1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PACKET - implements raw packet sockets. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Alan Cox, <gw4pts@gw4pts.ampr.org> 12 * 13 * Fixes: 14 * Alan Cox : verify_area() now used correctly 15 * Alan Cox : new skbuff lists, look ma no backlogs! 16 * Alan Cox : tidied skbuff lists. 17 * Alan Cox : Now uses generic datagram routines I 18 * added. Also fixed the peek/read crash 19 * from all old Linux datagram code. 20 * Alan Cox : Uses the improved datagram code. 21 * Alan Cox : Added NULL's for socket options. 22 * Alan Cox : Re-commented the code. 23 * Alan Cox : Use new kernel side addressing 24 * Rob Janssen : Correct MTU usage. 25 * Dave Platt : Counter leaks caused by incorrect 26 * interrupt locking and some slightly 27 * dubious gcc output. Can you read 28 * compiler: it said _VOLATILE_ 29 * Richard Kooijman : Timestamp fixes. 30 * Alan Cox : New buffers. Use sk->mac.raw. 31 * Alan Cox : sendmsg/recvmsg support. 32 * Alan Cox : Protocol setting support 33 * Alexey Kuznetsov : Untied from IPv4 stack. 34 * Cyrus Durgin : Fixed kerneld for kmod. 35 * Michal Ostrowski : Module initialization cleanup. 36 * Ulises Alonso : Frame number limit removal and 37 * packet_set_ring memory leak. 38 * Eric Biederman : Allow for > 8 byte hardware addresses. 39 * The convention is that longer addresses 40 * will simply extend the hardware address 41 * byte arrays at the end of sockaddr_ll 42 * and packet_mreq. 43 * Johann Baudy : Added TX RING. 44 * Chetan Loke : Implemented TPACKET_V3 block abstraction 45 * layer. 46 * Copyright (C) 2011, <lokec@ccs.neu.edu> 47 */ 48 49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 50 51 #include <linux/ethtool.h> 52 #include <linux/filter.h> 53 #include <linux/types.h> 54 #include <linux/mm.h> 55 #include <linux/capability.h> 56 #include <linux/fcntl.h> 57 #include <linux/socket.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/if_packet.h> 62 #include <linux/wireless.h> 63 #include <linux/kernel.h> 64 #include <linux/kmod.h> 65 #include <linux/slab.h> 66 #include <linux/vmalloc.h> 67 #include <net/net_namespace.h> 68 #include <net/ip.h> 69 #include <net/protocol.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <linux/errno.h> 73 #include <linux/timer.h> 74 #include <linux/uaccess.h> 75 #include <asm/ioctls.h> 76 #include <asm/page.h> 77 #include <asm/cacheflush.h> 78 #include <asm/io.h> 79 #include <linux/proc_fs.h> 80 #include <linux/seq_file.h> 81 #include <linux/poll.h> 82 #include <linux/module.h> 83 #include <linux/init.h> 84 #include <linux/mutex.h> 85 #include <linux/if_vlan.h> 86 #include <linux/virtio_net.h> 87 #include <linux/errqueue.h> 88 #include <linux/net_tstamp.h> 89 #include <linux/percpu.h> 90 #ifdef CONFIG_INET 91 #include <net/inet_common.h> 92 #endif 93 #include <linux/bpf.h> 94 #include <net/compat.h> 95 #include <linux/netfilter_netdev.h> 96 97 #include "internal.h" 98 99 /* 100 Assumptions: 101 - If the device has no dev->header_ops->create, there is no LL header 102 visible above the device. In this case, its hard_header_len should be 0. 103 The device may prepend its own header internally. In this case, its 104 needed_headroom should be set to the space needed for it to add its 105 internal header. 106 For example, a WiFi driver pretending to be an Ethernet driver should 107 set its hard_header_len to be the Ethernet header length, and set its 108 needed_headroom to be (the real WiFi header length - the fake Ethernet 109 header length). 110 - packet socket receives packets with pulled ll header, 111 so that SOCK_RAW should push it back. 112 113 On receive: 114 ----------- 115 116 Incoming, dev_has_header(dev) == true 117 mac_header -> ll header 118 data -> data 119 120 Outgoing, dev_has_header(dev) == true 121 mac_header -> ll header 122 data -> ll header 123 124 Incoming, dev_has_header(dev) == false 125 mac_header -> data 126 However drivers often make it point to the ll header. 127 This is incorrect because the ll header should be invisible to us. 128 data -> data 129 130 Outgoing, dev_has_header(dev) == false 131 mac_header -> data. ll header is invisible to us. 132 data -> data 133 134 Resume 135 If dev_has_header(dev) == false we are unable to restore the ll header, 136 because it is invisible to us. 137 138 139 On transmit: 140 ------------ 141 142 dev_has_header(dev) == true 143 mac_header -> ll header 144 data -> ll header 145 146 dev_has_header(dev) == false (ll header is invisible to us) 147 mac_header -> data 148 data -> data 149 150 We should set network_header on output to the correct position, 151 packet classifier depends on it. 152 */ 153 154 /* Private packet socket structures. */ 155 156 /* identical to struct packet_mreq except it has 157 * a longer address field. 158 */ 159 struct packet_mreq_max { 160 int mr_ifindex; 161 unsigned short mr_type; 162 unsigned short mr_alen; 163 unsigned char mr_address[MAX_ADDR_LEN]; 164 }; 165 166 union tpacket_uhdr { 167 struct tpacket_hdr *h1; 168 struct tpacket2_hdr *h2; 169 struct tpacket3_hdr *h3; 170 void *raw; 171 }; 172 173 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 174 int closing, int tx_ring); 175 176 #define V3_ALIGNMENT (8) 177 178 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 179 180 #define BLK_PLUS_PRIV(sz_of_priv) \ 181 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 182 183 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 184 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 185 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 186 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 187 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 188 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 189 190 struct packet_sock; 191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 192 struct packet_type *pt, struct net_device *orig_dev); 193 194 static void *packet_previous_frame(struct packet_sock *po, 195 struct packet_ring_buffer *rb, 196 int status); 197 static void packet_increment_head(struct packet_ring_buffer *buff); 198 static int prb_curr_blk_in_use(struct tpacket_block_desc *); 199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 200 struct packet_sock *); 201 static void prb_retire_current_block(struct tpacket_kbdq_core *, 202 struct packet_sock *, unsigned int status); 203 static int prb_queue_frozen(struct tpacket_kbdq_core *); 204 static void prb_open_block(struct tpacket_kbdq_core *, 205 struct tpacket_block_desc *); 206 static void prb_retire_rx_blk_timer_expired(struct timer_list *); 207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 208 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 209 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 210 struct tpacket3_hdr *); 211 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 212 struct tpacket3_hdr *); 213 static void packet_flush_mclist(struct sock *sk); 214 static u16 packet_pick_tx_queue(struct sk_buff *skb); 215 216 struct packet_skb_cb { 217 union { 218 struct sockaddr_pkt pkt; 219 union { 220 /* Trick: alias skb original length with 221 * ll.sll_family and ll.protocol in order 222 * to save room. 223 */ 224 unsigned int origlen; 225 struct sockaddr_ll ll; 226 }; 227 } sa; 228 }; 229 230 #define vio_le() virtio_legacy_is_little_endian() 231 232 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 233 234 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 235 #define GET_PBLOCK_DESC(x, bid) \ 236 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 237 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 238 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 239 #define GET_NEXT_PRB_BLK_NUM(x) \ 240 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 241 ((x)->kactive_blk_num+1) : 0) 242 243 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 244 static void __fanout_link(struct sock *sk, struct packet_sock *po); 245 246 #ifdef CONFIG_NETFILTER_EGRESS 247 static noinline struct sk_buff *nf_hook_direct_egress(struct sk_buff *skb) 248 { 249 struct sk_buff *next, *head = NULL, *tail; 250 int rc; 251 252 rcu_read_lock(); 253 for (; skb != NULL; skb = next) { 254 next = skb->next; 255 skb_mark_not_on_list(skb); 256 257 if (!nf_hook_egress(skb, &rc, skb->dev)) 258 continue; 259 260 if (!head) 261 head = skb; 262 else 263 tail->next = skb; 264 265 tail = skb; 266 } 267 rcu_read_unlock(); 268 269 return head; 270 } 271 #endif 272 273 static int packet_direct_xmit(struct sk_buff *skb) 274 { 275 #ifdef CONFIG_NETFILTER_EGRESS 276 if (nf_hook_egress_active()) { 277 skb = nf_hook_direct_egress(skb); 278 if (!skb) 279 return NET_XMIT_DROP; 280 } 281 #endif 282 return dev_direct_xmit(skb, packet_pick_tx_queue(skb)); 283 } 284 285 static struct net_device *packet_cached_dev_get(struct packet_sock *po) 286 { 287 struct net_device *dev; 288 289 rcu_read_lock(); 290 dev = rcu_dereference(po->cached_dev); 291 dev_hold(dev); 292 rcu_read_unlock(); 293 294 return dev; 295 } 296 297 static void packet_cached_dev_assign(struct packet_sock *po, 298 struct net_device *dev) 299 { 300 rcu_assign_pointer(po->cached_dev, dev); 301 } 302 303 static void packet_cached_dev_reset(struct packet_sock *po) 304 { 305 RCU_INIT_POINTER(po->cached_dev, NULL); 306 } 307 308 static bool packet_use_direct_xmit(const struct packet_sock *po) 309 { 310 return po->xmit == packet_direct_xmit; 311 } 312 313 static u16 packet_pick_tx_queue(struct sk_buff *skb) 314 { 315 struct net_device *dev = skb->dev; 316 const struct net_device_ops *ops = dev->netdev_ops; 317 int cpu = raw_smp_processor_id(); 318 u16 queue_index; 319 320 #ifdef CONFIG_XPS 321 skb->sender_cpu = cpu + 1; 322 #endif 323 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues); 324 if (ops->ndo_select_queue) { 325 queue_index = ops->ndo_select_queue(dev, skb, NULL); 326 queue_index = netdev_cap_txqueue(dev, queue_index); 327 } else { 328 queue_index = netdev_pick_tx(dev, skb, NULL); 329 } 330 331 return queue_index; 332 } 333 334 /* __register_prot_hook must be invoked through register_prot_hook 335 * or from a context in which asynchronous accesses to the packet 336 * socket is not possible (packet_create()). 337 */ 338 static void __register_prot_hook(struct sock *sk) 339 { 340 struct packet_sock *po = pkt_sk(sk); 341 342 if (!po->running) { 343 if (po->fanout) 344 __fanout_link(sk, po); 345 else 346 dev_add_pack(&po->prot_hook); 347 348 sock_hold(sk); 349 po->running = 1; 350 } 351 } 352 353 static void register_prot_hook(struct sock *sk) 354 { 355 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock); 356 __register_prot_hook(sk); 357 } 358 359 /* If the sync parameter is true, we will temporarily drop 360 * the po->bind_lock and do a synchronize_net to make sure no 361 * asynchronous packet processing paths still refer to the elements 362 * of po->prot_hook. If the sync parameter is false, it is the 363 * callers responsibility to take care of this. 364 */ 365 static void __unregister_prot_hook(struct sock *sk, bool sync) 366 { 367 struct packet_sock *po = pkt_sk(sk); 368 369 lockdep_assert_held_once(&po->bind_lock); 370 371 po->running = 0; 372 373 if (po->fanout) 374 __fanout_unlink(sk, po); 375 else 376 __dev_remove_pack(&po->prot_hook); 377 378 __sock_put(sk); 379 380 if (sync) { 381 spin_unlock(&po->bind_lock); 382 synchronize_net(); 383 spin_lock(&po->bind_lock); 384 } 385 } 386 387 static void unregister_prot_hook(struct sock *sk, bool sync) 388 { 389 struct packet_sock *po = pkt_sk(sk); 390 391 if (po->running) 392 __unregister_prot_hook(sk, sync); 393 } 394 395 static inline struct page * __pure pgv_to_page(void *addr) 396 { 397 if (is_vmalloc_addr(addr)) 398 return vmalloc_to_page(addr); 399 return virt_to_page(addr); 400 } 401 402 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 403 { 404 union tpacket_uhdr h; 405 406 h.raw = frame; 407 switch (po->tp_version) { 408 case TPACKET_V1: 409 h.h1->tp_status = status; 410 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 411 break; 412 case TPACKET_V2: 413 h.h2->tp_status = status; 414 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 415 break; 416 case TPACKET_V3: 417 h.h3->tp_status = status; 418 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 419 break; 420 default: 421 WARN(1, "TPACKET version not supported.\n"); 422 BUG(); 423 } 424 425 smp_wmb(); 426 } 427 428 static int __packet_get_status(const struct packet_sock *po, void *frame) 429 { 430 union tpacket_uhdr h; 431 432 smp_rmb(); 433 434 h.raw = frame; 435 switch (po->tp_version) { 436 case TPACKET_V1: 437 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 438 return h.h1->tp_status; 439 case TPACKET_V2: 440 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 441 return h.h2->tp_status; 442 case TPACKET_V3: 443 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 444 return h.h3->tp_status; 445 default: 446 WARN(1, "TPACKET version not supported.\n"); 447 BUG(); 448 return 0; 449 } 450 } 451 452 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts, 453 unsigned int flags) 454 { 455 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 456 457 if (shhwtstamps && 458 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && 459 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts)) 460 return TP_STATUS_TS_RAW_HARDWARE; 461 462 if ((flags & SOF_TIMESTAMPING_SOFTWARE) && 463 ktime_to_timespec64_cond(skb_tstamp(skb), ts)) 464 return TP_STATUS_TS_SOFTWARE; 465 466 return 0; 467 } 468 469 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, 470 struct sk_buff *skb) 471 { 472 union tpacket_uhdr h; 473 struct timespec64 ts; 474 __u32 ts_status; 475 476 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 477 return 0; 478 479 h.raw = frame; 480 /* 481 * versions 1 through 3 overflow the timestamps in y2106, since they 482 * all store the seconds in a 32-bit unsigned integer. 483 * If we create a version 4, that should have a 64-bit timestamp, 484 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit 485 * nanoseconds. 486 */ 487 switch (po->tp_version) { 488 case TPACKET_V1: 489 h.h1->tp_sec = ts.tv_sec; 490 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 491 break; 492 case TPACKET_V2: 493 h.h2->tp_sec = ts.tv_sec; 494 h.h2->tp_nsec = ts.tv_nsec; 495 break; 496 case TPACKET_V3: 497 h.h3->tp_sec = ts.tv_sec; 498 h.h3->tp_nsec = ts.tv_nsec; 499 break; 500 default: 501 WARN(1, "TPACKET version not supported.\n"); 502 BUG(); 503 } 504 505 /* one flush is safe, as both fields always lie on the same cacheline */ 506 flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); 507 smp_wmb(); 508 509 return ts_status; 510 } 511 512 static void *packet_lookup_frame(const struct packet_sock *po, 513 const struct packet_ring_buffer *rb, 514 unsigned int position, 515 int status) 516 { 517 unsigned int pg_vec_pos, frame_offset; 518 union tpacket_uhdr h; 519 520 pg_vec_pos = position / rb->frames_per_block; 521 frame_offset = position % rb->frames_per_block; 522 523 h.raw = rb->pg_vec[pg_vec_pos].buffer + 524 (frame_offset * rb->frame_size); 525 526 if (status != __packet_get_status(po, h.raw)) 527 return NULL; 528 529 return h.raw; 530 } 531 532 static void *packet_current_frame(struct packet_sock *po, 533 struct packet_ring_buffer *rb, 534 int status) 535 { 536 return packet_lookup_frame(po, rb, rb->head, status); 537 } 538 539 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 540 { 541 del_timer_sync(&pkc->retire_blk_timer); 542 } 543 544 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 545 struct sk_buff_head *rb_queue) 546 { 547 struct tpacket_kbdq_core *pkc; 548 549 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 550 551 spin_lock_bh(&rb_queue->lock); 552 pkc->delete_blk_timer = 1; 553 spin_unlock_bh(&rb_queue->lock); 554 555 prb_del_retire_blk_timer(pkc); 556 } 557 558 static void prb_setup_retire_blk_timer(struct packet_sock *po) 559 { 560 struct tpacket_kbdq_core *pkc; 561 562 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 563 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired, 564 0); 565 pkc->retire_blk_timer.expires = jiffies; 566 } 567 568 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 569 int blk_size_in_bytes) 570 { 571 struct net_device *dev; 572 unsigned int mbits, div; 573 struct ethtool_link_ksettings ecmd; 574 int err; 575 576 rtnl_lock(); 577 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 578 if (unlikely(!dev)) { 579 rtnl_unlock(); 580 return DEFAULT_PRB_RETIRE_TOV; 581 } 582 err = __ethtool_get_link_ksettings(dev, &ecmd); 583 rtnl_unlock(); 584 if (err) 585 return DEFAULT_PRB_RETIRE_TOV; 586 587 /* If the link speed is so slow you don't really 588 * need to worry about perf anyways 589 */ 590 if (ecmd.base.speed < SPEED_1000 || 591 ecmd.base.speed == SPEED_UNKNOWN) 592 return DEFAULT_PRB_RETIRE_TOV; 593 594 div = ecmd.base.speed / 1000; 595 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 596 597 if (div) 598 mbits /= div; 599 600 if (div) 601 return mbits + 1; 602 return mbits; 603 } 604 605 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 606 union tpacket_req_u *req_u) 607 { 608 p1->feature_req_word = req_u->req3.tp_feature_req_word; 609 } 610 611 static void init_prb_bdqc(struct packet_sock *po, 612 struct packet_ring_buffer *rb, 613 struct pgv *pg_vec, 614 union tpacket_req_u *req_u) 615 { 616 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); 617 struct tpacket_block_desc *pbd; 618 619 memset(p1, 0x0, sizeof(*p1)); 620 621 p1->knxt_seq_num = 1; 622 p1->pkbdq = pg_vec; 623 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 624 p1->pkblk_start = pg_vec[0].buffer; 625 p1->kblk_size = req_u->req3.tp_block_size; 626 p1->knum_blocks = req_u->req3.tp_block_nr; 627 p1->hdrlen = po->tp_hdrlen; 628 p1->version = po->tp_version; 629 p1->last_kactive_blk_num = 0; 630 po->stats.stats3.tp_freeze_q_cnt = 0; 631 if (req_u->req3.tp_retire_blk_tov) 632 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 633 else 634 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 635 req_u->req3.tp_block_size); 636 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 637 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 638 rwlock_init(&p1->blk_fill_in_prog_lock); 639 640 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); 641 prb_init_ft_ops(p1, req_u); 642 prb_setup_retire_blk_timer(po); 643 prb_open_block(p1, pbd); 644 } 645 646 /* Do NOT update the last_blk_num first. 647 * Assumes sk_buff_head lock is held. 648 */ 649 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 650 { 651 mod_timer(&pkc->retire_blk_timer, 652 jiffies + pkc->tov_in_jiffies); 653 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 654 } 655 656 /* 657 * Timer logic: 658 * 1) We refresh the timer only when we open a block. 659 * By doing this we don't waste cycles refreshing the timer 660 * on packet-by-packet basis. 661 * 662 * With a 1MB block-size, on a 1Gbps line, it will take 663 * i) ~8 ms to fill a block + ii) memcpy etc. 664 * In this cut we are not accounting for the memcpy time. 665 * 666 * So, if the user sets the 'tmo' to 10ms then the timer 667 * will never fire while the block is still getting filled 668 * (which is what we want). However, the user could choose 669 * to close a block early and that's fine. 670 * 671 * But when the timer does fire, we check whether or not to refresh it. 672 * Since the tmo granularity is in msecs, it is not too expensive 673 * to refresh the timer, lets say every '8' msecs. 674 * Either the user can set the 'tmo' or we can derive it based on 675 * a) line-speed and b) block-size. 676 * prb_calc_retire_blk_tmo() calculates the tmo. 677 * 678 */ 679 static void prb_retire_rx_blk_timer_expired(struct timer_list *t) 680 { 681 struct packet_sock *po = 682 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer); 683 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 684 unsigned int frozen; 685 struct tpacket_block_desc *pbd; 686 687 spin_lock(&po->sk.sk_receive_queue.lock); 688 689 frozen = prb_queue_frozen(pkc); 690 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 691 692 if (unlikely(pkc->delete_blk_timer)) 693 goto out; 694 695 /* We only need to plug the race when the block is partially filled. 696 * tpacket_rcv: 697 * lock(); increment BLOCK_NUM_PKTS; unlock() 698 * copy_bits() is in progress ... 699 * timer fires on other cpu: 700 * we can't retire the current block because copy_bits 701 * is in progress. 702 * 703 */ 704 if (BLOCK_NUM_PKTS(pbd)) { 705 /* Waiting for skb_copy_bits to finish... */ 706 write_lock(&pkc->blk_fill_in_prog_lock); 707 write_unlock(&pkc->blk_fill_in_prog_lock); 708 } 709 710 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 711 if (!frozen) { 712 if (!BLOCK_NUM_PKTS(pbd)) { 713 /* An empty block. Just refresh the timer. */ 714 goto refresh_timer; 715 } 716 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 717 if (!prb_dispatch_next_block(pkc, po)) 718 goto refresh_timer; 719 else 720 goto out; 721 } else { 722 /* Case 1. Queue was frozen because user-space was 723 * lagging behind. 724 */ 725 if (prb_curr_blk_in_use(pbd)) { 726 /* 727 * Ok, user-space is still behind. 728 * So just refresh the timer. 729 */ 730 goto refresh_timer; 731 } else { 732 /* Case 2. queue was frozen,user-space caught up, 733 * now the link went idle && the timer fired. 734 * We don't have a block to close.So we open this 735 * block and restart the timer. 736 * opening a block thaws the queue,restarts timer 737 * Thawing/timer-refresh is a side effect. 738 */ 739 prb_open_block(pkc, pbd); 740 goto out; 741 } 742 } 743 } 744 745 refresh_timer: 746 _prb_refresh_rx_retire_blk_timer(pkc); 747 748 out: 749 spin_unlock(&po->sk.sk_receive_queue.lock); 750 } 751 752 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 753 struct tpacket_block_desc *pbd1, __u32 status) 754 { 755 /* Flush everything minus the block header */ 756 757 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 758 u8 *start, *end; 759 760 start = (u8 *)pbd1; 761 762 /* Skip the block header(we know header WILL fit in 4K) */ 763 start += PAGE_SIZE; 764 765 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 766 for (; start < end; start += PAGE_SIZE) 767 flush_dcache_page(pgv_to_page(start)); 768 769 smp_wmb(); 770 #endif 771 772 /* Now update the block status. */ 773 774 BLOCK_STATUS(pbd1) = status; 775 776 /* Flush the block header */ 777 778 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 779 start = (u8 *)pbd1; 780 flush_dcache_page(pgv_to_page(start)); 781 782 smp_wmb(); 783 #endif 784 } 785 786 /* 787 * Side effect: 788 * 789 * 1) flush the block 790 * 2) Increment active_blk_num 791 * 792 * Note:We DONT refresh the timer on purpose. 793 * Because almost always the next block will be opened. 794 */ 795 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 796 struct tpacket_block_desc *pbd1, 797 struct packet_sock *po, unsigned int stat) 798 { 799 __u32 status = TP_STATUS_USER | stat; 800 801 struct tpacket3_hdr *last_pkt; 802 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 803 struct sock *sk = &po->sk; 804 805 if (atomic_read(&po->tp_drops)) 806 status |= TP_STATUS_LOSING; 807 808 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 809 last_pkt->tp_next_offset = 0; 810 811 /* Get the ts of the last pkt */ 812 if (BLOCK_NUM_PKTS(pbd1)) { 813 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 814 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 815 } else { 816 /* Ok, we tmo'd - so get the current time. 817 * 818 * It shouldn't really happen as we don't close empty 819 * blocks. See prb_retire_rx_blk_timer_expired(). 820 */ 821 struct timespec64 ts; 822 ktime_get_real_ts64(&ts); 823 h1->ts_last_pkt.ts_sec = ts.tv_sec; 824 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 825 } 826 827 smp_wmb(); 828 829 /* Flush the block */ 830 prb_flush_block(pkc1, pbd1, status); 831 832 sk->sk_data_ready(sk); 833 834 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 835 } 836 837 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 838 { 839 pkc->reset_pending_on_curr_blk = 0; 840 } 841 842 /* 843 * Side effect of opening a block: 844 * 845 * 1) prb_queue is thawed. 846 * 2) retire_blk_timer is refreshed. 847 * 848 */ 849 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 850 struct tpacket_block_desc *pbd1) 851 { 852 struct timespec64 ts; 853 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 854 855 smp_rmb(); 856 857 /* We could have just memset this but we will lose the 858 * flexibility of making the priv area sticky 859 */ 860 861 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 862 BLOCK_NUM_PKTS(pbd1) = 0; 863 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 864 865 ktime_get_real_ts64(&ts); 866 867 h1->ts_first_pkt.ts_sec = ts.tv_sec; 868 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 869 870 pkc1->pkblk_start = (char *)pbd1; 871 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 872 873 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 874 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 875 876 pbd1->version = pkc1->version; 877 pkc1->prev = pkc1->nxt_offset; 878 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 879 880 prb_thaw_queue(pkc1); 881 _prb_refresh_rx_retire_blk_timer(pkc1); 882 883 smp_wmb(); 884 } 885 886 /* 887 * Queue freeze logic: 888 * 1) Assume tp_block_nr = 8 blocks. 889 * 2) At time 't0', user opens Rx ring. 890 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 891 * 4) user-space is either sleeping or processing block '0'. 892 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 893 * it will close block-7,loop around and try to fill block '0'. 894 * call-flow: 895 * __packet_lookup_frame_in_block 896 * prb_retire_current_block() 897 * prb_dispatch_next_block() 898 * |->(BLOCK_STATUS == USER) evaluates to true 899 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 900 * 6) Now there are two cases: 901 * 6.1) Link goes idle right after the queue is frozen. 902 * But remember, the last open_block() refreshed the timer. 903 * When this timer expires,it will refresh itself so that we can 904 * re-open block-0 in near future. 905 * 6.2) Link is busy and keeps on receiving packets. This is a simple 906 * case and __packet_lookup_frame_in_block will check if block-0 907 * is free and can now be re-used. 908 */ 909 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 910 struct packet_sock *po) 911 { 912 pkc->reset_pending_on_curr_blk = 1; 913 po->stats.stats3.tp_freeze_q_cnt++; 914 } 915 916 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 917 918 /* 919 * If the next block is free then we will dispatch it 920 * and return a good offset. 921 * Else, we will freeze the queue. 922 * So, caller must check the return value. 923 */ 924 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 925 struct packet_sock *po) 926 { 927 struct tpacket_block_desc *pbd; 928 929 smp_rmb(); 930 931 /* 1. Get current block num */ 932 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 933 934 /* 2. If this block is currently in_use then freeze the queue */ 935 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 936 prb_freeze_queue(pkc, po); 937 return NULL; 938 } 939 940 /* 941 * 3. 942 * open this block and return the offset where the first packet 943 * needs to get stored. 944 */ 945 prb_open_block(pkc, pbd); 946 return (void *)pkc->nxt_offset; 947 } 948 949 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 950 struct packet_sock *po, unsigned int status) 951 { 952 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 953 954 /* retire/close the current block */ 955 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 956 /* 957 * Plug the case where copy_bits() is in progress on 958 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 959 * have space to copy the pkt in the current block and 960 * called prb_retire_current_block() 961 * 962 * We don't need to worry about the TMO case because 963 * the timer-handler already handled this case. 964 */ 965 if (!(status & TP_STATUS_BLK_TMO)) { 966 /* Waiting for skb_copy_bits to finish... */ 967 write_lock(&pkc->blk_fill_in_prog_lock); 968 write_unlock(&pkc->blk_fill_in_prog_lock); 969 } 970 prb_close_block(pkc, pbd, po, status); 971 return; 972 } 973 } 974 975 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd) 976 { 977 return TP_STATUS_USER & BLOCK_STATUS(pbd); 978 } 979 980 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 981 { 982 return pkc->reset_pending_on_curr_blk; 983 } 984 985 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 986 __releases(&pkc->blk_fill_in_prog_lock) 987 { 988 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 989 990 read_unlock(&pkc->blk_fill_in_prog_lock); 991 } 992 993 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 994 struct tpacket3_hdr *ppd) 995 { 996 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); 997 } 998 999 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 1000 struct tpacket3_hdr *ppd) 1001 { 1002 ppd->hv1.tp_rxhash = 0; 1003 } 1004 1005 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 1006 struct tpacket3_hdr *ppd) 1007 { 1008 if (skb_vlan_tag_present(pkc->skb)) { 1009 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); 1010 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); 1011 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 1012 } else { 1013 ppd->hv1.tp_vlan_tci = 0; 1014 ppd->hv1.tp_vlan_tpid = 0; 1015 ppd->tp_status = TP_STATUS_AVAILABLE; 1016 } 1017 } 1018 1019 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 1020 struct tpacket3_hdr *ppd) 1021 { 1022 ppd->hv1.tp_padding = 0; 1023 prb_fill_vlan_info(pkc, ppd); 1024 1025 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 1026 prb_fill_rxhash(pkc, ppd); 1027 else 1028 prb_clear_rxhash(pkc, ppd); 1029 } 1030 1031 static void prb_fill_curr_block(char *curr, 1032 struct tpacket_kbdq_core *pkc, 1033 struct tpacket_block_desc *pbd, 1034 unsigned int len) 1035 __acquires(&pkc->blk_fill_in_prog_lock) 1036 { 1037 struct tpacket3_hdr *ppd; 1038 1039 ppd = (struct tpacket3_hdr *)curr; 1040 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 1041 pkc->prev = curr; 1042 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 1043 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1044 BLOCK_NUM_PKTS(pbd) += 1; 1045 read_lock(&pkc->blk_fill_in_prog_lock); 1046 prb_run_all_ft_ops(pkc, ppd); 1047 } 1048 1049 /* Assumes caller has the sk->rx_queue.lock */ 1050 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1051 struct sk_buff *skb, 1052 unsigned int len 1053 ) 1054 { 1055 struct tpacket_kbdq_core *pkc; 1056 struct tpacket_block_desc *pbd; 1057 char *curr, *end; 1058 1059 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 1060 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1061 1062 /* Queue is frozen when user space is lagging behind */ 1063 if (prb_queue_frozen(pkc)) { 1064 /* 1065 * Check if that last block which caused the queue to freeze, 1066 * is still in_use by user-space. 1067 */ 1068 if (prb_curr_blk_in_use(pbd)) { 1069 /* Can't record this packet */ 1070 return NULL; 1071 } else { 1072 /* 1073 * Ok, the block was released by user-space. 1074 * Now let's open that block. 1075 * opening a block also thaws the queue. 1076 * Thawing is a side effect. 1077 */ 1078 prb_open_block(pkc, pbd); 1079 } 1080 } 1081 1082 smp_mb(); 1083 curr = pkc->nxt_offset; 1084 pkc->skb = skb; 1085 end = (char *)pbd + pkc->kblk_size; 1086 1087 /* first try the current block */ 1088 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1089 prb_fill_curr_block(curr, pkc, pbd, len); 1090 return (void *)curr; 1091 } 1092 1093 /* Ok, close the current block */ 1094 prb_retire_current_block(pkc, po, 0); 1095 1096 /* Now, try to dispatch the next block */ 1097 curr = (char *)prb_dispatch_next_block(pkc, po); 1098 if (curr) { 1099 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1100 prb_fill_curr_block(curr, pkc, pbd, len); 1101 return (void *)curr; 1102 } 1103 1104 /* 1105 * No free blocks are available.user_space hasn't caught up yet. 1106 * Queue was just frozen and now this packet will get dropped. 1107 */ 1108 return NULL; 1109 } 1110 1111 static void *packet_current_rx_frame(struct packet_sock *po, 1112 struct sk_buff *skb, 1113 int status, unsigned int len) 1114 { 1115 char *curr = NULL; 1116 switch (po->tp_version) { 1117 case TPACKET_V1: 1118 case TPACKET_V2: 1119 curr = packet_lookup_frame(po, &po->rx_ring, 1120 po->rx_ring.head, status); 1121 return curr; 1122 case TPACKET_V3: 1123 return __packet_lookup_frame_in_block(po, skb, len); 1124 default: 1125 WARN(1, "TPACKET version not supported\n"); 1126 BUG(); 1127 return NULL; 1128 } 1129 } 1130 1131 static void *prb_lookup_block(const struct packet_sock *po, 1132 const struct packet_ring_buffer *rb, 1133 unsigned int idx, 1134 int status) 1135 { 1136 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1137 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); 1138 1139 if (status != BLOCK_STATUS(pbd)) 1140 return NULL; 1141 return pbd; 1142 } 1143 1144 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1145 { 1146 unsigned int prev; 1147 if (rb->prb_bdqc.kactive_blk_num) 1148 prev = rb->prb_bdqc.kactive_blk_num-1; 1149 else 1150 prev = rb->prb_bdqc.knum_blocks-1; 1151 return prev; 1152 } 1153 1154 /* Assumes caller has held the rx_queue.lock */ 1155 static void *__prb_previous_block(struct packet_sock *po, 1156 struct packet_ring_buffer *rb, 1157 int status) 1158 { 1159 unsigned int previous = prb_previous_blk_num(rb); 1160 return prb_lookup_block(po, rb, previous, status); 1161 } 1162 1163 static void *packet_previous_rx_frame(struct packet_sock *po, 1164 struct packet_ring_buffer *rb, 1165 int status) 1166 { 1167 if (po->tp_version <= TPACKET_V2) 1168 return packet_previous_frame(po, rb, status); 1169 1170 return __prb_previous_block(po, rb, status); 1171 } 1172 1173 static void packet_increment_rx_head(struct packet_sock *po, 1174 struct packet_ring_buffer *rb) 1175 { 1176 switch (po->tp_version) { 1177 case TPACKET_V1: 1178 case TPACKET_V2: 1179 return packet_increment_head(rb); 1180 case TPACKET_V3: 1181 default: 1182 WARN(1, "TPACKET version not supported.\n"); 1183 BUG(); 1184 return; 1185 } 1186 } 1187 1188 static void *packet_previous_frame(struct packet_sock *po, 1189 struct packet_ring_buffer *rb, 1190 int status) 1191 { 1192 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1193 return packet_lookup_frame(po, rb, previous, status); 1194 } 1195 1196 static void packet_increment_head(struct packet_ring_buffer *buff) 1197 { 1198 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1199 } 1200 1201 static void packet_inc_pending(struct packet_ring_buffer *rb) 1202 { 1203 this_cpu_inc(*rb->pending_refcnt); 1204 } 1205 1206 static void packet_dec_pending(struct packet_ring_buffer *rb) 1207 { 1208 this_cpu_dec(*rb->pending_refcnt); 1209 } 1210 1211 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) 1212 { 1213 unsigned int refcnt = 0; 1214 int cpu; 1215 1216 /* We don't use pending refcount in rx_ring. */ 1217 if (rb->pending_refcnt == NULL) 1218 return 0; 1219 1220 for_each_possible_cpu(cpu) 1221 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); 1222 1223 return refcnt; 1224 } 1225 1226 static int packet_alloc_pending(struct packet_sock *po) 1227 { 1228 po->rx_ring.pending_refcnt = NULL; 1229 1230 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); 1231 if (unlikely(po->tx_ring.pending_refcnt == NULL)) 1232 return -ENOBUFS; 1233 1234 return 0; 1235 } 1236 1237 static void packet_free_pending(struct packet_sock *po) 1238 { 1239 free_percpu(po->tx_ring.pending_refcnt); 1240 } 1241 1242 #define ROOM_POW_OFF 2 1243 #define ROOM_NONE 0x0 1244 #define ROOM_LOW 0x1 1245 #define ROOM_NORMAL 0x2 1246 1247 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off) 1248 { 1249 int idx, len; 1250 1251 len = READ_ONCE(po->rx_ring.frame_max) + 1; 1252 idx = READ_ONCE(po->rx_ring.head); 1253 if (pow_off) 1254 idx += len >> pow_off; 1255 if (idx >= len) 1256 idx -= len; 1257 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1258 } 1259 1260 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off) 1261 { 1262 int idx, len; 1263 1264 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks); 1265 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num); 1266 if (pow_off) 1267 idx += len >> pow_off; 1268 if (idx >= len) 1269 idx -= len; 1270 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1271 } 1272 1273 static int __packet_rcv_has_room(const struct packet_sock *po, 1274 const struct sk_buff *skb) 1275 { 1276 const struct sock *sk = &po->sk; 1277 int ret = ROOM_NONE; 1278 1279 if (po->prot_hook.func != tpacket_rcv) { 1280 int rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1281 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc) 1282 - (skb ? skb->truesize : 0); 1283 1284 if (avail > (rcvbuf >> ROOM_POW_OFF)) 1285 return ROOM_NORMAL; 1286 else if (avail > 0) 1287 return ROOM_LOW; 1288 else 1289 return ROOM_NONE; 1290 } 1291 1292 if (po->tp_version == TPACKET_V3) { 1293 if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) 1294 ret = ROOM_NORMAL; 1295 else if (__tpacket_v3_has_room(po, 0)) 1296 ret = ROOM_LOW; 1297 } else { 1298 if (__tpacket_has_room(po, ROOM_POW_OFF)) 1299 ret = ROOM_NORMAL; 1300 else if (__tpacket_has_room(po, 0)) 1301 ret = ROOM_LOW; 1302 } 1303 1304 return ret; 1305 } 1306 1307 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1308 { 1309 int pressure, ret; 1310 1311 ret = __packet_rcv_has_room(po, skb); 1312 pressure = ret != ROOM_NORMAL; 1313 1314 if (READ_ONCE(po->pressure) != pressure) 1315 WRITE_ONCE(po->pressure, pressure); 1316 1317 return ret; 1318 } 1319 1320 static void packet_rcv_try_clear_pressure(struct packet_sock *po) 1321 { 1322 if (READ_ONCE(po->pressure) && 1323 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) 1324 WRITE_ONCE(po->pressure, 0); 1325 } 1326 1327 static void packet_sock_destruct(struct sock *sk) 1328 { 1329 skb_queue_purge(&sk->sk_error_queue); 1330 1331 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1332 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 1333 1334 if (!sock_flag(sk, SOCK_DEAD)) { 1335 pr_err("Attempt to release alive packet socket: %p\n", sk); 1336 return; 1337 } 1338 } 1339 1340 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) 1341 { 1342 u32 *history = po->rollover->history; 1343 u32 victim, rxhash; 1344 int i, count = 0; 1345 1346 rxhash = skb_get_hash(skb); 1347 for (i = 0; i < ROLLOVER_HLEN; i++) 1348 if (READ_ONCE(history[i]) == rxhash) 1349 count++; 1350 1351 victim = get_random_u32_below(ROLLOVER_HLEN); 1352 1353 /* Avoid dirtying the cache line if possible */ 1354 if (READ_ONCE(history[victim]) != rxhash) 1355 WRITE_ONCE(history[victim], rxhash); 1356 1357 return count > (ROLLOVER_HLEN >> 1); 1358 } 1359 1360 static unsigned int fanout_demux_hash(struct packet_fanout *f, 1361 struct sk_buff *skb, 1362 unsigned int num) 1363 { 1364 return reciprocal_scale(__skb_get_hash_symmetric(skb), num); 1365 } 1366 1367 static unsigned int fanout_demux_lb(struct packet_fanout *f, 1368 struct sk_buff *skb, 1369 unsigned int num) 1370 { 1371 unsigned int val = atomic_inc_return(&f->rr_cur); 1372 1373 return val % num; 1374 } 1375 1376 static unsigned int fanout_demux_cpu(struct packet_fanout *f, 1377 struct sk_buff *skb, 1378 unsigned int num) 1379 { 1380 return smp_processor_id() % num; 1381 } 1382 1383 static unsigned int fanout_demux_rnd(struct packet_fanout *f, 1384 struct sk_buff *skb, 1385 unsigned int num) 1386 { 1387 return get_random_u32_below(num); 1388 } 1389 1390 static unsigned int fanout_demux_rollover(struct packet_fanout *f, 1391 struct sk_buff *skb, 1392 unsigned int idx, bool try_self, 1393 unsigned int num) 1394 { 1395 struct packet_sock *po, *po_next, *po_skip = NULL; 1396 unsigned int i, j, room = ROOM_NONE; 1397 1398 po = pkt_sk(rcu_dereference(f->arr[idx])); 1399 1400 if (try_self) { 1401 room = packet_rcv_has_room(po, skb); 1402 if (room == ROOM_NORMAL || 1403 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) 1404 return idx; 1405 po_skip = po; 1406 } 1407 1408 i = j = min_t(int, po->rollover->sock, num - 1); 1409 do { 1410 po_next = pkt_sk(rcu_dereference(f->arr[i])); 1411 if (po_next != po_skip && !READ_ONCE(po_next->pressure) && 1412 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { 1413 if (i != j) 1414 po->rollover->sock = i; 1415 atomic_long_inc(&po->rollover->num); 1416 if (room == ROOM_LOW) 1417 atomic_long_inc(&po->rollover->num_huge); 1418 return i; 1419 } 1420 1421 if (++i == num) 1422 i = 0; 1423 } while (i != j); 1424 1425 atomic_long_inc(&po->rollover->num_failed); 1426 return idx; 1427 } 1428 1429 static unsigned int fanout_demux_qm(struct packet_fanout *f, 1430 struct sk_buff *skb, 1431 unsigned int num) 1432 { 1433 return skb_get_queue_mapping(skb) % num; 1434 } 1435 1436 static unsigned int fanout_demux_bpf(struct packet_fanout *f, 1437 struct sk_buff *skb, 1438 unsigned int num) 1439 { 1440 struct bpf_prog *prog; 1441 unsigned int ret = 0; 1442 1443 rcu_read_lock(); 1444 prog = rcu_dereference(f->bpf_prog); 1445 if (prog) 1446 ret = bpf_prog_run_clear_cb(prog, skb) % num; 1447 rcu_read_unlock(); 1448 1449 return ret; 1450 } 1451 1452 static bool fanout_has_flag(struct packet_fanout *f, u16 flag) 1453 { 1454 return f->flags & (flag >> 8); 1455 } 1456 1457 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1458 struct packet_type *pt, struct net_device *orig_dev) 1459 { 1460 struct packet_fanout *f = pt->af_packet_priv; 1461 unsigned int num = READ_ONCE(f->num_members); 1462 struct net *net = read_pnet(&f->net); 1463 struct packet_sock *po; 1464 unsigned int idx; 1465 1466 if (!net_eq(dev_net(dev), net) || !num) { 1467 kfree_skb(skb); 1468 return 0; 1469 } 1470 1471 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { 1472 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET); 1473 if (!skb) 1474 return 0; 1475 } 1476 switch (f->type) { 1477 case PACKET_FANOUT_HASH: 1478 default: 1479 idx = fanout_demux_hash(f, skb, num); 1480 break; 1481 case PACKET_FANOUT_LB: 1482 idx = fanout_demux_lb(f, skb, num); 1483 break; 1484 case PACKET_FANOUT_CPU: 1485 idx = fanout_demux_cpu(f, skb, num); 1486 break; 1487 case PACKET_FANOUT_RND: 1488 idx = fanout_demux_rnd(f, skb, num); 1489 break; 1490 case PACKET_FANOUT_QM: 1491 idx = fanout_demux_qm(f, skb, num); 1492 break; 1493 case PACKET_FANOUT_ROLLOVER: 1494 idx = fanout_demux_rollover(f, skb, 0, false, num); 1495 break; 1496 case PACKET_FANOUT_CBPF: 1497 case PACKET_FANOUT_EBPF: 1498 idx = fanout_demux_bpf(f, skb, num); 1499 break; 1500 } 1501 1502 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) 1503 idx = fanout_demux_rollover(f, skb, idx, true, num); 1504 1505 po = pkt_sk(rcu_dereference(f->arr[idx])); 1506 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1507 } 1508 1509 DEFINE_MUTEX(fanout_mutex); 1510 EXPORT_SYMBOL_GPL(fanout_mutex); 1511 static LIST_HEAD(fanout_list); 1512 static u16 fanout_next_id; 1513 1514 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1515 { 1516 struct packet_fanout *f = po->fanout; 1517 1518 spin_lock(&f->lock); 1519 rcu_assign_pointer(f->arr[f->num_members], sk); 1520 smp_wmb(); 1521 f->num_members++; 1522 if (f->num_members == 1) 1523 dev_add_pack(&f->prot_hook); 1524 spin_unlock(&f->lock); 1525 } 1526 1527 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1528 { 1529 struct packet_fanout *f = po->fanout; 1530 int i; 1531 1532 spin_lock(&f->lock); 1533 for (i = 0; i < f->num_members; i++) { 1534 if (rcu_dereference_protected(f->arr[i], 1535 lockdep_is_held(&f->lock)) == sk) 1536 break; 1537 } 1538 BUG_ON(i >= f->num_members); 1539 rcu_assign_pointer(f->arr[i], 1540 rcu_dereference_protected(f->arr[f->num_members - 1], 1541 lockdep_is_held(&f->lock))); 1542 f->num_members--; 1543 if (f->num_members == 0) 1544 __dev_remove_pack(&f->prot_hook); 1545 spin_unlock(&f->lock); 1546 } 1547 1548 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) 1549 { 1550 if (sk->sk_family != PF_PACKET) 1551 return false; 1552 1553 return ptype->af_packet_priv == pkt_sk(sk)->fanout; 1554 } 1555 1556 static void fanout_init_data(struct packet_fanout *f) 1557 { 1558 switch (f->type) { 1559 case PACKET_FANOUT_LB: 1560 atomic_set(&f->rr_cur, 0); 1561 break; 1562 case PACKET_FANOUT_CBPF: 1563 case PACKET_FANOUT_EBPF: 1564 RCU_INIT_POINTER(f->bpf_prog, NULL); 1565 break; 1566 } 1567 } 1568 1569 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) 1570 { 1571 struct bpf_prog *old; 1572 1573 spin_lock(&f->lock); 1574 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); 1575 rcu_assign_pointer(f->bpf_prog, new); 1576 spin_unlock(&f->lock); 1577 1578 if (old) { 1579 synchronize_net(); 1580 bpf_prog_destroy(old); 1581 } 1582 } 1583 1584 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data, 1585 unsigned int len) 1586 { 1587 struct bpf_prog *new; 1588 struct sock_fprog fprog; 1589 int ret; 1590 1591 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1592 return -EPERM; 1593 1594 ret = copy_bpf_fprog_from_user(&fprog, data, len); 1595 if (ret) 1596 return ret; 1597 1598 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false); 1599 if (ret) 1600 return ret; 1601 1602 __fanout_set_data_bpf(po->fanout, new); 1603 return 0; 1604 } 1605 1606 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data, 1607 unsigned int len) 1608 { 1609 struct bpf_prog *new; 1610 u32 fd; 1611 1612 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1613 return -EPERM; 1614 if (len != sizeof(fd)) 1615 return -EINVAL; 1616 if (copy_from_sockptr(&fd, data, len)) 1617 return -EFAULT; 1618 1619 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); 1620 if (IS_ERR(new)) 1621 return PTR_ERR(new); 1622 1623 __fanout_set_data_bpf(po->fanout, new); 1624 return 0; 1625 } 1626 1627 static int fanout_set_data(struct packet_sock *po, sockptr_t data, 1628 unsigned int len) 1629 { 1630 switch (po->fanout->type) { 1631 case PACKET_FANOUT_CBPF: 1632 return fanout_set_data_cbpf(po, data, len); 1633 case PACKET_FANOUT_EBPF: 1634 return fanout_set_data_ebpf(po, data, len); 1635 default: 1636 return -EINVAL; 1637 } 1638 } 1639 1640 static void fanout_release_data(struct packet_fanout *f) 1641 { 1642 switch (f->type) { 1643 case PACKET_FANOUT_CBPF: 1644 case PACKET_FANOUT_EBPF: 1645 __fanout_set_data_bpf(f, NULL); 1646 } 1647 } 1648 1649 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id) 1650 { 1651 struct packet_fanout *f; 1652 1653 list_for_each_entry(f, &fanout_list, list) { 1654 if (f->id == candidate_id && 1655 read_pnet(&f->net) == sock_net(sk)) { 1656 return false; 1657 } 1658 } 1659 return true; 1660 } 1661 1662 static bool fanout_find_new_id(struct sock *sk, u16 *new_id) 1663 { 1664 u16 id = fanout_next_id; 1665 1666 do { 1667 if (__fanout_id_is_free(sk, id)) { 1668 *new_id = id; 1669 fanout_next_id = id + 1; 1670 return true; 1671 } 1672 1673 id++; 1674 } while (id != fanout_next_id); 1675 1676 return false; 1677 } 1678 1679 static int fanout_add(struct sock *sk, struct fanout_args *args) 1680 { 1681 struct packet_rollover *rollover = NULL; 1682 struct packet_sock *po = pkt_sk(sk); 1683 u16 type_flags = args->type_flags; 1684 struct packet_fanout *f, *match; 1685 u8 type = type_flags & 0xff; 1686 u8 flags = type_flags >> 8; 1687 u16 id = args->id; 1688 int err; 1689 1690 switch (type) { 1691 case PACKET_FANOUT_ROLLOVER: 1692 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) 1693 return -EINVAL; 1694 break; 1695 case PACKET_FANOUT_HASH: 1696 case PACKET_FANOUT_LB: 1697 case PACKET_FANOUT_CPU: 1698 case PACKET_FANOUT_RND: 1699 case PACKET_FANOUT_QM: 1700 case PACKET_FANOUT_CBPF: 1701 case PACKET_FANOUT_EBPF: 1702 break; 1703 default: 1704 return -EINVAL; 1705 } 1706 1707 mutex_lock(&fanout_mutex); 1708 1709 err = -EALREADY; 1710 if (po->fanout) 1711 goto out; 1712 1713 if (type == PACKET_FANOUT_ROLLOVER || 1714 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { 1715 err = -ENOMEM; 1716 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL); 1717 if (!rollover) 1718 goto out; 1719 atomic_long_set(&rollover->num, 0); 1720 atomic_long_set(&rollover->num_huge, 0); 1721 atomic_long_set(&rollover->num_failed, 0); 1722 } 1723 1724 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) { 1725 if (id != 0) { 1726 err = -EINVAL; 1727 goto out; 1728 } 1729 if (!fanout_find_new_id(sk, &id)) { 1730 err = -ENOMEM; 1731 goto out; 1732 } 1733 /* ephemeral flag for the first socket in the group: drop it */ 1734 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8); 1735 } 1736 1737 match = NULL; 1738 list_for_each_entry(f, &fanout_list, list) { 1739 if (f->id == id && 1740 read_pnet(&f->net) == sock_net(sk)) { 1741 match = f; 1742 break; 1743 } 1744 } 1745 err = -EINVAL; 1746 if (match) { 1747 if (match->flags != flags) 1748 goto out; 1749 if (args->max_num_members && 1750 args->max_num_members != match->max_num_members) 1751 goto out; 1752 } else { 1753 if (args->max_num_members > PACKET_FANOUT_MAX) 1754 goto out; 1755 if (!args->max_num_members) 1756 /* legacy PACKET_FANOUT_MAX */ 1757 args->max_num_members = 256; 1758 err = -ENOMEM; 1759 match = kvzalloc(struct_size(match, arr, args->max_num_members), 1760 GFP_KERNEL); 1761 if (!match) 1762 goto out; 1763 write_pnet(&match->net, sock_net(sk)); 1764 match->id = id; 1765 match->type = type; 1766 match->flags = flags; 1767 INIT_LIST_HEAD(&match->list); 1768 spin_lock_init(&match->lock); 1769 refcount_set(&match->sk_ref, 0); 1770 fanout_init_data(match); 1771 match->prot_hook.type = po->prot_hook.type; 1772 match->prot_hook.dev = po->prot_hook.dev; 1773 match->prot_hook.func = packet_rcv_fanout; 1774 match->prot_hook.af_packet_priv = match; 1775 match->prot_hook.af_packet_net = read_pnet(&match->net); 1776 match->prot_hook.id_match = match_fanout_group; 1777 match->max_num_members = args->max_num_members; 1778 match->prot_hook.ignore_outgoing = type_flags & PACKET_FANOUT_FLAG_IGNORE_OUTGOING; 1779 list_add(&match->list, &fanout_list); 1780 } 1781 err = -EINVAL; 1782 1783 spin_lock(&po->bind_lock); 1784 if (po->running && 1785 match->type == type && 1786 match->prot_hook.type == po->prot_hook.type && 1787 match->prot_hook.dev == po->prot_hook.dev) { 1788 err = -ENOSPC; 1789 if (refcount_read(&match->sk_ref) < match->max_num_members) { 1790 __dev_remove_pack(&po->prot_hook); 1791 1792 /* Paired with packet_setsockopt(PACKET_FANOUT_DATA) */ 1793 WRITE_ONCE(po->fanout, match); 1794 1795 po->rollover = rollover; 1796 rollover = NULL; 1797 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1); 1798 __fanout_link(sk, po); 1799 err = 0; 1800 } 1801 } 1802 spin_unlock(&po->bind_lock); 1803 1804 if (err && !refcount_read(&match->sk_ref)) { 1805 list_del(&match->list); 1806 kvfree(match); 1807 } 1808 1809 out: 1810 kfree(rollover); 1811 mutex_unlock(&fanout_mutex); 1812 return err; 1813 } 1814 1815 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes 1816 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout. 1817 * It is the responsibility of the caller to call fanout_release_data() and 1818 * free the returned packet_fanout (after synchronize_net()) 1819 */ 1820 static struct packet_fanout *fanout_release(struct sock *sk) 1821 { 1822 struct packet_sock *po = pkt_sk(sk); 1823 struct packet_fanout *f; 1824 1825 mutex_lock(&fanout_mutex); 1826 f = po->fanout; 1827 if (f) { 1828 po->fanout = NULL; 1829 1830 if (refcount_dec_and_test(&f->sk_ref)) 1831 list_del(&f->list); 1832 else 1833 f = NULL; 1834 } 1835 mutex_unlock(&fanout_mutex); 1836 1837 return f; 1838 } 1839 1840 static bool packet_extra_vlan_len_allowed(const struct net_device *dev, 1841 struct sk_buff *skb) 1842 { 1843 /* Earlier code assumed this would be a VLAN pkt, double-check 1844 * this now that we have the actual packet in hand. We can only 1845 * do this check on Ethernet devices. 1846 */ 1847 if (unlikely(dev->type != ARPHRD_ETHER)) 1848 return false; 1849 1850 skb_reset_mac_header(skb); 1851 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)); 1852 } 1853 1854 static const struct proto_ops packet_ops; 1855 1856 static const struct proto_ops packet_ops_spkt; 1857 1858 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1859 struct packet_type *pt, struct net_device *orig_dev) 1860 { 1861 struct sock *sk; 1862 struct sockaddr_pkt *spkt; 1863 1864 /* 1865 * When we registered the protocol we saved the socket in the data 1866 * field for just this event. 1867 */ 1868 1869 sk = pt->af_packet_priv; 1870 1871 /* 1872 * Yank back the headers [hope the device set this 1873 * right or kerboom...] 1874 * 1875 * Incoming packets have ll header pulled, 1876 * push it back. 1877 * 1878 * For outgoing ones skb->data == skb_mac_header(skb) 1879 * so that this procedure is noop. 1880 */ 1881 1882 if (skb->pkt_type == PACKET_LOOPBACK) 1883 goto out; 1884 1885 if (!net_eq(dev_net(dev), sock_net(sk))) 1886 goto out; 1887 1888 skb = skb_share_check(skb, GFP_ATOMIC); 1889 if (skb == NULL) 1890 goto oom; 1891 1892 /* drop any routing info */ 1893 skb_dst_drop(skb); 1894 1895 /* drop conntrack reference */ 1896 nf_reset_ct(skb); 1897 1898 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1899 1900 skb_push(skb, skb->data - skb_mac_header(skb)); 1901 1902 /* 1903 * The SOCK_PACKET socket receives _all_ frames. 1904 */ 1905 1906 spkt->spkt_family = dev->type; 1907 strscpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1908 spkt->spkt_protocol = skb->protocol; 1909 1910 /* 1911 * Charge the memory to the socket. This is done specifically 1912 * to prevent sockets using all the memory up. 1913 */ 1914 1915 if (sock_queue_rcv_skb(sk, skb) == 0) 1916 return 0; 1917 1918 out: 1919 kfree_skb(skb); 1920 oom: 1921 return 0; 1922 } 1923 1924 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock) 1925 { 1926 int depth; 1927 1928 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) && 1929 sock->type == SOCK_RAW) { 1930 skb_reset_mac_header(skb); 1931 skb->protocol = dev_parse_header_protocol(skb); 1932 } 1933 1934 /* Move network header to the right position for VLAN tagged packets */ 1935 if (likely(skb->dev->type == ARPHRD_ETHER) && 1936 eth_type_vlan(skb->protocol) && 1937 __vlan_get_protocol(skb, skb->protocol, &depth) != 0) { 1938 if (pskb_may_pull(skb, depth)) 1939 skb_set_network_header(skb, depth); 1940 } 1941 1942 skb_probe_transport_header(skb); 1943 } 1944 1945 /* 1946 * Output a raw packet to a device layer. This bypasses all the other 1947 * protocol layers and you must therefore supply it with a complete frame 1948 */ 1949 1950 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, 1951 size_t len) 1952 { 1953 struct sock *sk = sock->sk; 1954 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); 1955 struct sk_buff *skb = NULL; 1956 struct net_device *dev; 1957 struct sockcm_cookie sockc; 1958 __be16 proto = 0; 1959 int err; 1960 int extra_len = 0; 1961 1962 /* 1963 * Get and verify the address. 1964 */ 1965 1966 if (saddr) { 1967 if (msg->msg_namelen < sizeof(struct sockaddr)) 1968 return -EINVAL; 1969 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1970 proto = saddr->spkt_protocol; 1971 } else 1972 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1973 1974 /* 1975 * Find the device first to size check it 1976 */ 1977 1978 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; 1979 retry: 1980 rcu_read_lock(); 1981 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1982 err = -ENODEV; 1983 if (dev == NULL) 1984 goto out_unlock; 1985 1986 err = -ENETDOWN; 1987 if (!(dev->flags & IFF_UP)) 1988 goto out_unlock; 1989 1990 /* 1991 * You may not queue a frame bigger than the mtu. This is the lowest level 1992 * raw protocol and you must do your own fragmentation at this level. 1993 */ 1994 1995 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 1996 if (!netif_supports_nofcs(dev)) { 1997 err = -EPROTONOSUPPORT; 1998 goto out_unlock; 1999 } 2000 extra_len = 4; /* We're doing our own CRC */ 2001 } 2002 2003 err = -EMSGSIZE; 2004 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) 2005 goto out_unlock; 2006 2007 if (!skb) { 2008 size_t reserved = LL_RESERVED_SPACE(dev); 2009 int tlen = dev->needed_tailroom; 2010 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 2011 2012 rcu_read_unlock(); 2013 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 2014 if (skb == NULL) 2015 return -ENOBUFS; 2016 /* FIXME: Save some space for broken drivers that write a hard 2017 * header at transmission time by themselves. PPP is the notable 2018 * one here. This should really be fixed at the driver level. 2019 */ 2020 skb_reserve(skb, reserved); 2021 skb_reset_network_header(skb); 2022 2023 /* Try to align data part correctly */ 2024 if (hhlen) { 2025 skb->data -= hhlen; 2026 skb->tail -= hhlen; 2027 if (len < hhlen) 2028 skb_reset_network_header(skb); 2029 } 2030 err = memcpy_from_msg(skb_put(skb, len), msg, len); 2031 if (err) 2032 goto out_free; 2033 goto retry; 2034 } 2035 2036 if (!dev_validate_header(dev, skb->data, len)) { 2037 err = -EINVAL; 2038 goto out_unlock; 2039 } 2040 if (len > (dev->mtu + dev->hard_header_len + extra_len) && 2041 !packet_extra_vlan_len_allowed(dev, skb)) { 2042 err = -EMSGSIZE; 2043 goto out_unlock; 2044 } 2045 2046 sockcm_init(&sockc, sk); 2047 if (msg->msg_controllen) { 2048 err = sock_cmsg_send(sk, msg, &sockc); 2049 if (unlikely(err)) 2050 goto out_unlock; 2051 } 2052 2053 skb->protocol = proto; 2054 skb->dev = dev; 2055 skb->priority = sk->sk_priority; 2056 skb->mark = sk->sk_mark; 2057 skb->tstamp = sockc.transmit_time; 2058 2059 skb_setup_tx_timestamp(skb, sockc.tsflags); 2060 2061 if (unlikely(extra_len == 4)) 2062 skb->no_fcs = 1; 2063 2064 packet_parse_headers(skb, sock); 2065 2066 dev_queue_xmit(skb); 2067 rcu_read_unlock(); 2068 return len; 2069 2070 out_unlock: 2071 rcu_read_unlock(); 2072 out_free: 2073 kfree_skb(skb); 2074 return err; 2075 } 2076 2077 static unsigned int run_filter(struct sk_buff *skb, 2078 const struct sock *sk, 2079 unsigned int res) 2080 { 2081 struct sk_filter *filter; 2082 2083 rcu_read_lock(); 2084 filter = rcu_dereference(sk->sk_filter); 2085 if (filter != NULL) 2086 res = bpf_prog_run_clear_cb(filter->prog, skb); 2087 rcu_read_unlock(); 2088 2089 return res; 2090 } 2091 2092 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb, 2093 size_t *len) 2094 { 2095 struct virtio_net_hdr vnet_hdr; 2096 2097 if (*len < sizeof(vnet_hdr)) 2098 return -EINVAL; 2099 *len -= sizeof(vnet_hdr); 2100 2101 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0)) 2102 return -EINVAL; 2103 2104 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr)); 2105 } 2106 2107 /* 2108 * This function makes lazy skb cloning in hope that most of packets 2109 * are discarded by BPF. 2110 * 2111 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 2112 * and skb->cb are mangled. It works because (and until) packets 2113 * falling here are owned by current CPU. Output packets are cloned 2114 * by dev_queue_xmit_nit(), input packets are processed by net_bh 2115 * sequentially, so that if we return skb to original state on exit, 2116 * we will not harm anyone. 2117 */ 2118 2119 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 2120 struct packet_type *pt, struct net_device *orig_dev) 2121 { 2122 struct sock *sk; 2123 struct sockaddr_ll *sll; 2124 struct packet_sock *po; 2125 u8 *skb_head = skb->data; 2126 int skb_len = skb->len; 2127 unsigned int snaplen, res; 2128 bool is_drop_n_account = false; 2129 2130 if (skb->pkt_type == PACKET_LOOPBACK) 2131 goto drop; 2132 2133 sk = pt->af_packet_priv; 2134 po = pkt_sk(sk); 2135 2136 if (!net_eq(dev_net(dev), sock_net(sk))) 2137 goto drop; 2138 2139 skb->dev = dev; 2140 2141 if (dev_has_header(dev)) { 2142 /* The device has an explicit notion of ll header, 2143 * exported to higher levels. 2144 * 2145 * Otherwise, the device hides details of its frame 2146 * structure, so that corresponding packet head is 2147 * never delivered to user. 2148 */ 2149 if (sk->sk_type != SOCK_DGRAM) 2150 skb_push(skb, skb->data - skb_mac_header(skb)); 2151 else if (skb->pkt_type == PACKET_OUTGOING) { 2152 /* Special case: outgoing packets have ll header at head */ 2153 skb_pull(skb, skb_network_offset(skb)); 2154 } 2155 } 2156 2157 snaplen = skb->len; 2158 2159 res = run_filter(skb, sk, snaplen); 2160 if (!res) 2161 goto drop_n_restore; 2162 if (snaplen > res) 2163 snaplen = res; 2164 2165 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2166 goto drop_n_acct; 2167 2168 if (skb_shared(skb)) { 2169 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2170 if (nskb == NULL) 2171 goto drop_n_acct; 2172 2173 if (skb_head != skb->data) { 2174 skb->data = skb_head; 2175 skb->len = skb_len; 2176 } 2177 consume_skb(skb); 2178 skb = nskb; 2179 } 2180 2181 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); 2182 2183 sll = &PACKET_SKB_CB(skb)->sa.ll; 2184 sll->sll_hatype = dev->type; 2185 sll->sll_pkttype = skb->pkt_type; 2186 if (unlikely(po->origdev)) 2187 sll->sll_ifindex = orig_dev->ifindex; 2188 else 2189 sll->sll_ifindex = dev->ifindex; 2190 2191 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2192 2193 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). 2194 * Use their space for storing the original skb length. 2195 */ 2196 PACKET_SKB_CB(skb)->sa.origlen = skb->len; 2197 2198 if (pskb_trim(skb, snaplen)) 2199 goto drop_n_acct; 2200 2201 skb_set_owner_r(skb, sk); 2202 skb->dev = NULL; 2203 skb_dst_drop(skb); 2204 2205 /* drop conntrack reference */ 2206 nf_reset_ct(skb); 2207 2208 spin_lock(&sk->sk_receive_queue.lock); 2209 po->stats.stats1.tp_packets++; 2210 sock_skb_set_dropcount(sk, skb); 2211 skb_clear_delivery_time(skb); 2212 __skb_queue_tail(&sk->sk_receive_queue, skb); 2213 spin_unlock(&sk->sk_receive_queue.lock); 2214 sk->sk_data_ready(sk); 2215 return 0; 2216 2217 drop_n_acct: 2218 is_drop_n_account = true; 2219 atomic_inc(&po->tp_drops); 2220 atomic_inc(&sk->sk_drops); 2221 2222 drop_n_restore: 2223 if (skb_head != skb->data && skb_shared(skb)) { 2224 skb->data = skb_head; 2225 skb->len = skb_len; 2226 } 2227 drop: 2228 if (!is_drop_n_account) 2229 consume_skb(skb); 2230 else 2231 kfree_skb(skb); 2232 return 0; 2233 } 2234 2235 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 2236 struct packet_type *pt, struct net_device *orig_dev) 2237 { 2238 struct sock *sk; 2239 struct packet_sock *po; 2240 struct sockaddr_ll *sll; 2241 union tpacket_uhdr h; 2242 u8 *skb_head = skb->data; 2243 int skb_len = skb->len; 2244 unsigned int snaplen, res; 2245 unsigned long status = TP_STATUS_USER; 2246 unsigned short macoff, hdrlen; 2247 unsigned int netoff; 2248 struct sk_buff *copy_skb = NULL; 2249 struct timespec64 ts; 2250 __u32 ts_status; 2251 bool is_drop_n_account = false; 2252 unsigned int slot_id = 0; 2253 bool do_vnet = false; 2254 2255 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. 2256 * We may add members to them until current aligned size without forcing 2257 * userspace to call getsockopt(..., PACKET_HDRLEN, ...). 2258 */ 2259 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); 2260 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); 2261 2262 if (skb->pkt_type == PACKET_LOOPBACK) 2263 goto drop; 2264 2265 sk = pt->af_packet_priv; 2266 po = pkt_sk(sk); 2267 2268 if (!net_eq(dev_net(dev), sock_net(sk))) 2269 goto drop; 2270 2271 if (dev_has_header(dev)) { 2272 if (sk->sk_type != SOCK_DGRAM) 2273 skb_push(skb, skb->data - skb_mac_header(skb)); 2274 else if (skb->pkt_type == PACKET_OUTGOING) { 2275 /* Special case: outgoing packets have ll header at head */ 2276 skb_pull(skb, skb_network_offset(skb)); 2277 } 2278 } 2279 2280 snaplen = skb->len; 2281 2282 res = run_filter(skb, sk, snaplen); 2283 if (!res) 2284 goto drop_n_restore; 2285 2286 /* If we are flooded, just give up */ 2287 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) { 2288 atomic_inc(&po->tp_drops); 2289 goto drop_n_restore; 2290 } 2291 2292 if (skb->ip_summed == CHECKSUM_PARTIAL) 2293 status |= TP_STATUS_CSUMNOTREADY; 2294 else if (skb->pkt_type != PACKET_OUTGOING && 2295 skb_csum_unnecessary(skb)) 2296 status |= TP_STATUS_CSUM_VALID; 2297 if (skb_is_gso(skb) && skb_is_gso_tcp(skb)) 2298 status |= TP_STATUS_GSO_TCP; 2299 2300 if (snaplen > res) 2301 snaplen = res; 2302 2303 if (sk->sk_type == SOCK_DGRAM) { 2304 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 2305 po->tp_reserve; 2306 } else { 2307 unsigned int maclen = skb_network_offset(skb); 2308 netoff = TPACKET_ALIGN(po->tp_hdrlen + 2309 (maclen < 16 ? 16 : maclen)) + 2310 po->tp_reserve; 2311 if (po->has_vnet_hdr) { 2312 netoff += sizeof(struct virtio_net_hdr); 2313 do_vnet = true; 2314 } 2315 macoff = netoff - maclen; 2316 } 2317 if (netoff > USHRT_MAX) { 2318 atomic_inc(&po->tp_drops); 2319 goto drop_n_restore; 2320 } 2321 if (po->tp_version <= TPACKET_V2) { 2322 if (macoff + snaplen > po->rx_ring.frame_size) { 2323 if (po->copy_thresh && 2324 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 2325 if (skb_shared(skb)) { 2326 copy_skb = skb_clone(skb, GFP_ATOMIC); 2327 } else { 2328 copy_skb = skb_get(skb); 2329 skb_head = skb->data; 2330 } 2331 if (copy_skb) { 2332 memset(&PACKET_SKB_CB(copy_skb)->sa.ll, 0, 2333 sizeof(PACKET_SKB_CB(copy_skb)->sa.ll)); 2334 skb_set_owner_r(copy_skb, sk); 2335 } 2336 } 2337 snaplen = po->rx_ring.frame_size - macoff; 2338 if ((int)snaplen < 0) { 2339 snaplen = 0; 2340 do_vnet = false; 2341 } 2342 } 2343 } else if (unlikely(macoff + snaplen > 2344 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { 2345 u32 nval; 2346 2347 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; 2348 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", 2349 snaplen, nval, macoff); 2350 snaplen = nval; 2351 if (unlikely((int)snaplen < 0)) { 2352 snaplen = 0; 2353 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; 2354 do_vnet = false; 2355 } 2356 } 2357 spin_lock(&sk->sk_receive_queue.lock); 2358 h.raw = packet_current_rx_frame(po, skb, 2359 TP_STATUS_KERNEL, (macoff+snaplen)); 2360 if (!h.raw) 2361 goto drop_n_account; 2362 2363 if (po->tp_version <= TPACKET_V2) { 2364 slot_id = po->rx_ring.head; 2365 if (test_bit(slot_id, po->rx_ring.rx_owner_map)) 2366 goto drop_n_account; 2367 __set_bit(slot_id, po->rx_ring.rx_owner_map); 2368 } 2369 2370 if (do_vnet && 2371 virtio_net_hdr_from_skb(skb, h.raw + macoff - 2372 sizeof(struct virtio_net_hdr), 2373 vio_le(), true, 0)) { 2374 if (po->tp_version == TPACKET_V3) 2375 prb_clear_blk_fill_status(&po->rx_ring); 2376 goto drop_n_account; 2377 } 2378 2379 if (po->tp_version <= TPACKET_V2) { 2380 packet_increment_rx_head(po, &po->rx_ring); 2381 /* 2382 * LOSING will be reported till you read the stats, 2383 * because it's COR - Clear On Read. 2384 * Anyways, moving it for V1/V2 only as V3 doesn't need this 2385 * at packet level. 2386 */ 2387 if (atomic_read(&po->tp_drops)) 2388 status |= TP_STATUS_LOSING; 2389 } 2390 2391 po->stats.stats1.tp_packets++; 2392 if (copy_skb) { 2393 status |= TP_STATUS_COPY; 2394 skb_clear_delivery_time(copy_skb); 2395 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 2396 } 2397 spin_unlock(&sk->sk_receive_queue.lock); 2398 2399 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 2400 2401 /* Always timestamp; prefer an existing software timestamp taken 2402 * closer to the time of capture. 2403 */ 2404 ts_status = tpacket_get_timestamp(skb, &ts, 2405 po->tp_tstamp | SOF_TIMESTAMPING_SOFTWARE); 2406 if (!ts_status) 2407 ktime_get_real_ts64(&ts); 2408 2409 status |= ts_status; 2410 2411 switch (po->tp_version) { 2412 case TPACKET_V1: 2413 h.h1->tp_len = skb->len; 2414 h.h1->tp_snaplen = snaplen; 2415 h.h1->tp_mac = macoff; 2416 h.h1->tp_net = netoff; 2417 h.h1->tp_sec = ts.tv_sec; 2418 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 2419 hdrlen = sizeof(*h.h1); 2420 break; 2421 case TPACKET_V2: 2422 h.h2->tp_len = skb->len; 2423 h.h2->tp_snaplen = snaplen; 2424 h.h2->tp_mac = macoff; 2425 h.h2->tp_net = netoff; 2426 h.h2->tp_sec = ts.tv_sec; 2427 h.h2->tp_nsec = ts.tv_nsec; 2428 if (skb_vlan_tag_present(skb)) { 2429 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); 2430 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); 2431 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 2432 } else { 2433 h.h2->tp_vlan_tci = 0; 2434 h.h2->tp_vlan_tpid = 0; 2435 } 2436 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); 2437 hdrlen = sizeof(*h.h2); 2438 break; 2439 case TPACKET_V3: 2440 /* tp_nxt_offset,vlan are already populated above. 2441 * So DONT clear those fields here 2442 */ 2443 h.h3->tp_status |= status; 2444 h.h3->tp_len = skb->len; 2445 h.h3->tp_snaplen = snaplen; 2446 h.h3->tp_mac = macoff; 2447 h.h3->tp_net = netoff; 2448 h.h3->tp_sec = ts.tv_sec; 2449 h.h3->tp_nsec = ts.tv_nsec; 2450 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); 2451 hdrlen = sizeof(*h.h3); 2452 break; 2453 default: 2454 BUG(); 2455 } 2456 2457 sll = h.raw + TPACKET_ALIGN(hdrlen); 2458 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2459 sll->sll_family = AF_PACKET; 2460 sll->sll_hatype = dev->type; 2461 sll->sll_protocol = skb->protocol; 2462 sll->sll_pkttype = skb->pkt_type; 2463 if (unlikely(po->origdev)) 2464 sll->sll_ifindex = orig_dev->ifindex; 2465 else 2466 sll->sll_ifindex = dev->ifindex; 2467 2468 smp_mb(); 2469 2470 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 2471 if (po->tp_version <= TPACKET_V2) { 2472 u8 *start, *end; 2473 2474 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + 2475 macoff + snaplen); 2476 2477 for (start = h.raw; start < end; start += PAGE_SIZE) 2478 flush_dcache_page(pgv_to_page(start)); 2479 } 2480 smp_wmb(); 2481 #endif 2482 2483 if (po->tp_version <= TPACKET_V2) { 2484 spin_lock(&sk->sk_receive_queue.lock); 2485 __packet_set_status(po, h.raw, status); 2486 __clear_bit(slot_id, po->rx_ring.rx_owner_map); 2487 spin_unlock(&sk->sk_receive_queue.lock); 2488 sk->sk_data_ready(sk); 2489 } else if (po->tp_version == TPACKET_V3) { 2490 prb_clear_blk_fill_status(&po->rx_ring); 2491 } 2492 2493 drop_n_restore: 2494 if (skb_head != skb->data && skb_shared(skb)) { 2495 skb->data = skb_head; 2496 skb->len = skb_len; 2497 } 2498 drop: 2499 if (!is_drop_n_account) 2500 consume_skb(skb); 2501 else 2502 kfree_skb(skb); 2503 return 0; 2504 2505 drop_n_account: 2506 spin_unlock(&sk->sk_receive_queue.lock); 2507 atomic_inc(&po->tp_drops); 2508 is_drop_n_account = true; 2509 2510 sk->sk_data_ready(sk); 2511 kfree_skb(copy_skb); 2512 goto drop_n_restore; 2513 } 2514 2515 static void tpacket_destruct_skb(struct sk_buff *skb) 2516 { 2517 struct packet_sock *po = pkt_sk(skb->sk); 2518 2519 if (likely(po->tx_ring.pg_vec)) { 2520 void *ph; 2521 __u32 ts; 2522 2523 ph = skb_zcopy_get_nouarg(skb); 2524 packet_dec_pending(&po->tx_ring); 2525 2526 ts = __packet_set_timestamp(po, ph, skb); 2527 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); 2528 2529 if (!packet_read_pending(&po->tx_ring)) 2530 complete(&po->skb_completion); 2531 } 2532 2533 sock_wfree(skb); 2534 } 2535 2536 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len) 2537 { 2538 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2539 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2540 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 > 2541 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len))) 2542 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(), 2543 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2544 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2); 2545 2546 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len) 2547 return -EINVAL; 2548 2549 return 0; 2550 } 2551 2552 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len, 2553 struct virtio_net_hdr *vnet_hdr) 2554 { 2555 if (*len < sizeof(*vnet_hdr)) 2556 return -EINVAL; 2557 *len -= sizeof(*vnet_hdr); 2558 2559 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter)) 2560 return -EFAULT; 2561 2562 return __packet_snd_vnet_parse(vnet_hdr, *len); 2563 } 2564 2565 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 2566 void *frame, struct net_device *dev, void *data, int tp_len, 2567 __be16 proto, unsigned char *addr, int hlen, int copylen, 2568 const struct sockcm_cookie *sockc) 2569 { 2570 union tpacket_uhdr ph; 2571 int to_write, offset, len, nr_frags, len_max; 2572 struct socket *sock = po->sk.sk_socket; 2573 struct page *page; 2574 int err; 2575 2576 ph.raw = frame; 2577 2578 skb->protocol = proto; 2579 skb->dev = dev; 2580 skb->priority = po->sk.sk_priority; 2581 skb->mark = po->sk.sk_mark; 2582 skb->tstamp = sockc->transmit_time; 2583 skb_setup_tx_timestamp(skb, sockc->tsflags); 2584 skb_zcopy_set_nouarg(skb, ph.raw); 2585 2586 skb_reserve(skb, hlen); 2587 skb_reset_network_header(skb); 2588 2589 to_write = tp_len; 2590 2591 if (sock->type == SOCK_DGRAM) { 2592 err = dev_hard_header(skb, dev, ntohs(proto), addr, 2593 NULL, tp_len); 2594 if (unlikely(err < 0)) 2595 return -EINVAL; 2596 } else if (copylen) { 2597 int hdrlen = min_t(int, copylen, tp_len); 2598 2599 skb_push(skb, dev->hard_header_len); 2600 skb_put(skb, copylen - dev->hard_header_len); 2601 err = skb_store_bits(skb, 0, data, hdrlen); 2602 if (unlikely(err)) 2603 return err; 2604 if (!dev_validate_header(dev, skb->data, hdrlen)) 2605 return -EINVAL; 2606 2607 data += hdrlen; 2608 to_write -= hdrlen; 2609 } 2610 2611 offset = offset_in_page(data); 2612 len_max = PAGE_SIZE - offset; 2613 len = ((to_write > len_max) ? len_max : to_write); 2614 2615 skb->data_len = to_write; 2616 skb->len += to_write; 2617 skb->truesize += to_write; 2618 refcount_add(to_write, &po->sk.sk_wmem_alloc); 2619 2620 while (likely(to_write)) { 2621 nr_frags = skb_shinfo(skb)->nr_frags; 2622 2623 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2624 pr_err("Packet exceed the number of skb frags(%lu)\n", 2625 MAX_SKB_FRAGS); 2626 return -EFAULT; 2627 } 2628 2629 page = pgv_to_page(data); 2630 data += len; 2631 flush_dcache_page(page); 2632 get_page(page); 2633 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2634 to_write -= len; 2635 offset = 0; 2636 len_max = PAGE_SIZE; 2637 len = ((to_write > len_max) ? len_max : to_write); 2638 } 2639 2640 packet_parse_headers(skb, sock); 2641 2642 return tp_len; 2643 } 2644 2645 static int tpacket_parse_header(struct packet_sock *po, void *frame, 2646 int size_max, void **data) 2647 { 2648 union tpacket_uhdr ph; 2649 int tp_len, off; 2650 2651 ph.raw = frame; 2652 2653 switch (po->tp_version) { 2654 case TPACKET_V3: 2655 if (ph.h3->tp_next_offset != 0) { 2656 pr_warn_once("variable sized slot not supported"); 2657 return -EINVAL; 2658 } 2659 tp_len = ph.h3->tp_len; 2660 break; 2661 case TPACKET_V2: 2662 tp_len = ph.h2->tp_len; 2663 break; 2664 default: 2665 tp_len = ph.h1->tp_len; 2666 break; 2667 } 2668 if (unlikely(tp_len > size_max)) { 2669 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 2670 return -EMSGSIZE; 2671 } 2672 2673 if (unlikely(po->tp_tx_has_off)) { 2674 int off_min, off_max; 2675 2676 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2677 off_max = po->tx_ring.frame_size - tp_len; 2678 if (po->sk.sk_type == SOCK_DGRAM) { 2679 switch (po->tp_version) { 2680 case TPACKET_V3: 2681 off = ph.h3->tp_net; 2682 break; 2683 case TPACKET_V2: 2684 off = ph.h2->tp_net; 2685 break; 2686 default: 2687 off = ph.h1->tp_net; 2688 break; 2689 } 2690 } else { 2691 switch (po->tp_version) { 2692 case TPACKET_V3: 2693 off = ph.h3->tp_mac; 2694 break; 2695 case TPACKET_V2: 2696 off = ph.h2->tp_mac; 2697 break; 2698 default: 2699 off = ph.h1->tp_mac; 2700 break; 2701 } 2702 } 2703 if (unlikely((off < off_min) || (off_max < off))) 2704 return -EINVAL; 2705 } else { 2706 off = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2707 } 2708 2709 *data = frame + off; 2710 return tp_len; 2711 } 2712 2713 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2714 { 2715 struct sk_buff *skb = NULL; 2716 struct net_device *dev; 2717 struct virtio_net_hdr *vnet_hdr = NULL; 2718 struct sockcm_cookie sockc; 2719 __be16 proto; 2720 int err, reserve = 0; 2721 void *ph; 2722 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2723 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); 2724 unsigned char *addr = NULL; 2725 int tp_len, size_max; 2726 void *data; 2727 int len_sum = 0; 2728 int status = TP_STATUS_AVAILABLE; 2729 int hlen, tlen, copylen = 0; 2730 long timeo = 0; 2731 2732 mutex_lock(&po->pg_vec_lock); 2733 2734 /* packet_sendmsg() check on tx_ring.pg_vec was lockless, 2735 * we need to confirm it under protection of pg_vec_lock. 2736 */ 2737 if (unlikely(!po->tx_ring.pg_vec)) { 2738 err = -EBUSY; 2739 goto out; 2740 } 2741 if (likely(saddr == NULL)) { 2742 dev = packet_cached_dev_get(po); 2743 proto = READ_ONCE(po->num); 2744 } else { 2745 err = -EINVAL; 2746 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2747 goto out; 2748 if (msg->msg_namelen < (saddr->sll_halen 2749 + offsetof(struct sockaddr_ll, 2750 sll_addr))) 2751 goto out; 2752 proto = saddr->sll_protocol; 2753 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2754 if (po->sk.sk_socket->type == SOCK_DGRAM) { 2755 if (dev && msg->msg_namelen < dev->addr_len + 2756 offsetof(struct sockaddr_ll, sll_addr)) 2757 goto out_put; 2758 addr = saddr->sll_addr; 2759 } 2760 } 2761 2762 err = -ENXIO; 2763 if (unlikely(dev == NULL)) 2764 goto out; 2765 err = -ENETDOWN; 2766 if (unlikely(!(dev->flags & IFF_UP))) 2767 goto out_put; 2768 2769 sockcm_init(&sockc, &po->sk); 2770 if (msg->msg_controllen) { 2771 err = sock_cmsg_send(&po->sk, msg, &sockc); 2772 if (unlikely(err)) 2773 goto out_put; 2774 } 2775 2776 if (po->sk.sk_socket->type == SOCK_RAW) 2777 reserve = dev->hard_header_len; 2778 size_max = po->tx_ring.frame_size 2779 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2780 2781 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr) 2782 size_max = dev->mtu + reserve + VLAN_HLEN; 2783 2784 reinit_completion(&po->skb_completion); 2785 2786 do { 2787 ph = packet_current_frame(po, &po->tx_ring, 2788 TP_STATUS_SEND_REQUEST); 2789 if (unlikely(ph == NULL)) { 2790 if (need_wait && skb) { 2791 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT); 2792 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo); 2793 if (timeo <= 0) { 2794 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS; 2795 goto out_put; 2796 } 2797 } 2798 /* check for additional frames */ 2799 continue; 2800 } 2801 2802 skb = NULL; 2803 tp_len = tpacket_parse_header(po, ph, size_max, &data); 2804 if (tp_len < 0) 2805 goto tpacket_error; 2806 2807 status = TP_STATUS_SEND_REQUEST; 2808 hlen = LL_RESERVED_SPACE(dev); 2809 tlen = dev->needed_tailroom; 2810 if (po->has_vnet_hdr) { 2811 vnet_hdr = data; 2812 data += sizeof(*vnet_hdr); 2813 tp_len -= sizeof(*vnet_hdr); 2814 if (tp_len < 0 || 2815 __packet_snd_vnet_parse(vnet_hdr, tp_len)) { 2816 tp_len = -EINVAL; 2817 goto tpacket_error; 2818 } 2819 copylen = __virtio16_to_cpu(vio_le(), 2820 vnet_hdr->hdr_len); 2821 } 2822 copylen = max_t(int, copylen, dev->hard_header_len); 2823 skb = sock_alloc_send_skb(&po->sk, 2824 hlen + tlen + sizeof(struct sockaddr_ll) + 2825 (copylen - dev->hard_header_len), 2826 !need_wait, &err); 2827 2828 if (unlikely(skb == NULL)) { 2829 /* we assume the socket was initially writeable ... */ 2830 if (likely(len_sum > 0)) 2831 err = len_sum; 2832 goto out_status; 2833 } 2834 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto, 2835 addr, hlen, copylen, &sockc); 2836 if (likely(tp_len >= 0) && 2837 tp_len > dev->mtu + reserve && 2838 !po->has_vnet_hdr && 2839 !packet_extra_vlan_len_allowed(dev, skb)) 2840 tp_len = -EMSGSIZE; 2841 2842 if (unlikely(tp_len < 0)) { 2843 tpacket_error: 2844 if (po->tp_loss) { 2845 __packet_set_status(po, ph, 2846 TP_STATUS_AVAILABLE); 2847 packet_increment_head(&po->tx_ring); 2848 kfree_skb(skb); 2849 continue; 2850 } else { 2851 status = TP_STATUS_WRONG_FORMAT; 2852 err = tp_len; 2853 goto out_status; 2854 } 2855 } 2856 2857 if (po->has_vnet_hdr) { 2858 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) { 2859 tp_len = -EINVAL; 2860 goto tpacket_error; 2861 } 2862 virtio_net_hdr_set_proto(skb, vnet_hdr); 2863 } 2864 2865 skb->destructor = tpacket_destruct_skb; 2866 __packet_set_status(po, ph, TP_STATUS_SENDING); 2867 packet_inc_pending(&po->tx_ring); 2868 2869 status = TP_STATUS_SEND_REQUEST; 2870 err = po->xmit(skb); 2871 if (unlikely(err != 0)) { 2872 if (err > 0) 2873 err = net_xmit_errno(err); 2874 if (err && __packet_get_status(po, ph) == 2875 TP_STATUS_AVAILABLE) { 2876 /* skb was destructed already */ 2877 skb = NULL; 2878 goto out_status; 2879 } 2880 /* 2881 * skb was dropped but not destructed yet; 2882 * let's treat it like congestion or err < 0 2883 */ 2884 err = 0; 2885 } 2886 packet_increment_head(&po->tx_ring); 2887 len_sum += tp_len; 2888 } while (likely((ph != NULL) || 2889 /* Note: packet_read_pending() might be slow if we have 2890 * to call it as it's per_cpu variable, but in fast-path 2891 * we already short-circuit the loop with the first 2892 * condition, and luckily don't have to go that path 2893 * anyway. 2894 */ 2895 (need_wait && packet_read_pending(&po->tx_ring)))); 2896 2897 err = len_sum; 2898 goto out_put; 2899 2900 out_status: 2901 __packet_set_status(po, ph, status); 2902 kfree_skb(skb); 2903 out_put: 2904 dev_put(dev); 2905 out: 2906 mutex_unlock(&po->pg_vec_lock); 2907 return err; 2908 } 2909 2910 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2911 size_t reserve, size_t len, 2912 size_t linear, int noblock, 2913 int *err) 2914 { 2915 struct sk_buff *skb; 2916 2917 /* Under a page? Don't bother with paged skb. */ 2918 if (prepad + len < PAGE_SIZE || !linear) 2919 linear = len; 2920 2921 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2922 err, 0); 2923 if (!skb) 2924 return NULL; 2925 2926 skb_reserve(skb, reserve); 2927 skb_put(skb, linear); 2928 skb->data_len = len - linear; 2929 skb->len += len - linear; 2930 2931 return skb; 2932 } 2933 2934 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) 2935 { 2936 struct sock *sk = sock->sk; 2937 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2938 struct sk_buff *skb; 2939 struct net_device *dev; 2940 __be16 proto; 2941 unsigned char *addr = NULL; 2942 int err, reserve = 0; 2943 struct sockcm_cookie sockc; 2944 struct virtio_net_hdr vnet_hdr = { 0 }; 2945 int offset = 0; 2946 struct packet_sock *po = pkt_sk(sk); 2947 bool has_vnet_hdr = false; 2948 int hlen, tlen, linear; 2949 int extra_len = 0; 2950 2951 /* 2952 * Get and verify the address. 2953 */ 2954 2955 if (likely(saddr == NULL)) { 2956 dev = packet_cached_dev_get(po); 2957 proto = READ_ONCE(po->num); 2958 } else { 2959 err = -EINVAL; 2960 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2961 goto out; 2962 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2963 goto out; 2964 proto = saddr->sll_protocol; 2965 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2966 if (sock->type == SOCK_DGRAM) { 2967 if (dev && msg->msg_namelen < dev->addr_len + 2968 offsetof(struct sockaddr_ll, sll_addr)) 2969 goto out_unlock; 2970 addr = saddr->sll_addr; 2971 } 2972 } 2973 2974 err = -ENXIO; 2975 if (unlikely(dev == NULL)) 2976 goto out_unlock; 2977 err = -ENETDOWN; 2978 if (unlikely(!(dev->flags & IFF_UP))) 2979 goto out_unlock; 2980 2981 sockcm_init(&sockc, sk); 2982 sockc.mark = sk->sk_mark; 2983 if (msg->msg_controllen) { 2984 err = sock_cmsg_send(sk, msg, &sockc); 2985 if (unlikely(err)) 2986 goto out_unlock; 2987 } 2988 2989 if (sock->type == SOCK_RAW) 2990 reserve = dev->hard_header_len; 2991 if (po->has_vnet_hdr) { 2992 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr); 2993 if (err) 2994 goto out_unlock; 2995 has_vnet_hdr = true; 2996 } 2997 2998 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 2999 if (!netif_supports_nofcs(dev)) { 3000 err = -EPROTONOSUPPORT; 3001 goto out_unlock; 3002 } 3003 extra_len = 4; /* We're doing our own CRC */ 3004 } 3005 3006 err = -EMSGSIZE; 3007 if (!vnet_hdr.gso_type && 3008 (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) 3009 goto out_unlock; 3010 3011 err = -ENOBUFS; 3012 hlen = LL_RESERVED_SPACE(dev); 3013 tlen = dev->needed_tailroom; 3014 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len); 3015 linear = max(linear, min_t(int, len, dev->hard_header_len)); 3016 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear, 3017 msg->msg_flags & MSG_DONTWAIT, &err); 3018 if (skb == NULL) 3019 goto out_unlock; 3020 3021 skb_reset_network_header(skb); 3022 3023 err = -EINVAL; 3024 if (sock->type == SOCK_DGRAM) { 3025 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); 3026 if (unlikely(offset < 0)) 3027 goto out_free; 3028 } else if (reserve) { 3029 skb_reserve(skb, -reserve); 3030 if (len < reserve + sizeof(struct ipv6hdr) && 3031 dev->min_header_len != dev->hard_header_len) 3032 skb_reset_network_header(skb); 3033 } 3034 3035 /* Returns -EFAULT on error */ 3036 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); 3037 if (err) 3038 goto out_free; 3039 3040 if ((sock->type == SOCK_RAW && 3041 !dev_validate_header(dev, skb->data, len)) || !skb->len) { 3042 err = -EINVAL; 3043 goto out_free; 3044 } 3045 3046 skb_setup_tx_timestamp(skb, sockc.tsflags); 3047 3048 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) && 3049 !packet_extra_vlan_len_allowed(dev, skb)) { 3050 err = -EMSGSIZE; 3051 goto out_free; 3052 } 3053 3054 skb->protocol = proto; 3055 skb->dev = dev; 3056 skb->priority = sk->sk_priority; 3057 skb->mark = sockc.mark; 3058 skb->tstamp = sockc.transmit_time; 3059 3060 if (unlikely(extra_len == 4)) 3061 skb->no_fcs = 1; 3062 3063 packet_parse_headers(skb, sock); 3064 3065 if (has_vnet_hdr) { 3066 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le()); 3067 if (err) 3068 goto out_free; 3069 len += sizeof(vnet_hdr); 3070 virtio_net_hdr_set_proto(skb, &vnet_hdr); 3071 } 3072 3073 err = po->xmit(skb); 3074 if (unlikely(err != 0)) { 3075 if (err > 0) 3076 err = net_xmit_errno(err); 3077 if (err) 3078 goto out_unlock; 3079 } 3080 3081 dev_put(dev); 3082 3083 return len; 3084 3085 out_free: 3086 kfree_skb(skb); 3087 out_unlock: 3088 dev_put(dev); 3089 out: 3090 return err; 3091 } 3092 3093 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 3094 { 3095 struct sock *sk = sock->sk; 3096 struct packet_sock *po = pkt_sk(sk); 3097 3098 /* Reading tx_ring.pg_vec without holding pg_vec_lock is racy. 3099 * tpacket_snd() will redo the check safely. 3100 */ 3101 if (data_race(po->tx_ring.pg_vec)) 3102 return tpacket_snd(po, msg); 3103 3104 return packet_snd(sock, msg, len); 3105 } 3106 3107 /* 3108 * Close a PACKET socket. This is fairly simple. We immediately go 3109 * to 'closed' state and remove our protocol entry in the device list. 3110 */ 3111 3112 static int packet_release(struct socket *sock) 3113 { 3114 struct sock *sk = sock->sk; 3115 struct packet_sock *po; 3116 struct packet_fanout *f; 3117 struct net *net; 3118 union tpacket_req_u req_u; 3119 3120 if (!sk) 3121 return 0; 3122 3123 net = sock_net(sk); 3124 po = pkt_sk(sk); 3125 3126 mutex_lock(&net->packet.sklist_lock); 3127 sk_del_node_init_rcu(sk); 3128 mutex_unlock(&net->packet.sklist_lock); 3129 3130 sock_prot_inuse_add(net, sk->sk_prot, -1); 3131 3132 spin_lock(&po->bind_lock); 3133 unregister_prot_hook(sk, false); 3134 packet_cached_dev_reset(po); 3135 3136 if (po->prot_hook.dev) { 3137 netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker); 3138 po->prot_hook.dev = NULL; 3139 } 3140 spin_unlock(&po->bind_lock); 3141 3142 packet_flush_mclist(sk); 3143 3144 lock_sock(sk); 3145 if (po->rx_ring.pg_vec) { 3146 memset(&req_u, 0, sizeof(req_u)); 3147 packet_set_ring(sk, &req_u, 1, 0); 3148 } 3149 3150 if (po->tx_ring.pg_vec) { 3151 memset(&req_u, 0, sizeof(req_u)); 3152 packet_set_ring(sk, &req_u, 1, 1); 3153 } 3154 release_sock(sk); 3155 3156 f = fanout_release(sk); 3157 3158 synchronize_net(); 3159 3160 kfree(po->rollover); 3161 if (f) { 3162 fanout_release_data(f); 3163 kvfree(f); 3164 } 3165 /* 3166 * Now the socket is dead. No more input will appear. 3167 */ 3168 sock_orphan(sk); 3169 sock->sk = NULL; 3170 3171 /* Purge queues */ 3172 3173 skb_queue_purge(&sk->sk_receive_queue); 3174 packet_free_pending(po); 3175 3176 sock_put(sk); 3177 return 0; 3178 } 3179 3180 /* 3181 * Attach a packet hook. 3182 */ 3183 3184 static int packet_do_bind(struct sock *sk, const char *name, int ifindex, 3185 __be16 proto) 3186 { 3187 struct packet_sock *po = pkt_sk(sk); 3188 struct net_device *dev = NULL; 3189 bool unlisted = false; 3190 bool need_rehook; 3191 int ret = 0; 3192 3193 lock_sock(sk); 3194 spin_lock(&po->bind_lock); 3195 rcu_read_lock(); 3196 3197 if (po->fanout) { 3198 ret = -EINVAL; 3199 goto out_unlock; 3200 } 3201 3202 if (name) { 3203 dev = dev_get_by_name_rcu(sock_net(sk), name); 3204 if (!dev) { 3205 ret = -ENODEV; 3206 goto out_unlock; 3207 } 3208 } else if (ifindex) { 3209 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3210 if (!dev) { 3211 ret = -ENODEV; 3212 goto out_unlock; 3213 } 3214 } 3215 3216 need_rehook = po->prot_hook.type != proto || po->prot_hook.dev != dev; 3217 3218 if (need_rehook) { 3219 dev_hold(dev); 3220 if (po->running) { 3221 rcu_read_unlock(); 3222 /* prevents packet_notifier() from calling 3223 * register_prot_hook() 3224 */ 3225 WRITE_ONCE(po->num, 0); 3226 __unregister_prot_hook(sk, true); 3227 rcu_read_lock(); 3228 if (dev) 3229 unlisted = !dev_get_by_index_rcu(sock_net(sk), 3230 dev->ifindex); 3231 } 3232 3233 BUG_ON(po->running); 3234 WRITE_ONCE(po->num, proto); 3235 po->prot_hook.type = proto; 3236 3237 netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker); 3238 3239 if (unlikely(unlisted)) { 3240 po->prot_hook.dev = NULL; 3241 WRITE_ONCE(po->ifindex, -1); 3242 packet_cached_dev_reset(po); 3243 } else { 3244 netdev_hold(dev, &po->prot_hook.dev_tracker, 3245 GFP_ATOMIC); 3246 po->prot_hook.dev = dev; 3247 WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0); 3248 packet_cached_dev_assign(po, dev); 3249 } 3250 dev_put(dev); 3251 } 3252 3253 if (proto == 0 || !need_rehook) 3254 goto out_unlock; 3255 3256 if (!unlisted && (!dev || (dev->flags & IFF_UP))) { 3257 register_prot_hook(sk); 3258 } else { 3259 sk->sk_err = ENETDOWN; 3260 if (!sock_flag(sk, SOCK_DEAD)) 3261 sk_error_report(sk); 3262 } 3263 3264 out_unlock: 3265 rcu_read_unlock(); 3266 spin_unlock(&po->bind_lock); 3267 release_sock(sk); 3268 return ret; 3269 } 3270 3271 /* 3272 * Bind a packet socket to a device 3273 */ 3274 3275 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 3276 int addr_len) 3277 { 3278 struct sock *sk = sock->sk; 3279 char name[sizeof(uaddr->sa_data_min) + 1]; 3280 3281 /* 3282 * Check legality 3283 */ 3284 3285 if (addr_len != sizeof(struct sockaddr)) 3286 return -EINVAL; 3287 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be 3288 * zero-terminated. 3289 */ 3290 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data_min)); 3291 name[sizeof(uaddr->sa_data_min)] = 0; 3292 3293 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num); 3294 } 3295 3296 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3297 { 3298 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 3299 struct sock *sk = sock->sk; 3300 3301 /* 3302 * Check legality 3303 */ 3304 3305 if (addr_len < sizeof(struct sockaddr_ll)) 3306 return -EINVAL; 3307 if (sll->sll_family != AF_PACKET) 3308 return -EINVAL; 3309 3310 return packet_do_bind(sk, NULL, sll->sll_ifindex, 3311 sll->sll_protocol ? : pkt_sk(sk)->num); 3312 } 3313 3314 static struct proto packet_proto = { 3315 .name = "PACKET", 3316 .owner = THIS_MODULE, 3317 .obj_size = sizeof(struct packet_sock), 3318 }; 3319 3320 /* 3321 * Create a packet of type SOCK_PACKET. 3322 */ 3323 3324 static int packet_create(struct net *net, struct socket *sock, int protocol, 3325 int kern) 3326 { 3327 struct sock *sk; 3328 struct packet_sock *po; 3329 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 3330 int err; 3331 3332 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 3333 return -EPERM; 3334 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 3335 sock->type != SOCK_PACKET) 3336 return -ESOCKTNOSUPPORT; 3337 3338 sock->state = SS_UNCONNECTED; 3339 3340 err = -ENOBUFS; 3341 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); 3342 if (sk == NULL) 3343 goto out; 3344 3345 sock->ops = &packet_ops; 3346 if (sock->type == SOCK_PACKET) 3347 sock->ops = &packet_ops_spkt; 3348 3349 sock_init_data(sock, sk); 3350 3351 po = pkt_sk(sk); 3352 init_completion(&po->skb_completion); 3353 sk->sk_family = PF_PACKET; 3354 po->num = proto; 3355 po->xmit = dev_queue_xmit; 3356 3357 err = packet_alloc_pending(po); 3358 if (err) 3359 goto out2; 3360 3361 packet_cached_dev_reset(po); 3362 3363 sk->sk_destruct = packet_sock_destruct; 3364 3365 /* 3366 * Attach a protocol block 3367 */ 3368 3369 spin_lock_init(&po->bind_lock); 3370 mutex_init(&po->pg_vec_lock); 3371 po->rollover = NULL; 3372 po->prot_hook.func = packet_rcv; 3373 3374 if (sock->type == SOCK_PACKET) 3375 po->prot_hook.func = packet_rcv_spkt; 3376 3377 po->prot_hook.af_packet_priv = sk; 3378 po->prot_hook.af_packet_net = sock_net(sk); 3379 3380 if (proto) { 3381 po->prot_hook.type = proto; 3382 __register_prot_hook(sk); 3383 } 3384 3385 mutex_lock(&net->packet.sklist_lock); 3386 sk_add_node_tail_rcu(sk, &net->packet.sklist); 3387 mutex_unlock(&net->packet.sklist_lock); 3388 3389 sock_prot_inuse_add(net, &packet_proto, 1); 3390 3391 return 0; 3392 out2: 3393 sk_free(sk); 3394 out: 3395 return err; 3396 } 3397 3398 /* 3399 * Pull a packet from our receive queue and hand it to the user. 3400 * If necessary we block. 3401 */ 3402 3403 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 3404 int flags) 3405 { 3406 struct sock *sk = sock->sk; 3407 struct sk_buff *skb; 3408 int copied, err; 3409 int vnet_hdr_len = 0; 3410 unsigned int origlen = 0; 3411 3412 err = -EINVAL; 3413 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 3414 goto out; 3415 3416 #if 0 3417 /* What error should we return now? EUNATTACH? */ 3418 if (pkt_sk(sk)->ifindex < 0) 3419 return -ENODEV; 3420 #endif 3421 3422 if (flags & MSG_ERRQUEUE) { 3423 err = sock_recv_errqueue(sk, msg, len, 3424 SOL_PACKET, PACKET_TX_TIMESTAMP); 3425 goto out; 3426 } 3427 3428 /* 3429 * Call the generic datagram receiver. This handles all sorts 3430 * of horrible races and re-entrancy so we can forget about it 3431 * in the protocol layers. 3432 * 3433 * Now it will return ENETDOWN, if device have just gone down, 3434 * but then it will block. 3435 */ 3436 3437 skb = skb_recv_datagram(sk, flags, &err); 3438 3439 /* 3440 * An error occurred so return it. Because skb_recv_datagram() 3441 * handles the blocking we don't see and worry about blocking 3442 * retries. 3443 */ 3444 3445 if (skb == NULL) 3446 goto out; 3447 3448 packet_rcv_try_clear_pressure(pkt_sk(sk)); 3449 3450 if (pkt_sk(sk)->has_vnet_hdr) { 3451 err = packet_rcv_vnet(msg, skb, &len); 3452 if (err) 3453 goto out_free; 3454 vnet_hdr_len = sizeof(struct virtio_net_hdr); 3455 } 3456 3457 /* You lose any data beyond the buffer you gave. If it worries 3458 * a user program they can ask the device for its MTU 3459 * anyway. 3460 */ 3461 copied = skb->len; 3462 if (copied > len) { 3463 copied = len; 3464 msg->msg_flags |= MSG_TRUNC; 3465 } 3466 3467 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3468 if (err) 3469 goto out_free; 3470 3471 if (sock->type != SOCK_PACKET) { 3472 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3473 3474 /* Original length was stored in sockaddr_ll fields */ 3475 origlen = PACKET_SKB_CB(skb)->sa.origlen; 3476 sll->sll_family = AF_PACKET; 3477 sll->sll_protocol = skb->protocol; 3478 } 3479 3480 sock_recv_cmsgs(msg, sk, skb); 3481 3482 if (msg->msg_name) { 3483 const size_t max_len = min(sizeof(skb->cb), 3484 sizeof(struct sockaddr_storage)); 3485 int copy_len; 3486 3487 /* If the address length field is there to be filled 3488 * in, we fill it in now. 3489 */ 3490 if (sock->type == SOCK_PACKET) { 3491 __sockaddr_check_size(sizeof(struct sockaddr_pkt)); 3492 msg->msg_namelen = sizeof(struct sockaddr_pkt); 3493 copy_len = msg->msg_namelen; 3494 } else { 3495 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3496 3497 msg->msg_namelen = sll->sll_halen + 3498 offsetof(struct sockaddr_ll, sll_addr); 3499 copy_len = msg->msg_namelen; 3500 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) { 3501 memset(msg->msg_name + 3502 offsetof(struct sockaddr_ll, sll_addr), 3503 0, sizeof(sll->sll_addr)); 3504 msg->msg_namelen = sizeof(struct sockaddr_ll); 3505 } 3506 } 3507 if (WARN_ON_ONCE(copy_len > max_len)) { 3508 copy_len = max_len; 3509 msg->msg_namelen = copy_len; 3510 } 3511 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len); 3512 } 3513 3514 if (pkt_sk(sk)->auxdata) { 3515 struct tpacket_auxdata aux; 3516 3517 aux.tp_status = TP_STATUS_USER; 3518 if (skb->ip_summed == CHECKSUM_PARTIAL) 3519 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 3520 else if (skb->pkt_type != PACKET_OUTGOING && 3521 skb_csum_unnecessary(skb)) 3522 aux.tp_status |= TP_STATUS_CSUM_VALID; 3523 if (skb_is_gso(skb) && skb_is_gso_tcp(skb)) 3524 aux.tp_status |= TP_STATUS_GSO_TCP; 3525 3526 aux.tp_len = origlen; 3527 aux.tp_snaplen = skb->len; 3528 aux.tp_mac = 0; 3529 aux.tp_net = skb_network_offset(skb); 3530 if (skb_vlan_tag_present(skb)) { 3531 aux.tp_vlan_tci = skb_vlan_tag_get(skb); 3532 aux.tp_vlan_tpid = ntohs(skb->vlan_proto); 3533 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 3534 } else { 3535 aux.tp_vlan_tci = 0; 3536 aux.tp_vlan_tpid = 0; 3537 } 3538 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 3539 } 3540 3541 /* 3542 * Free or return the buffer as appropriate. Again this 3543 * hides all the races and re-entrancy issues from us. 3544 */ 3545 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 3546 3547 out_free: 3548 skb_free_datagram(sk, skb); 3549 out: 3550 return err; 3551 } 3552 3553 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 3554 int peer) 3555 { 3556 struct net_device *dev; 3557 struct sock *sk = sock->sk; 3558 3559 if (peer) 3560 return -EOPNOTSUPP; 3561 3562 uaddr->sa_family = AF_PACKET; 3563 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data_min)); 3564 rcu_read_lock(); 3565 dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex)); 3566 if (dev) 3567 strscpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data_min)); 3568 rcu_read_unlock(); 3569 3570 return sizeof(*uaddr); 3571 } 3572 3573 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 3574 int peer) 3575 { 3576 struct net_device *dev; 3577 struct sock *sk = sock->sk; 3578 struct packet_sock *po = pkt_sk(sk); 3579 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 3580 int ifindex; 3581 3582 if (peer) 3583 return -EOPNOTSUPP; 3584 3585 ifindex = READ_ONCE(po->ifindex); 3586 sll->sll_family = AF_PACKET; 3587 sll->sll_ifindex = ifindex; 3588 sll->sll_protocol = READ_ONCE(po->num); 3589 sll->sll_pkttype = 0; 3590 rcu_read_lock(); 3591 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3592 if (dev) { 3593 sll->sll_hatype = dev->type; 3594 sll->sll_halen = dev->addr_len; 3595 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 3596 } else { 3597 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 3598 sll->sll_halen = 0; 3599 } 3600 rcu_read_unlock(); 3601 3602 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 3603 } 3604 3605 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 3606 int what) 3607 { 3608 switch (i->type) { 3609 case PACKET_MR_MULTICAST: 3610 if (i->alen != dev->addr_len) 3611 return -EINVAL; 3612 if (what > 0) 3613 return dev_mc_add(dev, i->addr); 3614 else 3615 return dev_mc_del(dev, i->addr); 3616 break; 3617 case PACKET_MR_PROMISC: 3618 return dev_set_promiscuity(dev, what); 3619 case PACKET_MR_ALLMULTI: 3620 return dev_set_allmulti(dev, what); 3621 case PACKET_MR_UNICAST: 3622 if (i->alen != dev->addr_len) 3623 return -EINVAL; 3624 if (what > 0) 3625 return dev_uc_add(dev, i->addr); 3626 else 3627 return dev_uc_del(dev, i->addr); 3628 break; 3629 default: 3630 break; 3631 } 3632 return 0; 3633 } 3634 3635 static void packet_dev_mclist_delete(struct net_device *dev, 3636 struct packet_mclist **mlp) 3637 { 3638 struct packet_mclist *ml; 3639 3640 while ((ml = *mlp) != NULL) { 3641 if (ml->ifindex == dev->ifindex) { 3642 packet_dev_mc(dev, ml, -1); 3643 *mlp = ml->next; 3644 kfree(ml); 3645 } else 3646 mlp = &ml->next; 3647 } 3648 } 3649 3650 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 3651 { 3652 struct packet_sock *po = pkt_sk(sk); 3653 struct packet_mclist *ml, *i; 3654 struct net_device *dev; 3655 int err; 3656 3657 rtnl_lock(); 3658 3659 err = -ENODEV; 3660 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 3661 if (!dev) 3662 goto done; 3663 3664 err = -EINVAL; 3665 if (mreq->mr_alen > dev->addr_len) 3666 goto done; 3667 3668 err = -ENOBUFS; 3669 i = kmalloc(sizeof(*i), GFP_KERNEL); 3670 if (i == NULL) 3671 goto done; 3672 3673 err = 0; 3674 for (ml = po->mclist; ml; ml = ml->next) { 3675 if (ml->ifindex == mreq->mr_ifindex && 3676 ml->type == mreq->mr_type && 3677 ml->alen == mreq->mr_alen && 3678 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3679 ml->count++; 3680 /* Free the new element ... */ 3681 kfree(i); 3682 goto done; 3683 } 3684 } 3685 3686 i->type = mreq->mr_type; 3687 i->ifindex = mreq->mr_ifindex; 3688 i->alen = mreq->mr_alen; 3689 memcpy(i->addr, mreq->mr_address, i->alen); 3690 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen); 3691 i->count = 1; 3692 i->next = po->mclist; 3693 po->mclist = i; 3694 err = packet_dev_mc(dev, i, 1); 3695 if (err) { 3696 po->mclist = i->next; 3697 kfree(i); 3698 } 3699 3700 done: 3701 rtnl_unlock(); 3702 return err; 3703 } 3704 3705 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 3706 { 3707 struct packet_mclist *ml, **mlp; 3708 3709 rtnl_lock(); 3710 3711 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 3712 if (ml->ifindex == mreq->mr_ifindex && 3713 ml->type == mreq->mr_type && 3714 ml->alen == mreq->mr_alen && 3715 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3716 if (--ml->count == 0) { 3717 struct net_device *dev; 3718 *mlp = ml->next; 3719 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3720 if (dev) 3721 packet_dev_mc(dev, ml, -1); 3722 kfree(ml); 3723 } 3724 break; 3725 } 3726 } 3727 rtnl_unlock(); 3728 return 0; 3729 } 3730 3731 static void packet_flush_mclist(struct sock *sk) 3732 { 3733 struct packet_sock *po = pkt_sk(sk); 3734 struct packet_mclist *ml; 3735 3736 if (!po->mclist) 3737 return; 3738 3739 rtnl_lock(); 3740 while ((ml = po->mclist) != NULL) { 3741 struct net_device *dev; 3742 3743 po->mclist = ml->next; 3744 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3745 if (dev != NULL) 3746 packet_dev_mc(dev, ml, -1); 3747 kfree(ml); 3748 } 3749 rtnl_unlock(); 3750 } 3751 3752 static int 3753 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, 3754 unsigned int optlen) 3755 { 3756 struct sock *sk = sock->sk; 3757 struct packet_sock *po = pkt_sk(sk); 3758 int ret; 3759 3760 if (level != SOL_PACKET) 3761 return -ENOPROTOOPT; 3762 3763 switch (optname) { 3764 case PACKET_ADD_MEMBERSHIP: 3765 case PACKET_DROP_MEMBERSHIP: 3766 { 3767 struct packet_mreq_max mreq; 3768 int len = optlen; 3769 memset(&mreq, 0, sizeof(mreq)); 3770 if (len < sizeof(struct packet_mreq)) 3771 return -EINVAL; 3772 if (len > sizeof(mreq)) 3773 len = sizeof(mreq); 3774 if (copy_from_sockptr(&mreq, optval, len)) 3775 return -EFAULT; 3776 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3777 return -EINVAL; 3778 if (optname == PACKET_ADD_MEMBERSHIP) 3779 ret = packet_mc_add(sk, &mreq); 3780 else 3781 ret = packet_mc_drop(sk, &mreq); 3782 return ret; 3783 } 3784 3785 case PACKET_RX_RING: 3786 case PACKET_TX_RING: 3787 { 3788 union tpacket_req_u req_u; 3789 int len; 3790 3791 lock_sock(sk); 3792 switch (po->tp_version) { 3793 case TPACKET_V1: 3794 case TPACKET_V2: 3795 len = sizeof(req_u.req); 3796 break; 3797 case TPACKET_V3: 3798 default: 3799 len = sizeof(req_u.req3); 3800 break; 3801 } 3802 if (optlen < len) { 3803 ret = -EINVAL; 3804 } else { 3805 if (copy_from_sockptr(&req_u.req, optval, len)) 3806 ret = -EFAULT; 3807 else 3808 ret = packet_set_ring(sk, &req_u, 0, 3809 optname == PACKET_TX_RING); 3810 } 3811 release_sock(sk); 3812 return ret; 3813 } 3814 case PACKET_COPY_THRESH: 3815 { 3816 int val; 3817 3818 if (optlen != sizeof(val)) 3819 return -EINVAL; 3820 if (copy_from_sockptr(&val, optval, sizeof(val))) 3821 return -EFAULT; 3822 3823 pkt_sk(sk)->copy_thresh = val; 3824 return 0; 3825 } 3826 case PACKET_VERSION: 3827 { 3828 int val; 3829 3830 if (optlen != sizeof(val)) 3831 return -EINVAL; 3832 if (copy_from_sockptr(&val, optval, sizeof(val))) 3833 return -EFAULT; 3834 switch (val) { 3835 case TPACKET_V1: 3836 case TPACKET_V2: 3837 case TPACKET_V3: 3838 break; 3839 default: 3840 return -EINVAL; 3841 } 3842 lock_sock(sk); 3843 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3844 ret = -EBUSY; 3845 } else { 3846 po->tp_version = val; 3847 ret = 0; 3848 } 3849 release_sock(sk); 3850 return ret; 3851 } 3852 case PACKET_RESERVE: 3853 { 3854 unsigned int val; 3855 3856 if (optlen != sizeof(val)) 3857 return -EINVAL; 3858 if (copy_from_sockptr(&val, optval, sizeof(val))) 3859 return -EFAULT; 3860 if (val > INT_MAX) 3861 return -EINVAL; 3862 lock_sock(sk); 3863 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3864 ret = -EBUSY; 3865 } else { 3866 po->tp_reserve = val; 3867 ret = 0; 3868 } 3869 release_sock(sk); 3870 return ret; 3871 } 3872 case PACKET_LOSS: 3873 { 3874 unsigned int val; 3875 3876 if (optlen != sizeof(val)) 3877 return -EINVAL; 3878 if (copy_from_sockptr(&val, optval, sizeof(val))) 3879 return -EFAULT; 3880 3881 lock_sock(sk); 3882 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3883 ret = -EBUSY; 3884 } else { 3885 po->tp_loss = !!val; 3886 ret = 0; 3887 } 3888 release_sock(sk); 3889 return ret; 3890 } 3891 case PACKET_AUXDATA: 3892 { 3893 int val; 3894 3895 if (optlen < sizeof(val)) 3896 return -EINVAL; 3897 if (copy_from_sockptr(&val, optval, sizeof(val))) 3898 return -EFAULT; 3899 3900 lock_sock(sk); 3901 po->auxdata = !!val; 3902 release_sock(sk); 3903 return 0; 3904 } 3905 case PACKET_ORIGDEV: 3906 { 3907 int val; 3908 3909 if (optlen < sizeof(val)) 3910 return -EINVAL; 3911 if (copy_from_sockptr(&val, optval, sizeof(val))) 3912 return -EFAULT; 3913 3914 lock_sock(sk); 3915 po->origdev = !!val; 3916 release_sock(sk); 3917 return 0; 3918 } 3919 case PACKET_VNET_HDR: 3920 { 3921 int val; 3922 3923 if (sock->type != SOCK_RAW) 3924 return -EINVAL; 3925 if (optlen < sizeof(val)) 3926 return -EINVAL; 3927 if (copy_from_sockptr(&val, optval, sizeof(val))) 3928 return -EFAULT; 3929 3930 lock_sock(sk); 3931 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3932 ret = -EBUSY; 3933 } else { 3934 po->has_vnet_hdr = !!val; 3935 ret = 0; 3936 } 3937 release_sock(sk); 3938 return ret; 3939 } 3940 case PACKET_TIMESTAMP: 3941 { 3942 int val; 3943 3944 if (optlen != sizeof(val)) 3945 return -EINVAL; 3946 if (copy_from_sockptr(&val, optval, sizeof(val))) 3947 return -EFAULT; 3948 3949 po->tp_tstamp = val; 3950 return 0; 3951 } 3952 case PACKET_FANOUT: 3953 { 3954 struct fanout_args args = { 0 }; 3955 3956 if (optlen != sizeof(int) && optlen != sizeof(args)) 3957 return -EINVAL; 3958 if (copy_from_sockptr(&args, optval, optlen)) 3959 return -EFAULT; 3960 3961 return fanout_add(sk, &args); 3962 } 3963 case PACKET_FANOUT_DATA: 3964 { 3965 /* Paired with the WRITE_ONCE() in fanout_add() */ 3966 if (!READ_ONCE(po->fanout)) 3967 return -EINVAL; 3968 3969 return fanout_set_data(po, optval, optlen); 3970 } 3971 case PACKET_IGNORE_OUTGOING: 3972 { 3973 int val; 3974 3975 if (optlen != sizeof(val)) 3976 return -EINVAL; 3977 if (copy_from_sockptr(&val, optval, sizeof(val))) 3978 return -EFAULT; 3979 if (val < 0 || val > 1) 3980 return -EINVAL; 3981 3982 po->prot_hook.ignore_outgoing = !!val; 3983 return 0; 3984 } 3985 case PACKET_TX_HAS_OFF: 3986 { 3987 unsigned int val; 3988 3989 if (optlen != sizeof(val)) 3990 return -EINVAL; 3991 if (copy_from_sockptr(&val, optval, sizeof(val))) 3992 return -EFAULT; 3993 3994 lock_sock(sk); 3995 if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec) 3996 po->tp_tx_has_off = !!val; 3997 3998 release_sock(sk); 3999 return 0; 4000 } 4001 case PACKET_QDISC_BYPASS: 4002 { 4003 int val; 4004 4005 if (optlen != sizeof(val)) 4006 return -EINVAL; 4007 if (copy_from_sockptr(&val, optval, sizeof(val))) 4008 return -EFAULT; 4009 4010 po->xmit = val ? packet_direct_xmit : dev_queue_xmit; 4011 return 0; 4012 } 4013 default: 4014 return -ENOPROTOOPT; 4015 } 4016 } 4017 4018 static int packet_getsockopt(struct socket *sock, int level, int optname, 4019 char __user *optval, int __user *optlen) 4020 { 4021 int len; 4022 int val, lv = sizeof(val); 4023 struct sock *sk = sock->sk; 4024 struct packet_sock *po = pkt_sk(sk); 4025 void *data = &val; 4026 union tpacket_stats_u st; 4027 struct tpacket_rollover_stats rstats; 4028 int drops; 4029 4030 if (level != SOL_PACKET) 4031 return -ENOPROTOOPT; 4032 4033 if (get_user(len, optlen)) 4034 return -EFAULT; 4035 4036 if (len < 0) 4037 return -EINVAL; 4038 4039 switch (optname) { 4040 case PACKET_STATISTICS: 4041 spin_lock_bh(&sk->sk_receive_queue.lock); 4042 memcpy(&st, &po->stats, sizeof(st)); 4043 memset(&po->stats, 0, sizeof(po->stats)); 4044 spin_unlock_bh(&sk->sk_receive_queue.lock); 4045 drops = atomic_xchg(&po->tp_drops, 0); 4046 4047 if (po->tp_version == TPACKET_V3) { 4048 lv = sizeof(struct tpacket_stats_v3); 4049 st.stats3.tp_drops = drops; 4050 st.stats3.tp_packets += drops; 4051 data = &st.stats3; 4052 } else { 4053 lv = sizeof(struct tpacket_stats); 4054 st.stats1.tp_drops = drops; 4055 st.stats1.tp_packets += drops; 4056 data = &st.stats1; 4057 } 4058 4059 break; 4060 case PACKET_AUXDATA: 4061 val = po->auxdata; 4062 break; 4063 case PACKET_ORIGDEV: 4064 val = po->origdev; 4065 break; 4066 case PACKET_VNET_HDR: 4067 val = po->has_vnet_hdr; 4068 break; 4069 case PACKET_VERSION: 4070 val = po->tp_version; 4071 break; 4072 case PACKET_HDRLEN: 4073 if (len > sizeof(int)) 4074 len = sizeof(int); 4075 if (len < sizeof(int)) 4076 return -EINVAL; 4077 if (copy_from_user(&val, optval, len)) 4078 return -EFAULT; 4079 switch (val) { 4080 case TPACKET_V1: 4081 val = sizeof(struct tpacket_hdr); 4082 break; 4083 case TPACKET_V2: 4084 val = sizeof(struct tpacket2_hdr); 4085 break; 4086 case TPACKET_V3: 4087 val = sizeof(struct tpacket3_hdr); 4088 break; 4089 default: 4090 return -EINVAL; 4091 } 4092 break; 4093 case PACKET_RESERVE: 4094 val = po->tp_reserve; 4095 break; 4096 case PACKET_LOSS: 4097 val = po->tp_loss; 4098 break; 4099 case PACKET_TIMESTAMP: 4100 val = po->tp_tstamp; 4101 break; 4102 case PACKET_FANOUT: 4103 val = (po->fanout ? 4104 ((u32)po->fanout->id | 4105 ((u32)po->fanout->type << 16) | 4106 ((u32)po->fanout->flags << 24)) : 4107 0); 4108 break; 4109 case PACKET_IGNORE_OUTGOING: 4110 val = po->prot_hook.ignore_outgoing; 4111 break; 4112 case PACKET_ROLLOVER_STATS: 4113 if (!po->rollover) 4114 return -EINVAL; 4115 rstats.tp_all = atomic_long_read(&po->rollover->num); 4116 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); 4117 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); 4118 data = &rstats; 4119 lv = sizeof(rstats); 4120 break; 4121 case PACKET_TX_HAS_OFF: 4122 val = po->tp_tx_has_off; 4123 break; 4124 case PACKET_QDISC_BYPASS: 4125 val = packet_use_direct_xmit(po); 4126 break; 4127 default: 4128 return -ENOPROTOOPT; 4129 } 4130 4131 if (len > lv) 4132 len = lv; 4133 if (put_user(len, optlen)) 4134 return -EFAULT; 4135 if (copy_to_user(optval, data, len)) 4136 return -EFAULT; 4137 return 0; 4138 } 4139 4140 static int packet_notifier(struct notifier_block *this, 4141 unsigned long msg, void *ptr) 4142 { 4143 struct sock *sk; 4144 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4145 struct net *net = dev_net(dev); 4146 4147 rcu_read_lock(); 4148 sk_for_each_rcu(sk, &net->packet.sklist) { 4149 struct packet_sock *po = pkt_sk(sk); 4150 4151 switch (msg) { 4152 case NETDEV_UNREGISTER: 4153 if (po->mclist) 4154 packet_dev_mclist_delete(dev, &po->mclist); 4155 fallthrough; 4156 4157 case NETDEV_DOWN: 4158 if (dev->ifindex == po->ifindex) { 4159 spin_lock(&po->bind_lock); 4160 if (po->running) { 4161 __unregister_prot_hook(sk, false); 4162 sk->sk_err = ENETDOWN; 4163 if (!sock_flag(sk, SOCK_DEAD)) 4164 sk_error_report(sk); 4165 } 4166 if (msg == NETDEV_UNREGISTER) { 4167 packet_cached_dev_reset(po); 4168 WRITE_ONCE(po->ifindex, -1); 4169 netdev_put(po->prot_hook.dev, 4170 &po->prot_hook.dev_tracker); 4171 po->prot_hook.dev = NULL; 4172 } 4173 spin_unlock(&po->bind_lock); 4174 } 4175 break; 4176 case NETDEV_UP: 4177 if (dev->ifindex == po->ifindex) { 4178 spin_lock(&po->bind_lock); 4179 if (po->num) 4180 register_prot_hook(sk); 4181 spin_unlock(&po->bind_lock); 4182 } 4183 break; 4184 } 4185 } 4186 rcu_read_unlock(); 4187 return NOTIFY_DONE; 4188 } 4189 4190 4191 static int packet_ioctl(struct socket *sock, unsigned int cmd, 4192 unsigned long arg) 4193 { 4194 struct sock *sk = sock->sk; 4195 4196 switch (cmd) { 4197 case SIOCOUTQ: 4198 { 4199 int amount = sk_wmem_alloc_get(sk); 4200 4201 return put_user(amount, (int __user *)arg); 4202 } 4203 case SIOCINQ: 4204 { 4205 struct sk_buff *skb; 4206 int amount = 0; 4207 4208 spin_lock_bh(&sk->sk_receive_queue.lock); 4209 skb = skb_peek(&sk->sk_receive_queue); 4210 if (skb) 4211 amount = skb->len; 4212 spin_unlock_bh(&sk->sk_receive_queue.lock); 4213 return put_user(amount, (int __user *)arg); 4214 } 4215 #ifdef CONFIG_INET 4216 case SIOCADDRT: 4217 case SIOCDELRT: 4218 case SIOCDARP: 4219 case SIOCGARP: 4220 case SIOCSARP: 4221 case SIOCGIFADDR: 4222 case SIOCSIFADDR: 4223 case SIOCGIFBRDADDR: 4224 case SIOCSIFBRDADDR: 4225 case SIOCGIFNETMASK: 4226 case SIOCSIFNETMASK: 4227 case SIOCGIFDSTADDR: 4228 case SIOCSIFDSTADDR: 4229 case SIOCSIFFLAGS: 4230 return inet_dgram_ops.ioctl(sock, cmd, arg); 4231 #endif 4232 4233 default: 4234 return -ENOIOCTLCMD; 4235 } 4236 return 0; 4237 } 4238 4239 static __poll_t packet_poll(struct file *file, struct socket *sock, 4240 poll_table *wait) 4241 { 4242 struct sock *sk = sock->sk; 4243 struct packet_sock *po = pkt_sk(sk); 4244 __poll_t mask = datagram_poll(file, sock, wait); 4245 4246 spin_lock_bh(&sk->sk_receive_queue.lock); 4247 if (po->rx_ring.pg_vec) { 4248 if (!packet_previous_rx_frame(po, &po->rx_ring, 4249 TP_STATUS_KERNEL)) 4250 mask |= EPOLLIN | EPOLLRDNORM; 4251 } 4252 packet_rcv_try_clear_pressure(po); 4253 spin_unlock_bh(&sk->sk_receive_queue.lock); 4254 spin_lock_bh(&sk->sk_write_queue.lock); 4255 if (po->tx_ring.pg_vec) { 4256 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 4257 mask |= EPOLLOUT | EPOLLWRNORM; 4258 } 4259 spin_unlock_bh(&sk->sk_write_queue.lock); 4260 return mask; 4261 } 4262 4263 4264 /* Dirty? Well, I still did not learn better way to account 4265 * for user mmaps. 4266 */ 4267 4268 static void packet_mm_open(struct vm_area_struct *vma) 4269 { 4270 struct file *file = vma->vm_file; 4271 struct socket *sock = file->private_data; 4272 struct sock *sk = sock->sk; 4273 4274 if (sk) 4275 atomic_inc(&pkt_sk(sk)->mapped); 4276 } 4277 4278 static void packet_mm_close(struct vm_area_struct *vma) 4279 { 4280 struct file *file = vma->vm_file; 4281 struct socket *sock = file->private_data; 4282 struct sock *sk = sock->sk; 4283 4284 if (sk) 4285 atomic_dec(&pkt_sk(sk)->mapped); 4286 } 4287 4288 static const struct vm_operations_struct packet_mmap_ops = { 4289 .open = packet_mm_open, 4290 .close = packet_mm_close, 4291 }; 4292 4293 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 4294 unsigned int len) 4295 { 4296 int i; 4297 4298 for (i = 0; i < len; i++) { 4299 if (likely(pg_vec[i].buffer)) { 4300 if (is_vmalloc_addr(pg_vec[i].buffer)) 4301 vfree(pg_vec[i].buffer); 4302 else 4303 free_pages((unsigned long)pg_vec[i].buffer, 4304 order); 4305 pg_vec[i].buffer = NULL; 4306 } 4307 } 4308 kfree(pg_vec); 4309 } 4310 4311 static char *alloc_one_pg_vec_page(unsigned long order) 4312 { 4313 char *buffer; 4314 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 4315 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 4316 4317 buffer = (char *) __get_free_pages(gfp_flags, order); 4318 if (buffer) 4319 return buffer; 4320 4321 /* __get_free_pages failed, fall back to vmalloc */ 4322 buffer = vzalloc(array_size((1 << order), PAGE_SIZE)); 4323 if (buffer) 4324 return buffer; 4325 4326 /* vmalloc failed, lets dig into swap here */ 4327 gfp_flags &= ~__GFP_NORETRY; 4328 buffer = (char *) __get_free_pages(gfp_flags, order); 4329 if (buffer) 4330 return buffer; 4331 4332 /* complete and utter failure */ 4333 return NULL; 4334 } 4335 4336 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 4337 { 4338 unsigned int block_nr = req->tp_block_nr; 4339 struct pgv *pg_vec; 4340 int i; 4341 4342 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN); 4343 if (unlikely(!pg_vec)) 4344 goto out; 4345 4346 for (i = 0; i < block_nr; i++) { 4347 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 4348 if (unlikely(!pg_vec[i].buffer)) 4349 goto out_free_pgvec; 4350 } 4351 4352 out: 4353 return pg_vec; 4354 4355 out_free_pgvec: 4356 free_pg_vec(pg_vec, order, block_nr); 4357 pg_vec = NULL; 4358 goto out; 4359 } 4360 4361 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 4362 int closing, int tx_ring) 4363 { 4364 struct pgv *pg_vec = NULL; 4365 struct packet_sock *po = pkt_sk(sk); 4366 unsigned long *rx_owner_map = NULL; 4367 int was_running, order = 0; 4368 struct packet_ring_buffer *rb; 4369 struct sk_buff_head *rb_queue; 4370 __be16 num; 4371 int err; 4372 /* Added to avoid minimal code churn */ 4373 struct tpacket_req *req = &req_u->req; 4374 4375 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 4376 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 4377 4378 err = -EBUSY; 4379 if (!closing) { 4380 if (atomic_read(&po->mapped)) 4381 goto out; 4382 if (packet_read_pending(rb)) 4383 goto out; 4384 } 4385 4386 if (req->tp_block_nr) { 4387 unsigned int min_frame_size; 4388 4389 /* Sanity tests and some calculations */ 4390 err = -EBUSY; 4391 if (unlikely(rb->pg_vec)) 4392 goto out; 4393 4394 switch (po->tp_version) { 4395 case TPACKET_V1: 4396 po->tp_hdrlen = TPACKET_HDRLEN; 4397 break; 4398 case TPACKET_V2: 4399 po->tp_hdrlen = TPACKET2_HDRLEN; 4400 break; 4401 case TPACKET_V3: 4402 po->tp_hdrlen = TPACKET3_HDRLEN; 4403 break; 4404 } 4405 4406 err = -EINVAL; 4407 if (unlikely((int)req->tp_block_size <= 0)) 4408 goto out; 4409 if (unlikely(!PAGE_ALIGNED(req->tp_block_size))) 4410 goto out; 4411 min_frame_size = po->tp_hdrlen + po->tp_reserve; 4412 if (po->tp_version >= TPACKET_V3 && 4413 req->tp_block_size < 4414 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size) 4415 goto out; 4416 if (unlikely(req->tp_frame_size < min_frame_size)) 4417 goto out; 4418 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 4419 goto out; 4420 4421 rb->frames_per_block = req->tp_block_size / req->tp_frame_size; 4422 if (unlikely(rb->frames_per_block == 0)) 4423 goto out; 4424 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr)) 4425 goto out; 4426 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 4427 req->tp_frame_nr)) 4428 goto out; 4429 4430 err = -ENOMEM; 4431 order = get_order(req->tp_block_size); 4432 pg_vec = alloc_pg_vec(req, order); 4433 if (unlikely(!pg_vec)) 4434 goto out; 4435 switch (po->tp_version) { 4436 case TPACKET_V3: 4437 /* Block transmit is not supported yet */ 4438 if (!tx_ring) { 4439 init_prb_bdqc(po, rb, pg_vec, req_u); 4440 } else { 4441 struct tpacket_req3 *req3 = &req_u->req3; 4442 4443 if (req3->tp_retire_blk_tov || 4444 req3->tp_sizeof_priv || 4445 req3->tp_feature_req_word) { 4446 err = -EINVAL; 4447 goto out_free_pg_vec; 4448 } 4449 } 4450 break; 4451 default: 4452 if (!tx_ring) { 4453 rx_owner_map = bitmap_alloc(req->tp_frame_nr, 4454 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); 4455 if (!rx_owner_map) 4456 goto out_free_pg_vec; 4457 } 4458 break; 4459 } 4460 } 4461 /* Done */ 4462 else { 4463 err = -EINVAL; 4464 if (unlikely(req->tp_frame_nr)) 4465 goto out; 4466 } 4467 4468 4469 /* Detach socket from network */ 4470 spin_lock(&po->bind_lock); 4471 was_running = po->running; 4472 num = po->num; 4473 if (was_running) { 4474 WRITE_ONCE(po->num, 0); 4475 __unregister_prot_hook(sk, false); 4476 } 4477 spin_unlock(&po->bind_lock); 4478 4479 synchronize_net(); 4480 4481 err = -EBUSY; 4482 mutex_lock(&po->pg_vec_lock); 4483 if (closing || atomic_read(&po->mapped) == 0) { 4484 err = 0; 4485 spin_lock_bh(&rb_queue->lock); 4486 swap(rb->pg_vec, pg_vec); 4487 if (po->tp_version <= TPACKET_V2) 4488 swap(rb->rx_owner_map, rx_owner_map); 4489 rb->frame_max = (req->tp_frame_nr - 1); 4490 rb->head = 0; 4491 rb->frame_size = req->tp_frame_size; 4492 spin_unlock_bh(&rb_queue->lock); 4493 4494 swap(rb->pg_vec_order, order); 4495 swap(rb->pg_vec_len, req->tp_block_nr); 4496 4497 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 4498 po->prot_hook.func = (po->rx_ring.pg_vec) ? 4499 tpacket_rcv : packet_rcv; 4500 skb_queue_purge(rb_queue); 4501 if (atomic_read(&po->mapped)) 4502 pr_err("packet_mmap: vma is busy: %d\n", 4503 atomic_read(&po->mapped)); 4504 } 4505 mutex_unlock(&po->pg_vec_lock); 4506 4507 spin_lock(&po->bind_lock); 4508 if (was_running) { 4509 WRITE_ONCE(po->num, num); 4510 register_prot_hook(sk); 4511 } 4512 spin_unlock(&po->bind_lock); 4513 if (pg_vec && (po->tp_version > TPACKET_V2)) { 4514 /* Because we don't support block-based V3 on tx-ring */ 4515 if (!tx_ring) 4516 prb_shutdown_retire_blk_timer(po, rb_queue); 4517 } 4518 4519 out_free_pg_vec: 4520 if (pg_vec) { 4521 bitmap_free(rx_owner_map); 4522 free_pg_vec(pg_vec, order, req->tp_block_nr); 4523 } 4524 out: 4525 return err; 4526 } 4527 4528 static int packet_mmap(struct file *file, struct socket *sock, 4529 struct vm_area_struct *vma) 4530 { 4531 struct sock *sk = sock->sk; 4532 struct packet_sock *po = pkt_sk(sk); 4533 unsigned long size, expected_size; 4534 struct packet_ring_buffer *rb; 4535 unsigned long start; 4536 int err = -EINVAL; 4537 int i; 4538 4539 if (vma->vm_pgoff) 4540 return -EINVAL; 4541 4542 mutex_lock(&po->pg_vec_lock); 4543 4544 expected_size = 0; 4545 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4546 if (rb->pg_vec) { 4547 expected_size += rb->pg_vec_len 4548 * rb->pg_vec_pages 4549 * PAGE_SIZE; 4550 } 4551 } 4552 4553 if (expected_size == 0) 4554 goto out; 4555 4556 size = vma->vm_end - vma->vm_start; 4557 if (size != expected_size) 4558 goto out; 4559 4560 start = vma->vm_start; 4561 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4562 if (rb->pg_vec == NULL) 4563 continue; 4564 4565 for (i = 0; i < rb->pg_vec_len; i++) { 4566 struct page *page; 4567 void *kaddr = rb->pg_vec[i].buffer; 4568 int pg_num; 4569 4570 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 4571 page = pgv_to_page(kaddr); 4572 err = vm_insert_page(vma, start, page); 4573 if (unlikely(err)) 4574 goto out; 4575 start += PAGE_SIZE; 4576 kaddr += PAGE_SIZE; 4577 } 4578 } 4579 } 4580 4581 atomic_inc(&po->mapped); 4582 vma->vm_ops = &packet_mmap_ops; 4583 err = 0; 4584 4585 out: 4586 mutex_unlock(&po->pg_vec_lock); 4587 return err; 4588 } 4589 4590 static const struct proto_ops packet_ops_spkt = { 4591 .family = PF_PACKET, 4592 .owner = THIS_MODULE, 4593 .release = packet_release, 4594 .bind = packet_bind_spkt, 4595 .connect = sock_no_connect, 4596 .socketpair = sock_no_socketpair, 4597 .accept = sock_no_accept, 4598 .getname = packet_getname_spkt, 4599 .poll = datagram_poll, 4600 .ioctl = packet_ioctl, 4601 .gettstamp = sock_gettstamp, 4602 .listen = sock_no_listen, 4603 .shutdown = sock_no_shutdown, 4604 .sendmsg = packet_sendmsg_spkt, 4605 .recvmsg = packet_recvmsg, 4606 .mmap = sock_no_mmap, 4607 .sendpage = sock_no_sendpage, 4608 }; 4609 4610 static const struct proto_ops packet_ops = { 4611 .family = PF_PACKET, 4612 .owner = THIS_MODULE, 4613 .release = packet_release, 4614 .bind = packet_bind, 4615 .connect = sock_no_connect, 4616 .socketpair = sock_no_socketpair, 4617 .accept = sock_no_accept, 4618 .getname = packet_getname, 4619 .poll = packet_poll, 4620 .ioctl = packet_ioctl, 4621 .gettstamp = sock_gettstamp, 4622 .listen = sock_no_listen, 4623 .shutdown = sock_no_shutdown, 4624 .setsockopt = packet_setsockopt, 4625 .getsockopt = packet_getsockopt, 4626 .sendmsg = packet_sendmsg, 4627 .recvmsg = packet_recvmsg, 4628 .mmap = packet_mmap, 4629 .sendpage = sock_no_sendpage, 4630 }; 4631 4632 static const struct net_proto_family packet_family_ops = { 4633 .family = PF_PACKET, 4634 .create = packet_create, 4635 .owner = THIS_MODULE, 4636 }; 4637 4638 static struct notifier_block packet_netdev_notifier = { 4639 .notifier_call = packet_notifier, 4640 }; 4641 4642 #ifdef CONFIG_PROC_FS 4643 4644 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 4645 __acquires(RCU) 4646 { 4647 struct net *net = seq_file_net(seq); 4648 4649 rcu_read_lock(); 4650 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 4651 } 4652 4653 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4654 { 4655 struct net *net = seq_file_net(seq); 4656 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 4657 } 4658 4659 static void packet_seq_stop(struct seq_file *seq, void *v) 4660 __releases(RCU) 4661 { 4662 rcu_read_unlock(); 4663 } 4664 4665 static int packet_seq_show(struct seq_file *seq, void *v) 4666 { 4667 if (v == SEQ_START_TOKEN) 4668 seq_printf(seq, 4669 "%*sRefCnt Type Proto Iface R Rmem User Inode\n", 4670 IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk"); 4671 else { 4672 struct sock *s = sk_entry(v); 4673 const struct packet_sock *po = pkt_sk(s); 4674 4675 seq_printf(seq, 4676 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 4677 s, 4678 refcount_read(&s->sk_refcnt), 4679 s->sk_type, 4680 ntohs(READ_ONCE(po->num)), 4681 READ_ONCE(po->ifindex), 4682 po->running, 4683 atomic_read(&s->sk_rmem_alloc), 4684 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), 4685 sock_i_ino(s)); 4686 } 4687 4688 return 0; 4689 } 4690 4691 static const struct seq_operations packet_seq_ops = { 4692 .start = packet_seq_start, 4693 .next = packet_seq_next, 4694 .stop = packet_seq_stop, 4695 .show = packet_seq_show, 4696 }; 4697 #endif 4698 4699 static int __net_init packet_net_init(struct net *net) 4700 { 4701 mutex_init(&net->packet.sklist_lock); 4702 INIT_HLIST_HEAD(&net->packet.sklist); 4703 4704 #ifdef CONFIG_PROC_FS 4705 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops, 4706 sizeof(struct seq_net_private))) 4707 return -ENOMEM; 4708 #endif /* CONFIG_PROC_FS */ 4709 4710 return 0; 4711 } 4712 4713 static void __net_exit packet_net_exit(struct net *net) 4714 { 4715 remove_proc_entry("packet", net->proc_net); 4716 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist)); 4717 } 4718 4719 static struct pernet_operations packet_net_ops = { 4720 .init = packet_net_init, 4721 .exit = packet_net_exit, 4722 }; 4723 4724 4725 static void __exit packet_exit(void) 4726 { 4727 sock_unregister(PF_PACKET); 4728 proto_unregister(&packet_proto); 4729 unregister_netdevice_notifier(&packet_netdev_notifier); 4730 unregister_pernet_subsys(&packet_net_ops); 4731 } 4732 4733 static int __init packet_init(void) 4734 { 4735 int rc; 4736 4737 rc = register_pernet_subsys(&packet_net_ops); 4738 if (rc) 4739 goto out; 4740 rc = register_netdevice_notifier(&packet_netdev_notifier); 4741 if (rc) 4742 goto out_pernet; 4743 rc = proto_register(&packet_proto, 0); 4744 if (rc) 4745 goto out_notifier; 4746 rc = sock_register(&packet_family_ops); 4747 if (rc) 4748 goto out_proto; 4749 4750 return 0; 4751 4752 out_proto: 4753 proto_unregister(&packet_proto); 4754 out_notifier: 4755 unregister_netdevice_notifier(&packet_netdev_notifier); 4756 out_pernet: 4757 unregister_pernet_subsys(&packet_net_ops); 4758 out: 4759 return rc; 4760 } 4761 4762 module_init(packet_init); 4763 module_exit(packet_exit); 4764 MODULE_LICENSE("GPL"); 4765 MODULE_ALIAS_NETPROTO(PF_PACKET); 4766