct tpacket3_hdr *)curr; 1028 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 1029 pkc->prev = curr; 1030 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 1031 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1032 BLOCK_NUM_PKTS(pbd) += 1; 1033 atomic_inc(&pkc->blk_fill_in_prog); 1034 prb_run_all_ft_ops(pkc, ppd); 1035 } 1036 1037 /* Assumes caller has the sk->rx_queue.lock */ 1038 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1039 struct sk_buff *skb, 1040 int status, 1041 unsigned int len 1042 ) 1043 { 1044 struct tpacket_kbdq_core *pkc; 1045 struct tpacket_block_desc *pbd; 1046 char *curr, *end; 1047 1048 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 1049 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1050 1051 /* Queue is frozen when user space is lagging behind */ 1052 if (prb_queue_frozen(pkc)) { 1053 /* 1054 * Check if that last block which caused the queue to freeze, 1055 * is still in_use by user-space. 1056 */ 1057 if (prb_curr_blk_in_use(pkc, pbd)) { 1058 /* Can't record this packet */ 1059 return NULL; 1060 } else { 1061 /* 1062 * Ok, the block was released by user-space. 1063 * Now let's open that block. 1064 * opening a block also thaws the queue. 1065 * Thawing is a side effect. 1066 */ 1067 prb_open_block(pkc, pbd); 1068 } 1069 } 1070 1071 smp_mb(); 1072 curr = pkc->nxt_offset; 1073 pkc->skb = skb; 1074 end = (char *)pbd + pkc->kblk_size; 1075 1076 /* first try the current block */ 1077 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1078 prb_fill_curr_block(curr, pkc, pbd, len); 1079 return (void *)curr; 1080 } 1081 1082 /* Ok, close the current block */ 1083 prb_retire_current_block(pkc, po, 0); 1084 1085 /* Now, try to dispatch the next block */ 1086 curr = (char *)prb_dispatch_next_block(pkc, po); 1087 if (curr) { 1088 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1089 prb_fill_curr_block(curr, pkc, pbd, len); 1090 return (void *)curr; 1091 } 1092 1093 /* 1094 * No free blocks are available.user_space hasn't caught up yet. 1095 * Queue was just frozen and now this packet will get dropped. 1096 */ 1097 return NULL; 1098 } 1099 1100 static void *packet_current_rx_frame(struct packet_sock *po, 1101 struct sk_buff *skb, 1102 int status, unsigned int len) 1103 { 1104 char *curr = NULL; 1105 switch (po->tp_version) { 1106 case TPACKET_V1: 1107 case TPACKET_V2: 1108 curr = packet_lookup_frame(po, &po->rx_ring, 1109 po->rx_ring.head, status); 1110 return curr; 1111 case TPACKET_V3: 1112 return __packet_lookup_frame_in_block(po, skb, status, len); 1113 default: 1114 WARN(1, "TPACKET version not supported\n"); 1115 BUG(); 1116 return NULL; 1117 } 1118 } 1119 1120 static void *prb_lookup_block(struct packet_sock *po, 1121 struct packet_ring_buffer *rb, 1122 unsigned int idx, 1123 int status) 1124 { 1125 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1126 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); 1127 1128 if (status != BLOCK_STATUS(pbd)) 1129 return NULL; 1130 return pbd; 1131 } 1132 1133 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1134 { 1135 unsigned int prev; 1136 if (rb->prb_bdqc.kactive_blk_num) 1137 prev = rb->prb_bdqc.kactive_blk_num-1; 1138 else 1139 prev = rb->prb_bdqc.knum_blocks-1; 1140 return prev; 1141 } 1142 1143 /* Assumes caller has held the rx_queue.lock */ 1144 static void *__prb_previous_block(struct packet_sock *po, 1145 struct packet_ring_buffer *rb, 1146 int status) 1147 { 1148 unsigned int previous = prb_previous_blk_num(rb); 1149 return prb_lookup_block(po, rb, previous, status); 1150 } 1151 1152 static void *packet_previous_rx_frame(struct packet_sock *po, 1153 struct packet_ring_buffer *rb, 1154 int status) 1155 { 1156 if (po->tp_version <= TPACKET_V2) 1157 return packet_previous_frame(po, rb, status); 1158 1159 return __prb_previous_block(po, rb, status); 1160 } 1161 1162 static void packet_increment_rx_head(struct packet_sock *po, 1163 struct packet_ring_buffer *rb) 1164 { 1165 switch (po->tp_version) { 1166 case TPACKET_V1: 1167 case TPACKET_V2: 1168 return packet_increment_head(rb); 1169 case TPACKET_V3: 1170 default: 1171 WARN(1, "TPACKET version not supported.\n"); 1172 BUG(); 1173 return; 1174 } 1175 } 1176 1177 static void *packet_previous_frame(struct packet_sock *po, 1178 struct packet_ring_buffer *rb, 1179 int status) 1180 { 1181 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1182 return packet_lookup_frame(po, rb, previous, status); 1183 } 1184 1185 static void packet_increment_head(struct packet_ring_buffer *buff) 1186 { 1187 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1188 } 1189 1190 static void packet_inc_pending(struct packet_ring_buffer *rb) 1191 { 1192 this_cpu_inc(*rb->pending_refcnt); 1193 } 1194 1195 static void packet_dec_pending(struct packet_ring_buffer *rb) 1196 { 1197 this_cpu_dec(*rb->pending_refcnt); 1198 } 1199 1200 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) 1201 { 1202 unsigned int refcnt = 0; 1203 int cpu; 1204 1205 /* We don't use pending refcount in rx_ring. */ 1206 if (rb->pending_refcnt == NULL) 1207 return 0; 1208 1209 for_each_possible_cpu(cpu) 1210 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); 1211 1212 return refcnt; 1213 } 1214 1215 static int packet_alloc_pending(struct packet_sock *po) 1216 { 1217 po->rx_ring.pending_refcnt = NULL; 1218 1219 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); 1220 if (unlikely(po->tx_ring.pending_refcnt == NULL)) 1221 return -ENOBUFS; 1222 1223 return 0; 1224 } 1225 1226 static void packet_free_pending(struct packet_sock *po) 1227 { 1228 free_percpu(po->tx_ring.pending_refcnt); 1229 } 1230 1231 #define ROOM_POW_OFF 2 1232 #define ROOM_NONE 0x0 1233 #define ROOM_LOW 0x1 1234 #define ROOM_NORMAL 0x2 1235 1236 static bool __tpacket_has_room(struct packet_sock *po, int pow_off) 1237 { 1238 int idx, len; 1239 1240 len = po->rx_ring.frame_max + 1; 1241 idx = po->rx_ring.head; 1242 if (pow_off) 1243 idx += len >> pow_off; 1244 if (idx >= len) 1245 idx -= len; 1246 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1247 } 1248 1249 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off) 1250 { 1251 int idx, len; 1252 1253 len = po->rx_ring.prb_bdqc.knum_blocks; 1254 idx = po->rx_ring.prb_bdqc.kactive_blk_num; 1255 if (pow_off) 1256 idx += len >> pow_off; 1257 if (idx >= len) 1258 idx -= len; 1259 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1260 } 1261 1262 static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1263 { 1264 struct sock *sk = &po->sk; 1265 int ret = ROOM_NONE; 1266 1267 if (po->prot_hook.func != tpacket_rcv) { 1268 int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc) 1269 - (skb ? skb->truesize : 0); 1270 if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF)) 1271 return ROOM_NORMAL; 1272 else if (avail > 0) 1273 return ROOM_LOW; 1274 else 1275 return ROOM_NONE; 1276 } 1277 1278 if (po->tp_version == TPACKET_V3) { 1279 if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) 1280 ret = ROOM_NORMAL; 1281 else if (__tpacket_v3_has_room(po, 0)) 1282 ret = ROOM_LOW; 1283 } else { 1284 if (__tpacket_has_room(po, ROOM_POW_OFF)) 1285 ret = ROOM_NORMAL; 1286 else if (__tpacket_has_room(po, 0)) 1287 ret = ROOM_LOW; 1288 } 1289 1290 return ret; 1291 } 1292 1293 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1294 { 1295 int ret; 1296 bool has_room; 1297 1298 spin_lock_bh(&po->sk.sk_receive_queue.lock); 1299 ret = __packet_rcv_has_room(po, skb); 1300 has_room = ret == ROOM_NORMAL; 1301 if (po->pressure == has_room) 1302 po->pressure = !has_room; 1303 spin_unlock_bh(&po->sk.sk_receive_queue.lock); 1304 1305 return ret; 1306 } 1307 1308 static void packet_sock_destruct(struct sock *sk) 1309 { 1310 skb_queue_purge(&sk->sk_error_queue); 1311 1312 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1313 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 1314 1315 if (!sock_flag(sk, SOCK_DEAD)) { 1316 pr_err("Attempt to release alive packet socket: %p\n", sk); 1317 return; 1318 } 1319 1320 sk_refcnt_debug_dec(sk); 1321 } 1322 1323 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) 1324 { 1325 u32 rxhash; 1326 int i, count = 0; 1327 1328 rxhash = skb_get_hash(skb); 1329 for (i = 0; i < ROLLOVER_HLEN; i++) 1330 if (po->rollover->history[i] == rxhash) 1331 count++; 1332 1333 po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash; 1334 return count > (ROLLOVER_HLEN >> 1); 1335 } 1336 1337 static unsigned int fanout_demux_hash(struct packet_fanout *f, 1338 struct sk_buff *skb, 1339 unsigned int num) 1340 { 1341 return reciprocal_scale(skb_get_hash(skb), num); 1342 } 1343 1344 static unsigned int fanout_demux_lb(struct packet_fanout *f, 1345 struct sk_buff *skb, 1346 unsigned int num) 1347 { 1348 unsigned int val = atomic_inc_return(&f->rr_cur); 1349 1350 return val % num; 1351 } 1352 1353 static unsigned int fanout_demux_cpu(struct packet_fanout *f, 1354 struct sk_buff *skb, 1355 unsigned int num) 1356 { 1357 return smp_processor_id() % num; 1358 } 1359 1360 static unsigned int fanout_demux_rnd(struct packet_fanout *f, 1361 struct sk_buff *skb, 1362 unsigned int num) 1363 { 1364 return prandom_u32_max(num); 1365 } 1366 1367 static unsigned int fanout_demux_rollover(struct packet_fanout *f, 1368 struct sk_buff *skb, 1369 unsigned int idx, bool try_self, 1370 unsigned int num) 1371 { 1372 struct packet_sock *po, *po_next, *po_skip = NULL; 1373 unsigned int i, j, room = ROOM_NONE; 1374 1375 po = pkt_sk(f->arr[idx]); 1376 1377 if (try_self) { 1378 room = packet_rcv_has_room(po, skb); 1379 if (room == ROOM_NORMAL || 1380 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) 1381 return idx; 1382 po_skip = po; 1383 } 1384 1385 i = j = min_t(int, po->rollover->sock, num - 1); 1386 do { 1387 po_next = pkt_sk(f->arr[i]); 1388 if (po_next != po_skip && !po_next->pressure && 1389 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { 1390 if (i != j) 1391 po->rollover->sock = i; 1392 atomic_long_inc(&po->rollover->num); 1393 if (room == ROOM_LOW) 1394 atomic_long_inc(&po->rollover->num_huge); 1395 return i; 1396 } 1397 1398 if (++i == num) 1399 i = 0; 1400 } while (i != j); 1401 1402 atomic_long_inc(&po->rollover->num_failed); 1403 return idx; 1404 } 1405 1406 static unsigned int fanout_demux_qm(struct packet_fanout *f, 1407 struct sk_buff *skb, 1408 unsigned int num) 1409 { 1410 return skb_get_queue_mapping(skb) % num; 1411 } 1412 1413 static bool fanout_has_flag(struct packet_fanout *f, u16 flag) 1414 { 1415 return f->flags & (flag >> 8); 1416 } 1417 1418 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1419 struct packet_type *pt, struct net_device *orig_dev) 1420 { 1421 struct packet_fanout *f = pt->af_packet_priv; 1422 unsigned int num = READ_ONCE(f->num_members); 1423 struct packet_sock *po; 1424 unsigned int idx; 1425 1426 if (!net_eq(dev_net(dev), read_pnet(&f->net)) || 1427 !num) { 1428 kfree_skb(skb); 1429 return 0; 1430 } 1431 1432 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { 1433 skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET); 1434 if (!skb) 1435 return 0; 1436 } 1437 switch (f->type) { 1438 case PACKET_FANOUT_HASH: 1439 default: 1440 idx = fanout_demux_hash(f, skb, num); 1441 break; 1442 case PACKET_FANOUT_LB: 1443 idx = fanout_demux_lb(f, skb, num); 1444 break; 1445 case PACKET_FANOUT_CPU: 1446 idx = fanout_demux_cpu(f, skb, num); 1447 break; 1448 case PACKET_FANOUT_RND: 1449 idx = fanout_demux_rnd(f, skb, num); 1450 break; 1451 case PACKET_FANOUT_QM: 1452 idx = fanout_demux_qm(f, skb, num); 1453 break; 1454 case PACKET_FANOUT_ROLLOVER: 1455 idx = fanout_demux_rollover(f, skb, 0, false, num); 1456 break; 1457 } 1458 1459 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) 1460 idx = fanout_demux_rollover(f, skb, idx, true, num); 1461 1462 po = pkt_sk(f->arr[idx]); 1463 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1464 } 1465 1466 DEFINE_MUTEX(fanout_mutex); 1467 EXPORT_SYMBOL_GPL(fanout_mutex); 1468 static LIST_HEAD(fanout_list); 1469 1470 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1471 { 1472 struct packet_fanout *f = po->fanout; 1473 1474 spin_lock(&f->lock); 1475 f->arr[f->num_members] = sk; 1476 smp_wmb(); 1477 f->num_members++; 1478 spin_unlock(&f->lock); 1479 } 1480 1481 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1482 { 1483 struct packet_fanout *f = po->fanout; 1484 int i; 1485 1486 spin_lock(&f->lock); 1487 for (i = 0; i < f->num_members; i++) { 1488 if (f->arr[i] == sk) 1489 break; 1490 } 1491 BUG_ON(i >= f->num_members); 1492 f->arr[i] = f->arr[f->num_members - 1]; 1493 f->num_members--; 1494 spin_unlock(&f->lock); 1495 } 1496 1497 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) 1498 { 1499 if (ptype->af_packet_priv == (void *)((struct packet_sock *)sk)->fanout) 1500 return true; 1501 1502 return false; 1503 } 1504 1505 static int fanout_add(struct sock *sk, u16 id, u16 type_flags) 1506 { 1507 struct packet_sock *po = pkt_sk(sk); 1508 struct packet_fanout *f, *match; 1509 u8 type = type_flags & 0xff; 1510 u8 flags = type_flags >> 8; 1511 int err; 1512 1513 switch (type) { 1514 case PACKET_FANOUT_ROLLOVER: 1515 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) 1516 return -EINVAL; 1517 case PACKET_FANOUT_HASH: 1518 case PACKET_FANOUT_LB: 1519 case PACKET_FANOUT_CPU: 1520 case PACKET_FANOUT_RND: 1521 case PACKET_FANOUT_QM: 1522 break; 1523 default: 1524 return -EINVAL; 1525 } 1526 1527 if (!po->running) 1528 return -EINVAL; 1529 1530 if (po->fanout) 1531 return -EALREADY; 1532 1533 if (type == PACKET_FANOUT_ROLLOVER || 1534 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { 1535 po->rollover = kzalloc(sizeof(*po->rollover), GFP_KERNEL); 1536 if (!po->rollover) 1537 return -ENOMEM; 1538 atomic_long_set(&po->rollover->num, 0); 1539 atomic_long_set(&po->rollover->num_huge, 0); 1540 atomic_long_set(&po->rollover->num_failed, 0); 1541 } 1542 1543 mutex_lock(&fanout_mutex); 1544 match = NULL; 1545 list_for_each_entry(f, &fanout_list, list) { 1546 if (f->id == id && 1547 read_pnet(&f->net) == sock_net(sk)) { 1548 match = f; 1549 break; 1550 } 1551 } 1552 err = -EINVAL; 1553 if (match && match->flags != flags) 1554 goto out; 1555 if (!match) { 1556 err = -ENOMEM; 1557 match = kzalloc(sizeof(*match), GFP_KERNEL); 1558 if (!match) 1559 goto out; 1560 write_pnet(&match->net, sock_net(sk)); 1561 match->id = id; 1562 match->type = type; 1563 match->flags = flags; 1564 atomic_set(&match->rr_cur, 0); 1565 INIT_LIST_HEAD(&match->list); 1566 spin_lock_init(&match->lock); 1567 atomic_set(&match->sk_ref, 0); 1568 match->prot_hook.type = po->prot_hook.type; 1569 match->prot_hook.dev = po->prot_hook.dev; 1570 match->prot_hook.func = packet_rcv_fanout; 1571 match->prot_hook.af_packet_priv = match; 1572 match->prot_hook.id_match = match_fanout_group; 1573 dev_add_pack(&match->prot_hook); 1574 list_add(&match->list, &fanout_list); 1575 } 1576 err = -EINVAL; 1577 if (match->type == type && 1578 match->prot_hook.type == po->prot_hook.type && 1579 match->prot_hook.dev == po->prot_hook.dev) { 1580 err = -ENOSPC; 1581 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) { 1582 __dev_remove_pack(&po->prot_hook); 1583 po->fanout = match; 1584 atomic_inc(&match->sk_ref); 1585 __fanout_link(sk, po); 1586 err = 0; 1587 } 1588 } 1589 out: 1590 mutex_unlock(&fanout_mutex); 1591 if (err) { 1592 kfree(po->rollover); 1593 po->rollover = NULL; 1594 } 1595 return err; 1596 } 1597 1598 static void fanout_release(struct sock *sk) 1599 { 1600 struct packet_sock *po = pkt_sk(sk); 1601 struct packet_fanout *f; 1602 1603 f = po->fanout; 1604 if (!f) 1605 return; 1606 1607 mutex_lock(&fanout_mutex); 1608 po->fanout = NULL; 1609 1610 if (atomic_dec_and_test(&f->sk_ref)) { 1611 list_del(&f->list); 1612 dev_remove_pack(&f->prot_hook); 1613 kfree(f); 1614 } 1615 mutex_unlock(&fanout_mutex); 1616 1617 if (po->rollover) 1618 kfree_rcu(po->rollover, rcu); 1619 } 1620 1621 static const struct proto_ops packet_ops; 1622 1623 static const struct proto_ops packet_ops_spkt; 1624 1625 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1626 struct packet_type *pt, struct net_device *orig_dev) 1627 { 1628 struct sock *sk; 1629 struct sockaddr_pkt *spkt; 1630 1631 /* 1632 * When we registered the protocol we saved the socket in the data 1633 * field for just this event. 1634 */ 1635 1636 sk = pt->af_packet_priv; 1637 1638 /* 1639 * Yank back the headers [hope the device set this 1640 * right or kerboom...] 1641 * 1642 * Incoming packets have ll header pulled, 1643 * push it back. 1644 * 1645 * For outgoing ones skb->data == skb_mac_header(skb) 1646 * so that this procedure is noop. 1647 */ 1648 1649 if (skb->pkt_type == PACKET_LOOPBACK) 1650 goto out; 1651 1652 if (!net_eq(dev_net(dev), sock_net(sk))) 1653 goto out; 1654 1655 skb = skb_share_check(skb, GFP_ATOMIC); 1656 if (skb == NULL) 1657 goto oom; 1658 1659 /* drop any routing info */ 1660 skb_dst_drop(skb); 1661 1662 /* drop conntrack reference */ 1663 nf_reset(skb); 1664 1665 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1666 1667 skb_push(skb, skb->data - skb_mac_header(skb)); 1668 1669 /* 1670 * The SOCK_PACKET socket receives _all_ frames. 1671 */ 1672 1673 spkt->spkt_family = dev->type; 1674 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1675 spkt->spkt_protocol = skb->protocol; 1676 1677 /* 1678 * Charge the memory to the socket. This is done specifically 1679 * to prevent sockets using all the memory up. 1680 */ 1681 1682 if (sock_queue_rcv_skb(sk, skb) == 0) 1683 return 0; 1684 1685 out: 1686 kfree_skb(skb); 1687 oom: 1688 return 0; 1689 } 1690 1691 1692 /* 1693 * Output a raw packet to a device layer. This bypasses all the other 1694 * protocol layers and you must therefore supply it with a complete frame 1695 */ 1696 1697 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, 1698 size_t len) 1699 { 1700 struct sock *sk = sock->sk; 1701 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); 1702 struct sk_buff *skb = NULL; 1703 struct net_device *dev; 1704 __be16 proto = 0; 1705 int err; 1706 int extra_len = 0; 1707 1708 /* 1709 * Get and verify the address. 1710 */ 1711 1712 if (saddr) { 1713 if (msg->msg_namelen < sizeof(struct sockaddr)) 1714 return -EINVAL; 1715 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1716 proto = saddr->spkt_protocol; 1717 } else 1718 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1719 1720 /* 1721 * Find the device first to size check it 1722 */ 1723 1724 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; 1725 retry: 1726 rcu_read_lock(); 1727 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1728 err = -ENODEV; 1729 if (dev == NULL) 1730 goto out_unlock; 1731 1732 err = -ENETDOWN; 1733 if (!(dev->flags & IFF_UP)) 1734 goto out_unlock; 1735 1736 /* 1737 * You may not queue a frame bigger than the mtu. This is the lowest level 1738 * raw protocol and you must do your own fragmentation at this level. 1739 */ 1740 1741 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 1742 if (!netif_supports_nofcs(dev)) { 1743 err = -EPROTONOSUPPORT; 1744 goto out_unlock; 1745 } 1746 extra_len = 4; /* We're doing our own CRC */ 1747 } 1748 1749 err = -EMSGSIZE; 1750 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) 1751 goto out_unlock; 1752 1753 if (!skb) { 1754 size_t reserved = LL_RESERVED_SPACE(dev); 1755 int tlen = dev->needed_tailroom; 1756 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 1757 1758 rcu_read_unlock(); 1759 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 1760 if (skb == NULL) 1761 return -ENOBUFS; 1762 /* FIXME: Save some space for broken drivers that write a hard 1763 * header at transmission time by themselves. PPP is the notable 1764 * one here. This should really be fixed at the driver level. 1765 */ 1766 skb_reserve(skb, reserved); 1767 skb_reset_network_header(skb); 1768 1769 /* Try to align data part correctly */ 1770 if (hhlen) { 1771 skb->data -= hhlen; 1772 skb->tail -= hhlen; 1773 if (len < hhlen) 1774 skb_reset_network_header(skb); 1775 } 1776 err = memcpy_from_msg(skb_put(skb, len), msg, len); 1777 if (err) 1778 goto out_free; 1779 goto retry; 1780 } 1781 1782 if (len > (dev->mtu + dev->hard_header_len + extra_len)) { 1783 /* Earlier code assumed this would be a VLAN pkt, 1784 * double-check this now that we have the actual 1785 * packet in hand. 1786 */ 1787 struct ethhdr *ehdr; 1788 skb_reset_mac_header(skb); 1789 ehdr = eth_hdr(skb); 1790 if (ehdr->h_proto != htons(ETH_P_8021Q)) { 1791 err = -EMSGSIZE; 1792 goto out_unlock; 1793 } 1794 } 1795 1796 skb->protocol = proto; 1797 skb->dev = dev; 1798 skb->priority = sk->sk_priority; 1799 skb->mark = sk->sk_mark; 1800 1801 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags); 1802 1803 if (unlikely(extra_len == 4)) 1804 skb->no_fcs = 1; 1805 1806 skb_probe_transport_header(skb, 0); 1807 1808 dev_queue_xmit(skb); 1809 rcu_read_unlock(); 1810 return len; 1811 1812 out_unlock: 1813 rcu_read_unlock(); 1814 out_free: 1815 kfree_skb(skb); 1816 return err; 1817 } 1818 1819 static unsigned int run_filter(const struct sk_buff *skb, 1820 const struct sock *sk, 1821 unsigned int res) 1822 { 1823 struct sk_filter *filter; 1824 1825 rcu_read_lock(); 1826 filter = rcu_dereference(sk->sk_filter); 1827 if (filter != NULL) 1828 res = SK_RUN_FILTER(filter, skb); 1829 rcu_read_unlock(); 1830 1831 return res; 1832 } 1833 1834 /* 1835 * This function makes lazy skb cloning in hope that most of packets 1836 * are discarded by BPF. 1837 * 1838 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 1839 * and skb->cb are mangled. It works because (and until) packets 1840 * falling here are owned by current CPU. Output packets are cloned 1841 * by dev_queue_xmit_nit(), input packets are processed by net_bh 1842 * sequencially, so that if we return skb to original state on exit, 1843 * we will not harm anyone. 1844 */ 1845 1846 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 1847 struct packet_type *pt, struct net_device *orig_dev) 1848 { 1849 struct sock *sk; 1850 struct sockaddr_ll *sll; 1851 struct packet_sock *po; 1852 u8 *skb_head = skb->data; 1853 int skb_len = skb->len; 1854 unsigned int snaplen, res; 1855 1856 if (skb->pkt_type == PACKET_LOOPBACK) 1857 goto drop; 1858 1859 sk = pt->af_packet_priv; 1860 po = pkt_sk(sk); 1861 1862 if (!net_eq(dev_net(dev), sock_net(sk))) 1863 goto drop; 1864 1865 skb->dev = dev; 1866 1867 if (dev->header_ops) { 1868 /* The device has an explicit notion of ll header, 1869 * exported to higher levels. 1870 * 1871 * Otherwise, the device hides details of its frame 1872 * structure, so that corresponding packet head is 1873 * never delivered to user. 1874 */ 1875 if (sk->sk_type != SOCK_DGRAM) 1876 skb_push(skb, skb->data - skb_mac_header(skb)); 1877 else if (skb->pkt_type == PACKET_OUTGOING) { 1878 /* Special case: outgoing packets have ll header at head */ 1879 skb_pull(skb, skb_network_offset(skb)); 1880 } 1881 } 1882 1883 snaplen = skb->len; 1884 1885 res = run_filter(skb, sk, snaplen); 1886 if (!res) 1887 goto drop_n_restore; 1888 if (snaplen > res) 1889 snaplen = res; 1890 1891 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 1892 goto drop_n_acct; 1893 1894 if (skb_shared(skb)) { 1895 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 1896 if (nskb == NULL) 1897 goto drop_n_acct; 1898 1899 if (skb_head != skb->data) { 1900 skb->data = skb_head; 1901 skb->len = skb_len; 1902 } 1903 consume_skb(skb); 1904 skb = nskb; 1905 } 1906 1907 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); 1908 1909 sll = &PACKET_SKB_CB(skb)->sa.ll; 1910 sll->sll_hatype = dev->type; 1911 sll->sll_pkttype = skb->pkt_type; 1912 if (unlikely(po->origdev)) 1913 sll->sll_ifindex = orig_dev->ifindex; 1914 else 1915 sll->sll_ifindex = dev->ifindex; 1916 1917 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 1918 1919 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). 1920 * Use their space for storing the original skb length. 1921 */ 1922 PACKET_SKB_CB(skb)->sa.origlen = skb->len; 1923 1924 if (pskb_trim(skb, snaplen)) 1925 goto drop_n_acct; 1926 1927 skb_set_owner_r(skb, sk); 1928 skb->dev = NULL; 1929 skb_dst_drop(skb); 1930 1931 /* drop conntrack reference */ 1932 nf_reset(skb); 1933 1934 spin_lock(&sk->sk_receive_queue.lock); 1935 po->stats.stats1.tp_packets++; 1936 sock_skb_set_dropcount(sk, skb); 1937 __skb_queue_tail(&sk->sk_receive_queue, skb); 1938 spin_unlock(&sk->sk_receive_queue.lock); 1939 sk->sk_data_ready(sk); 1940 return 0; 1941 1942 drop_n_acct: 1943 spin_lock(&sk->sk_receive_queue.lock); 1944 po->stats.stats1.tp_drops++; 1945 atomic_inc(&sk->sk_drops); 1946 spin_unlock(&sk->sk_receive_queue.lock); 1947 1948 drop_n_restore: 1949 if (skb_head != skb->data && skb_shared(skb)) { 1950 skb->data = skb_head; 1951 skb->len = skb_len; 1952 } 1953 drop: 1954 consume_skb(skb); 1955 return 0; 1956 } 1957 1958 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 1959 struct packet_type *pt, struct net_device *orig_dev) 1960 { 1961 struct sock *sk; 1962 struct packet_sock *po; 1963 struct sockaddr_ll *sll; 1964 union tpacket_uhdr h; 1965 u8 *skb_head = skb->data; 1966 int skb_len = skb->len; 1967 unsigned int snaplen, res; 1968 unsigned long status = TP_STATUS_USER; 1969 unsigned short macoff, netoff, hdrlen; 1970 struct sk_buff *copy_skb = NULL; 1971 struct timespec ts; 1972 __u32 ts_status; 1973 1974 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. 1975 * We may add members to them until current aligned size without forcing 1976 * userspace to call getsockopt(..., PACKET_HDRLEN, ...). 1977 */ 1978 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); 1979 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); 1980 1981 if (skb->pkt_type == PACKET_LOOPBACK) 1982 goto drop; 1983 1984 sk = pt->af_packet_priv; 1985 po = pkt_sk(sk); 1986 1987 if (!net_eq(dev_net(dev), sock_net(sk))) 1988 goto drop; 1989 1990 if (dev->header_ops) { 1991 if (sk->sk_type != SOCK_DGRAM) 1992 skb_push(skb, skb->data - skb_mac_header(skb)); 1993 else if (skb->pkt_type == PACKET_OUTGOING) { 1994 /* Special case: outgoing packets have ll header at head */ 1995 skb_pull(skb, skb_network_offset(skb)); 1996 } 1997 } 1998 1999 snaplen = skb->len; 2000 2001 res = run_filter(skb, sk, snaplen); 2002 if (!res) 2003 goto drop_n_restore; 2004 2005 if (skb->ip_summed == CHECKSUM_PARTIAL) 2006 status |= TP_STATUS_CSUMNOTREADY; 2007 else if (skb->pkt_type != PACKET_OUTGOING && 2008 (skb->ip_summed == CHECKSUM_COMPLETE || 2009 skb_csum_unnecessary(skb))) 2010 status |= TP_STATUS_CSUM_VALID; 2011 2012 if (snaplen > res) 2013 snaplen = res; 2014 2015 if (sk->sk_type == SOCK_DGRAM) { 2016 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 2017 po->tp_reserve; 2018 } else { 2019 unsigned int maclen = skb_network_offset(skb); 2020 netoff = TPACKET_ALIGN(po->tp_hdrlen + 2021 (maclen < 16 ? 16 : maclen)) + 2022 po->tp_reserve; 2023 macoff = netoff - maclen; 2024 } 2025 if (po->tp_version <= TPACKET_V2) { 2026 if (macoff + snaplen > po->rx_ring.frame_size) { 2027 if (po->copy_thresh && 2028 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 2029 if (skb_shared(skb)) { 2030 copy_skb = skb_clone(skb, GFP_ATOMIC); 2031 } else { 2032 copy_skb = skb_get(skb); 2033 skb_head = skb->data; 2034 } 2035 if (copy_skb) 2036 skb_set_owner_r(copy_skb, sk); 2037 } 2038 snaplen = po->rx_ring.frame_size - macoff; 2039 if ((int)snaplen < 0) 2040 snaplen = 0; 2041 } 2042 } else if (unlikely(macoff + snaplen > 2043 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { 2044 u32 nval; 2045 2046 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; 2047 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", 2048 snaplen, nval, macoff); 2049 snaplen = nval; 2050 if (unlikely((int)snaplen < 0)) { 2051 snaplen = 0; 2052 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; 2053 } 2054 } 2055 spin_lock(&sk->sk_receive_queue.lock); 2056 h.raw = packet_current_rx_frame(po, skb, 2057 TP_STATUS_KERNEL, (macoff+snaplen)); 2058 if (!h.raw) 2059 goto ring_is_full; 2060 if (po->tp_version <= TPACKET_V2) { 2061 packet_increment_rx_head(po, &po->rx_ring); 2062 /* 2063 * LOSING will be reported till you read the stats, 2064 * because it's COR - Clear On Read. 2065 * Anyways, moving it for V1/V2 only as V3 doesn't need this 2066 * at packet level. 2067 */ 2068 if (po->stats.stats1.tp_drops) 2069 status |= TP_STATUS_LOSING; 2070 } 2071 po->stats.stats1.tp_packets++; 2072 if (copy_skb) { 2073 status |= TP_STATUS_COPY; 2074 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 2075 } 2076 spin_unlock(&sk->sk_receive_queue.lock); 2077 2078 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 2079 2080 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 2081 getnstimeofday(&ts); 2082 2083 status |= ts_status; 2084 2085 switch (po->tp_version) { 2086 case TPACKET_V1: 2087 h.h1->tp_len = skb->len; 2088 h.h1->tp_snaplen = snaplen; 2089 h.h1->tp_mac = macoff; 2090 h.h1->tp_net = netoff; 2091 h.h1->tp_sec = ts.tv_sec; 2092 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 2093 hdrlen = sizeof(*h.h1); 2094 break; 2095 case TPACKET_V2: 2096 h.h2->tp_len = skb->len; 2097 h.h2->tp_snaplen = snaplen; 2098 h.h2->tp_mac = macoff; 2099 h.h2->tp_net = netoff; 2100 h.h2->tp_sec = ts.tv_sec; 2101 h.h2->tp_nsec = ts.tv_nsec; 2102 if (skb_vlan_tag_present(skb)) { 2103 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); 2104 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); 2105 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 2106 } else { 2107 h.h2->tp_vlan_tci = 0; 2108 h.h2->tp_vlan_tpid = 0; 2109 } 2110 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); 2111 hdrlen = sizeof(*h.h2); 2112 break; 2113 case TPACKET_V3: 2114 /* tp_nxt_offset,vlan are already populated above. 2115 * So DONT clear those fields here 2116 */ 2117 h.h3->tp_status |= status; 2118 h.h3->tp_len = skb->len; 2119 h.h3->tp_snaplen = snaplen; 2120 h.h3->tp_mac = macoff; 2121 h.h3->tp_net = netoff; 2122 h.h3->tp_sec = ts.tv_sec; 2123 h.h3->tp_nsec = ts.tv_nsec; 2124 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); 2125 hdrlen = sizeof(*h.h3); 2126 break; 2127 default: 2128 BUG(); 2129 } 2130 2131 sll = h.raw + TPACKET_ALIGN(hdrlen); 2132 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2133 sll->sll_family = AF_PACKET; 2134 sll->sll_hatype = dev->type; 2135 sll->sll_protocol = skb->protocol; 2136 sll->sll_pkttype = skb->pkt_type; 2137 if (unlikely(po->origdev)) 2138 sll->sll_ifindex = orig_dev->ifindex; 2139 else 2140 sll->sll_ifindex = dev->ifindex; 2141 2142 smp_mb(); 2143 2144 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 2145 if (po->tp_version <= TPACKET_V2) { 2146 u8 *start, *end; 2147 2148 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + 2149 macoff + snaplen); 2150 2151 for (start = h.raw; start < end; start += PAGE_SIZE) 2152 flush_dcache_page(pgv_to_page(start)); 2153 } 2154 smp_wmb(); 2155 #endif 2156 2157 if (po->tp_version <= TPACKET_V2) { 2158 __packet_set_status(po, h.raw, status); 2159 sk->sk_data_ready(sk); 2160 } else { 2161 prb_clear_blk_fill_status(&po->rx_ring); 2162 } 2163 2164 drop_n_restore: 2165 if (skb_head != skb->data && skb_shared(skb)) { 2166 skb->data = skb_head; 2167 skb->len = skb_len; 2168 } 2169 drop: 2170 kfree_skb(skb); 2171 return 0; 2172 2173 ring_is_full: 2174 po->stats.stats1.tp_drops++; 2175 spin_unlock(&sk->sk_receive_queue.lock); 2176 2177 sk->sk_data_ready(sk); 2178 kfree_skb(copy_skb); 2179 goto drop_n_restore; 2180 } 2181 2182 static void tpacket_destruct_skb(struct sk_buff *skb) 2183 { 2184 struct packet_sock *po = pkt_sk(skb->sk); 2185 2186 if (likely(po->tx_ring.pg_vec)) { 2187 void *ph; 2188 __u32 ts; 2189 2190 ph = skb_shinfo(skb)->destructor_arg; 2191 packet_dec_pending(&po->tx_ring); 2192 2193 ts = __packet_set_timestamp(po, ph, skb); 2194 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); 2195 } 2196 2197 sock_wfree(skb); 2198 } 2199 2200 static bool ll_header_truncated(const struct net_device *dev, int len) 2201 { 2202 /* net device doesn't like empty head */ 2203 if (unlikely(len <= dev->hard_header_len)) { 2204 net_warn_ratelimited("%s: packet size is too short (%d <= %d)\n", 2205 current->comm, len, dev->hard_header_len); 2206 return true; 2207 } 2208 2209 return false; 2210 } 2211 2212 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 2213 void *frame, struct net_device *dev, int size_max, 2214 __be16 proto, unsigned char *addr, int hlen) 2215 { 2216 union tpacket_uhdr ph; 2217 int to_write, offset, len, tp_len, nr_frags, len_max; 2218 struct socket *sock = po->sk.sk_socket; 2219 struct page *page; 2220 void *data; 2221 int err; 2222 2223 ph.raw = frame; 2224 2225 skb->protocol = proto; 2226 skb->dev = dev; 2227 skb->priority = po->sk.sk_priority; 2228 skb->mark = po->sk.sk_mark; 2229 sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags); 2230 skb_shinfo(skb)->destructor_arg = ph.raw; 2231 2232 switch (po->tp_version) { 2233 case TPACKET_V2: 2234 tp_len = ph.h2->tp_len; 2235 break; 2236 default: 2237 tp_len = ph.h1->tp_len; 2238 break; 2239 } 2240 if (unlikely(tp_len > size_max)) { 2241 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 2242 return -EMSGSIZE; 2243 } 2244 2245 skb_reserve(skb, hlen); 2246 skb_reset_network_header(skb); 2247 2248 if (!packet_use_direct_xmit(po)) 2249 skb_probe_transport_header(skb, 0); 2250 if (unlikely(po->tp_tx_has_off)) { 2251 int off_min, off_max, off; 2252 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2253 off_max = po->tx_ring.frame_size - tp_len; 2254 if (sock->type == SOCK_DGRAM) { 2255 switch (po->tp_version) { 2256 case TPACKET_V2: 2257 off = ph.h2->tp_net; 2258 break; 2259 default: 2260 off = ph.h1->tp_net; 2261 break; 2262 } 2263 } else { 2264 switch (po->tp_version) { 2265 case TPACKET_V2: 2266 off = ph.h2->tp_mac; 2267 break; 2268 default: 2269 off = ph.h1->tp_mac; 2270 break; 2271 } 2272 } 2273 if (unlikely((off < off_min) || (off_max < off))) 2274 return -EINVAL; 2275 data = ph.raw + off; 2276 } else { 2277 data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll); 2278 } 2279 to_write = tp_len; 2280 2281 if (sock->type == SOCK_DGRAM) { 2282 err = dev_hard_header(skb, dev, ntohs(proto), addr, 2283 NULL, tp_len); 2284 if (unlikely(err < 0)) 2285 return -EINVAL; 2286 } else if (dev->hard_header_len) { 2287 if (ll_header_truncated(dev, tp_len)) 2288 return -EINVAL; 2289 2290 skb_push(skb, dev->hard_header_len); 2291 err = skb_store_bits(skb, 0, data, 2292 dev->hard_header_len); 2293 if (unlikely(err)) 2294 return err; 2295 2296 data += dev->hard_header_len; 2297 to_write -= dev->hard_header_len; 2298 } 2299 2300 offset = offset_in_page(data); 2301 len_max = PAGE_SIZE - offset; 2302 len = ((to_write > len_max) ? len_max : to_write); 2303 2304 skb->data_len = to_write; 2305 skb->len += to_write; 2306 skb->truesize += to_write; 2307 atomic_add(to_write, &po->sk.sk_wmem_alloc); 2308 2309 while (likely(to_write)) { 2310 nr_frags = skb_shinfo(skb)->nr_frags; 2311 2312 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2313 pr_err("Packet exceed the number of skb frags(%lu)\n", 2314 MAX_SKB_FRAGS); 2315 return -EFAULT; 2316 } 2317 2318 page = pgv_to_page(data); 2319 data += len; 2320 flush_dcache_page(page); 2321 get_page(page); 2322 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2323 to_write -= len; 2324 offset = 0; 2325 len_max = PAGE_SIZE; 2326 len = ((to_write > len_max) ? len_max : to_write); 2327 } 2328 2329 return tp_len; 2330 } 2331 2332 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2333 { 2334 struct sk_buff *skb; 2335 struct net_device *dev; 2336 __be16 proto; 2337 int err, reserve = 0; 2338 void *ph; 2339 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2340 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); 2341 int tp_len, size_max; 2342 unsigned char *addr; 2343 int len_sum = 0; 2344 int status = TP_STATUS_AVAILABLE; 2345 int hlen, tlen; 2346 2347 mutex_lock(&po->pg_vec_lock); 2348 2349 if (likely(saddr == NULL)) { 2350 dev = packet_cached_dev_get(po); 2351 proto = po->num; 2352 addr = NULL; 2353 } else { 2354 err = -EINVAL; 2355 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2356 goto out; 2357 if (msg->msg_namelen < (saddr->sll_halen 2358 + offsetof(struct sockaddr_ll, 2359 sll_addr))) 2360 goto out; 2361 proto = saddr->sll_protocol; 2362 addr = saddr->sll_addr; 2363 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2364 } 2365 2366 err = -ENXIO; 2367 if (unlikely(dev == NULL)) 2368 goto out; 2369 err = -ENETDOWN; 2370 if (unlikely(!(dev->flags & IFF_UP))) 2371 goto out_put; 2372 2373 reserve = dev->hard_header_len + VLAN_HLEN; 2374 size_max = po->tx_ring.frame_size 2375 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2376 2377 if (size_max > dev->mtu + reserve) 2378 size_max = dev->mtu + reserve; 2379 2380 do { 2381 ph = packet_current_frame(po, &po->tx_ring, 2382 TP_STATUS_SEND_REQUEST); 2383 if (unlikely(ph == NULL)) { 2384 if (need_wait && need_resched()) 2385 schedule(); 2386 continue; 2387 } 2388 2389 status = TP_STATUS_SEND_REQUEST; 2390 hlen = LL_RESERVED_SPACE(dev); 2391 tlen = dev->needed_tailroom; 2392 skb = sock_alloc_send_skb(&po->sk, 2393 hlen + tlen + sizeof(struct sockaddr_ll), 2394 !need_wait, &err); 2395 2396 if (unlikely(skb == NULL)) { 2397 /* we assume the socket was initially writeable ... */ 2398 if (likely(len_sum > 0)) 2399 err = len_sum; 2400 goto out_status; 2401 } 2402 tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto, 2403 addr, hlen); 2404 if (likely(tp_len >= 0) && 2405 tp_len > dev->mtu + dev->hard_header_len) { 2406 struct ethhdr *ehdr; 2407 /* Earlier code assumed this would be a VLAN pkt, 2408 * double-check this now that we have the actual 2409 * packet in hand. 2410 */ 2411 2412 skb_reset_mac_header(skb); 2413 ehdr = eth_hdr(skb); 2414 if (ehdr->h_proto != htons(ETH_P_8021Q)) 2415 tp_len = -EMSGSIZE; 2416 } 2417 if (unlikely(tp_len < 0)) { 2418 if (po->tp_loss) { 2419 __packet_set_status(po, ph, 2420 TP_STATUS_AVAILABLE); 2421 packet_increment_head(&po->tx_ring); 2422 kfree_skb(skb); 2423 continue; 2424 } else { 2425 status = TP_STATUS_WRONG_FORMAT; 2426 err = tp_len; 2427 goto out_status; 2428 } 2429 } 2430 2431 packet_pick_tx_queue(dev, skb); 2432 2433 skb->destructor = tpacket_destruct_skb; 2434 __packet_set_status(po, ph, TP_STATUS_SENDING); 2435 packet_inc_pending(&po->tx_ring); 2436 2437 status = TP_STATUS_SEND_REQUEST; 2438 err = po->xmit(skb); 2439 if (unlikely(err > 0)) { 2440 err = net_xmit_errno(err); 2441 if (err && __packet_get_status(po, ph) == 2442 TP_STATUS_AVAILABLE) { 2443 /* skb was destructed already */ 2444 skb = NULL; 2445 goto out_status; 2446 } 2447 /* 2448 * skb was dropped but not destructed yet; 2449 * let's treat it like congestion or err < 0 2450 */ 2451 err = 0; 2452 } 2453 packet_increment_head(&po->tx_ring); 2454 len_sum += tp_len; 2455 } while (likely((ph != NULL) || 2456 /* Note: packet_read_pending() might be slow if we have 2457 * to call it as it's per_cpu variable, but in fast-path 2458 * we already short-circuit the loop with the first 2459 * condition, and luckily don't have to go that path 2460 * anyway. 2461 */ 2462 (need_wait && packet_read_pending(&po->tx_ring)))); 2463 2464 err = len_sum; 2465 goto out_put; 2466 2467 out_status: 2468 __packet_set_status(po, ph, status); 2469 kfree_skb(skb); 2470 out_put: 2471 dev_put(dev); 2472 out: 2473 mutex_unlock(&po->pg_vec_lock); 2474 return err; 2475 } 2476 2477 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2478 size_t reserve, size_t len, 2479 size_t linear, int noblock, 2480 int *err) 2481 { 2482 struct sk_buff *skb; 2483 2484 /* Under a page? Don't bother with paged skb. */ 2485 if (prepad + len < PAGE_SIZE || !linear) 2486 linear = len; 2487 2488 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2489 err, 0); 2490 if (!skb) 2491 return NULL; 2492 2493 skb_reserve(skb, reserve); 2494 skb_put(skb, linear); 2495 skb->data_len = len - linear; 2496 skb->len += len - linear; 2497 2498 return skb; 2499 } 2500 2501 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) 2502 { 2503 struct sock *sk = sock->sk; 2504 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2505 struct sk_buff *skb; 2506 struct net_device *dev; 2507 __be16 proto; 2508 unsigned char *addr; 2509 int err, reserve = 0; 2510 struct virtio_net_hdr vnet_hdr = { 0 }; 2511 int offset = 0; 2512 int vnet_hdr_len; 2513 struct packet_sock *po = pkt_sk(sk); 2514 unsigned short gso_type = 0; 2515 int hlen, tlen; 2516 int extra_len = 0; 2517 ssize_t n; 2518 2519 /* 2520 * Get and verify the address. 2521 */ 2522 2523 if (likely(saddr == NULL)) { 2524 dev = packet_cached_dev_get(po); 2525 proto = po->num; 2526 addr = NULL; 2527 } else { 2528 err = -EINVAL; 2529 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2530 goto out; 2531 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2532 goto out; 2533 proto = saddr->sll_protocol; 2534 addr = saddr->sll_addr; 2535 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2536 } 2537 2538 err = -ENXIO; 2539 if (unlikely(dev == NULL)) 2540 goto out_unlock; 2541 err = -ENETDOWN; 2542 if (unlikely(!(dev->flags & IFF_UP))) 2543 goto out_unlock; 2544 2545 if (sock->type == SOCK_RAW) 2546 reserve = dev->hard_header_len; 2547 if (po->has_vnet_hdr) { 2548 vnet_hdr_len = sizeof(vnet_hdr); 2549 2550 err = -EINVAL; 2551 if (len < vnet_hdr_len) 2552 goto out_unlock; 2553 2554 len -= vnet_hdr_len; 2555 2556 err = -EFAULT; 2557 n = copy_from_iter(&vnet_hdr, vnet_hdr_len, &msg->msg_iter); 2558 if (n != vnet_hdr_len) 2559 goto out_unlock; 2560 2561 if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2562 (__virtio16_to_cpu(false, vnet_hdr.csum_start) + 2563 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2 > 2564 __virtio16_to_cpu(false, vnet_hdr.hdr_len))) 2565 vnet_hdr.hdr_len = __cpu_to_virtio16(false, 2566 __virtio16_to_cpu(false, vnet_hdr.csum_start) + 2567 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2); 2568 2569 err = -EINVAL; 2570 if (__virtio16_to_cpu(false, vnet_hdr.hdr_len) > len) 2571 goto out_unlock; 2572 2573 if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) { 2574 switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { 2575 case VIRTIO_NET_HDR_GSO_TCPV4: 2576 gso_type = SKB_GSO_TCPV4; 2577 break; 2578 case VIRTIO_NET_HDR_GSO_TCPV6: 2579 gso_type = SKB_GSO_TCPV6; 2580 break; 2581 case VIRTIO_NET_HDR_GSO_UDP: 2582 gso_type = SKB_GSO_UDP; 2583 break; 2584 default: 2585 goto out_unlock; 2586 } 2587 2588 if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN) 2589 gso_type |= SKB_GSO_TCP_ECN; 2590 2591 if (vnet_hdr.gso_size == 0) 2592 goto out_unlock; 2593 2594 } 2595 } 2596 2597 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 2598 if (!netif_supports_nofcs(dev)) { 2599 err = -EPROTONOSUPPORT; 2600 goto out_unlock; 2601 } 2602 extra_len = 4; /* We're doing our own CRC */ 2603 } 2604 2605 err = -EMSGSIZE; 2606 if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) 2607 goto out_unlock; 2608 2609 err = -ENOBUFS; 2610 hlen = LL_RESERVED_SPACE(dev); 2611 tlen = dev->needed_tailroom; 2612 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, 2613 __virtio16_to_cpu(false, vnet_hdr.hdr_len), 2614 msg->msg_flags & MSG_DONTWAIT, &err); 2615 if (skb == NULL) 2616 goto out_unlock; 2617 2618 skb_set_network_header(skb, reserve); 2619 2620 err = -EINVAL; 2621 if (sock->type == SOCK_DGRAM) { 2622 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); 2623 if (unlikely(offset < 0)) 2624 goto out_free; 2625 } else { 2626 if (ll_header_truncated(dev, len)) 2627 goto out_free; 2628 } 2629 2630 /* Returns -EFAULT on error */ 2631 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); 2632 if (err) 2633 goto out_free; 2634 2635 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags); 2636 2637 if (!gso_type && (len > dev->mtu + reserve + extra_len)) { 2638 /* Earlier code assumed this would be a VLAN pkt, 2639 * double-check this now that we have the actual 2640 * packet in hand. 2641 */ 2642 struct ethhdr *ehdr; 2643 skb_reset_mac_header(skb); 2644 ehdr = eth_hdr(skb); 2645 if (ehdr->h_proto != htons(ETH_P_8021Q)) { 2646 err = -EMSGSIZE; 2647 goto out_free; 2648 } 2649 } 2650 2651 skb->protocol = proto; 2652 skb->dev = dev; 2653 skb->priority = sk->sk_priority; 2654 skb->mark = sk->sk_mark; 2655 2656 packet_pick_tx_queue(dev, skb); 2657 2658 if (po->has_vnet_hdr) { 2659 if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { 2660 u16 s = __virtio16_to_cpu(false, vnet_hdr.csum_start); 2661 u16 o = __virtio16_to_cpu(false, vnet_hdr.csum_offset); 2662 if (!skb_partial_csum_set(skb, s, o)) { 2663 err = -EINVAL; 2664 goto out_free; 2665 } 2666 } 2667 2668 skb_shinfo(skb)->gso_size = 2669 __virtio16_to_cpu(false, vnet_hdr.gso_size); 2670 skb_shinfo(skb)->gso_type = gso_type; 2671 2672 /* Header must be checked, and gso_segs computed. */ 2673 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2674 skb_shinfo(skb)->gso_segs = 0; 2675 2676 len += vnet_hdr_len; 2677 } 2678 2679 if (!packet_use_direct_xmit(po)) 2680 skb_probe_transport_header(skb, reserve); 2681 if (unlikely(extra_len == 4)) 2682 skb->no_fcs = 1; 2683 2684 err = po->xmit(skb); 2685 if (err > 0 && (err = net_xmit_errno(err)) != 0) 2686 goto out_unlock; 2687 2688 dev_put(dev); 2689 2690 return len; 2691 2692 out_free: 2693 kfree_skb(skb); 2694 out_unlock: 2695 if (dev) 2696 dev_put(dev); 2697 out: 2698 return err; 2699 } 2700 2701 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 2702 { 2703 struct sock *sk = sock->sk; 2704 struct packet_sock *po = pkt_sk(sk); 2705 2706 if (po->tx_ring.pg_vec) 2707 return tpacket_snd(po, msg); 2708 else 2709 return packet_snd(sock, msg, len); 2710 } 2711 2712 /* 2713 * Close a PACKET socket. This is fairly simple. We immediately go 2714 * to 'closed' state and remove our protocol entry in the device list. 2715 */ 2716 2717 static int packet_release(struct socket *sock) 2718 { 2719 struct sock *sk = sock->sk; 2720 struct packet_sock *po; 2721 struct net *net; 2722 union tpacket_req_u req_u; 2723 2724 if (!sk) 2725 return 0; 2726 2727 net = sock_net(sk); 2728 po = pkt_sk(sk); 2729 2730 mutex_lock(&net->packet.sklist_lock); 2731 sk_del_node_init_rcu(sk); 2732 mutex_unlock(&net->packet.sklist_lock); 2733 2734 preempt_disable(); 2735 sock_prot_inuse_add(net, sk->sk_prot, -1); 2736 preempt_enable(); 2737 2738 spin_lock(&po->bind_lock); 2739 unregister_prot_hook(sk, false); 2740 packet_cached_dev_reset(po); 2741 2742 if (po->prot_hook.dev) { 2743 dev_put(po->prot_hook.dev); 2744 po->prot_hook.dev = NULL; 2745 } 2746 spin_unlock(&po->bind_lock); 2747 2748 packet_flush_mclist(sk); 2749 2750 if (po->rx_ring.pg_vec) { 2751 memset(&req_u, 0, sizeof(req_u)); 2752 packet_set_ring(sk, &req_u, 1, 0); 2753 } 2754 2755 if (po->tx_ring.pg_vec) { 2756 memset(&req_u, 0, sizeof(req_u)); 2757 packet_set_ring(sk, &req_u, 1, 1); 2758 } 2759 2760 fanout_release(sk); 2761 2762 synchronize_net(); 2763 /* 2764 * Now the socket is dead. No more input will appear. 2765 */ 2766 sock_orphan(sk); 2767 sock->sk = NULL; 2768 2769 /* Purge queues */ 2770 2771 skb_queue_purge(&sk->sk_receive_queue); 2772 packet_free_pending(po); 2773 sk_refcnt_debug_release(sk); 2774 2775 sock_put(sk); 2776 return 0; 2777 } 2778 2779 /* 2780 * Attach a packet hook. 2781 */ 2782 2783 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 proto) 2784 { 2785 struct packet_sock *po = pkt_sk(sk); 2786 struct net_device *dev_curr; 2787 __be16 proto_curr; 2788 bool need_rehook; 2789 2790 if (po->fanout) { 2791 if (dev) 2792 dev_put(dev); 2793 2794 return -EINVAL; 2795 } 2796 2797 lock_sock(sk); 2798 spin_lock(&po->bind_lock); 2799 2800 proto_curr = po->prot_hook.type; 2801 dev_curr = po->prot_hook.dev; 2802 2803 need_rehook = proto_curr != proto || dev_curr != dev; 2804 2805 if (need_rehook) { 2806 unregister_prot_hook(sk, true); 2807 2808 po->num = proto; 2809 po->prot_hook.type = proto; 2810 po->prot_hook.dev = dev; 2811 2812 po->ifindex = dev ? dev->ifindex : 0; 2813 packet_cached_dev_assign(po, dev); 2814 } 2815 if (dev_curr) 2816 dev_put(dev_curr); 2817 2818 if (proto == 0 || !need_rehook) 2819 goto out_unlock; 2820 2821 if (!dev || (dev->flags & IFF_UP)) { 2822 register_prot_hook(sk); 2823 } else { 2824 sk->sk_err = ENETDOWN; 2825 if (!sock_flag(sk, SOCK_DEAD)) 2826 sk->sk_error_report(sk); 2827 } 2828 2829 out_unlock: 2830 spin_unlock(&po->bind_lock); 2831 release_sock(sk); 2832 return 0; 2833 } 2834 2835 /* 2836 * Bind a packet socket to a device 2837 */ 2838 2839 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 2840 int addr_len) 2841 { 2842 struct sock *sk = sock->sk; 2843 char name[15]; 2844 struct net_device *dev; 2845 int err = -ENODEV; 2846 2847 /* 2848 * Check legality 2849 */ 2850 2851 if (addr_len != sizeof(struct sockaddr)) 2852 return -EINVAL; 2853 strlcpy(name, uaddr->sa_data, sizeof(name)); 2854 2855 dev = dev_get_by_name(sock_net(sk), name); 2856 if (dev) 2857 err = packet_do_bind(sk, dev, pkt_sk(sk)->num); 2858 return err; 2859 } 2860 2861 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 2862 { 2863 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 2864 struct sock *sk = sock->sk; 2865 struct net_device *dev = NULL; 2866 int err; 2867 2868 2869 /* 2870 * Check legality 2871 */ 2872 2873 if (addr_len < sizeof(struct sockaddr_ll)) 2874 return -EINVAL; 2875 if (sll->sll_family != AF_PACKET) 2876 return -EINVAL; 2877 2878 if (sll->sll_ifindex) { 2879 err = -ENODEV; 2880 dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex); 2881 if (dev == NULL) 2882 goto out; 2883 } 2884 err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num); 2885 2886 out: 2887 return err; 2888 } 2889 2890 static struct proto packet_proto = { 2891 .name = "PACKET", 2892 .owner = THIS_MODULE, 2893 .obj_size = sizeof(struct packet_sock), 2894 }; 2895 2896 /* 2897 * Create a packet of type SOCK_PACKET. 2898 */ 2899 2900 static int packet_create(struct net *net, struct socket *sock, int protocol, 2901 int kern) 2902 { 2903 struct sock *sk; 2904 struct packet_sock *po; 2905 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 2906 int err; 2907 2908 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 2909 return -EPERM; 2910 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 2911 sock->type != SOCK_PACKET) 2912 return -ESOCKTNOSUPPORT; 2913 2914 sock->state = SS_UNCONNECTED; 2915 2916 err = -ENOBUFS; 2917 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); 2918 if (sk == NULL) 2919 goto out; 2920 2921 sock->ops = &packet_ops; 2922 if (sock->type == SOCK_PACKET) 2923 sock->ops = &packet_ops_spkt; 2924 2925 sock_init_data(sock, sk); 2926 2927 po = pkt_sk(sk); 2928 sk->sk_family = PF_PACKET; 2929 po->num = proto; 2930 po->xmit = dev_queue_xmit; 2931 2932 err = packet_alloc_pending(po); 2933 if (err) 2934 goto out2; 2935 2936 packet_cached_dev_reset(po); 2937 2938 sk->sk_destruct = packet_sock_destruct; 2939 sk_refcnt_debug_inc(sk); 2940 2941 /* 2942 * Attach a protocol block 2943 */ 2944 2945 spin_lock_init(&po->bind_lock); 2946 mutex_init(&po->pg_vec_lock); 2947 po->rollover = NULL; 2948 po->prot_hook.func = packet_rcv; 2949 2950 if (sock->type == SOCK_PACKET) 2951 po->prot_hook.func = packet_rcv_spkt; 2952 2953 po->prot_hook.af_packet_priv = sk; 2954 2955 if (proto) { 2956 po->prot_hook.type = proto; 2957 register_prot_hook(sk); 2958 } 2959 2960 mutex_lock(&net->packet.sklist_lock); 2961 sk_add_node_rcu(sk, &net->packet.sklist); 2962 mutex_unlock(&net->packet.sklist_lock); 2963 2964 preempt_disable(); 2965 sock_prot_inuse_add(net, &packet_proto, 1); 2966 preempt_enable(); 2967 2968 return 0; 2969 out2: 2970 sk_free(sk); 2971 out: 2972 return err; 2973 } 2974 2975 /* 2976 * Pull a packet from our receive queue and hand it to the user. 2977 * If necessary we block. 2978 */ 2979 2980 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2981 int flags) 2982 { 2983 struct sock *sk = sock->sk; 2984 struct sk_buff *skb; 2985 int copied, err; 2986 int vnet_hdr_len = 0; 2987 unsigned int origlen = 0; 2988 2989 err = -EINVAL; 2990 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 2991 goto out; 2992 2993 #if 0 2994 /* What error should we return now? EUNATTACH? */ 2995 if (pkt_sk(sk)->ifindex < 0) 2996 return -ENODEV; 2997 #endif 2998 2999 if (flags & MSG_ERRQUEUE) { 3000 err = sock_recv_errqueue(sk, msg, len, 3001 SOL_PACKET, PACKET_TX_TIMESTAMP); 3002 goto out; 3003 } 3004 3005 /* 3006 * Call the generic datagram receiver. This handles all sorts 3007 * of horrible races and re-entrancy so we can forget about it 3008 * in the protocol layers. 3009 * 3010 * Now it will return ENETDOWN, if device have just gone down, 3011 * but then it will block. 3012 */ 3013 3014 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 3015 3016 /* 3017 * An error occurred so return it. Because skb_recv_datagram() 3018 * handles the blocking we don't see and worry about blocking 3019 * retries. 3020 */ 3021 3022 if (skb == NULL) 3023 goto out; 3024 3025 if (pkt_sk(sk)->pressure) 3026 packet_rcv_has_room(pkt_sk(sk), NULL); 3027 3028 if (pkt_sk(sk)->has_vnet_hdr) { 3029 struct virtio_net_hdr vnet_hdr = { 0 }; 3030 3031 err = -EINVAL; 3032 vnet_hdr_len = sizeof(vnet_hdr); 3033 if (len < vnet_hdr_len) 3034 goto out_free; 3035 3036 len -= vnet_hdr_len; 3037 3038 if (skb_is_gso(skb)) { 3039 struct skb_shared_info *sinfo = skb_shinfo(skb); 3040 3041 /* This is a hint as to how much should be linear. */ 3042 vnet_hdr.hdr_len = 3043 __cpu_to_virtio16(false, skb_headlen(skb)); 3044 vnet_hdr.gso_size = 3045 __cpu_to_virtio16(false, sinfo->gso_size); 3046 if (sinfo->gso_type & SKB_GSO_TCPV4) 3047 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4; 3048 else if (sinfo->gso_type & SKB_GSO_TCPV6) 3049 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6; 3050 else if (sinfo->gso_type & SKB_GSO_UDP) 3051 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP; 3052 else if (sinfo->gso_type & SKB_GSO_FCOE) 3053 goto out_free; 3054 else 3055 BUG(); 3056 if (sinfo->gso_type & SKB_GSO_TCP_ECN) 3057 vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN; 3058 } else 3059 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE; 3060 3061 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3062 vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; 3063 vnet_hdr.csum_start = __cpu_to_virtio16(false, 3064 skb_checksum_start_offset(skb)); 3065 vnet_hdr.csum_offset = __cpu_to_virtio16(false, 3066 skb->csum_offset); 3067 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3068 vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID; 3069 } /* else everything is zero */ 3070 3071 err = memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_len); 3072 if (err < 0) 3073 goto out_free; 3074 } 3075 3076 /* You lose any data beyond the buffer you gave. If it worries 3077 * a user program they can ask the device for its MTU 3078 * anyway. 3079 */ 3080 copied = skb->len; 3081 if (copied > len) { 3082 copied = len; 3083 msg->msg_flags |= MSG_TRUNC; 3084 } 3085 3086 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3087 if (err) 3088 goto out_free; 3089 3090 if (sock->type != SOCK_PACKET) { 3091 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3092 3093 /* Original length was stored in sockaddr_ll fields */ 3094 origlen = PACKET_SKB_CB(skb)->sa.origlen; 3095 sll->sll_family = AF_PACKET; 3096 sll->sll_protocol = skb->protocol; 3097 } 3098 3099 sock_recv_ts_and_drops(msg, sk, skb); 3100 3101 if (msg->msg_name) { 3102 /* If the address length field is there to be filled 3103 * in, we fill it in now. 3104 */ 3105 if (sock->type == SOCK_PACKET) { 3106 __sockaddr_check_size(sizeof(struct sockaddr_pkt)); 3107 msg->msg_namelen = sizeof(struct sockaddr_pkt); 3108 } else { 3109 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3110 3111 msg->msg_namelen = sll->sll_halen + 3112 offsetof(struct sockaddr_ll, sll_addr); 3113 } 3114 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, 3115 msg->msg_namelen); 3116 } 3117 3118 if (pkt_sk(sk)->auxdata) { 3119 struct tpacket_auxdata aux; 3120 3121 aux.tp_status = TP_STATUS_USER; 3122 if (skb->ip_summed == CHECKSUM_PARTIAL) 3123 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 3124 else if (skb->pkt_type != PACKET_OUTGOING && 3125 (skb->ip_summed == CHECKSUM_COMPLETE || 3126 skb_csum_unnecessary(skb))) 3127 aux.tp_status |= TP_STATUS_CSUM_VALID; 3128 3129 aux.tp_len = origlen; 3130 aux.tp_snaplen = skb->len; 3131 aux.tp_mac = 0; 3132 aux.tp_net = skb_network_offset(skb); 3133 if (skb_vlan_tag_present(skb)) { 3134 aux.tp_vlan_tci = skb_vlan_tag_get(skb); 3135 aux.tp_vlan_tpid = ntohs(skb->vlan_proto); 3136 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 3137 } else { 3138 aux.tp_vlan_tci = 0; 3139 aux.tp_vlan_tpid = 0; 3140 } 3141 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 3142 } 3143 3144 /* 3145 * Free or return the buffer as appropriate. Again this 3146 * hides all the races and re-entrancy issues from us. 3147 */ 3148 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 3149 3150 out_free: 3151 skb_free_datagram(sk, skb); 3152 out: 3153 return err; 3154 } 3155 3156 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 3157 int *uaddr_len, int peer) 3158 { 3159 struct net_device *dev; 3160 struct sock *sk = sock->sk; 3161 3162 if (peer) 3163 return -EOPNOTSUPP; 3164 3165 uaddr->sa_family = AF_PACKET; 3166 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data)); 3167 rcu_read_lock(); 3168 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex); 3169 if (dev) 3170 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data)); 3171 rcu_read_unlock(); 3172 *uaddr_len = sizeof(*uaddr); 3173 3174 return 0; 3175 } 3176 3177 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 3178 int *uaddr_len, int peer) 3179 { 3180 struct net_device *dev; 3181 struct sock *sk = sock->sk; 3182 struct packet_sock *po = pkt_sk(sk); 3183 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 3184 3185 if (peer) 3186 return -EOPNOTSUPP; 3187 3188 sll->sll_family = AF_PACKET; 3189 sll->sll_ifindex = po->ifindex; 3190 sll->sll_protocol = po->num; 3191 sll->sll_pkttype = 0; 3192 rcu_read_lock(); 3193 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex); 3194 if (dev) { 3195 sll->sll_hatype = dev->type; 3196 sll->sll_halen = dev->addr_len; 3197 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 3198 } else { 3199 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 3200 sll->sll_halen = 0; 3201 } 3202 rcu_read_unlock(); 3203 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 3204 3205 return 0; 3206 } 3207 3208 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 3209 int what) 3210 { 3211 switch (i->type) { 3212 case PACKET_MR_MULTICAST: 3213 if (i->alen != dev->addr_len) 3214 return -EINVAL; 3215 if (what > 0) 3216 return dev_mc_add(dev, i->addr); 3217 else 3218 return dev_mc_del(dev, i->addr); 3219 break; 3220 case PACKET_MR_PROMISC: 3221 return dev_set_promiscuity(dev, what); 3222 case PACKET_MR_ALLMULTI: 3223 return dev_set_allmulti(dev, what); 3224 case PACKET_MR_UNICAST: 3225 if (i->alen != dev->addr_len) 3226 return -EINVAL; 3227 if (what > 0) 3228 return dev_uc_add(dev, i->addr); 3229 else 3230 return dev_uc_del(dev, i->addr); 3231 break; 3232 default: 3233 break; 3234 } 3235 return 0; 3236 } 3237 3238 static void packet_dev_mclist_delete(struct net_device *dev, 3239 struct packet_mclist **mlp) 3240 { 3241 struct packet_mclist *ml; 3242 3243 while ((ml = *mlp) != NULL) { 3244 if (ml->ifindex == dev->ifindex) { 3245 packet_dev_mc(dev, ml, -1); 3246 *mlp = ml->next; 3247 kfree(ml); 3248 } else 3249 mlp = &ml->next; 3250 } 3251 } 3252 3253 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 3254 { 3255 struct packet_sock *po = pkt_sk(sk); 3256 struct packet_mclist *ml, *i; 3257 struct net_device *dev; 3258 int err; 3259 3260 rtnl_lock(); 3261 3262 err = -ENODEV; 3263 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 3264 if (!dev) 3265 goto done; 3266 3267 err = -EINVAL; 3268 if (mreq->mr_alen > dev->addr_len) 3269 goto done; 3270 3271 err = -ENOBUFS; 3272 i = kmalloc(sizeof(*i), GFP_KERNEL); 3273 if (i == NULL) 3274 goto done; 3275 3276 err = 0; 3277 for (ml = po->mclist; ml; ml = ml->next) { 3278 if (ml->ifindex == mreq->mr_ifindex && 3279 ml->type == mreq->mr_type && 3280 ml->alen == mreq->mr_alen && 3281 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3282 ml->count++; 3283 /* Free the new element ... */ 3284 kfree(i); 3285 goto done; 3286 } 3287 } 3288 3289 i->type = mreq->mr_type; 3290 i->ifindex = mreq->mr_ifindex; 3291 i->alen = mreq->mr_alen; 3292 memcpy(i->addr, mreq->mr_address, i->alen); 3293 i->count = 1; 3294 i->next = po->mclist; 3295 po->mclist = i; 3296 err = packet_dev_mc(dev, i, 1); 3297 if (err) { 3298 po->mclist = i->next; 3299 kfree(i); 3300 } 3301 3302 done: 3303 rtnl_unlock(); 3304 return err; 3305 } 3306 3307 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 3308 { 3309 struct packet_mclist *ml, **mlp; 3310 3311 rtnl_lock(); 3312 3313 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 3314 if (ml->ifindex == mreq->mr_ifindex && 3315 ml->type == mreq->mr_type && 3316 ml->alen == mreq->mr_alen && 3317 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3318 if (--ml->count == 0) { 3319 struct net_device *dev; 3320 *mlp = ml->next; 3321 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3322 if (dev) 3323 packet_dev_mc(dev, ml, -1); 3324 kfree(ml); 3325 } 3326 break; 3327 } 3328 } 3329 rtnl_unlock(); 3330 return 0; 3331 } 3332 3333 static void packet_flush_mclist(struct sock *sk) 3334 { 3335 struct packet_sock *po = pkt_sk(sk); 3336 struct packet_mclist *ml; 3337 3338 if (!po->mclist) 3339 return; 3340 3341 rtnl_lock(); 3342 while ((ml = po->mclist) != NULL) { 3343 struct net_device *dev; 3344 3345 po->mclist = ml->next; 3346 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3347 if (dev != NULL) 3348 packet_dev_mc(dev, ml, -1); 3349 kfree(ml); 3350 } 3351 rtnl_unlock(); 3352 } 3353 3354 static int 3355 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) 3356 { 3357 struct sock *sk = sock->sk; 3358 struct packet_sock *po = pkt_sk(sk); 3359 int ret; 3360 3361 if (level != SOL_PACKET) 3362 return -ENOPROTOOPT; 3363 3364 switch (optname) { 3365 case PACKET_ADD_MEMBERSHIP: 3366 case PACKET_DROP_MEMBERSHIP: 3367 { 3368 struct packet_mreq_max mreq; 3369 int len = optlen; 3370 memset(&mreq, 0, sizeof(mreq)); 3371 if (len < sizeof(struct packet_mreq)) 3372 return -EINVAL; 3373 if (len > sizeof(mreq)) 3374 len = sizeof(mreq); 3375 if (copy_from_user(&mreq, optval, len)) 3376 return -EFAULT; 3377 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3378 return -EINVAL; 3379 if (optname == PACKET_ADD_MEMBERSHIP) 3380 ret = packet_mc_add(sk, &mreq); 3381 else 3382 ret = packet_mc_drop(sk, &mreq); 3383 return ret; 3384 } 3385 3386 case PACKET_RX_RING: 3387 case PACKET_TX_RING: 3388 { 3389 union tpacket_req_u req_u; 3390 int len; 3391 3392 switch (po->tp_version) { 3393 case TPACKET_V1: 3394 case TPACKET_V2: 3395 len = sizeof(req_u.req); 3396 break; 3397 case TPACKET_V3: 3398 default: 3399 len = sizeof(req_u.req3); 3400 break; 3401 } 3402 if (optlen < len) 3403 return -EINVAL; 3404 if (pkt_sk(sk)->has_vnet_hdr) 3405 return -EINVAL; 3406 if (copy_from_user(&req_u.req, optval, len)) 3407 return -EFAULT; 3408 return packet_set_ring(sk, &req_u, 0, 3409 optname == PACKET_TX_RING); 3410 } 3411 case PACKET_COPY_THRESH: 3412 { 3413 int val; 3414 3415 if (optlen != sizeof(val)) 3416 return -EINVAL; 3417 if (copy_from_user(&val, optval, sizeof(val))) 3418 return -EFAULT; 3419 3420 pkt_sk(sk)->copy_thresh = val; 3421 return 0; 3422 } 3423 case PACKET_VERSION: 3424 { 3425 int val; 3426 3427 if (optlen != sizeof(val)) 3428 return -EINVAL; 3429 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3430 return -EBUSY; 3431 if (copy_from_user(&val, optval, sizeof(val))) 3432 return -EFAULT; 3433 switch (val) { 3434 case TPACKET_V1: 3435 case TPACKET_V2: 3436 case TPACKET_V3: 3437 po->tp_version = val; 3438 return 0; 3439 default: 3440 return -EINVAL; 3441 } 3442 } 3443 case PACKET_RESERVE: 3444 { 3445 unsigned int val; 3446 3447 if (optlen != sizeof(val)) 3448 return -EINVAL; 3449 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3450 return -EBUSY; 3451 if (copy_from_user(&val, optval, sizeof(val))) 3452 return -EFAULT; 3453 po->tp_reserve = val; 3454 return 0; 3455 } 3456 case PACKET_LOSS: 3457 { 3458 unsigned int val; 3459 3460 if (optlen != sizeof(val)) 3461 return -EINVAL; 3462 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3463 return -EBUSY; 3464 if (copy_from_user(&val, optval, sizeof(val))) 3465 return -EFAULT; 3466 po->tp_loss = !!val; 3467 return 0; 3468 } 3469 case PACKET_AUXDATA: 3470 { 3471 int val; 3472 3473 if (optlen < sizeof(val)) 3474 return -EINVAL; 3475 if (copy_from_user(&val, optval, sizeof(val))) 3476 return -EFAULT; 3477 3478 po->auxdata = !!val; 3479 return 0; 3480 } 3481 case PACKET_ORIGDEV: 3482 { 3483 int val; 3484 3485 if (optlen < sizeof(val)) 3486 return -EINVAL; 3487 if (copy_from_user(&val, optval, sizeof(val))) 3488 return -EFAULT; 3489 3490 po->origdev = !!val; 3491 return 0; 3492 } 3493 case PACKET_VNET_HDR: 3494 { 3495 int val; 3496 3497 if (sock->type != SOCK_RAW) 3498 return -EINVAL; 3499 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3500 return -EBUSY; 3501 if (optlen < sizeof(val)) 3502 return -EINVAL; 3503 if (copy_from_user(&val, optval, sizeof(val))) 3504 return -EFAULT; 3505 3506 po->has_vnet_hdr = !!val; 3507 return 0; 3508 } 3509 case PACKET_TIMESTAMP: 3510 { 3511 int val; 3512 3513 if (optlen != sizeof(val)) 3514 return -EINVAL; 3515 if (copy_from_user(&val, optval, sizeof(val))) 3516 return -EFAULT; 3517 3518 po->tp_tstamp = val; 3519 return 0; 3520 } 3521 case PACKET_FANOUT: 3522 { 3523 int val; 3524 3525 if (optlen != sizeof(val)) 3526 return -EINVAL; 3527 if (copy_from_user(&val, optval, sizeof(val))) 3528 return -EFAULT; 3529 3530 return fanout_add(sk, val & 0xffff, val >> 16); 3531 } 3532 case PACKET_TX_HAS_OFF: 3533 { 3534 unsigned int val; 3535 3536 if (optlen != sizeof(val)) 3537 return -EINVAL; 3538 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3539 return -EBUSY; 3540 if (copy_from_user(&val, optval, sizeof(val))) 3541 return -EFAULT; 3542 po->tp_tx_has_off = !!val; 3543 return 0; 3544 } 3545 case PACKET_QDISC_BYPASS: 3546 { 3547 int val; 3548 3549 if (optlen != sizeof(val)) 3550 return -EINVAL; 3551 if (copy_from_user(&val, optval, sizeof(val))) 3552 return -EFAULT; 3553 3554 po->xmit = val ? packet_direct_xmit : dev_queue_xmit; 3555 return 0; 3556 } 3557 default: 3558 return -ENOPROTOOPT; 3559 } 3560 } 3561 3562 static int packet_getsockopt(struct socket *sock, int level, int optname, 3563 char __user *optval, int __user *optlen) 3564 { 3565 int len; 3566 int val, lv = sizeof(val); 3567 struct sock *sk = sock->sk; 3568 struct packet_sock *po = pkt_sk(sk); 3569 void *data = &val; 3570 union tpacket_stats_u st; 3571 struct tpacket_rollover_stats rstats; 3572 3573 if (level != SOL_PACKET) 3574 return -ENOPROTOOPT; 3575 3576 if (get_user(len, optlen)) 3577 return -EFAULT; 3578 3579 if (len < 0) 3580 return -EINVAL; 3581 3582 switch (optname) { 3583 case PACKET_STATISTICS: 3584 spin_lock_bh(&sk->sk_receive_queue.lock); 3585 memcpy(&st, &po->stats, sizeof(st)); 3586 memset(&po->stats, 0, sizeof(po->stats)); 3587 spin_unlock_bh(&sk->sk_receive_queue.lock); 3588 3589 if (po->tp_version == TPACKET_V3) { 3590 lv = sizeof(struct tpacket_stats_v3); 3591 st.stats3.tp_packets += st.stats3.tp_drops; 3592 data = &st.stats3; 3593 } else { 3594 lv = sizeof(struct tpacket_stats); 3595 st.stats1.tp_packets += st.stats1.tp_drops; 3596 data = &st.stats1; 3597 } 3598 3599 break; 3600 case PACKET_AUXDATA: 3601 val = po->auxdata; 3602 break; 3603 case PACKET_ORIGDEV: 3604 val = po->origdev; 3605 break; 3606 case PACKET_VNET_HDR: 3607 val = po->has_vnet_hdr; 3608 break; 3609 case PACKET_VERSION: 3610 val = po->tp_version; 3611 break; 3612 case PACKET_HDRLEN: 3613 if (len > sizeof(int)) 3614 len = sizeof(int); 3615 if (copy_from_user(&val, optval, len)) 3616 return -EFAULT; 3617 switch (val) { 3618 case TPACKET_V1: 3619 val = sizeof(struct tpacket_hdr); 3620 break; 3621 case TPACKET_V2: 3622 val = sizeof(struct tpacket2_hdr); 3623 break; 3624 case TPACKET_V3: 3625 val = sizeof(struct tpacket3_hdr); 3626 break; 3627 default: 3628 return -EINVAL; 3629 } 3630 break; 3631 case PACKET_RESERVE: 3632 val = po->tp_reserve; 3633 break; 3634 case PACKET_LOSS: 3635 val = po->tp_loss; 3636 break; 3637 case PACKET_TIMESTAMP: 3638 val = po->tp_tstamp; 3639 break; 3640 case PACKET_FANOUT: 3641 val = (po->fanout ? 3642 ((u32)po->fanout->id | 3643 ((u32)po->fanout->type << 16) | 3644 ((u32)po->fanout->flags << 24)) : 3645 0); 3646 break; 3647 case PACKET_ROLLOVER_STATS: 3648 if (!po->rollover) 3649 return -EINVAL; 3650 rstats.tp_all = atomic_long_read(&po->rollover->num); 3651 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); 3652 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); 3653 data = &rstats; 3654 lv = sizeof(rstats); 3655 break; 3656 case PACKET_TX_HAS_OFF: 3657 val = po->tp_tx_has_off; 3658 break; 3659 case PACKET_QDISC_BYPASS: 3660 val = packet_use_direct_xmit(po); 3661 break; 3662 default: 3663 return -ENOPROTOOPT; 3664 } 3665 3666 if (len > lv) 3667 len = lv; 3668 if (put_user(len, optlen)) 3669 return -EFAULT; 3670 if (copy_to_user(optval, data, len)) 3671 return -EFAULT; 3672 return 0; 3673 } 3674 3675 3676 static int packet_notifier(struct notifier_block *this, 3677 unsigned long msg, void *ptr) 3678 { 3679 struct sock *sk; 3680 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 3681 struct net *net = dev_net(dev); 3682 3683 rcu_read_lock(); 3684 sk_for_each_rcu(sk, &net->packet.sklist) { 3685 struct packet_sock *po = pkt_sk(sk); 3686 3687 switch (msg) { 3688 case NETDEV_UNREGISTER: 3689 if (po->mclist) 3690 packet_dev_mclist_delete(dev, &po->mclist); 3691 /* fallthrough */ 3692 3693 case NETDEV_DOWN: 3694 if (dev->ifindex == po->ifindex) { 3695 spin_lock(&po->bind_lock); 3696 if (po->running) { 3697 __unregister_prot_hook(sk, false); 3698 sk->sk_err = ENETDOWN; 3699 if (!sock_flag(sk, SOCK_DEAD)) 3700 sk->sk_error_report(sk); 3701 } 3702 if (msg == NETDEV_UNREGISTER) { 3703 packet_cached_dev_reset(po); 3704 po->ifindex = -1; 3705 if (po->prot_hook.dev) 3706 dev_put(po->prot_hook.dev); 3707 po->prot_hook.dev = NULL; 3708 } 3709 spin_unlock(&po->bind_lock); 3710 } 3711 break; 3712 case NETDEV_UP: 3713 if (dev->ifindex == po->ifindex) { 3714 spin_lock(&po->bind_lock); 3715 if (po->num) 3716 register_prot_hook(sk); 3717 spin_unlock(&po->bind_lock); 3718 } 3719 break; 3720 } 3721 } 3722 rcu_read_unlock(); 3723 return NOTIFY_DONE; 3724 } 3725 3726 3727 static int packet_ioctl(struct socket *sock, unsigned int cmd, 3728 unsigned long arg) 3729 { 3730 struct sock *sk = sock->sk; 3731 3732 switch (cmd) { 3733 case SIOCOUTQ: 3734 { 3735 int amount = sk_wmem_alloc_get(sk); 3736 3737 return put_user(amount, (int __user *)arg); 3738 } 3739 case SIOCINQ: 3740 { 3741 struct sk_buff *skb; 3742 int amount = 0; 3743 3744 spin_lock_bh(&sk->sk_receive_queue.lock); 3745 skb = skb_peek(&sk->sk_receive_queue); 3746 if (skb) 3747 amount = skb->len; 3748 spin_unlock_bh(&sk->sk_receive_queue.lock); 3749 return put_user(amount, (int __user *)arg); 3750 } 3751 case SIOCGSTAMP: 3752 return sock_get_timestamp(sk, (struct timeval __user *)arg); 3753 case SIOCGSTAMPNS: 3754 return sock_get_timestampns(sk, (struct timespec __user *)arg); 3755 3756 #ifdef CONFIG_INET 3757 case SIOCADDRT: 3758 case SIOCDELRT: 3759 case SIOCDARP: 3760 case SIOCGARP: 3761 case SIOCSARP: 3762 case SIOCGIFADDR: 3763 case SIOCSIFADDR: 3764 case SIOCGIFBRDADDR: 3765 case SIOCSIFBRDADDR: 3766 case SIOCGIFNETMASK: 3767 case SIOCSIFNETMASK: 3768 case SIOCGIFDSTADDR: 3769 case SIOCSIFDSTADDR: 3770 case SIOCSIFFLAGS: 3771 return inet_dgram_ops.ioctl(sock, cmd, arg); 3772 #endif 3773 3774 default: 3775 return -ENOIOCTLCMD; 3776 } 3777 return 0; 3778 } 3779 3780 static unsigned int packet_poll(struct file *file, struct socket *sock, 3781 poll_table *wait) 3782 { 3783 struct sock *sk = sock->sk; 3784 struct packet_sock *po = pkt_sk(sk); 3785 unsigned int mask = datagram_poll(file, sock, wait); 3786 3787 spin_lock_bh(&sk->sk_receive_queue.lock); 3788 if (po->rx_ring.pg_vec) { 3789 if (!packet_previous_rx_frame(po, &po->rx_ring, 3790 TP_STATUS_KERNEL)) 3791 mask |= POLLIN | POLLRDNORM; 3792 } 3793 if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) 3794 po->pressure = 0; 3795 spin_unlock_bh(&sk->sk_receive_queue.lock); 3796 spin_lock_bh(&sk->sk_write_queue.lock); 3797 if (po->tx_ring.pg_vec) { 3798 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 3799 mask |= POLLOUT | POLLWRNORM; 3800 } 3801 spin_unlock_bh(&sk->sk_write_queue.lock); 3802 return mask; 3803 } 3804 3805 3806 /* Dirty? Well, I still did not learn better way to account 3807 * for user mmaps. 3808 */ 3809 3810 static void packet_mm_open(struct vm_area_struct *vma) 3811 { 3812 struct file *file = vma->vm_file; 3813 struct socket *sock = file->private_data; 3814 struct sock *sk = sock->sk; 3815 3816 if (sk) 3817 atomic_inc(&pkt_sk(sk)->mapped); 3818 } 3819 3820 static void packet_mm_close(struct vm_area_struct *vma) 3821 { 3822 struct file *file = vma->vm_file; 3823 struct socket *sock = file->private_data; 3824 struct sock *sk = sock->sk; 3825 3826 if (sk) 3827 atomic_dec(&pkt_sk(sk)->mapped); 3828 } 3829 3830 static const struct vm_operations_struct packet_mmap_ops = { 3831 .open = packet_mm_open, 3832 .close = packet_mm_close, 3833 }; 3834 3835 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 3836 unsigned int len) 3837 { 3838 int i; 3839 3840 for (i = 0; i < len; i++) { 3841 if (likely(pg_vec[i].buffer)) { 3842 if (is_vmalloc_addr(pg_vec[i].buffer)) 3843 vfree(pg_vec[i].buffer); 3844 else 3845 free_pages((unsigned long)pg_vec[i].buffer, 3846 order); 3847 pg_vec[i].buffer = NULL; 3848 } 3849 } 3850 kfree(pg_vec); 3851 } 3852 3853 static char *alloc_one_pg_vec_page(unsigned long order) 3854 { 3855 char *buffer; 3856 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 3857 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 3858 3859 buffer = (char *) __get_free_pages(gfp_flags, order); 3860 if (buffer) 3861 return buffer; 3862 3863 /* __get_free_pages failed, fall back to vmalloc */ 3864 buffer = vzalloc((1 << order) * PAGE_SIZE); 3865 if (buffer) 3866 return buffer; 3867 3868 /* vmalloc failed, lets dig into swap here */ 3869 gfp_flags &= ~__GFP_NORETRY; 3870 buffer = (char *) __get_free_pages(gfp_flags, order); 3871 if (buffer) 3872 return buffer; 3873 3874 /* complete and utter failure */ 3875 return NULL; 3876 } 3877 3878 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 3879 { 3880 unsigned int block_nr = req->tp_block_nr; 3881 struct pgv *pg_vec; 3882 int i; 3883 3884 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL); 3885 if (unlikely(!pg_vec)) 3886 goto out; 3887 3888 for (i = 0; i < block_nr; i++) { 3889 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 3890 if (unlikely(!pg_vec[i].buffer)) 3891 goto out_free_pgvec; 3892 } 3893 3894 out: 3895 return pg_vec; 3896 3897 out_free_pgvec: 3898 free_pg_vec(pg_vec, order, block_nr); 3899 pg_vec = NULL; 3900 goto out; 3901 } 3902 3903 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 3904 int closing, int tx_ring) 3905 { 3906 struct pgv *pg_vec = NULL; 3907 struct packet_sock *po = pkt_sk(sk); 3908 int was_running, order = 0; 3909 struct packet_ring_buffer *rb; 3910 struct sk_buff_head *rb_queue; 3911 __be16 num; 3912 int err = -EINVAL; 3913 /* Added to avoid minimal code churn */ 3914 struct tpacket_req *req = &req_u->req; 3915 3916 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */ 3917 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) { 3918 WARN(1, "Tx-ring is not supported.\n"); 3919 goto out; 3920 } 3921 3922 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 3923 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 3924 3925 err = -EBUSY; 3926 if (!closing) { 3927 if (atomic_read(&po->mapped)) 3928 goto out; 3929 if (packet_read_pending(rb)) 3930 goto out; 3931 } 3932 3933 if (req->tp_block_nr) { 3934 /* Sanity tests and some calculations */ 3935 err = -EBUSY; 3936 if (unlikely(rb->pg_vec)) 3937 goto out; 3938 3939 switch (po->tp_version) { 3940 case TPACKET_V1: 3941 po->tp_hdrlen = TPACKET_HDRLEN; 3942 break; 3943 case TPACKET_V2: 3944 po->tp_hdrlen = TPACKET2_HDRLEN; 3945 break; 3946 case TPACKET_V3: 3947 po->tp_hdrlen = TPACKET3_HDRLEN; 3948 break; 3949 } 3950 3951 err = -EINVAL; 3952 if (unlikely((int)req->tp_block_size <= 0)) 3953 goto out; 3954 if (unlikely(req->tp_block_size & (PAGE_SIZE - 1))) 3955 goto out; 3956 if (po->tp_version >= TPACKET_V3 && 3957 (int)(req->tp_block_size - 3958 BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0) 3959 goto out; 3960 if (unlikely(req->tp_frame_size < po->tp_hdrlen + 3961 po->tp_reserve)) 3962 goto out; 3963 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 3964 goto out; 3965 3966 rb->frames_per_block = req->tp_block_size/req->tp_frame_size; 3967 if (unlikely(rb->frames_per_block <= 0)) 3968 goto out; 3969 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 3970 req->tp_frame_nr)) 3971 goto out; 3972 3973 err = -ENOMEM; 3974 order = get_order(req->tp_block_size); 3975 pg_vec = alloc_pg_vec(req, order); 3976 if (unlikely(!pg_vec)) 3977 goto out; 3978 switch (po->tp_version) { 3979 case TPACKET_V3: 3980 /* Transmit path is not supported. We checked 3981 * it above but just being paranoid 3982 */ 3983 if (!tx_ring) 3984 init_prb_bdqc(po, rb, pg_vec, req_u); 3985 break; 3986 default: 3987 break; 3988 } 3989 } 3990 /* Done */ 3991 else { 3992 err = -EINVAL; 3993 if (unlikely(req->tp_frame_nr)) 3994 goto out; 3995 } 3996 3997 lock_sock(sk); 3998 3999 /* Detach socket from network */ 4000 spin_lock(&po->bind_lock); 4001 was_running = po->running; 4002 num = po->num; 4003 if (was_running) { 4004 po->num = 0; 4005 __unregister_prot_hook(sk, false); 4006 } 4007 spin_unlock(&po->bind_lock); 4008 4009 synchronize_net(); 4010 4011 err = -EBUSY; 4012 mutex_lock(&po->pg_vec_lock); 4013 if (closing || atomic_read(&po->mapped) == 0) { 4014 err = 0; 4015 spin_lock_bh(&rb_queue->lock); 4016 swap(rb->pg_vec, pg_vec); 4017 rb->frame_max = (req->tp_frame_nr - 1); 4018 rb->head = 0; 4019 rb->frame_size = req->tp_frame_size; 4020 spin_unlock_bh(&rb_queue->lock); 4021 4022 swap(rb->pg_vec_order, order); 4023 swap(rb->pg_vec_len, req->tp_block_nr); 4024 4025 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 4026 po->prot_hook.func = (po->rx_ring.pg_vec) ? 4027 tpacket_rcv : packet_rcv; 4028 skb_queue_purge(rb_queue); 4029 if (atomic_read(&po->mapped)) 4030 pr_err("packet_mmap: vma is busy: %d\n", 4031 atomic_read(&po->mapped)); 4032 } 4033 mutex_unlock(&po->pg_vec_lock); 4034 4035 spin_lock(&po->bind_lock); 4036 if (was_running) { 4037 po->num = num; 4038 register_prot_hook(sk); 4039 } 4040 spin_unlock(&po->bind_lock); 4041 if (closing && (po->tp_version > TPACKET_V2)) { 4042 /* Because we don't support block-based V3 on tx-ring */ 4043 if (!tx_ring) 4044 prb_shutdown_retire_blk_timer(po, rb_queue); 4045 } 4046 release_sock(sk); 4047 4048 if (pg_vec) 4049 free_pg_vec(pg_vec, order, req->tp_block_nr); 4050 out: 4051 return err; 4052 } 4053 4054 static int packet_mmap(struct file *file, struct socket *sock, 4055 struct vm_area_struct *vma) 4056 { 4057 struct sock *sk = sock->sk; 4058 struct packet_sock *po = pkt_sk(sk); 4059 unsigned long size, expected_size; 4060 struct packet_ring_buffer *rb; 4061 unsigned long start; 4062 int err = -EINVAL; 4063 int i; 4064 4065 if (vma->vm_pgoff) 4066 return -EINVAL; 4067 4068 mutex_lock(&po->pg_vec_lock); 4069 4070 expected_size = 0; 4071 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4072 if (rb->pg_vec) { 4073 expected_size += rb->pg_vec_len 4074 * rb->pg_vec_pages 4075 * PAGE_SIZE; 4076 } 4077 } 4078 4079 if (expected_size == 0) 4080 goto out; 4081 4082 size = vma->vm_end - vma->vm_start; 4083 if (size != expected_size) 4084 goto out; 4085 4086 start = vma->vm_start; 4087 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4088 if (rb->pg_vec == NULL) 4089 continue; 4090 4091 for (i = 0; i < rb->pg_vec_len; i++) { 4092 struct page *page; 4093 void *kaddr = rb->pg_vec[i].buffer; 4094 int pg_num; 4095 4096 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 4097 page = pgv_to_page(kaddr); 4098 err = vm_insert_page(vma, start, page); 4099 if (unlikely(err)) 4100 goto out; 4101 start += PAGE_SIZE; 4102 kaddr += PAGE_SIZE; 4103 } 4104 } 4105 } 4106 4107 atomic_inc(&po->mapped); 4108 vma->vm_ops = &packet_mmap_ops; 4109 err = 0; 4110 4111 out: 4112 mutex_unlock(&po->pg_vec_lock); 4113 return err; 4114 } 4115 4116 static const struct proto_ops packet_ops_spkt = { 4117 .family = PF_PACKET, 4118 .owner = THIS_MODULE, 4119 .release = packet_release, 4120 .bind = packet_bind_spkt, 4121 .connect = sock_no_connect, 4122 .socketpair = sock_no_socketpair, 4123 .accept = sock_no_accept, 4124 .getname = packet_getname_spkt, 4125 .poll = datagram_poll, 4126 .ioctl = packet_ioctl, 4127 .listen = sock_no_listen, 4128 .shutdown = sock_no_shutdown, 4129 .setsockopt = sock_no_setsockopt, 4130 .getsockopt = sock_no_getsockopt, 4131 .sendmsg = packet_sendmsg_spkt, 4132 .recvmsg = packet_recvmsg, 4133 .mmap = sock_no_mmap, 4134 .sendpage = sock_no_sendpage, 4135 }; 4136 4137 static const struct proto_ops packet_ops = { 4138 .family = PF_PACKET, 4139 .owner = THIS_MODULE, 4140 .release = packet_release, 4141 .bind = packet_bind, 4142 .connect = sock_no_connect, 4143 .socketpair = sock_no_socketpair, 4144 .accept = sock_no_accept, 4145 .getname = packet_getname, 4146 .poll = packet_poll, 4147 .ioctl = packet_ioctl, 4148 .listen = sock_no_listen, 4149 .shutdown = sock_no_shutdown, 4150 .setsockopt = packet_setsockopt, 4151 .getsockopt = packet_getsockopt, 4152 .sendmsg = packet_sendmsg, 4153 .recvmsg = packet_recvmsg, 4154 .mmap = packet_mmap, 4155 .sendpage = sock_no_sendpage, 4156 }; 4157 4158 static const struct net_proto_family packet_family_ops = { 4159 .family = PF_PACKET, 4160 .create = packet_create, 4161 .owner = THIS_MODULE, 4162 }; 4163 4164 static struct notifier_block packet_netdev_notifier = { 4165 .notifier_call = packet_notifier, 4166 }; 4167 4168 #ifdef CONFIG_PROC_FS 4169 4170 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 4171 __acquires(RCU) 4172 { 4173 struct net *net = seq_file_net(seq); 4174 4175 rcu_read_lock(); 4176 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 4177 } 4178 4179 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4180 { 4181 struct net *net = seq_file_net(seq); 4182 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 4183 } 4184 4185 static void packet_seq_stop(struct seq_file *seq, void *v) 4186 __releases(RCU) 4187 { 4188 rcu_read_unlock(); 4189 } 4190 4191 static int packet_seq_show(struct seq_file *seq, void *v) 4192 { 4193 if (v == SEQ_START_TOKEN) 4194 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n"); 4195 else { 4196 struct sock *s = sk_entry(v); 4197 const struct packet_sock *po = pkt_sk(s); 4198 4199 seq_printf(seq, 4200 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 4201 s, 4202 atomic_read(&s->sk_refcnt), 4203 s->sk_type, 4204 ntohs(po->num), 4205 po->ifindex, 4206 po->running, 4207 atomic_read(&s->sk_rmem_alloc), 4208 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), 4209 sock_i_ino(s)); 4210 } 4211 4212 return 0; 4213 } 4214 4215 static const struct seq_operations packet_seq_ops = { 4216 .start = packet_seq_start, 4217 .next = packet_seq_next, 4218 .stop = packet_seq_stop, 4219 .show = packet_seq_show, 4220 }; 4221 4222 static int packet_seq_open(struct inode *inode, struct file *file) 4223 { 4224 return seq_open_net(inode, file, &packet_seq_ops, 4225 sizeof(struct seq_net_private)); 4226 } 4227 4228 static const struct file_operations packet_seq_fops = { 4229 .owner = THIS_MODULE, 4230 .open = packet_seq_open, 4231 .read = seq_read, 4232 .llseek = seq_lseek, 4233 .release = seq_release_net, 4234 }; 4235 4236 #endif 4237 4238 static int __net_init packet_net_init(struct net *net) 4239 { 4240 mutex_init(&net->packet.sklist_lock); 4241 INIT_HLIST_HEAD(&net->packet.sklist); 4242 4243 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops)) 4244 return -ENOMEM; 4245 4246 return 0; 4247 } 4248 4249 static void __net_exit packet_net_exit(struct net *net) 4250 { 4251 remove_proc_entry("packet", net->proc_net); 4252 } 4253 4254 static struct pernet_operations packet_net_ops = { 4255 .init = packet_net_init, 4256 .exit = packet_net_exit, 4257 }; 4258 4259 4260 static void __exit packet_exit(void) 4261 { 4262 unregister_netdevice_notifier(&packet_netdev_notifier); 4263 unregister_pernet_subsys(&packet_net_ops); 4264 sock_unregister(PF_PACKET); 4265 proto_unregister(&packet_proto); 4266 } 4267 4268 static int __init packet_init(void) 4269 { 4270 int rc = proto_register(&packet_proto, 0); 4271 4272 if (rc != 0) 4273 goto out; 4274 4275 sock_register(&packet_family_ops); 4276 register_pernet_subsys(&packet_net_ops); 4277 register_netdevice_notifier(&packet_netdev_notifier); 4278 out: 4279 return rc; 4280 } 4281 4282 module_init(packet_init); 4283 module_exit(packet_exit); 4284 MODULE_LICENSE("GPL"); 4285 MODULE_ALIAS_NETPROTO(PF_PACKET); 4286