xref: /linux/net/packet/af_packet.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		PACKET - implements raw packet sockets.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
12  *
13  * Fixes:
14  *		Alan Cox	:	verify_area() now used correctly
15  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
16  *		Alan Cox	:	tidied skbuff lists.
17  *		Alan Cox	:	Now uses generic datagram routines I
18  *					added. Also fixed the peek/read crash
19  *					from all old Linux datagram code.
20  *		Alan Cox	:	Uses the improved datagram code.
21  *		Alan Cox	:	Added NULL's for socket options.
22  *		Alan Cox	:	Re-commented the code.
23  *		Alan Cox	:	Use new kernel side addressing
24  *		Rob Janssen	:	Correct MTU usage.
25  *		Dave Platt	:	Counter leaks caused by incorrect
26  *					interrupt locking and some slightly
27  *					dubious gcc output. Can you read
28  *					compiler: it said _VOLATILE_
29  *	Richard Kooijman	:	Timestamp fixes.
30  *		Alan Cox	:	New buffers. Use sk->mac.raw.
31  *		Alan Cox	:	sendmsg/recvmsg support.
32  *		Alan Cox	:	Protocol setting support
33  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
34  *	Cyrus Durgin		:	Fixed kerneld for kmod.
35  *	Michal Ostrowski        :       Module initialization cleanup.
36  *         Ulises Alonso        :       Frame number limit removal and
37  *                                      packet_set_ring memory leak.
38  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
39  *					The convention is that longer addresses
40  *					will simply extend the hardware address
41  *					byte arrays at the end of sockaddr_ll
42  *					and packet_mreq.
43  *		Johann Baudy	:	Added TX RING.
44  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
45  *					layer.
46  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
47  */
48 
49 #include <linux/ethtool.h>
50 #include <linux/types.h>
51 #include <linux/mm.h>
52 #include <linux/capability.h>
53 #include <linux/fcntl.h>
54 #include <linux/socket.h>
55 #include <linux/in.h>
56 #include <linux/inet.h>
57 #include <linux/netdevice.h>
58 #include <linux/if_packet.h>
59 #include <linux/wireless.h>
60 #include <linux/kernel.h>
61 #include <linux/kmod.h>
62 #include <linux/slab.h>
63 #include <linux/vmalloc.h>
64 #include <net/net_namespace.h>
65 #include <net/ip.h>
66 #include <net/protocol.h>
67 #include <linux/skbuff.h>
68 #include <net/sock.h>
69 #include <linux/errno.h>
70 #include <linux/timer.h>
71 #include <linux/uaccess.h>
72 #include <asm/ioctls.h>
73 #include <asm/page.h>
74 #include <asm/cacheflush.h>
75 #include <asm/io.h>
76 #include <linux/proc_fs.h>
77 #include <linux/seq_file.h>
78 #include <linux/poll.h>
79 #include <linux/module.h>
80 #include <linux/init.h>
81 #include <linux/mutex.h>
82 #include <linux/if_vlan.h>
83 #include <linux/virtio_net.h>
84 #include <linux/errqueue.h>
85 #include <linux/net_tstamp.h>
86 #include <linux/percpu.h>
87 #ifdef CONFIG_INET
88 #include <net/inet_common.h>
89 #endif
90 #include <linux/bpf.h>
91 #include <net/compat.h>
92 
93 #include "internal.h"
94 
95 /*
96    Assumptions:
97    - If the device has no dev->header_ops->create, there is no LL header
98      visible above the device. In this case, its hard_header_len should be 0.
99      The device may prepend its own header internally. In this case, its
100      needed_headroom should be set to the space needed for it to add its
101      internal header.
102      For example, a WiFi driver pretending to be an Ethernet driver should
103      set its hard_header_len to be the Ethernet header length, and set its
104      needed_headroom to be (the real WiFi header length - the fake Ethernet
105      header length).
106    - packet socket receives packets with pulled ll header,
107      so that SOCK_RAW should push it back.
108 
109 On receive:
110 -----------
111 
112 Incoming, dev_has_header(dev) == true
113    mac_header -> ll header
114    data       -> data
115 
116 Outgoing, dev_has_header(dev) == true
117    mac_header -> ll header
118    data       -> ll header
119 
120 Incoming, dev_has_header(dev) == false
121    mac_header -> data
122      However drivers often make it point to the ll header.
123      This is incorrect because the ll header should be invisible to us.
124    data       -> data
125 
126 Outgoing, dev_has_header(dev) == false
127    mac_header -> data. ll header is invisible to us.
128    data       -> data
129 
130 Resume
131   If dev_has_header(dev) == false we are unable to restore the ll header,
132     because it is invisible to us.
133 
134 
135 On transmit:
136 ------------
137 
138 dev_has_header(dev) == true
139    mac_header -> ll header
140    data       -> ll header
141 
142 dev_has_header(dev) == false (ll header is invisible to us)
143    mac_header -> data
144    data       -> data
145 
146    We should set network_header on output to the correct position,
147    packet classifier depends on it.
148  */
149 
150 /* Private packet socket structures. */
151 
152 /* identical to struct packet_mreq except it has
153  * a longer address field.
154  */
155 struct packet_mreq_max {
156 	int		mr_ifindex;
157 	unsigned short	mr_type;
158 	unsigned short	mr_alen;
159 	unsigned char	mr_address[MAX_ADDR_LEN];
160 };
161 
162 union tpacket_uhdr {
163 	struct tpacket_hdr  *h1;
164 	struct tpacket2_hdr *h2;
165 	struct tpacket3_hdr *h3;
166 	void *raw;
167 };
168 
169 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
170 		int closing, int tx_ring);
171 
172 #define V3_ALIGNMENT	(8)
173 
174 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
175 
176 #define BLK_PLUS_PRIV(sz_of_priv) \
177 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
178 
179 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
180 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
181 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
182 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
183 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
184 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
185 
186 struct packet_sock;
187 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
188 		       struct packet_type *pt, struct net_device *orig_dev);
189 
190 static void *packet_previous_frame(struct packet_sock *po,
191 		struct packet_ring_buffer *rb,
192 		int status);
193 static void packet_increment_head(struct packet_ring_buffer *buff);
194 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
195 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
196 			struct packet_sock *);
197 static void prb_retire_current_block(struct tpacket_kbdq_core *,
198 		struct packet_sock *, unsigned int status);
199 static int prb_queue_frozen(struct tpacket_kbdq_core *);
200 static void prb_open_block(struct tpacket_kbdq_core *,
201 		struct tpacket_block_desc *);
202 static void prb_retire_rx_blk_timer_expired(struct timer_list *);
203 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
204 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
205 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
206 		struct tpacket3_hdr *);
207 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
208 		struct tpacket3_hdr *);
209 static void packet_flush_mclist(struct sock *sk);
210 static u16 packet_pick_tx_queue(struct sk_buff *skb);
211 
212 struct packet_skb_cb {
213 	union {
214 		struct sockaddr_pkt pkt;
215 		union {
216 			/* Trick: alias skb original length with
217 			 * ll.sll_family and ll.protocol in order
218 			 * to save room.
219 			 */
220 			unsigned int origlen;
221 			struct sockaddr_ll ll;
222 		};
223 	} sa;
224 };
225 
226 #define vio_le() virtio_legacy_is_little_endian()
227 
228 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
229 
230 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
231 #define GET_PBLOCK_DESC(x, bid)	\
232 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
233 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
234 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
235 #define GET_NEXT_PRB_BLK_NUM(x) \
236 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
237 	((x)->kactive_blk_num+1) : 0)
238 
239 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
240 static void __fanout_link(struct sock *sk, struct packet_sock *po);
241 
242 static int packet_direct_xmit(struct sk_buff *skb)
243 {
244 	return dev_direct_xmit(skb, packet_pick_tx_queue(skb));
245 }
246 
247 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
248 {
249 	struct net_device *dev;
250 
251 	rcu_read_lock();
252 	dev = rcu_dereference(po->cached_dev);
253 	if (likely(dev))
254 		dev_hold(dev);
255 	rcu_read_unlock();
256 
257 	return dev;
258 }
259 
260 static void packet_cached_dev_assign(struct packet_sock *po,
261 				     struct net_device *dev)
262 {
263 	rcu_assign_pointer(po->cached_dev, dev);
264 }
265 
266 static void packet_cached_dev_reset(struct packet_sock *po)
267 {
268 	RCU_INIT_POINTER(po->cached_dev, NULL);
269 }
270 
271 static bool packet_use_direct_xmit(const struct packet_sock *po)
272 {
273 	return po->xmit == packet_direct_xmit;
274 }
275 
276 static u16 packet_pick_tx_queue(struct sk_buff *skb)
277 {
278 	struct net_device *dev = skb->dev;
279 	const struct net_device_ops *ops = dev->netdev_ops;
280 	int cpu = raw_smp_processor_id();
281 	u16 queue_index;
282 
283 #ifdef CONFIG_XPS
284 	skb->sender_cpu = cpu + 1;
285 #endif
286 	skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues);
287 	if (ops->ndo_select_queue) {
288 		queue_index = ops->ndo_select_queue(dev, skb, NULL);
289 		queue_index = netdev_cap_txqueue(dev, queue_index);
290 	} else {
291 		queue_index = netdev_pick_tx(dev, skb, NULL);
292 	}
293 
294 	return queue_index;
295 }
296 
297 /* __register_prot_hook must be invoked through register_prot_hook
298  * or from a context in which asynchronous accesses to the packet
299  * socket is not possible (packet_create()).
300  */
301 static void __register_prot_hook(struct sock *sk)
302 {
303 	struct packet_sock *po = pkt_sk(sk);
304 
305 	if (!po->running) {
306 		if (po->fanout)
307 			__fanout_link(sk, po);
308 		else
309 			dev_add_pack(&po->prot_hook);
310 
311 		sock_hold(sk);
312 		po->running = 1;
313 	}
314 }
315 
316 static void register_prot_hook(struct sock *sk)
317 {
318 	lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
319 	__register_prot_hook(sk);
320 }
321 
322 /* If the sync parameter is true, we will temporarily drop
323  * the po->bind_lock and do a synchronize_net to make sure no
324  * asynchronous packet processing paths still refer to the elements
325  * of po->prot_hook.  If the sync parameter is false, it is the
326  * callers responsibility to take care of this.
327  */
328 static void __unregister_prot_hook(struct sock *sk, bool sync)
329 {
330 	struct packet_sock *po = pkt_sk(sk);
331 
332 	lockdep_assert_held_once(&po->bind_lock);
333 
334 	po->running = 0;
335 
336 	if (po->fanout)
337 		__fanout_unlink(sk, po);
338 	else
339 		__dev_remove_pack(&po->prot_hook);
340 
341 	__sock_put(sk);
342 
343 	if (sync) {
344 		spin_unlock(&po->bind_lock);
345 		synchronize_net();
346 		spin_lock(&po->bind_lock);
347 	}
348 }
349 
350 static void unregister_prot_hook(struct sock *sk, bool sync)
351 {
352 	struct packet_sock *po = pkt_sk(sk);
353 
354 	if (po->running)
355 		__unregister_prot_hook(sk, sync);
356 }
357 
358 static inline struct page * __pure pgv_to_page(void *addr)
359 {
360 	if (is_vmalloc_addr(addr))
361 		return vmalloc_to_page(addr);
362 	return virt_to_page(addr);
363 }
364 
365 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
366 {
367 	union tpacket_uhdr h;
368 
369 	h.raw = frame;
370 	switch (po->tp_version) {
371 	case TPACKET_V1:
372 		h.h1->tp_status = status;
373 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
374 		break;
375 	case TPACKET_V2:
376 		h.h2->tp_status = status;
377 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
378 		break;
379 	case TPACKET_V3:
380 		h.h3->tp_status = status;
381 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
382 		break;
383 	default:
384 		WARN(1, "TPACKET version not supported.\n");
385 		BUG();
386 	}
387 
388 	smp_wmb();
389 }
390 
391 static int __packet_get_status(const struct packet_sock *po, void *frame)
392 {
393 	union tpacket_uhdr h;
394 
395 	smp_rmb();
396 
397 	h.raw = frame;
398 	switch (po->tp_version) {
399 	case TPACKET_V1:
400 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
401 		return h.h1->tp_status;
402 	case TPACKET_V2:
403 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
404 		return h.h2->tp_status;
405 	case TPACKET_V3:
406 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
407 		return h.h3->tp_status;
408 	default:
409 		WARN(1, "TPACKET version not supported.\n");
410 		BUG();
411 		return 0;
412 	}
413 }
414 
415 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts,
416 				   unsigned int flags)
417 {
418 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
419 
420 	if (shhwtstamps &&
421 	    (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
422 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts))
423 		return TP_STATUS_TS_RAW_HARDWARE;
424 
425 	if ((flags & SOF_TIMESTAMPING_SOFTWARE) &&
426 	    ktime_to_timespec64_cond(skb->tstamp, ts))
427 		return TP_STATUS_TS_SOFTWARE;
428 
429 	return 0;
430 }
431 
432 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
433 				    struct sk_buff *skb)
434 {
435 	union tpacket_uhdr h;
436 	struct timespec64 ts;
437 	__u32 ts_status;
438 
439 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
440 		return 0;
441 
442 	h.raw = frame;
443 	/*
444 	 * versions 1 through 3 overflow the timestamps in y2106, since they
445 	 * all store the seconds in a 32-bit unsigned integer.
446 	 * If we create a version 4, that should have a 64-bit timestamp,
447 	 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit
448 	 * nanoseconds.
449 	 */
450 	switch (po->tp_version) {
451 	case TPACKET_V1:
452 		h.h1->tp_sec = ts.tv_sec;
453 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
454 		break;
455 	case TPACKET_V2:
456 		h.h2->tp_sec = ts.tv_sec;
457 		h.h2->tp_nsec = ts.tv_nsec;
458 		break;
459 	case TPACKET_V3:
460 		h.h3->tp_sec = ts.tv_sec;
461 		h.h3->tp_nsec = ts.tv_nsec;
462 		break;
463 	default:
464 		WARN(1, "TPACKET version not supported.\n");
465 		BUG();
466 	}
467 
468 	/* one flush is safe, as both fields always lie on the same cacheline */
469 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
470 	smp_wmb();
471 
472 	return ts_status;
473 }
474 
475 static void *packet_lookup_frame(const struct packet_sock *po,
476 				 const struct packet_ring_buffer *rb,
477 				 unsigned int position,
478 				 int status)
479 {
480 	unsigned int pg_vec_pos, frame_offset;
481 	union tpacket_uhdr h;
482 
483 	pg_vec_pos = position / rb->frames_per_block;
484 	frame_offset = position % rb->frames_per_block;
485 
486 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
487 		(frame_offset * rb->frame_size);
488 
489 	if (status != __packet_get_status(po, h.raw))
490 		return NULL;
491 
492 	return h.raw;
493 }
494 
495 static void *packet_current_frame(struct packet_sock *po,
496 		struct packet_ring_buffer *rb,
497 		int status)
498 {
499 	return packet_lookup_frame(po, rb, rb->head, status);
500 }
501 
502 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
503 {
504 	del_timer_sync(&pkc->retire_blk_timer);
505 }
506 
507 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
508 		struct sk_buff_head *rb_queue)
509 {
510 	struct tpacket_kbdq_core *pkc;
511 
512 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
513 
514 	spin_lock_bh(&rb_queue->lock);
515 	pkc->delete_blk_timer = 1;
516 	spin_unlock_bh(&rb_queue->lock);
517 
518 	prb_del_retire_blk_timer(pkc);
519 }
520 
521 static void prb_setup_retire_blk_timer(struct packet_sock *po)
522 {
523 	struct tpacket_kbdq_core *pkc;
524 
525 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
526 	timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
527 		    0);
528 	pkc->retire_blk_timer.expires = jiffies;
529 }
530 
531 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
532 				int blk_size_in_bytes)
533 {
534 	struct net_device *dev;
535 	unsigned int mbits, div;
536 	struct ethtool_link_ksettings ecmd;
537 	int err;
538 
539 	rtnl_lock();
540 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
541 	if (unlikely(!dev)) {
542 		rtnl_unlock();
543 		return DEFAULT_PRB_RETIRE_TOV;
544 	}
545 	err = __ethtool_get_link_ksettings(dev, &ecmd);
546 	rtnl_unlock();
547 	if (err)
548 		return DEFAULT_PRB_RETIRE_TOV;
549 
550 	/* If the link speed is so slow you don't really
551 	 * need to worry about perf anyways
552 	 */
553 	if (ecmd.base.speed < SPEED_1000 ||
554 	    ecmd.base.speed == SPEED_UNKNOWN)
555 		return DEFAULT_PRB_RETIRE_TOV;
556 
557 	div = ecmd.base.speed / 1000;
558 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
559 
560 	if (div)
561 		mbits /= div;
562 
563 	if (div)
564 		return mbits + 1;
565 	return mbits;
566 }
567 
568 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
569 			union tpacket_req_u *req_u)
570 {
571 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
572 }
573 
574 static void init_prb_bdqc(struct packet_sock *po,
575 			struct packet_ring_buffer *rb,
576 			struct pgv *pg_vec,
577 			union tpacket_req_u *req_u)
578 {
579 	struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
580 	struct tpacket_block_desc *pbd;
581 
582 	memset(p1, 0x0, sizeof(*p1));
583 
584 	p1->knxt_seq_num = 1;
585 	p1->pkbdq = pg_vec;
586 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
587 	p1->pkblk_start	= pg_vec[0].buffer;
588 	p1->kblk_size = req_u->req3.tp_block_size;
589 	p1->knum_blocks	= req_u->req3.tp_block_nr;
590 	p1->hdrlen = po->tp_hdrlen;
591 	p1->version = po->tp_version;
592 	p1->last_kactive_blk_num = 0;
593 	po->stats.stats3.tp_freeze_q_cnt = 0;
594 	if (req_u->req3.tp_retire_blk_tov)
595 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
596 	else
597 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
598 						req_u->req3.tp_block_size);
599 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
600 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
601 	rwlock_init(&p1->blk_fill_in_prog_lock);
602 
603 	p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
604 	prb_init_ft_ops(p1, req_u);
605 	prb_setup_retire_blk_timer(po);
606 	prb_open_block(p1, pbd);
607 }
608 
609 /*  Do NOT update the last_blk_num first.
610  *  Assumes sk_buff_head lock is held.
611  */
612 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
613 {
614 	mod_timer(&pkc->retire_blk_timer,
615 			jiffies + pkc->tov_in_jiffies);
616 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
617 }
618 
619 /*
620  * Timer logic:
621  * 1) We refresh the timer only when we open a block.
622  *    By doing this we don't waste cycles refreshing the timer
623  *	  on packet-by-packet basis.
624  *
625  * With a 1MB block-size, on a 1Gbps line, it will take
626  * i) ~8 ms to fill a block + ii) memcpy etc.
627  * In this cut we are not accounting for the memcpy time.
628  *
629  * So, if the user sets the 'tmo' to 10ms then the timer
630  * will never fire while the block is still getting filled
631  * (which is what we want). However, the user could choose
632  * to close a block early and that's fine.
633  *
634  * But when the timer does fire, we check whether or not to refresh it.
635  * Since the tmo granularity is in msecs, it is not too expensive
636  * to refresh the timer, lets say every '8' msecs.
637  * Either the user can set the 'tmo' or we can derive it based on
638  * a) line-speed and b) block-size.
639  * prb_calc_retire_blk_tmo() calculates the tmo.
640  *
641  */
642 static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
643 {
644 	struct packet_sock *po =
645 		from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
646 	struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
647 	unsigned int frozen;
648 	struct tpacket_block_desc *pbd;
649 
650 	spin_lock(&po->sk.sk_receive_queue.lock);
651 
652 	frozen = prb_queue_frozen(pkc);
653 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
654 
655 	if (unlikely(pkc->delete_blk_timer))
656 		goto out;
657 
658 	/* We only need to plug the race when the block is partially filled.
659 	 * tpacket_rcv:
660 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
661 	 *		copy_bits() is in progress ...
662 	 *		timer fires on other cpu:
663 	 *		we can't retire the current block because copy_bits
664 	 *		is in progress.
665 	 *
666 	 */
667 	if (BLOCK_NUM_PKTS(pbd)) {
668 		/* Waiting for skb_copy_bits to finish... */
669 		write_lock(&pkc->blk_fill_in_prog_lock);
670 		write_unlock(&pkc->blk_fill_in_prog_lock);
671 	}
672 
673 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
674 		if (!frozen) {
675 			if (!BLOCK_NUM_PKTS(pbd)) {
676 				/* An empty block. Just refresh the timer. */
677 				goto refresh_timer;
678 			}
679 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
680 			if (!prb_dispatch_next_block(pkc, po))
681 				goto refresh_timer;
682 			else
683 				goto out;
684 		} else {
685 			/* Case 1. Queue was frozen because user-space was
686 			 *	   lagging behind.
687 			 */
688 			if (prb_curr_blk_in_use(pbd)) {
689 				/*
690 				 * Ok, user-space is still behind.
691 				 * So just refresh the timer.
692 				 */
693 				goto refresh_timer;
694 			} else {
695 			       /* Case 2. queue was frozen,user-space caught up,
696 				* now the link went idle && the timer fired.
697 				* We don't have a block to close.So we open this
698 				* block and restart the timer.
699 				* opening a block thaws the queue,restarts timer
700 				* Thawing/timer-refresh is a side effect.
701 				*/
702 				prb_open_block(pkc, pbd);
703 				goto out;
704 			}
705 		}
706 	}
707 
708 refresh_timer:
709 	_prb_refresh_rx_retire_blk_timer(pkc);
710 
711 out:
712 	spin_unlock(&po->sk.sk_receive_queue.lock);
713 }
714 
715 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
716 		struct tpacket_block_desc *pbd1, __u32 status)
717 {
718 	/* Flush everything minus the block header */
719 
720 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
721 	u8 *start, *end;
722 
723 	start = (u8 *)pbd1;
724 
725 	/* Skip the block header(we know header WILL fit in 4K) */
726 	start += PAGE_SIZE;
727 
728 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
729 	for (; start < end; start += PAGE_SIZE)
730 		flush_dcache_page(pgv_to_page(start));
731 
732 	smp_wmb();
733 #endif
734 
735 	/* Now update the block status. */
736 
737 	BLOCK_STATUS(pbd1) = status;
738 
739 	/* Flush the block header */
740 
741 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
742 	start = (u8 *)pbd1;
743 	flush_dcache_page(pgv_to_page(start));
744 
745 	smp_wmb();
746 #endif
747 }
748 
749 /*
750  * Side effect:
751  *
752  * 1) flush the block
753  * 2) Increment active_blk_num
754  *
755  * Note:We DONT refresh the timer on purpose.
756  *	Because almost always the next block will be opened.
757  */
758 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
759 		struct tpacket_block_desc *pbd1,
760 		struct packet_sock *po, unsigned int stat)
761 {
762 	__u32 status = TP_STATUS_USER | stat;
763 
764 	struct tpacket3_hdr *last_pkt;
765 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
766 	struct sock *sk = &po->sk;
767 
768 	if (atomic_read(&po->tp_drops))
769 		status |= TP_STATUS_LOSING;
770 
771 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
772 	last_pkt->tp_next_offset = 0;
773 
774 	/* Get the ts of the last pkt */
775 	if (BLOCK_NUM_PKTS(pbd1)) {
776 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
777 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
778 	} else {
779 		/* Ok, we tmo'd - so get the current time.
780 		 *
781 		 * It shouldn't really happen as we don't close empty
782 		 * blocks. See prb_retire_rx_blk_timer_expired().
783 		 */
784 		struct timespec64 ts;
785 		ktime_get_real_ts64(&ts);
786 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
787 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
788 	}
789 
790 	smp_wmb();
791 
792 	/* Flush the block */
793 	prb_flush_block(pkc1, pbd1, status);
794 
795 	sk->sk_data_ready(sk);
796 
797 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
798 }
799 
800 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
801 {
802 	pkc->reset_pending_on_curr_blk = 0;
803 }
804 
805 /*
806  * Side effect of opening a block:
807  *
808  * 1) prb_queue is thawed.
809  * 2) retire_blk_timer is refreshed.
810  *
811  */
812 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
813 	struct tpacket_block_desc *pbd1)
814 {
815 	struct timespec64 ts;
816 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
817 
818 	smp_rmb();
819 
820 	/* We could have just memset this but we will lose the
821 	 * flexibility of making the priv area sticky
822 	 */
823 
824 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
825 	BLOCK_NUM_PKTS(pbd1) = 0;
826 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
827 
828 	ktime_get_real_ts64(&ts);
829 
830 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
831 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
832 
833 	pkc1->pkblk_start = (char *)pbd1;
834 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
835 
836 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
837 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
838 
839 	pbd1->version = pkc1->version;
840 	pkc1->prev = pkc1->nxt_offset;
841 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
842 
843 	prb_thaw_queue(pkc1);
844 	_prb_refresh_rx_retire_blk_timer(pkc1);
845 
846 	smp_wmb();
847 }
848 
849 /*
850  * Queue freeze logic:
851  * 1) Assume tp_block_nr = 8 blocks.
852  * 2) At time 't0', user opens Rx ring.
853  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
854  * 4) user-space is either sleeping or processing block '0'.
855  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
856  *    it will close block-7,loop around and try to fill block '0'.
857  *    call-flow:
858  *    __packet_lookup_frame_in_block
859  *      prb_retire_current_block()
860  *      prb_dispatch_next_block()
861  *        |->(BLOCK_STATUS == USER) evaluates to true
862  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
863  * 6) Now there are two cases:
864  *    6.1) Link goes idle right after the queue is frozen.
865  *         But remember, the last open_block() refreshed the timer.
866  *         When this timer expires,it will refresh itself so that we can
867  *         re-open block-0 in near future.
868  *    6.2) Link is busy and keeps on receiving packets. This is a simple
869  *         case and __packet_lookup_frame_in_block will check if block-0
870  *         is free and can now be re-used.
871  */
872 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
873 				  struct packet_sock *po)
874 {
875 	pkc->reset_pending_on_curr_blk = 1;
876 	po->stats.stats3.tp_freeze_q_cnt++;
877 }
878 
879 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
880 
881 /*
882  * If the next block is free then we will dispatch it
883  * and return a good offset.
884  * Else, we will freeze the queue.
885  * So, caller must check the return value.
886  */
887 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
888 		struct packet_sock *po)
889 {
890 	struct tpacket_block_desc *pbd;
891 
892 	smp_rmb();
893 
894 	/* 1. Get current block num */
895 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
896 
897 	/* 2. If this block is currently in_use then freeze the queue */
898 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
899 		prb_freeze_queue(pkc, po);
900 		return NULL;
901 	}
902 
903 	/*
904 	 * 3.
905 	 * open this block and return the offset where the first packet
906 	 * needs to get stored.
907 	 */
908 	prb_open_block(pkc, pbd);
909 	return (void *)pkc->nxt_offset;
910 }
911 
912 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
913 		struct packet_sock *po, unsigned int status)
914 {
915 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
916 
917 	/* retire/close the current block */
918 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
919 		/*
920 		 * Plug the case where copy_bits() is in progress on
921 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
922 		 * have space to copy the pkt in the current block and
923 		 * called prb_retire_current_block()
924 		 *
925 		 * We don't need to worry about the TMO case because
926 		 * the timer-handler already handled this case.
927 		 */
928 		if (!(status & TP_STATUS_BLK_TMO)) {
929 			/* Waiting for skb_copy_bits to finish... */
930 			write_lock(&pkc->blk_fill_in_prog_lock);
931 			write_unlock(&pkc->blk_fill_in_prog_lock);
932 		}
933 		prb_close_block(pkc, pbd, po, status);
934 		return;
935 	}
936 }
937 
938 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
939 {
940 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
941 }
942 
943 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
944 {
945 	return pkc->reset_pending_on_curr_blk;
946 }
947 
948 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
949 	__releases(&pkc->blk_fill_in_prog_lock)
950 {
951 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
952 
953 	read_unlock(&pkc->blk_fill_in_prog_lock);
954 }
955 
956 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
957 			struct tpacket3_hdr *ppd)
958 {
959 	ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
960 }
961 
962 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
963 			struct tpacket3_hdr *ppd)
964 {
965 	ppd->hv1.tp_rxhash = 0;
966 }
967 
968 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
969 			struct tpacket3_hdr *ppd)
970 {
971 	if (skb_vlan_tag_present(pkc->skb)) {
972 		ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
973 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
974 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
975 	} else {
976 		ppd->hv1.tp_vlan_tci = 0;
977 		ppd->hv1.tp_vlan_tpid = 0;
978 		ppd->tp_status = TP_STATUS_AVAILABLE;
979 	}
980 }
981 
982 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
983 			struct tpacket3_hdr *ppd)
984 {
985 	ppd->hv1.tp_padding = 0;
986 	prb_fill_vlan_info(pkc, ppd);
987 
988 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
989 		prb_fill_rxhash(pkc, ppd);
990 	else
991 		prb_clear_rxhash(pkc, ppd);
992 }
993 
994 static void prb_fill_curr_block(char *curr,
995 				struct tpacket_kbdq_core *pkc,
996 				struct tpacket_block_desc *pbd,
997 				unsigned int len)
998 	__acquires(&pkc->blk_fill_in_prog_lock)
999 {
1000 	struct tpacket3_hdr *ppd;
1001 
1002 	ppd  = (struct tpacket3_hdr *)curr;
1003 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1004 	pkc->prev = curr;
1005 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1006 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1007 	BLOCK_NUM_PKTS(pbd) += 1;
1008 	read_lock(&pkc->blk_fill_in_prog_lock);
1009 	prb_run_all_ft_ops(pkc, ppd);
1010 }
1011 
1012 /* Assumes caller has the sk->rx_queue.lock */
1013 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1014 					    struct sk_buff *skb,
1015 					    unsigned int len
1016 					    )
1017 {
1018 	struct tpacket_kbdq_core *pkc;
1019 	struct tpacket_block_desc *pbd;
1020 	char *curr, *end;
1021 
1022 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1023 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1024 
1025 	/* Queue is frozen when user space is lagging behind */
1026 	if (prb_queue_frozen(pkc)) {
1027 		/*
1028 		 * Check if that last block which caused the queue to freeze,
1029 		 * is still in_use by user-space.
1030 		 */
1031 		if (prb_curr_blk_in_use(pbd)) {
1032 			/* Can't record this packet */
1033 			return NULL;
1034 		} else {
1035 			/*
1036 			 * Ok, the block was released by user-space.
1037 			 * Now let's open that block.
1038 			 * opening a block also thaws the queue.
1039 			 * Thawing is a side effect.
1040 			 */
1041 			prb_open_block(pkc, pbd);
1042 		}
1043 	}
1044 
1045 	smp_mb();
1046 	curr = pkc->nxt_offset;
1047 	pkc->skb = skb;
1048 	end = (char *)pbd + pkc->kblk_size;
1049 
1050 	/* first try the current block */
1051 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1052 		prb_fill_curr_block(curr, pkc, pbd, len);
1053 		return (void *)curr;
1054 	}
1055 
1056 	/* Ok, close the current block */
1057 	prb_retire_current_block(pkc, po, 0);
1058 
1059 	/* Now, try to dispatch the next block */
1060 	curr = (char *)prb_dispatch_next_block(pkc, po);
1061 	if (curr) {
1062 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1063 		prb_fill_curr_block(curr, pkc, pbd, len);
1064 		return (void *)curr;
1065 	}
1066 
1067 	/*
1068 	 * No free blocks are available.user_space hasn't caught up yet.
1069 	 * Queue was just frozen and now this packet will get dropped.
1070 	 */
1071 	return NULL;
1072 }
1073 
1074 static void *packet_current_rx_frame(struct packet_sock *po,
1075 					    struct sk_buff *skb,
1076 					    int status, unsigned int len)
1077 {
1078 	char *curr = NULL;
1079 	switch (po->tp_version) {
1080 	case TPACKET_V1:
1081 	case TPACKET_V2:
1082 		curr = packet_lookup_frame(po, &po->rx_ring,
1083 					po->rx_ring.head, status);
1084 		return curr;
1085 	case TPACKET_V3:
1086 		return __packet_lookup_frame_in_block(po, skb, len);
1087 	default:
1088 		WARN(1, "TPACKET version not supported\n");
1089 		BUG();
1090 		return NULL;
1091 	}
1092 }
1093 
1094 static void *prb_lookup_block(const struct packet_sock *po,
1095 			      const struct packet_ring_buffer *rb,
1096 			      unsigned int idx,
1097 			      int status)
1098 {
1099 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1100 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1101 
1102 	if (status != BLOCK_STATUS(pbd))
1103 		return NULL;
1104 	return pbd;
1105 }
1106 
1107 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1108 {
1109 	unsigned int prev;
1110 	if (rb->prb_bdqc.kactive_blk_num)
1111 		prev = rb->prb_bdqc.kactive_blk_num-1;
1112 	else
1113 		prev = rb->prb_bdqc.knum_blocks-1;
1114 	return prev;
1115 }
1116 
1117 /* Assumes caller has held the rx_queue.lock */
1118 static void *__prb_previous_block(struct packet_sock *po,
1119 					 struct packet_ring_buffer *rb,
1120 					 int status)
1121 {
1122 	unsigned int previous = prb_previous_blk_num(rb);
1123 	return prb_lookup_block(po, rb, previous, status);
1124 }
1125 
1126 static void *packet_previous_rx_frame(struct packet_sock *po,
1127 					     struct packet_ring_buffer *rb,
1128 					     int status)
1129 {
1130 	if (po->tp_version <= TPACKET_V2)
1131 		return packet_previous_frame(po, rb, status);
1132 
1133 	return __prb_previous_block(po, rb, status);
1134 }
1135 
1136 static void packet_increment_rx_head(struct packet_sock *po,
1137 					    struct packet_ring_buffer *rb)
1138 {
1139 	switch (po->tp_version) {
1140 	case TPACKET_V1:
1141 	case TPACKET_V2:
1142 		return packet_increment_head(rb);
1143 	case TPACKET_V3:
1144 	default:
1145 		WARN(1, "TPACKET version not supported.\n");
1146 		BUG();
1147 		return;
1148 	}
1149 }
1150 
1151 static void *packet_previous_frame(struct packet_sock *po,
1152 		struct packet_ring_buffer *rb,
1153 		int status)
1154 {
1155 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1156 	return packet_lookup_frame(po, rb, previous, status);
1157 }
1158 
1159 static void packet_increment_head(struct packet_ring_buffer *buff)
1160 {
1161 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1162 }
1163 
1164 static void packet_inc_pending(struct packet_ring_buffer *rb)
1165 {
1166 	this_cpu_inc(*rb->pending_refcnt);
1167 }
1168 
1169 static void packet_dec_pending(struct packet_ring_buffer *rb)
1170 {
1171 	this_cpu_dec(*rb->pending_refcnt);
1172 }
1173 
1174 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1175 {
1176 	unsigned int refcnt = 0;
1177 	int cpu;
1178 
1179 	/* We don't use pending refcount in rx_ring. */
1180 	if (rb->pending_refcnt == NULL)
1181 		return 0;
1182 
1183 	for_each_possible_cpu(cpu)
1184 		refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1185 
1186 	return refcnt;
1187 }
1188 
1189 static int packet_alloc_pending(struct packet_sock *po)
1190 {
1191 	po->rx_ring.pending_refcnt = NULL;
1192 
1193 	po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1194 	if (unlikely(po->tx_ring.pending_refcnt == NULL))
1195 		return -ENOBUFS;
1196 
1197 	return 0;
1198 }
1199 
1200 static void packet_free_pending(struct packet_sock *po)
1201 {
1202 	free_percpu(po->tx_ring.pending_refcnt);
1203 }
1204 
1205 #define ROOM_POW_OFF	2
1206 #define ROOM_NONE	0x0
1207 #define ROOM_LOW	0x1
1208 #define ROOM_NORMAL	0x2
1209 
1210 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off)
1211 {
1212 	int idx, len;
1213 
1214 	len = READ_ONCE(po->rx_ring.frame_max) + 1;
1215 	idx = READ_ONCE(po->rx_ring.head);
1216 	if (pow_off)
1217 		idx += len >> pow_off;
1218 	if (idx >= len)
1219 		idx -= len;
1220 	return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1221 }
1222 
1223 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off)
1224 {
1225 	int idx, len;
1226 
1227 	len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks);
1228 	idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num);
1229 	if (pow_off)
1230 		idx += len >> pow_off;
1231 	if (idx >= len)
1232 		idx -= len;
1233 	return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1234 }
1235 
1236 static int __packet_rcv_has_room(const struct packet_sock *po,
1237 				 const struct sk_buff *skb)
1238 {
1239 	const struct sock *sk = &po->sk;
1240 	int ret = ROOM_NONE;
1241 
1242 	if (po->prot_hook.func != tpacket_rcv) {
1243 		int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1244 		int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1245 				   - (skb ? skb->truesize : 0);
1246 
1247 		if (avail > (rcvbuf >> ROOM_POW_OFF))
1248 			return ROOM_NORMAL;
1249 		else if (avail > 0)
1250 			return ROOM_LOW;
1251 		else
1252 			return ROOM_NONE;
1253 	}
1254 
1255 	if (po->tp_version == TPACKET_V3) {
1256 		if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1257 			ret = ROOM_NORMAL;
1258 		else if (__tpacket_v3_has_room(po, 0))
1259 			ret = ROOM_LOW;
1260 	} else {
1261 		if (__tpacket_has_room(po, ROOM_POW_OFF))
1262 			ret = ROOM_NORMAL;
1263 		else if (__tpacket_has_room(po, 0))
1264 			ret = ROOM_LOW;
1265 	}
1266 
1267 	return ret;
1268 }
1269 
1270 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1271 {
1272 	int pressure, ret;
1273 
1274 	ret = __packet_rcv_has_room(po, skb);
1275 	pressure = ret != ROOM_NORMAL;
1276 
1277 	if (READ_ONCE(po->pressure) != pressure)
1278 		WRITE_ONCE(po->pressure, pressure);
1279 
1280 	return ret;
1281 }
1282 
1283 static void packet_rcv_try_clear_pressure(struct packet_sock *po)
1284 {
1285 	if (READ_ONCE(po->pressure) &&
1286 	    __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
1287 		WRITE_ONCE(po->pressure,  0);
1288 }
1289 
1290 static void packet_sock_destruct(struct sock *sk)
1291 {
1292 	skb_queue_purge(&sk->sk_error_queue);
1293 
1294 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1295 	WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1296 
1297 	if (!sock_flag(sk, SOCK_DEAD)) {
1298 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1299 		return;
1300 	}
1301 
1302 	sk_refcnt_debug_dec(sk);
1303 }
1304 
1305 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1306 {
1307 	u32 *history = po->rollover->history;
1308 	u32 victim, rxhash;
1309 	int i, count = 0;
1310 
1311 	rxhash = skb_get_hash(skb);
1312 	for (i = 0; i < ROLLOVER_HLEN; i++)
1313 		if (READ_ONCE(history[i]) == rxhash)
1314 			count++;
1315 
1316 	victim = prandom_u32() % ROLLOVER_HLEN;
1317 
1318 	/* Avoid dirtying the cache line if possible */
1319 	if (READ_ONCE(history[victim]) != rxhash)
1320 		WRITE_ONCE(history[victim], rxhash);
1321 
1322 	return count > (ROLLOVER_HLEN >> 1);
1323 }
1324 
1325 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1326 				      struct sk_buff *skb,
1327 				      unsigned int num)
1328 {
1329 	return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1330 }
1331 
1332 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1333 				    struct sk_buff *skb,
1334 				    unsigned int num)
1335 {
1336 	unsigned int val = atomic_inc_return(&f->rr_cur);
1337 
1338 	return val % num;
1339 }
1340 
1341 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1342 				     struct sk_buff *skb,
1343 				     unsigned int num)
1344 {
1345 	return smp_processor_id() % num;
1346 }
1347 
1348 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1349 				     struct sk_buff *skb,
1350 				     unsigned int num)
1351 {
1352 	return prandom_u32_max(num);
1353 }
1354 
1355 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1356 					  struct sk_buff *skb,
1357 					  unsigned int idx, bool try_self,
1358 					  unsigned int num)
1359 {
1360 	struct packet_sock *po, *po_next, *po_skip = NULL;
1361 	unsigned int i, j, room = ROOM_NONE;
1362 
1363 	po = pkt_sk(rcu_dereference(f->arr[idx]));
1364 
1365 	if (try_self) {
1366 		room = packet_rcv_has_room(po, skb);
1367 		if (room == ROOM_NORMAL ||
1368 		    (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1369 			return idx;
1370 		po_skip = po;
1371 	}
1372 
1373 	i = j = min_t(int, po->rollover->sock, num - 1);
1374 	do {
1375 		po_next = pkt_sk(rcu_dereference(f->arr[i]));
1376 		if (po_next != po_skip && !READ_ONCE(po_next->pressure) &&
1377 		    packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1378 			if (i != j)
1379 				po->rollover->sock = i;
1380 			atomic_long_inc(&po->rollover->num);
1381 			if (room == ROOM_LOW)
1382 				atomic_long_inc(&po->rollover->num_huge);
1383 			return i;
1384 		}
1385 
1386 		if (++i == num)
1387 			i = 0;
1388 	} while (i != j);
1389 
1390 	atomic_long_inc(&po->rollover->num_failed);
1391 	return idx;
1392 }
1393 
1394 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1395 				    struct sk_buff *skb,
1396 				    unsigned int num)
1397 {
1398 	return skb_get_queue_mapping(skb) % num;
1399 }
1400 
1401 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1402 				     struct sk_buff *skb,
1403 				     unsigned int num)
1404 {
1405 	struct bpf_prog *prog;
1406 	unsigned int ret = 0;
1407 
1408 	rcu_read_lock();
1409 	prog = rcu_dereference(f->bpf_prog);
1410 	if (prog)
1411 		ret = bpf_prog_run_clear_cb(prog, skb) % num;
1412 	rcu_read_unlock();
1413 
1414 	return ret;
1415 }
1416 
1417 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1418 {
1419 	return f->flags & (flag >> 8);
1420 }
1421 
1422 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1423 			     struct packet_type *pt, struct net_device *orig_dev)
1424 {
1425 	struct packet_fanout *f = pt->af_packet_priv;
1426 	unsigned int num = READ_ONCE(f->num_members);
1427 	struct net *net = read_pnet(&f->net);
1428 	struct packet_sock *po;
1429 	unsigned int idx;
1430 
1431 	if (!net_eq(dev_net(dev), net) || !num) {
1432 		kfree_skb(skb);
1433 		return 0;
1434 	}
1435 
1436 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1437 		skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1438 		if (!skb)
1439 			return 0;
1440 	}
1441 	switch (f->type) {
1442 	case PACKET_FANOUT_HASH:
1443 	default:
1444 		idx = fanout_demux_hash(f, skb, num);
1445 		break;
1446 	case PACKET_FANOUT_LB:
1447 		idx = fanout_demux_lb(f, skb, num);
1448 		break;
1449 	case PACKET_FANOUT_CPU:
1450 		idx = fanout_demux_cpu(f, skb, num);
1451 		break;
1452 	case PACKET_FANOUT_RND:
1453 		idx = fanout_demux_rnd(f, skb, num);
1454 		break;
1455 	case PACKET_FANOUT_QM:
1456 		idx = fanout_demux_qm(f, skb, num);
1457 		break;
1458 	case PACKET_FANOUT_ROLLOVER:
1459 		idx = fanout_demux_rollover(f, skb, 0, false, num);
1460 		break;
1461 	case PACKET_FANOUT_CBPF:
1462 	case PACKET_FANOUT_EBPF:
1463 		idx = fanout_demux_bpf(f, skb, num);
1464 		break;
1465 	}
1466 
1467 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1468 		idx = fanout_demux_rollover(f, skb, idx, true, num);
1469 
1470 	po = pkt_sk(rcu_dereference(f->arr[idx]));
1471 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1472 }
1473 
1474 DEFINE_MUTEX(fanout_mutex);
1475 EXPORT_SYMBOL_GPL(fanout_mutex);
1476 static LIST_HEAD(fanout_list);
1477 static u16 fanout_next_id;
1478 
1479 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1480 {
1481 	struct packet_fanout *f = po->fanout;
1482 
1483 	spin_lock(&f->lock);
1484 	rcu_assign_pointer(f->arr[f->num_members], sk);
1485 	smp_wmb();
1486 	f->num_members++;
1487 	if (f->num_members == 1)
1488 		dev_add_pack(&f->prot_hook);
1489 	spin_unlock(&f->lock);
1490 }
1491 
1492 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1493 {
1494 	struct packet_fanout *f = po->fanout;
1495 	int i;
1496 
1497 	spin_lock(&f->lock);
1498 	for (i = 0; i < f->num_members; i++) {
1499 		if (rcu_dereference_protected(f->arr[i],
1500 					      lockdep_is_held(&f->lock)) == sk)
1501 			break;
1502 	}
1503 	BUG_ON(i >= f->num_members);
1504 	rcu_assign_pointer(f->arr[i],
1505 			   rcu_dereference_protected(f->arr[f->num_members - 1],
1506 						     lockdep_is_held(&f->lock)));
1507 	f->num_members--;
1508 	if (f->num_members == 0)
1509 		__dev_remove_pack(&f->prot_hook);
1510 	spin_unlock(&f->lock);
1511 }
1512 
1513 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1514 {
1515 	if (sk->sk_family != PF_PACKET)
1516 		return false;
1517 
1518 	return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1519 }
1520 
1521 static void fanout_init_data(struct packet_fanout *f)
1522 {
1523 	switch (f->type) {
1524 	case PACKET_FANOUT_LB:
1525 		atomic_set(&f->rr_cur, 0);
1526 		break;
1527 	case PACKET_FANOUT_CBPF:
1528 	case PACKET_FANOUT_EBPF:
1529 		RCU_INIT_POINTER(f->bpf_prog, NULL);
1530 		break;
1531 	}
1532 }
1533 
1534 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1535 {
1536 	struct bpf_prog *old;
1537 
1538 	spin_lock(&f->lock);
1539 	old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1540 	rcu_assign_pointer(f->bpf_prog, new);
1541 	spin_unlock(&f->lock);
1542 
1543 	if (old) {
1544 		synchronize_net();
1545 		bpf_prog_destroy(old);
1546 	}
1547 }
1548 
1549 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data,
1550 				unsigned int len)
1551 {
1552 	struct bpf_prog *new;
1553 	struct sock_fprog fprog;
1554 	int ret;
1555 
1556 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1557 		return -EPERM;
1558 
1559 	ret = copy_bpf_fprog_from_user(&fprog, data, len);
1560 	if (ret)
1561 		return ret;
1562 
1563 	ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1564 	if (ret)
1565 		return ret;
1566 
1567 	__fanout_set_data_bpf(po->fanout, new);
1568 	return 0;
1569 }
1570 
1571 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data,
1572 				unsigned int len)
1573 {
1574 	struct bpf_prog *new;
1575 	u32 fd;
1576 
1577 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1578 		return -EPERM;
1579 	if (len != sizeof(fd))
1580 		return -EINVAL;
1581 	if (copy_from_sockptr(&fd, data, len))
1582 		return -EFAULT;
1583 
1584 	new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1585 	if (IS_ERR(new))
1586 		return PTR_ERR(new);
1587 
1588 	__fanout_set_data_bpf(po->fanout, new);
1589 	return 0;
1590 }
1591 
1592 static int fanout_set_data(struct packet_sock *po, sockptr_t data,
1593 			   unsigned int len)
1594 {
1595 	switch (po->fanout->type) {
1596 	case PACKET_FANOUT_CBPF:
1597 		return fanout_set_data_cbpf(po, data, len);
1598 	case PACKET_FANOUT_EBPF:
1599 		return fanout_set_data_ebpf(po, data, len);
1600 	default:
1601 		return -EINVAL;
1602 	}
1603 }
1604 
1605 static void fanout_release_data(struct packet_fanout *f)
1606 {
1607 	switch (f->type) {
1608 	case PACKET_FANOUT_CBPF:
1609 	case PACKET_FANOUT_EBPF:
1610 		__fanout_set_data_bpf(f, NULL);
1611 	}
1612 }
1613 
1614 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1615 {
1616 	struct packet_fanout *f;
1617 
1618 	list_for_each_entry(f, &fanout_list, list) {
1619 		if (f->id == candidate_id &&
1620 		    read_pnet(&f->net) == sock_net(sk)) {
1621 			return false;
1622 		}
1623 	}
1624 	return true;
1625 }
1626 
1627 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1628 {
1629 	u16 id = fanout_next_id;
1630 
1631 	do {
1632 		if (__fanout_id_is_free(sk, id)) {
1633 			*new_id = id;
1634 			fanout_next_id = id + 1;
1635 			return true;
1636 		}
1637 
1638 		id++;
1639 	} while (id != fanout_next_id);
1640 
1641 	return false;
1642 }
1643 
1644 static int fanout_add(struct sock *sk, struct fanout_args *args)
1645 {
1646 	struct packet_rollover *rollover = NULL;
1647 	struct packet_sock *po = pkt_sk(sk);
1648 	u16 type_flags = args->type_flags;
1649 	struct packet_fanout *f, *match;
1650 	u8 type = type_flags & 0xff;
1651 	u8 flags = type_flags >> 8;
1652 	u16 id = args->id;
1653 	int err;
1654 
1655 	switch (type) {
1656 	case PACKET_FANOUT_ROLLOVER:
1657 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1658 			return -EINVAL;
1659 		break;
1660 	case PACKET_FANOUT_HASH:
1661 	case PACKET_FANOUT_LB:
1662 	case PACKET_FANOUT_CPU:
1663 	case PACKET_FANOUT_RND:
1664 	case PACKET_FANOUT_QM:
1665 	case PACKET_FANOUT_CBPF:
1666 	case PACKET_FANOUT_EBPF:
1667 		break;
1668 	default:
1669 		return -EINVAL;
1670 	}
1671 
1672 	mutex_lock(&fanout_mutex);
1673 
1674 	err = -EALREADY;
1675 	if (po->fanout)
1676 		goto out;
1677 
1678 	if (type == PACKET_FANOUT_ROLLOVER ||
1679 	    (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1680 		err = -ENOMEM;
1681 		rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1682 		if (!rollover)
1683 			goto out;
1684 		atomic_long_set(&rollover->num, 0);
1685 		atomic_long_set(&rollover->num_huge, 0);
1686 		atomic_long_set(&rollover->num_failed, 0);
1687 	}
1688 
1689 	if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1690 		if (id != 0) {
1691 			err = -EINVAL;
1692 			goto out;
1693 		}
1694 		if (!fanout_find_new_id(sk, &id)) {
1695 			err = -ENOMEM;
1696 			goto out;
1697 		}
1698 		/* ephemeral flag for the first socket in the group: drop it */
1699 		flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1700 	}
1701 
1702 	match = NULL;
1703 	list_for_each_entry(f, &fanout_list, list) {
1704 		if (f->id == id &&
1705 		    read_pnet(&f->net) == sock_net(sk)) {
1706 			match = f;
1707 			break;
1708 		}
1709 	}
1710 	err = -EINVAL;
1711 	if (match) {
1712 		if (match->flags != flags)
1713 			goto out;
1714 		if (args->max_num_members &&
1715 		    args->max_num_members != match->max_num_members)
1716 			goto out;
1717 	} else {
1718 		if (args->max_num_members > PACKET_FANOUT_MAX)
1719 			goto out;
1720 		if (!args->max_num_members)
1721 			/* legacy PACKET_FANOUT_MAX */
1722 			args->max_num_members = 256;
1723 		err = -ENOMEM;
1724 		match = kvzalloc(struct_size(match, arr, args->max_num_members),
1725 				 GFP_KERNEL);
1726 		if (!match)
1727 			goto out;
1728 		write_pnet(&match->net, sock_net(sk));
1729 		match->id = id;
1730 		match->type = type;
1731 		match->flags = flags;
1732 		INIT_LIST_HEAD(&match->list);
1733 		spin_lock_init(&match->lock);
1734 		refcount_set(&match->sk_ref, 0);
1735 		fanout_init_data(match);
1736 		match->prot_hook.type = po->prot_hook.type;
1737 		match->prot_hook.dev = po->prot_hook.dev;
1738 		match->prot_hook.func = packet_rcv_fanout;
1739 		match->prot_hook.af_packet_priv = match;
1740 		match->prot_hook.id_match = match_fanout_group;
1741 		match->max_num_members = args->max_num_members;
1742 		list_add(&match->list, &fanout_list);
1743 	}
1744 	err = -EINVAL;
1745 
1746 	spin_lock(&po->bind_lock);
1747 	if (po->running &&
1748 	    match->type == type &&
1749 	    match->prot_hook.type == po->prot_hook.type &&
1750 	    match->prot_hook.dev == po->prot_hook.dev) {
1751 		err = -ENOSPC;
1752 		if (refcount_read(&match->sk_ref) < match->max_num_members) {
1753 			__dev_remove_pack(&po->prot_hook);
1754 			po->fanout = match;
1755 			po->rollover = rollover;
1756 			rollover = NULL;
1757 			refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1758 			__fanout_link(sk, po);
1759 			err = 0;
1760 		}
1761 	}
1762 	spin_unlock(&po->bind_lock);
1763 
1764 	if (err && !refcount_read(&match->sk_ref)) {
1765 		list_del(&match->list);
1766 		kvfree(match);
1767 	}
1768 
1769 out:
1770 	kfree(rollover);
1771 	mutex_unlock(&fanout_mutex);
1772 	return err;
1773 }
1774 
1775 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1776  * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1777  * It is the responsibility of the caller to call fanout_release_data() and
1778  * free the returned packet_fanout (after synchronize_net())
1779  */
1780 static struct packet_fanout *fanout_release(struct sock *sk)
1781 {
1782 	struct packet_sock *po = pkt_sk(sk);
1783 	struct packet_fanout *f;
1784 
1785 	mutex_lock(&fanout_mutex);
1786 	f = po->fanout;
1787 	if (f) {
1788 		po->fanout = NULL;
1789 
1790 		if (refcount_dec_and_test(&f->sk_ref))
1791 			list_del(&f->list);
1792 		else
1793 			f = NULL;
1794 	}
1795 	mutex_unlock(&fanout_mutex);
1796 
1797 	return f;
1798 }
1799 
1800 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1801 					  struct sk_buff *skb)
1802 {
1803 	/* Earlier code assumed this would be a VLAN pkt, double-check
1804 	 * this now that we have the actual packet in hand. We can only
1805 	 * do this check on Ethernet devices.
1806 	 */
1807 	if (unlikely(dev->type != ARPHRD_ETHER))
1808 		return false;
1809 
1810 	skb_reset_mac_header(skb);
1811 	return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1812 }
1813 
1814 static const struct proto_ops packet_ops;
1815 
1816 static const struct proto_ops packet_ops_spkt;
1817 
1818 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1819 			   struct packet_type *pt, struct net_device *orig_dev)
1820 {
1821 	struct sock *sk;
1822 	struct sockaddr_pkt *spkt;
1823 
1824 	/*
1825 	 *	When we registered the protocol we saved the socket in the data
1826 	 *	field for just this event.
1827 	 */
1828 
1829 	sk = pt->af_packet_priv;
1830 
1831 	/*
1832 	 *	Yank back the headers [hope the device set this
1833 	 *	right or kerboom...]
1834 	 *
1835 	 *	Incoming packets have ll header pulled,
1836 	 *	push it back.
1837 	 *
1838 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1839 	 *	so that this procedure is noop.
1840 	 */
1841 
1842 	if (skb->pkt_type == PACKET_LOOPBACK)
1843 		goto out;
1844 
1845 	if (!net_eq(dev_net(dev), sock_net(sk)))
1846 		goto out;
1847 
1848 	skb = skb_share_check(skb, GFP_ATOMIC);
1849 	if (skb == NULL)
1850 		goto oom;
1851 
1852 	/* drop any routing info */
1853 	skb_dst_drop(skb);
1854 
1855 	/* drop conntrack reference */
1856 	nf_reset_ct(skb);
1857 
1858 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1859 
1860 	skb_push(skb, skb->data - skb_mac_header(skb));
1861 
1862 	/*
1863 	 *	The SOCK_PACKET socket receives _all_ frames.
1864 	 */
1865 
1866 	spkt->spkt_family = dev->type;
1867 	strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1868 	spkt->spkt_protocol = skb->protocol;
1869 
1870 	/*
1871 	 *	Charge the memory to the socket. This is done specifically
1872 	 *	to prevent sockets using all the memory up.
1873 	 */
1874 
1875 	if (sock_queue_rcv_skb(sk, skb) == 0)
1876 		return 0;
1877 
1878 out:
1879 	kfree_skb(skb);
1880 oom:
1881 	return 0;
1882 }
1883 
1884 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock)
1885 {
1886 	if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) &&
1887 	    sock->type == SOCK_RAW) {
1888 		skb_reset_mac_header(skb);
1889 		skb->protocol = dev_parse_header_protocol(skb);
1890 	}
1891 
1892 	skb_probe_transport_header(skb);
1893 }
1894 
1895 /*
1896  *	Output a raw packet to a device layer. This bypasses all the other
1897  *	protocol layers and you must therefore supply it with a complete frame
1898  */
1899 
1900 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1901 			       size_t len)
1902 {
1903 	struct sock *sk = sock->sk;
1904 	DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1905 	struct sk_buff *skb = NULL;
1906 	struct net_device *dev;
1907 	struct sockcm_cookie sockc;
1908 	__be16 proto = 0;
1909 	int err;
1910 	int extra_len = 0;
1911 
1912 	/*
1913 	 *	Get and verify the address.
1914 	 */
1915 
1916 	if (saddr) {
1917 		if (msg->msg_namelen < sizeof(struct sockaddr))
1918 			return -EINVAL;
1919 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1920 			proto = saddr->spkt_protocol;
1921 	} else
1922 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1923 
1924 	/*
1925 	 *	Find the device first to size check it
1926 	 */
1927 
1928 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1929 retry:
1930 	rcu_read_lock();
1931 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1932 	err = -ENODEV;
1933 	if (dev == NULL)
1934 		goto out_unlock;
1935 
1936 	err = -ENETDOWN;
1937 	if (!(dev->flags & IFF_UP))
1938 		goto out_unlock;
1939 
1940 	/*
1941 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1942 	 * raw protocol and you must do your own fragmentation at this level.
1943 	 */
1944 
1945 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1946 		if (!netif_supports_nofcs(dev)) {
1947 			err = -EPROTONOSUPPORT;
1948 			goto out_unlock;
1949 		}
1950 		extra_len = 4; /* We're doing our own CRC */
1951 	}
1952 
1953 	err = -EMSGSIZE;
1954 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1955 		goto out_unlock;
1956 
1957 	if (!skb) {
1958 		size_t reserved = LL_RESERVED_SPACE(dev);
1959 		int tlen = dev->needed_tailroom;
1960 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1961 
1962 		rcu_read_unlock();
1963 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1964 		if (skb == NULL)
1965 			return -ENOBUFS;
1966 		/* FIXME: Save some space for broken drivers that write a hard
1967 		 * header at transmission time by themselves. PPP is the notable
1968 		 * one here. This should really be fixed at the driver level.
1969 		 */
1970 		skb_reserve(skb, reserved);
1971 		skb_reset_network_header(skb);
1972 
1973 		/* Try to align data part correctly */
1974 		if (hhlen) {
1975 			skb->data -= hhlen;
1976 			skb->tail -= hhlen;
1977 			if (len < hhlen)
1978 				skb_reset_network_header(skb);
1979 		}
1980 		err = memcpy_from_msg(skb_put(skb, len), msg, len);
1981 		if (err)
1982 			goto out_free;
1983 		goto retry;
1984 	}
1985 
1986 	if (!dev_validate_header(dev, skb->data, len)) {
1987 		err = -EINVAL;
1988 		goto out_unlock;
1989 	}
1990 	if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1991 	    !packet_extra_vlan_len_allowed(dev, skb)) {
1992 		err = -EMSGSIZE;
1993 		goto out_unlock;
1994 	}
1995 
1996 	sockcm_init(&sockc, sk);
1997 	if (msg->msg_controllen) {
1998 		err = sock_cmsg_send(sk, msg, &sockc);
1999 		if (unlikely(err))
2000 			goto out_unlock;
2001 	}
2002 
2003 	skb->protocol = proto;
2004 	skb->dev = dev;
2005 	skb->priority = sk->sk_priority;
2006 	skb->mark = sk->sk_mark;
2007 	skb->tstamp = sockc.transmit_time;
2008 
2009 	skb_setup_tx_timestamp(skb, sockc.tsflags);
2010 
2011 	if (unlikely(extra_len == 4))
2012 		skb->no_fcs = 1;
2013 
2014 	packet_parse_headers(skb, sock);
2015 
2016 	dev_queue_xmit(skb);
2017 	rcu_read_unlock();
2018 	return len;
2019 
2020 out_unlock:
2021 	rcu_read_unlock();
2022 out_free:
2023 	kfree_skb(skb);
2024 	return err;
2025 }
2026 
2027 static unsigned int run_filter(struct sk_buff *skb,
2028 			       const struct sock *sk,
2029 			       unsigned int res)
2030 {
2031 	struct sk_filter *filter;
2032 
2033 	rcu_read_lock();
2034 	filter = rcu_dereference(sk->sk_filter);
2035 	if (filter != NULL)
2036 		res = bpf_prog_run_clear_cb(filter->prog, skb);
2037 	rcu_read_unlock();
2038 
2039 	return res;
2040 }
2041 
2042 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2043 			   size_t *len)
2044 {
2045 	struct virtio_net_hdr vnet_hdr;
2046 
2047 	if (*len < sizeof(vnet_hdr))
2048 		return -EINVAL;
2049 	*len -= sizeof(vnet_hdr);
2050 
2051 	if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0))
2052 		return -EINVAL;
2053 
2054 	return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2055 }
2056 
2057 /*
2058  * This function makes lazy skb cloning in hope that most of packets
2059  * are discarded by BPF.
2060  *
2061  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2062  * and skb->cb are mangled. It works because (and until) packets
2063  * falling here are owned by current CPU. Output packets are cloned
2064  * by dev_queue_xmit_nit(), input packets are processed by net_bh
2065  * sequentially, so that if we return skb to original state on exit,
2066  * we will not harm anyone.
2067  */
2068 
2069 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2070 		      struct packet_type *pt, struct net_device *orig_dev)
2071 {
2072 	struct sock *sk;
2073 	struct sockaddr_ll *sll;
2074 	struct packet_sock *po;
2075 	u8 *skb_head = skb->data;
2076 	int skb_len = skb->len;
2077 	unsigned int snaplen, res;
2078 	bool is_drop_n_account = false;
2079 
2080 	if (skb->pkt_type == PACKET_LOOPBACK)
2081 		goto drop;
2082 
2083 	sk = pt->af_packet_priv;
2084 	po = pkt_sk(sk);
2085 
2086 	if (!net_eq(dev_net(dev), sock_net(sk)))
2087 		goto drop;
2088 
2089 	skb->dev = dev;
2090 
2091 	if (dev_has_header(dev)) {
2092 		/* The device has an explicit notion of ll header,
2093 		 * exported to higher levels.
2094 		 *
2095 		 * Otherwise, the device hides details of its frame
2096 		 * structure, so that corresponding packet head is
2097 		 * never delivered to user.
2098 		 */
2099 		if (sk->sk_type != SOCK_DGRAM)
2100 			skb_push(skb, skb->data - skb_mac_header(skb));
2101 		else if (skb->pkt_type == PACKET_OUTGOING) {
2102 			/* Special case: outgoing packets have ll header at head */
2103 			skb_pull(skb, skb_network_offset(skb));
2104 		}
2105 	}
2106 
2107 	snaplen = skb->len;
2108 
2109 	res = run_filter(skb, sk, snaplen);
2110 	if (!res)
2111 		goto drop_n_restore;
2112 	if (snaplen > res)
2113 		snaplen = res;
2114 
2115 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2116 		goto drop_n_acct;
2117 
2118 	if (skb_shared(skb)) {
2119 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2120 		if (nskb == NULL)
2121 			goto drop_n_acct;
2122 
2123 		if (skb_head != skb->data) {
2124 			skb->data = skb_head;
2125 			skb->len = skb_len;
2126 		}
2127 		consume_skb(skb);
2128 		skb = nskb;
2129 	}
2130 
2131 	sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2132 
2133 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2134 	sll->sll_hatype = dev->type;
2135 	sll->sll_pkttype = skb->pkt_type;
2136 	if (unlikely(po->origdev))
2137 		sll->sll_ifindex = orig_dev->ifindex;
2138 	else
2139 		sll->sll_ifindex = dev->ifindex;
2140 
2141 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2142 
2143 	/* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2144 	 * Use their space for storing the original skb length.
2145 	 */
2146 	PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2147 
2148 	if (pskb_trim(skb, snaplen))
2149 		goto drop_n_acct;
2150 
2151 	skb_set_owner_r(skb, sk);
2152 	skb->dev = NULL;
2153 	skb_dst_drop(skb);
2154 
2155 	/* drop conntrack reference */
2156 	nf_reset_ct(skb);
2157 
2158 	spin_lock(&sk->sk_receive_queue.lock);
2159 	po->stats.stats1.tp_packets++;
2160 	sock_skb_set_dropcount(sk, skb);
2161 	__skb_queue_tail(&sk->sk_receive_queue, skb);
2162 	spin_unlock(&sk->sk_receive_queue.lock);
2163 	sk->sk_data_ready(sk);
2164 	return 0;
2165 
2166 drop_n_acct:
2167 	is_drop_n_account = true;
2168 	atomic_inc(&po->tp_drops);
2169 	atomic_inc(&sk->sk_drops);
2170 
2171 drop_n_restore:
2172 	if (skb_head != skb->data && skb_shared(skb)) {
2173 		skb->data = skb_head;
2174 		skb->len = skb_len;
2175 	}
2176 drop:
2177 	if (!is_drop_n_account)
2178 		consume_skb(skb);
2179 	else
2180 		kfree_skb(skb);
2181 	return 0;
2182 }
2183 
2184 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2185 		       struct packet_type *pt, struct net_device *orig_dev)
2186 {
2187 	struct sock *sk;
2188 	struct packet_sock *po;
2189 	struct sockaddr_ll *sll;
2190 	union tpacket_uhdr h;
2191 	u8 *skb_head = skb->data;
2192 	int skb_len = skb->len;
2193 	unsigned int snaplen, res;
2194 	unsigned long status = TP_STATUS_USER;
2195 	unsigned short macoff, hdrlen;
2196 	unsigned int netoff;
2197 	struct sk_buff *copy_skb = NULL;
2198 	struct timespec64 ts;
2199 	__u32 ts_status;
2200 	bool is_drop_n_account = false;
2201 	unsigned int slot_id = 0;
2202 	bool do_vnet = false;
2203 
2204 	/* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2205 	 * We may add members to them until current aligned size without forcing
2206 	 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2207 	 */
2208 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2209 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2210 
2211 	if (skb->pkt_type == PACKET_LOOPBACK)
2212 		goto drop;
2213 
2214 	sk = pt->af_packet_priv;
2215 	po = pkt_sk(sk);
2216 
2217 	if (!net_eq(dev_net(dev), sock_net(sk)))
2218 		goto drop;
2219 
2220 	if (dev_has_header(dev)) {
2221 		if (sk->sk_type != SOCK_DGRAM)
2222 			skb_push(skb, skb->data - skb_mac_header(skb));
2223 		else if (skb->pkt_type == PACKET_OUTGOING) {
2224 			/* Special case: outgoing packets have ll header at head */
2225 			skb_pull(skb, skb_network_offset(skb));
2226 		}
2227 	}
2228 
2229 	snaplen = skb->len;
2230 
2231 	res = run_filter(skb, sk, snaplen);
2232 	if (!res)
2233 		goto drop_n_restore;
2234 
2235 	/* If we are flooded, just give up */
2236 	if (__packet_rcv_has_room(po, skb) == ROOM_NONE) {
2237 		atomic_inc(&po->tp_drops);
2238 		goto drop_n_restore;
2239 	}
2240 
2241 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2242 		status |= TP_STATUS_CSUMNOTREADY;
2243 	else if (skb->pkt_type != PACKET_OUTGOING &&
2244 		 (skb->ip_summed == CHECKSUM_COMPLETE ||
2245 		  skb_csum_unnecessary(skb)))
2246 		status |= TP_STATUS_CSUM_VALID;
2247 
2248 	if (snaplen > res)
2249 		snaplen = res;
2250 
2251 	if (sk->sk_type == SOCK_DGRAM) {
2252 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2253 				  po->tp_reserve;
2254 	} else {
2255 		unsigned int maclen = skb_network_offset(skb);
2256 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
2257 				       (maclen < 16 ? 16 : maclen)) +
2258 				       po->tp_reserve;
2259 		if (po->has_vnet_hdr) {
2260 			netoff += sizeof(struct virtio_net_hdr);
2261 			do_vnet = true;
2262 		}
2263 		macoff = netoff - maclen;
2264 	}
2265 	if (netoff > USHRT_MAX) {
2266 		atomic_inc(&po->tp_drops);
2267 		goto drop_n_restore;
2268 	}
2269 	if (po->tp_version <= TPACKET_V2) {
2270 		if (macoff + snaplen > po->rx_ring.frame_size) {
2271 			if (po->copy_thresh &&
2272 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2273 				if (skb_shared(skb)) {
2274 					copy_skb = skb_clone(skb, GFP_ATOMIC);
2275 				} else {
2276 					copy_skb = skb_get(skb);
2277 					skb_head = skb->data;
2278 				}
2279 				if (copy_skb)
2280 					skb_set_owner_r(copy_skb, sk);
2281 			}
2282 			snaplen = po->rx_ring.frame_size - macoff;
2283 			if ((int)snaplen < 0) {
2284 				snaplen = 0;
2285 				do_vnet = false;
2286 			}
2287 		}
2288 	} else if (unlikely(macoff + snaplen >
2289 			    GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2290 		u32 nval;
2291 
2292 		nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2293 		pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2294 			    snaplen, nval, macoff);
2295 		snaplen = nval;
2296 		if (unlikely((int)snaplen < 0)) {
2297 			snaplen = 0;
2298 			macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2299 			do_vnet = false;
2300 		}
2301 	}
2302 	spin_lock(&sk->sk_receive_queue.lock);
2303 	h.raw = packet_current_rx_frame(po, skb,
2304 					TP_STATUS_KERNEL, (macoff+snaplen));
2305 	if (!h.raw)
2306 		goto drop_n_account;
2307 
2308 	if (po->tp_version <= TPACKET_V2) {
2309 		slot_id = po->rx_ring.head;
2310 		if (test_bit(slot_id, po->rx_ring.rx_owner_map))
2311 			goto drop_n_account;
2312 		__set_bit(slot_id, po->rx_ring.rx_owner_map);
2313 	}
2314 
2315 	if (do_vnet &&
2316 	    virtio_net_hdr_from_skb(skb, h.raw + macoff -
2317 				    sizeof(struct virtio_net_hdr),
2318 				    vio_le(), true, 0)) {
2319 		if (po->tp_version == TPACKET_V3)
2320 			prb_clear_blk_fill_status(&po->rx_ring);
2321 		goto drop_n_account;
2322 	}
2323 
2324 	if (po->tp_version <= TPACKET_V2) {
2325 		packet_increment_rx_head(po, &po->rx_ring);
2326 	/*
2327 	 * LOSING will be reported till you read the stats,
2328 	 * because it's COR - Clear On Read.
2329 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2330 	 * at packet level.
2331 	 */
2332 		if (atomic_read(&po->tp_drops))
2333 			status |= TP_STATUS_LOSING;
2334 	}
2335 
2336 	po->stats.stats1.tp_packets++;
2337 	if (copy_skb) {
2338 		status |= TP_STATUS_COPY;
2339 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2340 	}
2341 	spin_unlock(&sk->sk_receive_queue.lock);
2342 
2343 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2344 
2345 	/* Always timestamp; prefer an existing software timestamp taken
2346 	 * closer to the time of capture.
2347 	 */
2348 	ts_status = tpacket_get_timestamp(skb, &ts,
2349 					  po->tp_tstamp | SOF_TIMESTAMPING_SOFTWARE);
2350 	if (!ts_status)
2351 		ktime_get_real_ts64(&ts);
2352 
2353 	status |= ts_status;
2354 
2355 	switch (po->tp_version) {
2356 	case TPACKET_V1:
2357 		h.h1->tp_len = skb->len;
2358 		h.h1->tp_snaplen = snaplen;
2359 		h.h1->tp_mac = macoff;
2360 		h.h1->tp_net = netoff;
2361 		h.h1->tp_sec = ts.tv_sec;
2362 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2363 		hdrlen = sizeof(*h.h1);
2364 		break;
2365 	case TPACKET_V2:
2366 		h.h2->tp_len = skb->len;
2367 		h.h2->tp_snaplen = snaplen;
2368 		h.h2->tp_mac = macoff;
2369 		h.h2->tp_net = netoff;
2370 		h.h2->tp_sec = ts.tv_sec;
2371 		h.h2->tp_nsec = ts.tv_nsec;
2372 		if (skb_vlan_tag_present(skb)) {
2373 			h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2374 			h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2375 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2376 		} else {
2377 			h.h2->tp_vlan_tci = 0;
2378 			h.h2->tp_vlan_tpid = 0;
2379 		}
2380 		memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2381 		hdrlen = sizeof(*h.h2);
2382 		break;
2383 	case TPACKET_V3:
2384 		/* tp_nxt_offset,vlan are already populated above.
2385 		 * So DONT clear those fields here
2386 		 */
2387 		h.h3->tp_status |= status;
2388 		h.h3->tp_len = skb->len;
2389 		h.h3->tp_snaplen = snaplen;
2390 		h.h3->tp_mac = macoff;
2391 		h.h3->tp_net = netoff;
2392 		h.h3->tp_sec  = ts.tv_sec;
2393 		h.h3->tp_nsec = ts.tv_nsec;
2394 		memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2395 		hdrlen = sizeof(*h.h3);
2396 		break;
2397 	default:
2398 		BUG();
2399 	}
2400 
2401 	sll = h.raw + TPACKET_ALIGN(hdrlen);
2402 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2403 	sll->sll_family = AF_PACKET;
2404 	sll->sll_hatype = dev->type;
2405 	sll->sll_protocol = skb->protocol;
2406 	sll->sll_pkttype = skb->pkt_type;
2407 	if (unlikely(po->origdev))
2408 		sll->sll_ifindex = orig_dev->ifindex;
2409 	else
2410 		sll->sll_ifindex = dev->ifindex;
2411 
2412 	smp_mb();
2413 
2414 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2415 	if (po->tp_version <= TPACKET_V2) {
2416 		u8 *start, *end;
2417 
2418 		end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2419 					macoff + snaplen);
2420 
2421 		for (start = h.raw; start < end; start += PAGE_SIZE)
2422 			flush_dcache_page(pgv_to_page(start));
2423 	}
2424 	smp_wmb();
2425 #endif
2426 
2427 	if (po->tp_version <= TPACKET_V2) {
2428 		spin_lock(&sk->sk_receive_queue.lock);
2429 		__packet_set_status(po, h.raw, status);
2430 		__clear_bit(slot_id, po->rx_ring.rx_owner_map);
2431 		spin_unlock(&sk->sk_receive_queue.lock);
2432 		sk->sk_data_ready(sk);
2433 	} else if (po->tp_version == TPACKET_V3) {
2434 		prb_clear_blk_fill_status(&po->rx_ring);
2435 	}
2436 
2437 drop_n_restore:
2438 	if (skb_head != skb->data && skb_shared(skb)) {
2439 		skb->data = skb_head;
2440 		skb->len = skb_len;
2441 	}
2442 drop:
2443 	if (!is_drop_n_account)
2444 		consume_skb(skb);
2445 	else
2446 		kfree_skb(skb);
2447 	return 0;
2448 
2449 drop_n_account:
2450 	spin_unlock(&sk->sk_receive_queue.lock);
2451 	atomic_inc(&po->tp_drops);
2452 	is_drop_n_account = true;
2453 
2454 	sk->sk_data_ready(sk);
2455 	kfree_skb(copy_skb);
2456 	goto drop_n_restore;
2457 }
2458 
2459 static void tpacket_destruct_skb(struct sk_buff *skb)
2460 {
2461 	struct packet_sock *po = pkt_sk(skb->sk);
2462 
2463 	if (likely(po->tx_ring.pg_vec)) {
2464 		void *ph;
2465 		__u32 ts;
2466 
2467 		ph = skb_zcopy_get_nouarg(skb);
2468 		packet_dec_pending(&po->tx_ring);
2469 
2470 		ts = __packet_set_timestamp(po, ph, skb);
2471 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2472 
2473 		if (!packet_read_pending(&po->tx_ring))
2474 			complete(&po->skb_completion);
2475 	}
2476 
2477 	sock_wfree(skb);
2478 }
2479 
2480 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2481 {
2482 	if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2483 	    (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2484 	     __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2485 	      __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2486 		vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2487 			 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2488 			__virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2489 
2490 	if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2491 		return -EINVAL;
2492 
2493 	return 0;
2494 }
2495 
2496 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2497 				 struct virtio_net_hdr *vnet_hdr)
2498 {
2499 	if (*len < sizeof(*vnet_hdr))
2500 		return -EINVAL;
2501 	*len -= sizeof(*vnet_hdr);
2502 
2503 	if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2504 		return -EFAULT;
2505 
2506 	return __packet_snd_vnet_parse(vnet_hdr, *len);
2507 }
2508 
2509 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2510 		void *frame, struct net_device *dev, void *data, int tp_len,
2511 		__be16 proto, unsigned char *addr, int hlen, int copylen,
2512 		const struct sockcm_cookie *sockc)
2513 {
2514 	union tpacket_uhdr ph;
2515 	int to_write, offset, len, nr_frags, len_max;
2516 	struct socket *sock = po->sk.sk_socket;
2517 	struct page *page;
2518 	int err;
2519 
2520 	ph.raw = frame;
2521 
2522 	skb->protocol = proto;
2523 	skb->dev = dev;
2524 	skb->priority = po->sk.sk_priority;
2525 	skb->mark = po->sk.sk_mark;
2526 	skb->tstamp = sockc->transmit_time;
2527 	skb_setup_tx_timestamp(skb, sockc->tsflags);
2528 	skb_zcopy_set_nouarg(skb, ph.raw);
2529 
2530 	skb_reserve(skb, hlen);
2531 	skb_reset_network_header(skb);
2532 
2533 	to_write = tp_len;
2534 
2535 	if (sock->type == SOCK_DGRAM) {
2536 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2537 				NULL, tp_len);
2538 		if (unlikely(err < 0))
2539 			return -EINVAL;
2540 	} else if (copylen) {
2541 		int hdrlen = min_t(int, copylen, tp_len);
2542 
2543 		skb_push(skb, dev->hard_header_len);
2544 		skb_put(skb, copylen - dev->hard_header_len);
2545 		err = skb_store_bits(skb, 0, data, hdrlen);
2546 		if (unlikely(err))
2547 			return err;
2548 		if (!dev_validate_header(dev, skb->data, hdrlen))
2549 			return -EINVAL;
2550 
2551 		data += hdrlen;
2552 		to_write -= hdrlen;
2553 	}
2554 
2555 	offset = offset_in_page(data);
2556 	len_max = PAGE_SIZE - offset;
2557 	len = ((to_write > len_max) ? len_max : to_write);
2558 
2559 	skb->data_len = to_write;
2560 	skb->len += to_write;
2561 	skb->truesize += to_write;
2562 	refcount_add(to_write, &po->sk.sk_wmem_alloc);
2563 
2564 	while (likely(to_write)) {
2565 		nr_frags = skb_shinfo(skb)->nr_frags;
2566 
2567 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2568 			pr_err("Packet exceed the number of skb frags(%lu)\n",
2569 			       MAX_SKB_FRAGS);
2570 			return -EFAULT;
2571 		}
2572 
2573 		page = pgv_to_page(data);
2574 		data += len;
2575 		flush_dcache_page(page);
2576 		get_page(page);
2577 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2578 		to_write -= len;
2579 		offset = 0;
2580 		len_max = PAGE_SIZE;
2581 		len = ((to_write > len_max) ? len_max : to_write);
2582 	}
2583 
2584 	packet_parse_headers(skb, sock);
2585 
2586 	return tp_len;
2587 }
2588 
2589 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2590 				int size_max, void **data)
2591 {
2592 	union tpacket_uhdr ph;
2593 	int tp_len, off;
2594 
2595 	ph.raw = frame;
2596 
2597 	switch (po->tp_version) {
2598 	case TPACKET_V3:
2599 		if (ph.h3->tp_next_offset != 0) {
2600 			pr_warn_once("variable sized slot not supported");
2601 			return -EINVAL;
2602 		}
2603 		tp_len = ph.h3->tp_len;
2604 		break;
2605 	case TPACKET_V2:
2606 		tp_len = ph.h2->tp_len;
2607 		break;
2608 	default:
2609 		tp_len = ph.h1->tp_len;
2610 		break;
2611 	}
2612 	if (unlikely(tp_len > size_max)) {
2613 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2614 		return -EMSGSIZE;
2615 	}
2616 
2617 	if (unlikely(po->tp_tx_has_off)) {
2618 		int off_min, off_max;
2619 
2620 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2621 		off_max = po->tx_ring.frame_size - tp_len;
2622 		if (po->sk.sk_type == SOCK_DGRAM) {
2623 			switch (po->tp_version) {
2624 			case TPACKET_V3:
2625 				off = ph.h3->tp_net;
2626 				break;
2627 			case TPACKET_V2:
2628 				off = ph.h2->tp_net;
2629 				break;
2630 			default:
2631 				off = ph.h1->tp_net;
2632 				break;
2633 			}
2634 		} else {
2635 			switch (po->tp_version) {
2636 			case TPACKET_V3:
2637 				off = ph.h3->tp_mac;
2638 				break;
2639 			case TPACKET_V2:
2640 				off = ph.h2->tp_mac;
2641 				break;
2642 			default:
2643 				off = ph.h1->tp_mac;
2644 				break;
2645 			}
2646 		}
2647 		if (unlikely((off < off_min) || (off_max < off)))
2648 			return -EINVAL;
2649 	} else {
2650 		off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2651 	}
2652 
2653 	*data = frame + off;
2654 	return tp_len;
2655 }
2656 
2657 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2658 {
2659 	struct sk_buff *skb = NULL;
2660 	struct net_device *dev;
2661 	struct virtio_net_hdr *vnet_hdr = NULL;
2662 	struct sockcm_cookie sockc;
2663 	__be16 proto;
2664 	int err, reserve = 0;
2665 	void *ph;
2666 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2667 	bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2668 	unsigned char *addr = NULL;
2669 	int tp_len, size_max;
2670 	void *data;
2671 	int len_sum = 0;
2672 	int status = TP_STATUS_AVAILABLE;
2673 	int hlen, tlen, copylen = 0;
2674 	long timeo = 0;
2675 
2676 	mutex_lock(&po->pg_vec_lock);
2677 
2678 	/* packet_sendmsg() check on tx_ring.pg_vec was lockless,
2679 	 * we need to confirm it under protection of pg_vec_lock.
2680 	 */
2681 	if (unlikely(!po->tx_ring.pg_vec)) {
2682 		err = -EBUSY;
2683 		goto out;
2684 	}
2685 	if (likely(saddr == NULL)) {
2686 		dev	= packet_cached_dev_get(po);
2687 		proto	= READ_ONCE(po->num);
2688 	} else {
2689 		err = -EINVAL;
2690 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2691 			goto out;
2692 		if (msg->msg_namelen < (saddr->sll_halen
2693 					+ offsetof(struct sockaddr_ll,
2694 						sll_addr)))
2695 			goto out;
2696 		proto	= saddr->sll_protocol;
2697 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2698 		if (po->sk.sk_socket->type == SOCK_DGRAM) {
2699 			if (dev && msg->msg_namelen < dev->addr_len +
2700 				   offsetof(struct sockaddr_ll, sll_addr))
2701 				goto out_put;
2702 			addr = saddr->sll_addr;
2703 		}
2704 	}
2705 
2706 	err = -ENXIO;
2707 	if (unlikely(dev == NULL))
2708 		goto out;
2709 	err = -ENETDOWN;
2710 	if (unlikely(!(dev->flags & IFF_UP)))
2711 		goto out_put;
2712 
2713 	sockcm_init(&sockc, &po->sk);
2714 	if (msg->msg_controllen) {
2715 		err = sock_cmsg_send(&po->sk, msg, &sockc);
2716 		if (unlikely(err))
2717 			goto out_put;
2718 	}
2719 
2720 	if (po->sk.sk_socket->type == SOCK_RAW)
2721 		reserve = dev->hard_header_len;
2722 	size_max = po->tx_ring.frame_size
2723 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2724 
2725 	if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2726 		size_max = dev->mtu + reserve + VLAN_HLEN;
2727 
2728 	reinit_completion(&po->skb_completion);
2729 
2730 	do {
2731 		ph = packet_current_frame(po, &po->tx_ring,
2732 					  TP_STATUS_SEND_REQUEST);
2733 		if (unlikely(ph == NULL)) {
2734 			if (need_wait && skb) {
2735 				timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT);
2736 				timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo);
2737 				if (timeo <= 0) {
2738 					err = !timeo ? -ETIMEDOUT : -ERESTARTSYS;
2739 					goto out_put;
2740 				}
2741 			}
2742 			/* check for additional frames */
2743 			continue;
2744 		}
2745 
2746 		skb = NULL;
2747 		tp_len = tpacket_parse_header(po, ph, size_max, &data);
2748 		if (tp_len < 0)
2749 			goto tpacket_error;
2750 
2751 		status = TP_STATUS_SEND_REQUEST;
2752 		hlen = LL_RESERVED_SPACE(dev);
2753 		tlen = dev->needed_tailroom;
2754 		if (po->has_vnet_hdr) {
2755 			vnet_hdr = data;
2756 			data += sizeof(*vnet_hdr);
2757 			tp_len -= sizeof(*vnet_hdr);
2758 			if (tp_len < 0 ||
2759 			    __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2760 				tp_len = -EINVAL;
2761 				goto tpacket_error;
2762 			}
2763 			copylen = __virtio16_to_cpu(vio_le(),
2764 						    vnet_hdr->hdr_len);
2765 		}
2766 		copylen = max_t(int, copylen, dev->hard_header_len);
2767 		skb = sock_alloc_send_skb(&po->sk,
2768 				hlen + tlen + sizeof(struct sockaddr_ll) +
2769 				(copylen - dev->hard_header_len),
2770 				!need_wait, &err);
2771 
2772 		if (unlikely(skb == NULL)) {
2773 			/* we assume the socket was initially writeable ... */
2774 			if (likely(len_sum > 0))
2775 				err = len_sum;
2776 			goto out_status;
2777 		}
2778 		tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2779 					  addr, hlen, copylen, &sockc);
2780 		if (likely(tp_len >= 0) &&
2781 		    tp_len > dev->mtu + reserve &&
2782 		    !po->has_vnet_hdr &&
2783 		    !packet_extra_vlan_len_allowed(dev, skb))
2784 			tp_len = -EMSGSIZE;
2785 
2786 		if (unlikely(tp_len < 0)) {
2787 tpacket_error:
2788 			if (po->tp_loss) {
2789 				__packet_set_status(po, ph,
2790 						TP_STATUS_AVAILABLE);
2791 				packet_increment_head(&po->tx_ring);
2792 				kfree_skb(skb);
2793 				continue;
2794 			} else {
2795 				status = TP_STATUS_WRONG_FORMAT;
2796 				err = tp_len;
2797 				goto out_status;
2798 			}
2799 		}
2800 
2801 		if (po->has_vnet_hdr) {
2802 			if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) {
2803 				tp_len = -EINVAL;
2804 				goto tpacket_error;
2805 			}
2806 			virtio_net_hdr_set_proto(skb, vnet_hdr);
2807 		}
2808 
2809 		skb->destructor = tpacket_destruct_skb;
2810 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2811 		packet_inc_pending(&po->tx_ring);
2812 
2813 		status = TP_STATUS_SEND_REQUEST;
2814 		err = po->xmit(skb);
2815 		if (unlikely(err > 0)) {
2816 			err = net_xmit_errno(err);
2817 			if (err && __packet_get_status(po, ph) ==
2818 				   TP_STATUS_AVAILABLE) {
2819 				/* skb was destructed already */
2820 				skb = NULL;
2821 				goto out_status;
2822 			}
2823 			/*
2824 			 * skb was dropped but not destructed yet;
2825 			 * let's treat it like congestion or err < 0
2826 			 */
2827 			err = 0;
2828 		}
2829 		packet_increment_head(&po->tx_ring);
2830 		len_sum += tp_len;
2831 	} while (likely((ph != NULL) ||
2832 		/* Note: packet_read_pending() might be slow if we have
2833 		 * to call it as it's per_cpu variable, but in fast-path
2834 		 * we already short-circuit the loop with the first
2835 		 * condition, and luckily don't have to go that path
2836 		 * anyway.
2837 		 */
2838 		 (need_wait && packet_read_pending(&po->tx_ring))));
2839 
2840 	err = len_sum;
2841 	goto out_put;
2842 
2843 out_status:
2844 	__packet_set_status(po, ph, status);
2845 	kfree_skb(skb);
2846 out_put:
2847 	dev_put(dev);
2848 out:
2849 	mutex_unlock(&po->pg_vec_lock);
2850 	return err;
2851 }
2852 
2853 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2854 				        size_t reserve, size_t len,
2855 				        size_t linear, int noblock,
2856 				        int *err)
2857 {
2858 	struct sk_buff *skb;
2859 
2860 	/* Under a page?  Don't bother with paged skb. */
2861 	if (prepad + len < PAGE_SIZE || !linear)
2862 		linear = len;
2863 
2864 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2865 				   err, 0);
2866 	if (!skb)
2867 		return NULL;
2868 
2869 	skb_reserve(skb, reserve);
2870 	skb_put(skb, linear);
2871 	skb->data_len = len - linear;
2872 	skb->len += len - linear;
2873 
2874 	return skb;
2875 }
2876 
2877 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2878 {
2879 	struct sock *sk = sock->sk;
2880 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2881 	struct sk_buff *skb;
2882 	struct net_device *dev;
2883 	__be16 proto;
2884 	unsigned char *addr = NULL;
2885 	int err, reserve = 0;
2886 	struct sockcm_cookie sockc;
2887 	struct virtio_net_hdr vnet_hdr = { 0 };
2888 	int offset = 0;
2889 	struct packet_sock *po = pkt_sk(sk);
2890 	bool has_vnet_hdr = false;
2891 	int hlen, tlen, linear;
2892 	int extra_len = 0;
2893 
2894 	/*
2895 	 *	Get and verify the address.
2896 	 */
2897 
2898 	if (likely(saddr == NULL)) {
2899 		dev	= packet_cached_dev_get(po);
2900 		proto	= READ_ONCE(po->num);
2901 	} else {
2902 		err = -EINVAL;
2903 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2904 			goto out;
2905 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2906 			goto out;
2907 		proto	= saddr->sll_protocol;
2908 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2909 		if (sock->type == SOCK_DGRAM) {
2910 			if (dev && msg->msg_namelen < dev->addr_len +
2911 				   offsetof(struct sockaddr_ll, sll_addr))
2912 				goto out_unlock;
2913 			addr = saddr->sll_addr;
2914 		}
2915 	}
2916 
2917 	err = -ENXIO;
2918 	if (unlikely(dev == NULL))
2919 		goto out_unlock;
2920 	err = -ENETDOWN;
2921 	if (unlikely(!(dev->flags & IFF_UP)))
2922 		goto out_unlock;
2923 
2924 	sockcm_init(&sockc, sk);
2925 	sockc.mark = sk->sk_mark;
2926 	if (msg->msg_controllen) {
2927 		err = sock_cmsg_send(sk, msg, &sockc);
2928 		if (unlikely(err))
2929 			goto out_unlock;
2930 	}
2931 
2932 	if (sock->type == SOCK_RAW)
2933 		reserve = dev->hard_header_len;
2934 	if (po->has_vnet_hdr) {
2935 		err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2936 		if (err)
2937 			goto out_unlock;
2938 		has_vnet_hdr = true;
2939 	}
2940 
2941 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2942 		if (!netif_supports_nofcs(dev)) {
2943 			err = -EPROTONOSUPPORT;
2944 			goto out_unlock;
2945 		}
2946 		extra_len = 4; /* We're doing our own CRC */
2947 	}
2948 
2949 	err = -EMSGSIZE;
2950 	if (!vnet_hdr.gso_type &&
2951 	    (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2952 		goto out_unlock;
2953 
2954 	err = -ENOBUFS;
2955 	hlen = LL_RESERVED_SPACE(dev);
2956 	tlen = dev->needed_tailroom;
2957 	linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2958 	linear = max(linear, min_t(int, len, dev->hard_header_len));
2959 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2960 			       msg->msg_flags & MSG_DONTWAIT, &err);
2961 	if (skb == NULL)
2962 		goto out_unlock;
2963 
2964 	skb_reset_network_header(skb);
2965 
2966 	err = -EINVAL;
2967 	if (sock->type == SOCK_DGRAM) {
2968 		offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2969 		if (unlikely(offset < 0))
2970 			goto out_free;
2971 	} else if (reserve) {
2972 		skb_reserve(skb, -reserve);
2973 		if (len < reserve + sizeof(struct ipv6hdr) &&
2974 		    dev->min_header_len != dev->hard_header_len)
2975 			skb_reset_network_header(skb);
2976 	}
2977 
2978 	/* Returns -EFAULT on error */
2979 	err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2980 	if (err)
2981 		goto out_free;
2982 
2983 	if (sock->type == SOCK_RAW &&
2984 	    !dev_validate_header(dev, skb->data, len)) {
2985 		err = -EINVAL;
2986 		goto out_free;
2987 	}
2988 
2989 	skb_setup_tx_timestamp(skb, sockc.tsflags);
2990 
2991 	if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2992 	    !packet_extra_vlan_len_allowed(dev, skb)) {
2993 		err = -EMSGSIZE;
2994 		goto out_free;
2995 	}
2996 
2997 	skb->protocol = proto;
2998 	skb->dev = dev;
2999 	skb->priority = sk->sk_priority;
3000 	skb->mark = sockc.mark;
3001 	skb->tstamp = sockc.transmit_time;
3002 
3003 	if (has_vnet_hdr) {
3004 		err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
3005 		if (err)
3006 			goto out_free;
3007 		len += sizeof(vnet_hdr);
3008 		virtio_net_hdr_set_proto(skb, &vnet_hdr);
3009 	}
3010 
3011 	packet_parse_headers(skb, sock);
3012 
3013 	if (unlikely(extra_len == 4))
3014 		skb->no_fcs = 1;
3015 
3016 	err = po->xmit(skb);
3017 	if (err > 0 && (err = net_xmit_errno(err)) != 0)
3018 		goto out_unlock;
3019 
3020 	dev_put(dev);
3021 
3022 	return len;
3023 
3024 out_free:
3025 	kfree_skb(skb);
3026 out_unlock:
3027 	if (dev)
3028 		dev_put(dev);
3029 out:
3030 	return err;
3031 }
3032 
3033 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
3034 {
3035 	struct sock *sk = sock->sk;
3036 	struct packet_sock *po = pkt_sk(sk);
3037 
3038 	/* Reading tx_ring.pg_vec without holding pg_vec_lock is racy.
3039 	 * tpacket_snd() will redo the check safely.
3040 	 */
3041 	if (data_race(po->tx_ring.pg_vec))
3042 		return tpacket_snd(po, msg);
3043 
3044 	return packet_snd(sock, msg, len);
3045 }
3046 
3047 /*
3048  *	Close a PACKET socket. This is fairly simple. We immediately go
3049  *	to 'closed' state and remove our protocol entry in the device list.
3050  */
3051 
3052 static int packet_release(struct socket *sock)
3053 {
3054 	struct sock *sk = sock->sk;
3055 	struct packet_sock *po;
3056 	struct packet_fanout *f;
3057 	struct net *net;
3058 	union tpacket_req_u req_u;
3059 
3060 	if (!sk)
3061 		return 0;
3062 
3063 	net = sock_net(sk);
3064 	po = pkt_sk(sk);
3065 
3066 	mutex_lock(&net->packet.sklist_lock);
3067 	sk_del_node_init_rcu(sk);
3068 	mutex_unlock(&net->packet.sklist_lock);
3069 
3070 	preempt_disable();
3071 	sock_prot_inuse_add(net, sk->sk_prot, -1);
3072 	preempt_enable();
3073 
3074 	spin_lock(&po->bind_lock);
3075 	unregister_prot_hook(sk, false);
3076 	packet_cached_dev_reset(po);
3077 
3078 	if (po->prot_hook.dev) {
3079 		dev_put(po->prot_hook.dev);
3080 		po->prot_hook.dev = NULL;
3081 	}
3082 	spin_unlock(&po->bind_lock);
3083 
3084 	packet_flush_mclist(sk);
3085 
3086 	lock_sock(sk);
3087 	if (po->rx_ring.pg_vec) {
3088 		memset(&req_u, 0, sizeof(req_u));
3089 		packet_set_ring(sk, &req_u, 1, 0);
3090 	}
3091 
3092 	if (po->tx_ring.pg_vec) {
3093 		memset(&req_u, 0, sizeof(req_u));
3094 		packet_set_ring(sk, &req_u, 1, 1);
3095 	}
3096 	release_sock(sk);
3097 
3098 	f = fanout_release(sk);
3099 
3100 	synchronize_net();
3101 
3102 	kfree(po->rollover);
3103 	if (f) {
3104 		fanout_release_data(f);
3105 		kvfree(f);
3106 	}
3107 	/*
3108 	 *	Now the socket is dead. No more input will appear.
3109 	 */
3110 	sock_orphan(sk);
3111 	sock->sk = NULL;
3112 
3113 	/* Purge queues */
3114 
3115 	skb_queue_purge(&sk->sk_receive_queue);
3116 	packet_free_pending(po);
3117 	sk_refcnt_debug_release(sk);
3118 
3119 	sock_put(sk);
3120 	return 0;
3121 }
3122 
3123 /*
3124  *	Attach a packet hook.
3125  */
3126 
3127 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3128 			  __be16 proto)
3129 {
3130 	struct packet_sock *po = pkt_sk(sk);
3131 	struct net_device *dev_curr;
3132 	__be16 proto_curr;
3133 	bool need_rehook;
3134 	struct net_device *dev = NULL;
3135 	int ret = 0;
3136 	bool unlisted = false;
3137 
3138 	lock_sock(sk);
3139 	spin_lock(&po->bind_lock);
3140 	rcu_read_lock();
3141 
3142 	if (po->fanout) {
3143 		ret = -EINVAL;
3144 		goto out_unlock;
3145 	}
3146 
3147 	if (name) {
3148 		dev = dev_get_by_name_rcu(sock_net(sk), name);
3149 		if (!dev) {
3150 			ret = -ENODEV;
3151 			goto out_unlock;
3152 		}
3153 	} else if (ifindex) {
3154 		dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3155 		if (!dev) {
3156 			ret = -ENODEV;
3157 			goto out_unlock;
3158 		}
3159 	}
3160 
3161 	if (dev)
3162 		dev_hold(dev);
3163 
3164 	proto_curr = po->prot_hook.type;
3165 	dev_curr = po->prot_hook.dev;
3166 
3167 	need_rehook = proto_curr != proto || dev_curr != dev;
3168 
3169 	if (need_rehook) {
3170 		if (po->running) {
3171 			rcu_read_unlock();
3172 			/* prevents packet_notifier() from calling
3173 			 * register_prot_hook()
3174 			 */
3175 			WRITE_ONCE(po->num, 0);
3176 			__unregister_prot_hook(sk, true);
3177 			rcu_read_lock();
3178 			dev_curr = po->prot_hook.dev;
3179 			if (dev)
3180 				unlisted = !dev_get_by_index_rcu(sock_net(sk),
3181 								 dev->ifindex);
3182 		}
3183 
3184 		BUG_ON(po->running);
3185 		WRITE_ONCE(po->num, proto);
3186 		po->prot_hook.type = proto;
3187 
3188 		if (unlikely(unlisted)) {
3189 			dev_put(dev);
3190 			po->prot_hook.dev = NULL;
3191 			WRITE_ONCE(po->ifindex, -1);
3192 			packet_cached_dev_reset(po);
3193 		} else {
3194 			po->prot_hook.dev = dev;
3195 			WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0);
3196 			packet_cached_dev_assign(po, dev);
3197 		}
3198 	}
3199 	if (dev_curr)
3200 		dev_put(dev_curr);
3201 
3202 	if (proto == 0 || !need_rehook)
3203 		goto out_unlock;
3204 
3205 	if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3206 		register_prot_hook(sk);
3207 	} else {
3208 		sk->sk_err = ENETDOWN;
3209 		if (!sock_flag(sk, SOCK_DEAD))
3210 			sk_error_report(sk);
3211 	}
3212 
3213 out_unlock:
3214 	rcu_read_unlock();
3215 	spin_unlock(&po->bind_lock);
3216 	release_sock(sk);
3217 	return ret;
3218 }
3219 
3220 /*
3221  *	Bind a packet socket to a device
3222  */
3223 
3224 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3225 			    int addr_len)
3226 {
3227 	struct sock *sk = sock->sk;
3228 	char name[sizeof(uaddr->sa_data) + 1];
3229 
3230 	/*
3231 	 *	Check legality
3232 	 */
3233 
3234 	if (addr_len != sizeof(struct sockaddr))
3235 		return -EINVAL;
3236 	/* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3237 	 * zero-terminated.
3238 	 */
3239 	memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3240 	name[sizeof(uaddr->sa_data)] = 0;
3241 
3242 	return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3243 }
3244 
3245 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3246 {
3247 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3248 	struct sock *sk = sock->sk;
3249 
3250 	/*
3251 	 *	Check legality
3252 	 */
3253 
3254 	if (addr_len < sizeof(struct sockaddr_ll))
3255 		return -EINVAL;
3256 	if (sll->sll_family != AF_PACKET)
3257 		return -EINVAL;
3258 
3259 	return packet_do_bind(sk, NULL, sll->sll_ifindex,
3260 			      sll->sll_protocol ? : pkt_sk(sk)->num);
3261 }
3262 
3263 static struct proto packet_proto = {
3264 	.name	  = "PACKET",
3265 	.owner	  = THIS_MODULE,
3266 	.obj_size = sizeof(struct packet_sock),
3267 };
3268 
3269 /*
3270  *	Create a packet of type SOCK_PACKET.
3271  */
3272 
3273 static int packet_create(struct net *net, struct socket *sock, int protocol,
3274 			 int kern)
3275 {
3276 	struct sock *sk;
3277 	struct packet_sock *po;
3278 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
3279 	int err;
3280 
3281 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
3282 		return -EPERM;
3283 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3284 	    sock->type != SOCK_PACKET)
3285 		return -ESOCKTNOSUPPORT;
3286 
3287 	sock->state = SS_UNCONNECTED;
3288 
3289 	err = -ENOBUFS;
3290 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3291 	if (sk == NULL)
3292 		goto out;
3293 
3294 	sock->ops = &packet_ops;
3295 	if (sock->type == SOCK_PACKET)
3296 		sock->ops = &packet_ops_spkt;
3297 
3298 	sock_init_data(sock, sk);
3299 
3300 	po = pkt_sk(sk);
3301 	init_completion(&po->skb_completion);
3302 	sk->sk_family = PF_PACKET;
3303 	po->num = proto;
3304 	po->xmit = dev_queue_xmit;
3305 
3306 	err = packet_alloc_pending(po);
3307 	if (err)
3308 		goto out2;
3309 
3310 	packet_cached_dev_reset(po);
3311 
3312 	sk->sk_destruct = packet_sock_destruct;
3313 	sk_refcnt_debug_inc(sk);
3314 
3315 	/*
3316 	 *	Attach a protocol block
3317 	 */
3318 
3319 	spin_lock_init(&po->bind_lock);
3320 	mutex_init(&po->pg_vec_lock);
3321 	po->rollover = NULL;
3322 	po->prot_hook.func = packet_rcv;
3323 
3324 	if (sock->type == SOCK_PACKET)
3325 		po->prot_hook.func = packet_rcv_spkt;
3326 
3327 	po->prot_hook.af_packet_priv = sk;
3328 
3329 	if (proto) {
3330 		po->prot_hook.type = proto;
3331 		__register_prot_hook(sk);
3332 	}
3333 
3334 	mutex_lock(&net->packet.sklist_lock);
3335 	sk_add_node_tail_rcu(sk, &net->packet.sklist);
3336 	mutex_unlock(&net->packet.sklist_lock);
3337 
3338 	preempt_disable();
3339 	sock_prot_inuse_add(net, &packet_proto, 1);
3340 	preempt_enable();
3341 
3342 	return 0;
3343 out2:
3344 	sk_free(sk);
3345 out:
3346 	return err;
3347 }
3348 
3349 /*
3350  *	Pull a packet from our receive queue and hand it to the user.
3351  *	If necessary we block.
3352  */
3353 
3354 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3355 			  int flags)
3356 {
3357 	struct sock *sk = sock->sk;
3358 	struct sk_buff *skb;
3359 	int copied, err;
3360 	int vnet_hdr_len = 0;
3361 	unsigned int origlen = 0;
3362 
3363 	err = -EINVAL;
3364 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3365 		goto out;
3366 
3367 #if 0
3368 	/* What error should we return now? EUNATTACH? */
3369 	if (pkt_sk(sk)->ifindex < 0)
3370 		return -ENODEV;
3371 #endif
3372 
3373 	if (flags & MSG_ERRQUEUE) {
3374 		err = sock_recv_errqueue(sk, msg, len,
3375 					 SOL_PACKET, PACKET_TX_TIMESTAMP);
3376 		goto out;
3377 	}
3378 
3379 	/*
3380 	 *	Call the generic datagram receiver. This handles all sorts
3381 	 *	of horrible races and re-entrancy so we can forget about it
3382 	 *	in the protocol layers.
3383 	 *
3384 	 *	Now it will return ENETDOWN, if device have just gone down,
3385 	 *	but then it will block.
3386 	 */
3387 
3388 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3389 
3390 	/*
3391 	 *	An error occurred so return it. Because skb_recv_datagram()
3392 	 *	handles the blocking we don't see and worry about blocking
3393 	 *	retries.
3394 	 */
3395 
3396 	if (skb == NULL)
3397 		goto out;
3398 
3399 	packet_rcv_try_clear_pressure(pkt_sk(sk));
3400 
3401 	if (pkt_sk(sk)->has_vnet_hdr) {
3402 		err = packet_rcv_vnet(msg, skb, &len);
3403 		if (err)
3404 			goto out_free;
3405 		vnet_hdr_len = sizeof(struct virtio_net_hdr);
3406 	}
3407 
3408 	/* You lose any data beyond the buffer you gave. If it worries
3409 	 * a user program they can ask the device for its MTU
3410 	 * anyway.
3411 	 */
3412 	copied = skb->len;
3413 	if (copied > len) {
3414 		copied = len;
3415 		msg->msg_flags |= MSG_TRUNC;
3416 	}
3417 
3418 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3419 	if (err)
3420 		goto out_free;
3421 
3422 	if (sock->type != SOCK_PACKET) {
3423 		struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3424 
3425 		/* Original length was stored in sockaddr_ll fields */
3426 		origlen = PACKET_SKB_CB(skb)->sa.origlen;
3427 		sll->sll_family = AF_PACKET;
3428 		sll->sll_protocol = skb->protocol;
3429 	}
3430 
3431 	sock_recv_ts_and_drops(msg, sk, skb);
3432 
3433 	if (msg->msg_name) {
3434 		int copy_len;
3435 
3436 		/* If the address length field is there to be filled
3437 		 * in, we fill it in now.
3438 		 */
3439 		if (sock->type == SOCK_PACKET) {
3440 			__sockaddr_check_size(sizeof(struct sockaddr_pkt));
3441 			msg->msg_namelen = sizeof(struct sockaddr_pkt);
3442 			copy_len = msg->msg_namelen;
3443 		} else {
3444 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3445 
3446 			msg->msg_namelen = sll->sll_halen +
3447 				offsetof(struct sockaddr_ll, sll_addr);
3448 			copy_len = msg->msg_namelen;
3449 			if (msg->msg_namelen < sizeof(struct sockaddr_ll)) {
3450 				memset(msg->msg_name +
3451 				       offsetof(struct sockaddr_ll, sll_addr),
3452 				       0, sizeof(sll->sll_addr));
3453 				msg->msg_namelen = sizeof(struct sockaddr_ll);
3454 			}
3455 		}
3456 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len);
3457 	}
3458 
3459 	if (pkt_sk(sk)->auxdata) {
3460 		struct tpacket_auxdata aux;
3461 
3462 		aux.tp_status = TP_STATUS_USER;
3463 		if (skb->ip_summed == CHECKSUM_PARTIAL)
3464 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3465 		else if (skb->pkt_type != PACKET_OUTGOING &&
3466 			 (skb->ip_summed == CHECKSUM_COMPLETE ||
3467 			  skb_csum_unnecessary(skb)))
3468 			aux.tp_status |= TP_STATUS_CSUM_VALID;
3469 
3470 		aux.tp_len = origlen;
3471 		aux.tp_snaplen = skb->len;
3472 		aux.tp_mac = 0;
3473 		aux.tp_net = skb_network_offset(skb);
3474 		if (skb_vlan_tag_present(skb)) {
3475 			aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3476 			aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3477 			aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3478 		} else {
3479 			aux.tp_vlan_tci = 0;
3480 			aux.tp_vlan_tpid = 0;
3481 		}
3482 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3483 	}
3484 
3485 	/*
3486 	 *	Free or return the buffer as appropriate. Again this
3487 	 *	hides all the races and re-entrancy issues from us.
3488 	 */
3489 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3490 
3491 out_free:
3492 	skb_free_datagram(sk, skb);
3493 out:
3494 	return err;
3495 }
3496 
3497 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3498 			       int peer)
3499 {
3500 	struct net_device *dev;
3501 	struct sock *sk	= sock->sk;
3502 
3503 	if (peer)
3504 		return -EOPNOTSUPP;
3505 
3506 	uaddr->sa_family = AF_PACKET;
3507 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3508 	rcu_read_lock();
3509 	dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex));
3510 	if (dev)
3511 		strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3512 	rcu_read_unlock();
3513 
3514 	return sizeof(*uaddr);
3515 }
3516 
3517 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3518 			  int peer)
3519 {
3520 	struct net_device *dev;
3521 	struct sock *sk = sock->sk;
3522 	struct packet_sock *po = pkt_sk(sk);
3523 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3524 	int ifindex;
3525 
3526 	if (peer)
3527 		return -EOPNOTSUPP;
3528 
3529 	ifindex = READ_ONCE(po->ifindex);
3530 	sll->sll_family = AF_PACKET;
3531 	sll->sll_ifindex = ifindex;
3532 	sll->sll_protocol = READ_ONCE(po->num);
3533 	sll->sll_pkttype = 0;
3534 	rcu_read_lock();
3535 	dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3536 	if (dev) {
3537 		sll->sll_hatype = dev->type;
3538 		sll->sll_halen = dev->addr_len;
3539 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3540 	} else {
3541 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
3542 		sll->sll_halen = 0;
3543 	}
3544 	rcu_read_unlock();
3545 
3546 	return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3547 }
3548 
3549 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3550 			 int what)
3551 {
3552 	switch (i->type) {
3553 	case PACKET_MR_MULTICAST:
3554 		if (i->alen != dev->addr_len)
3555 			return -EINVAL;
3556 		if (what > 0)
3557 			return dev_mc_add(dev, i->addr);
3558 		else
3559 			return dev_mc_del(dev, i->addr);
3560 		break;
3561 	case PACKET_MR_PROMISC:
3562 		return dev_set_promiscuity(dev, what);
3563 	case PACKET_MR_ALLMULTI:
3564 		return dev_set_allmulti(dev, what);
3565 	case PACKET_MR_UNICAST:
3566 		if (i->alen != dev->addr_len)
3567 			return -EINVAL;
3568 		if (what > 0)
3569 			return dev_uc_add(dev, i->addr);
3570 		else
3571 			return dev_uc_del(dev, i->addr);
3572 		break;
3573 	default:
3574 		break;
3575 	}
3576 	return 0;
3577 }
3578 
3579 static void packet_dev_mclist_delete(struct net_device *dev,
3580 				     struct packet_mclist **mlp)
3581 {
3582 	struct packet_mclist *ml;
3583 
3584 	while ((ml = *mlp) != NULL) {
3585 		if (ml->ifindex == dev->ifindex) {
3586 			packet_dev_mc(dev, ml, -1);
3587 			*mlp = ml->next;
3588 			kfree(ml);
3589 		} else
3590 			mlp = &ml->next;
3591 	}
3592 }
3593 
3594 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3595 {
3596 	struct packet_sock *po = pkt_sk(sk);
3597 	struct packet_mclist *ml, *i;
3598 	struct net_device *dev;
3599 	int err;
3600 
3601 	rtnl_lock();
3602 
3603 	err = -ENODEV;
3604 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3605 	if (!dev)
3606 		goto done;
3607 
3608 	err = -EINVAL;
3609 	if (mreq->mr_alen > dev->addr_len)
3610 		goto done;
3611 
3612 	err = -ENOBUFS;
3613 	i = kmalloc(sizeof(*i), GFP_KERNEL);
3614 	if (i == NULL)
3615 		goto done;
3616 
3617 	err = 0;
3618 	for (ml = po->mclist; ml; ml = ml->next) {
3619 		if (ml->ifindex == mreq->mr_ifindex &&
3620 		    ml->type == mreq->mr_type &&
3621 		    ml->alen == mreq->mr_alen &&
3622 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3623 			ml->count++;
3624 			/* Free the new element ... */
3625 			kfree(i);
3626 			goto done;
3627 		}
3628 	}
3629 
3630 	i->type = mreq->mr_type;
3631 	i->ifindex = mreq->mr_ifindex;
3632 	i->alen = mreq->mr_alen;
3633 	memcpy(i->addr, mreq->mr_address, i->alen);
3634 	memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3635 	i->count = 1;
3636 	i->next = po->mclist;
3637 	po->mclist = i;
3638 	err = packet_dev_mc(dev, i, 1);
3639 	if (err) {
3640 		po->mclist = i->next;
3641 		kfree(i);
3642 	}
3643 
3644 done:
3645 	rtnl_unlock();
3646 	return err;
3647 }
3648 
3649 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3650 {
3651 	struct packet_mclist *ml, **mlp;
3652 
3653 	rtnl_lock();
3654 
3655 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3656 		if (ml->ifindex == mreq->mr_ifindex &&
3657 		    ml->type == mreq->mr_type &&
3658 		    ml->alen == mreq->mr_alen &&
3659 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3660 			if (--ml->count == 0) {
3661 				struct net_device *dev;
3662 				*mlp = ml->next;
3663 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3664 				if (dev)
3665 					packet_dev_mc(dev, ml, -1);
3666 				kfree(ml);
3667 			}
3668 			break;
3669 		}
3670 	}
3671 	rtnl_unlock();
3672 	return 0;
3673 }
3674 
3675 static void packet_flush_mclist(struct sock *sk)
3676 {
3677 	struct packet_sock *po = pkt_sk(sk);
3678 	struct packet_mclist *ml;
3679 
3680 	if (!po->mclist)
3681 		return;
3682 
3683 	rtnl_lock();
3684 	while ((ml = po->mclist) != NULL) {
3685 		struct net_device *dev;
3686 
3687 		po->mclist = ml->next;
3688 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3689 		if (dev != NULL)
3690 			packet_dev_mc(dev, ml, -1);
3691 		kfree(ml);
3692 	}
3693 	rtnl_unlock();
3694 }
3695 
3696 static int
3697 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval,
3698 		  unsigned int optlen)
3699 {
3700 	struct sock *sk = sock->sk;
3701 	struct packet_sock *po = pkt_sk(sk);
3702 	int ret;
3703 
3704 	if (level != SOL_PACKET)
3705 		return -ENOPROTOOPT;
3706 
3707 	switch (optname) {
3708 	case PACKET_ADD_MEMBERSHIP:
3709 	case PACKET_DROP_MEMBERSHIP:
3710 	{
3711 		struct packet_mreq_max mreq;
3712 		int len = optlen;
3713 		memset(&mreq, 0, sizeof(mreq));
3714 		if (len < sizeof(struct packet_mreq))
3715 			return -EINVAL;
3716 		if (len > sizeof(mreq))
3717 			len = sizeof(mreq);
3718 		if (copy_from_sockptr(&mreq, optval, len))
3719 			return -EFAULT;
3720 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3721 			return -EINVAL;
3722 		if (optname == PACKET_ADD_MEMBERSHIP)
3723 			ret = packet_mc_add(sk, &mreq);
3724 		else
3725 			ret = packet_mc_drop(sk, &mreq);
3726 		return ret;
3727 	}
3728 
3729 	case PACKET_RX_RING:
3730 	case PACKET_TX_RING:
3731 	{
3732 		union tpacket_req_u req_u;
3733 		int len;
3734 
3735 		lock_sock(sk);
3736 		switch (po->tp_version) {
3737 		case TPACKET_V1:
3738 		case TPACKET_V2:
3739 			len = sizeof(req_u.req);
3740 			break;
3741 		case TPACKET_V3:
3742 		default:
3743 			len = sizeof(req_u.req3);
3744 			break;
3745 		}
3746 		if (optlen < len) {
3747 			ret = -EINVAL;
3748 		} else {
3749 			if (copy_from_sockptr(&req_u.req, optval, len))
3750 				ret = -EFAULT;
3751 			else
3752 				ret = packet_set_ring(sk, &req_u, 0,
3753 						    optname == PACKET_TX_RING);
3754 		}
3755 		release_sock(sk);
3756 		return ret;
3757 	}
3758 	case PACKET_COPY_THRESH:
3759 	{
3760 		int val;
3761 
3762 		if (optlen != sizeof(val))
3763 			return -EINVAL;
3764 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3765 			return -EFAULT;
3766 
3767 		pkt_sk(sk)->copy_thresh = val;
3768 		return 0;
3769 	}
3770 	case PACKET_VERSION:
3771 	{
3772 		int val;
3773 
3774 		if (optlen != sizeof(val))
3775 			return -EINVAL;
3776 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3777 			return -EFAULT;
3778 		switch (val) {
3779 		case TPACKET_V1:
3780 		case TPACKET_V2:
3781 		case TPACKET_V3:
3782 			break;
3783 		default:
3784 			return -EINVAL;
3785 		}
3786 		lock_sock(sk);
3787 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3788 			ret = -EBUSY;
3789 		} else {
3790 			po->tp_version = val;
3791 			ret = 0;
3792 		}
3793 		release_sock(sk);
3794 		return ret;
3795 	}
3796 	case PACKET_RESERVE:
3797 	{
3798 		unsigned int val;
3799 
3800 		if (optlen != sizeof(val))
3801 			return -EINVAL;
3802 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3803 			return -EFAULT;
3804 		if (val > INT_MAX)
3805 			return -EINVAL;
3806 		lock_sock(sk);
3807 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3808 			ret = -EBUSY;
3809 		} else {
3810 			po->tp_reserve = val;
3811 			ret = 0;
3812 		}
3813 		release_sock(sk);
3814 		return ret;
3815 	}
3816 	case PACKET_LOSS:
3817 	{
3818 		unsigned int val;
3819 
3820 		if (optlen != sizeof(val))
3821 			return -EINVAL;
3822 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3823 			return -EFAULT;
3824 
3825 		lock_sock(sk);
3826 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3827 			ret = -EBUSY;
3828 		} else {
3829 			po->tp_loss = !!val;
3830 			ret = 0;
3831 		}
3832 		release_sock(sk);
3833 		return ret;
3834 	}
3835 	case PACKET_AUXDATA:
3836 	{
3837 		int val;
3838 
3839 		if (optlen < sizeof(val))
3840 			return -EINVAL;
3841 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3842 			return -EFAULT;
3843 
3844 		lock_sock(sk);
3845 		po->auxdata = !!val;
3846 		release_sock(sk);
3847 		return 0;
3848 	}
3849 	case PACKET_ORIGDEV:
3850 	{
3851 		int val;
3852 
3853 		if (optlen < sizeof(val))
3854 			return -EINVAL;
3855 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3856 			return -EFAULT;
3857 
3858 		lock_sock(sk);
3859 		po->origdev = !!val;
3860 		release_sock(sk);
3861 		return 0;
3862 	}
3863 	case PACKET_VNET_HDR:
3864 	{
3865 		int val;
3866 
3867 		if (sock->type != SOCK_RAW)
3868 			return -EINVAL;
3869 		if (optlen < sizeof(val))
3870 			return -EINVAL;
3871 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3872 			return -EFAULT;
3873 
3874 		lock_sock(sk);
3875 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3876 			ret = -EBUSY;
3877 		} else {
3878 			po->has_vnet_hdr = !!val;
3879 			ret = 0;
3880 		}
3881 		release_sock(sk);
3882 		return ret;
3883 	}
3884 	case PACKET_TIMESTAMP:
3885 	{
3886 		int val;
3887 
3888 		if (optlen != sizeof(val))
3889 			return -EINVAL;
3890 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3891 			return -EFAULT;
3892 
3893 		po->tp_tstamp = val;
3894 		return 0;
3895 	}
3896 	case PACKET_FANOUT:
3897 	{
3898 		struct fanout_args args = { 0 };
3899 
3900 		if (optlen != sizeof(int) && optlen != sizeof(args))
3901 			return -EINVAL;
3902 		if (copy_from_sockptr(&args, optval, optlen))
3903 			return -EFAULT;
3904 
3905 		return fanout_add(sk, &args);
3906 	}
3907 	case PACKET_FANOUT_DATA:
3908 	{
3909 		if (!po->fanout)
3910 			return -EINVAL;
3911 
3912 		return fanout_set_data(po, optval, optlen);
3913 	}
3914 	case PACKET_IGNORE_OUTGOING:
3915 	{
3916 		int val;
3917 
3918 		if (optlen != sizeof(val))
3919 			return -EINVAL;
3920 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3921 			return -EFAULT;
3922 		if (val < 0 || val > 1)
3923 			return -EINVAL;
3924 
3925 		po->prot_hook.ignore_outgoing = !!val;
3926 		return 0;
3927 	}
3928 	case PACKET_TX_HAS_OFF:
3929 	{
3930 		unsigned int val;
3931 
3932 		if (optlen != sizeof(val))
3933 			return -EINVAL;
3934 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3935 			return -EFAULT;
3936 
3937 		lock_sock(sk);
3938 		if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec)
3939 			po->tp_tx_has_off = !!val;
3940 
3941 		release_sock(sk);
3942 		return 0;
3943 	}
3944 	case PACKET_QDISC_BYPASS:
3945 	{
3946 		int val;
3947 
3948 		if (optlen != sizeof(val))
3949 			return -EINVAL;
3950 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3951 			return -EFAULT;
3952 
3953 		po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3954 		return 0;
3955 	}
3956 	default:
3957 		return -ENOPROTOOPT;
3958 	}
3959 }
3960 
3961 static int packet_getsockopt(struct socket *sock, int level, int optname,
3962 			     char __user *optval, int __user *optlen)
3963 {
3964 	int len;
3965 	int val, lv = sizeof(val);
3966 	struct sock *sk = sock->sk;
3967 	struct packet_sock *po = pkt_sk(sk);
3968 	void *data = &val;
3969 	union tpacket_stats_u st;
3970 	struct tpacket_rollover_stats rstats;
3971 	int drops;
3972 
3973 	if (level != SOL_PACKET)
3974 		return -ENOPROTOOPT;
3975 
3976 	if (get_user(len, optlen))
3977 		return -EFAULT;
3978 
3979 	if (len < 0)
3980 		return -EINVAL;
3981 
3982 	switch (optname) {
3983 	case PACKET_STATISTICS:
3984 		spin_lock_bh(&sk->sk_receive_queue.lock);
3985 		memcpy(&st, &po->stats, sizeof(st));
3986 		memset(&po->stats, 0, sizeof(po->stats));
3987 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3988 		drops = atomic_xchg(&po->tp_drops, 0);
3989 
3990 		if (po->tp_version == TPACKET_V3) {
3991 			lv = sizeof(struct tpacket_stats_v3);
3992 			st.stats3.tp_drops = drops;
3993 			st.stats3.tp_packets += drops;
3994 			data = &st.stats3;
3995 		} else {
3996 			lv = sizeof(struct tpacket_stats);
3997 			st.stats1.tp_drops = drops;
3998 			st.stats1.tp_packets += drops;
3999 			data = &st.stats1;
4000 		}
4001 
4002 		break;
4003 	case PACKET_AUXDATA:
4004 		val = po->auxdata;
4005 		break;
4006 	case PACKET_ORIGDEV:
4007 		val = po->origdev;
4008 		break;
4009 	case PACKET_VNET_HDR:
4010 		val = po->has_vnet_hdr;
4011 		break;
4012 	case PACKET_VERSION:
4013 		val = po->tp_version;
4014 		break;
4015 	case PACKET_HDRLEN:
4016 		if (len > sizeof(int))
4017 			len = sizeof(int);
4018 		if (len < sizeof(int))
4019 			return -EINVAL;
4020 		if (copy_from_user(&val, optval, len))
4021 			return -EFAULT;
4022 		switch (val) {
4023 		case TPACKET_V1:
4024 			val = sizeof(struct tpacket_hdr);
4025 			break;
4026 		case TPACKET_V2:
4027 			val = sizeof(struct tpacket2_hdr);
4028 			break;
4029 		case TPACKET_V3:
4030 			val = sizeof(struct tpacket3_hdr);
4031 			break;
4032 		default:
4033 			return -EINVAL;
4034 		}
4035 		break;
4036 	case PACKET_RESERVE:
4037 		val = po->tp_reserve;
4038 		break;
4039 	case PACKET_LOSS:
4040 		val = po->tp_loss;
4041 		break;
4042 	case PACKET_TIMESTAMP:
4043 		val = po->tp_tstamp;
4044 		break;
4045 	case PACKET_FANOUT:
4046 		val = (po->fanout ?
4047 		       ((u32)po->fanout->id |
4048 			((u32)po->fanout->type << 16) |
4049 			((u32)po->fanout->flags << 24)) :
4050 		       0);
4051 		break;
4052 	case PACKET_IGNORE_OUTGOING:
4053 		val = po->prot_hook.ignore_outgoing;
4054 		break;
4055 	case PACKET_ROLLOVER_STATS:
4056 		if (!po->rollover)
4057 			return -EINVAL;
4058 		rstats.tp_all = atomic_long_read(&po->rollover->num);
4059 		rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
4060 		rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
4061 		data = &rstats;
4062 		lv = sizeof(rstats);
4063 		break;
4064 	case PACKET_TX_HAS_OFF:
4065 		val = po->tp_tx_has_off;
4066 		break;
4067 	case PACKET_QDISC_BYPASS:
4068 		val = packet_use_direct_xmit(po);
4069 		break;
4070 	default:
4071 		return -ENOPROTOOPT;
4072 	}
4073 
4074 	if (len > lv)
4075 		len = lv;
4076 	if (put_user(len, optlen))
4077 		return -EFAULT;
4078 	if (copy_to_user(optval, data, len))
4079 		return -EFAULT;
4080 	return 0;
4081 }
4082 
4083 static int packet_notifier(struct notifier_block *this,
4084 			   unsigned long msg, void *ptr)
4085 {
4086 	struct sock *sk;
4087 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4088 	struct net *net = dev_net(dev);
4089 
4090 	rcu_read_lock();
4091 	sk_for_each_rcu(sk, &net->packet.sklist) {
4092 		struct packet_sock *po = pkt_sk(sk);
4093 
4094 		switch (msg) {
4095 		case NETDEV_UNREGISTER:
4096 			if (po->mclist)
4097 				packet_dev_mclist_delete(dev, &po->mclist);
4098 			fallthrough;
4099 
4100 		case NETDEV_DOWN:
4101 			if (dev->ifindex == po->ifindex) {
4102 				spin_lock(&po->bind_lock);
4103 				if (po->running) {
4104 					__unregister_prot_hook(sk, false);
4105 					sk->sk_err = ENETDOWN;
4106 					if (!sock_flag(sk, SOCK_DEAD))
4107 						sk_error_report(sk);
4108 				}
4109 				if (msg == NETDEV_UNREGISTER) {
4110 					packet_cached_dev_reset(po);
4111 					WRITE_ONCE(po->ifindex, -1);
4112 					if (po->prot_hook.dev)
4113 						dev_put(po->prot_hook.dev);
4114 					po->prot_hook.dev = NULL;
4115 				}
4116 				spin_unlock(&po->bind_lock);
4117 			}
4118 			break;
4119 		case NETDEV_UP:
4120 			if (dev->ifindex == po->ifindex) {
4121 				spin_lock(&po->bind_lock);
4122 				if (po->num)
4123 					register_prot_hook(sk);
4124 				spin_unlock(&po->bind_lock);
4125 			}
4126 			break;
4127 		}
4128 	}
4129 	rcu_read_unlock();
4130 	return NOTIFY_DONE;
4131 }
4132 
4133 
4134 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4135 			unsigned long arg)
4136 {
4137 	struct sock *sk = sock->sk;
4138 
4139 	switch (cmd) {
4140 	case SIOCOUTQ:
4141 	{
4142 		int amount = sk_wmem_alloc_get(sk);
4143 
4144 		return put_user(amount, (int __user *)arg);
4145 	}
4146 	case SIOCINQ:
4147 	{
4148 		struct sk_buff *skb;
4149 		int amount = 0;
4150 
4151 		spin_lock_bh(&sk->sk_receive_queue.lock);
4152 		skb = skb_peek(&sk->sk_receive_queue);
4153 		if (skb)
4154 			amount = skb->len;
4155 		spin_unlock_bh(&sk->sk_receive_queue.lock);
4156 		return put_user(amount, (int __user *)arg);
4157 	}
4158 #ifdef CONFIG_INET
4159 	case SIOCADDRT:
4160 	case SIOCDELRT:
4161 	case SIOCDARP:
4162 	case SIOCGARP:
4163 	case SIOCSARP:
4164 	case SIOCGIFADDR:
4165 	case SIOCSIFADDR:
4166 	case SIOCGIFBRDADDR:
4167 	case SIOCSIFBRDADDR:
4168 	case SIOCGIFNETMASK:
4169 	case SIOCSIFNETMASK:
4170 	case SIOCGIFDSTADDR:
4171 	case SIOCSIFDSTADDR:
4172 	case SIOCSIFFLAGS:
4173 		return inet_dgram_ops.ioctl(sock, cmd, arg);
4174 #endif
4175 
4176 	default:
4177 		return -ENOIOCTLCMD;
4178 	}
4179 	return 0;
4180 }
4181 
4182 static __poll_t packet_poll(struct file *file, struct socket *sock,
4183 				poll_table *wait)
4184 {
4185 	struct sock *sk = sock->sk;
4186 	struct packet_sock *po = pkt_sk(sk);
4187 	__poll_t mask = datagram_poll(file, sock, wait);
4188 
4189 	spin_lock_bh(&sk->sk_receive_queue.lock);
4190 	if (po->rx_ring.pg_vec) {
4191 		if (!packet_previous_rx_frame(po, &po->rx_ring,
4192 			TP_STATUS_KERNEL))
4193 			mask |= EPOLLIN | EPOLLRDNORM;
4194 	}
4195 	packet_rcv_try_clear_pressure(po);
4196 	spin_unlock_bh(&sk->sk_receive_queue.lock);
4197 	spin_lock_bh(&sk->sk_write_queue.lock);
4198 	if (po->tx_ring.pg_vec) {
4199 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4200 			mask |= EPOLLOUT | EPOLLWRNORM;
4201 	}
4202 	spin_unlock_bh(&sk->sk_write_queue.lock);
4203 	return mask;
4204 }
4205 
4206 
4207 /* Dirty? Well, I still did not learn better way to account
4208  * for user mmaps.
4209  */
4210 
4211 static void packet_mm_open(struct vm_area_struct *vma)
4212 {
4213 	struct file *file = vma->vm_file;
4214 	struct socket *sock = file->private_data;
4215 	struct sock *sk = sock->sk;
4216 
4217 	if (sk)
4218 		atomic_inc(&pkt_sk(sk)->mapped);
4219 }
4220 
4221 static void packet_mm_close(struct vm_area_struct *vma)
4222 {
4223 	struct file *file = vma->vm_file;
4224 	struct socket *sock = file->private_data;
4225 	struct sock *sk = sock->sk;
4226 
4227 	if (sk)
4228 		atomic_dec(&pkt_sk(sk)->mapped);
4229 }
4230 
4231 static const struct vm_operations_struct packet_mmap_ops = {
4232 	.open	=	packet_mm_open,
4233 	.close	=	packet_mm_close,
4234 };
4235 
4236 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4237 			unsigned int len)
4238 {
4239 	int i;
4240 
4241 	for (i = 0; i < len; i++) {
4242 		if (likely(pg_vec[i].buffer)) {
4243 			if (is_vmalloc_addr(pg_vec[i].buffer))
4244 				vfree(pg_vec[i].buffer);
4245 			else
4246 				free_pages((unsigned long)pg_vec[i].buffer,
4247 					   order);
4248 			pg_vec[i].buffer = NULL;
4249 		}
4250 	}
4251 	kfree(pg_vec);
4252 }
4253 
4254 static char *alloc_one_pg_vec_page(unsigned long order)
4255 {
4256 	char *buffer;
4257 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4258 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4259 
4260 	buffer = (char *) __get_free_pages(gfp_flags, order);
4261 	if (buffer)
4262 		return buffer;
4263 
4264 	/* __get_free_pages failed, fall back to vmalloc */
4265 	buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4266 	if (buffer)
4267 		return buffer;
4268 
4269 	/* vmalloc failed, lets dig into swap here */
4270 	gfp_flags &= ~__GFP_NORETRY;
4271 	buffer = (char *) __get_free_pages(gfp_flags, order);
4272 	if (buffer)
4273 		return buffer;
4274 
4275 	/* complete and utter failure */
4276 	return NULL;
4277 }
4278 
4279 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4280 {
4281 	unsigned int block_nr = req->tp_block_nr;
4282 	struct pgv *pg_vec;
4283 	int i;
4284 
4285 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN);
4286 	if (unlikely(!pg_vec))
4287 		goto out;
4288 
4289 	for (i = 0; i < block_nr; i++) {
4290 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4291 		if (unlikely(!pg_vec[i].buffer))
4292 			goto out_free_pgvec;
4293 	}
4294 
4295 out:
4296 	return pg_vec;
4297 
4298 out_free_pgvec:
4299 	free_pg_vec(pg_vec, order, block_nr);
4300 	pg_vec = NULL;
4301 	goto out;
4302 }
4303 
4304 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4305 		int closing, int tx_ring)
4306 {
4307 	struct pgv *pg_vec = NULL;
4308 	struct packet_sock *po = pkt_sk(sk);
4309 	unsigned long *rx_owner_map = NULL;
4310 	int was_running, order = 0;
4311 	struct packet_ring_buffer *rb;
4312 	struct sk_buff_head *rb_queue;
4313 	__be16 num;
4314 	int err;
4315 	/* Added to avoid minimal code churn */
4316 	struct tpacket_req *req = &req_u->req;
4317 
4318 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4319 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4320 
4321 	err = -EBUSY;
4322 	if (!closing) {
4323 		if (atomic_read(&po->mapped))
4324 			goto out;
4325 		if (packet_read_pending(rb))
4326 			goto out;
4327 	}
4328 
4329 	if (req->tp_block_nr) {
4330 		unsigned int min_frame_size;
4331 
4332 		/* Sanity tests and some calculations */
4333 		err = -EBUSY;
4334 		if (unlikely(rb->pg_vec))
4335 			goto out;
4336 
4337 		switch (po->tp_version) {
4338 		case TPACKET_V1:
4339 			po->tp_hdrlen = TPACKET_HDRLEN;
4340 			break;
4341 		case TPACKET_V2:
4342 			po->tp_hdrlen = TPACKET2_HDRLEN;
4343 			break;
4344 		case TPACKET_V3:
4345 			po->tp_hdrlen = TPACKET3_HDRLEN;
4346 			break;
4347 		}
4348 
4349 		err = -EINVAL;
4350 		if (unlikely((int)req->tp_block_size <= 0))
4351 			goto out;
4352 		if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4353 			goto out;
4354 		min_frame_size = po->tp_hdrlen + po->tp_reserve;
4355 		if (po->tp_version >= TPACKET_V3 &&
4356 		    req->tp_block_size <
4357 		    BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size)
4358 			goto out;
4359 		if (unlikely(req->tp_frame_size < min_frame_size))
4360 			goto out;
4361 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4362 			goto out;
4363 
4364 		rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4365 		if (unlikely(rb->frames_per_block == 0))
4366 			goto out;
4367 		if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr))
4368 			goto out;
4369 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4370 					req->tp_frame_nr))
4371 			goto out;
4372 
4373 		err = -ENOMEM;
4374 		order = get_order(req->tp_block_size);
4375 		pg_vec = alloc_pg_vec(req, order);
4376 		if (unlikely(!pg_vec))
4377 			goto out;
4378 		switch (po->tp_version) {
4379 		case TPACKET_V3:
4380 			/* Block transmit is not supported yet */
4381 			if (!tx_ring) {
4382 				init_prb_bdqc(po, rb, pg_vec, req_u);
4383 			} else {
4384 				struct tpacket_req3 *req3 = &req_u->req3;
4385 
4386 				if (req3->tp_retire_blk_tov ||
4387 				    req3->tp_sizeof_priv ||
4388 				    req3->tp_feature_req_word) {
4389 					err = -EINVAL;
4390 					goto out_free_pg_vec;
4391 				}
4392 			}
4393 			break;
4394 		default:
4395 			if (!tx_ring) {
4396 				rx_owner_map = bitmap_alloc(req->tp_frame_nr,
4397 					GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
4398 				if (!rx_owner_map)
4399 					goto out_free_pg_vec;
4400 			}
4401 			break;
4402 		}
4403 	}
4404 	/* Done */
4405 	else {
4406 		err = -EINVAL;
4407 		if (unlikely(req->tp_frame_nr))
4408 			goto out;
4409 	}
4410 
4411 
4412 	/* Detach socket from network */
4413 	spin_lock(&po->bind_lock);
4414 	was_running = po->running;
4415 	num = po->num;
4416 	if (was_running) {
4417 		WRITE_ONCE(po->num, 0);
4418 		__unregister_prot_hook(sk, false);
4419 	}
4420 	spin_unlock(&po->bind_lock);
4421 
4422 	synchronize_net();
4423 
4424 	err = -EBUSY;
4425 	mutex_lock(&po->pg_vec_lock);
4426 	if (closing || atomic_read(&po->mapped) == 0) {
4427 		err = 0;
4428 		spin_lock_bh(&rb_queue->lock);
4429 		swap(rb->pg_vec, pg_vec);
4430 		if (po->tp_version <= TPACKET_V2)
4431 			swap(rb->rx_owner_map, rx_owner_map);
4432 		rb->frame_max = (req->tp_frame_nr - 1);
4433 		rb->head = 0;
4434 		rb->frame_size = req->tp_frame_size;
4435 		spin_unlock_bh(&rb_queue->lock);
4436 
4437 		swap(rb->pg_vec_order, order);
4438 		swap(rb->pg_vec_len, req->tp_block_nr);
4439 
4440 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4441 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
4442 						tpacket_rcv : packet_rcv;
4443 		skb_queue_purge(rb_queue);
4444 		if (atomic_read(&po->mapped))
4445 			pr_err("packet_mmap: vma is busy: %d\n",
4446 			       atomic_read(&po->mapped));
4447 	}
4448 	mutex_unlock(&po->pg_vec_lock);
4449 
4450 	spin_lock(&po->bind_lock);
4451 	if (was_running) {
4452 		WRITE_ONCE(po->num, num);
4453 		register_prot_hook(sk);
4454 	}
4455 	spin_unlock(&po->bind_lock);
4456 	if (pg_vec && (po->tp_version > TPACKET_V2)) {
4457 		/* Because we don't support block-based V3 on tx-ring */
4458 		if (!tx_ring)
4459 			prb_shutdown_retire_blk_timer(po, rb_queue);
4460 	}
4461 
4462 out_free_pg_vec:
4463 	bitmap_free(rx_owner_map);
4464 	if (pg_vec)
4465 		free_pg_vec(pg_vec, order, req->tp_block_nr);
4466 out:
4467 	return err;
4468 }
4469 
4470 static int packet_mmap(struct file *file, struct socket *sock,
4471 		struct vm_area_struct *vma)
4472 {
4473 	struct sock *sk = sock->sk;
4474 	struct packet_sock *po = pkt_sk(sk);
4475 	unsigned long size, expected_size;
4476 	struct packet_ring_buffer *rb;
4477 	unsigned long start;
4478 	int err = -EINVAL;
4479 	int i;
4480 
4481 	if (vma->vm_pgoff)
4482 		return -EINVAL;
4483 
4484 	mutex_lock(&po->pg_vec_lock);
4485 
4486 	expected_size = 0;
4487 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4488 		if (rb->pg_vec) {
4489 			expected_size += rb->pg_vec_len
4490 						* rb->pg_vec_pages
4491 						* PAGE_SIZE;
4492 		}
4493 	}
4494 
4495 	if (expected_size == 0)
4496 		goto out;
4497 
4498 	size = vma->vm_end - vma->vm_start;
4499 	if (size != expected_size)
4500 		goto out;
4501 
4502 	start = vma->vm_start;
4503 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4504 		if (rb->pg_vec == NULL)
4505 			continue;
4506 
4507 		for (i = 0; i < rb->pg_vec_len; i++) {
4508 			struct page *page;
4509 			void *kaddr = rb->pg_vec[i].buffer;
4510 			int pg_num;
4511 
4512 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4513 				page = pgv_to_page(kaddr);
4514 				err = vm_insert_page(vma, start, page);
4515 				if (unlikely(err))
4516 					goto out;
4517 				start += PAGE_SIZE;
4518 				kaddr += PAGE_SIZE;
4519 			}
4520 		}
4521 	}
4522 
4523 	atomic_inc(&po->mapped);
4524 	vma->vm_ops = &packet_mmap_ops;
4525 	err = 0;
4526 
4527 out:
4528 	mutex_unlock(&po->pg_vec_lock);
4529 	return err;
4530 }
4531 
4532 static const struct proto_ops packet_ops_spkt = {
4533 	.family =	PF_PACKET,
4534 	.owner =	THIS_MODULE,
4535 	.release =	packet_release,
4536 	.bind =		packet_bind_spkt,
4537 	.connect =	sock_no_connect,
4538 	.socketpair =	sock_no_socketpair,
4539 	.accept =	sock_no_accept,
4540 	.getname =	packet_getname_spkt,
4541 	.poll =		datagram_poll,
4542 	.ioctl =	packet_ioctl,
4543 	.gettstamp =	sock_gettstamp,
4544 	.listen =	sock_no_listen,
4545 	.shutdown =	sock_no_shutdown,
4546 	.sendmsg =	packet_sendmsg_spkt,
4547 	.recvmsg =	packet_recvmsg,
4548 	.mmap =		sock_no_mmap,
4549 	.sendpage =	sock_no_sendpage,
4550 };
4551 
4552 static const struct proto_ops packet_ops = {
4553 	.family =	PF_PACKET,
4554 	.owner =	THIS_MODULE,
4555 	.release =	packet_release,
4556 	.bind =		packet_bind,
4557 	.connect =	sock_no_connect,
4558 	.socketpair =	sock_no_socketpair,
4559 	.accept =	sock_no_accept,
4560 	.getname =	packet_getname,
4561 	.poll =		packet_poll,
4562 	.ioctl =	packet_ioctl,
4563 	.gettstamp =	sock_gettstamp,
4564 	.listen =	sock_no_listen,
4565 	.shutdown =	sock_no_shutdown,
4566 	.setsockopt =	packet_setsockopt,
4567 	.getsockopt =	packet_getsockopt,
4568 	.sendmsg =	packet_sendmsg,
4569 	.recvmsg =	packet_recvmsg,
4570 	.mmap =		packet_mmap,
4571 	.sendpage =	sock_no_sendpage,
4572 };
4573 
4574 static const struct net_proto_family packet_family_ops = {
4575 	.family =	PF_PACKET,
4576 	.create =	packet_create,
4577 	.owner	=	THIS_MODULE,
4578 };
4579 
4580 static struct notifier_block packet_netdev_notifier = {
4581 	.notifier_call =	packet_notifier,
4582 };
4583 
4584 #ifdef CONFIG_PROC_FS
4585 
4586 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4587 	__acquires(RCU)
4588 {
4589 	struct net *net = seq_file_net(seq);
4590 
4591 	rcu_read_lock();
4592 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4593 }
4594 
4595 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4596 {
4597 	struct net *net = seq_file_net(seq);
4598 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4599 }
4600 
4601 static void packet_seq_stop(struct seq_file *seq, void *v)
4602 	__releases(RCU)
4603 {
4604 	rcu_read_unlock();
4605 }
4606 
4607 static int packet_seq_show(struct seq_file *seq, void *v)
4608 {
4609 	if (v == SEQ_START_TOKEN)
4610 		seq_printf(seq,
4611 			   "%*sRefCnt Type Proto  Iface R Rmem   User   Inode\n",
4612 			   IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk");
4613 	else {
4614 		struct sock *s = sk_entry(v);
4615 		const struct packet_sock *po = pkt_sk(s);
4616 
4617 		seq_printf(seq,
4618 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
4619 			   s,
4620 			   refcount_read(&s->sk_refcnt),
4621 			   s->sk_type,
4622 			   ntohs(READ_ONCE(po->num)),
4623 			   READ_ONCE(po->ifindex),
4624 			   po->running,
4625 			   atomic_read(&s->sk_rmem_alloc),
4626 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4627 			   sock_i_ino(s));
4628 	}
4629 
4630 	return 0;
4631 }
4632 
4633 static const struct seq_operations packet_seq_ops = {
4634 	.start	= packet_seq_start,
4635 	.next	= packet_seq_next,
4636 	.stop	= packet_seq_stop,
4637 	.show	= packet_seq_show,
4638 };
4639 #endif
4640 
4641 static int __net_init packet_net_init(struct net *net)
4642 {
4643 	mutex_init(&net->packet.sklist_lock);
4644 	INIT_HLIST_HEAD(&net->packet.sklist);
4645 
4646 #ifdef CONFIG_PROC_FS
4647 	if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4648 			sizeof(struct seq_net_private)))
4649 		return -ENOMEM;
4650 #endif /* CONFIG_PROC_FS */
4651 
4652 	return 0;
4653 }
4654 
4655 static void __net_exit packet_net_exit(struct net *net)
4656 {
4657 	remove_proc_entry("packet", net->proc_net);
4658 	WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4659 }
4660 
4661 static struct pernet_operations packet_net_ops = {
4662 	.init = packet_net_init,
4663 	.exit = packet_net_exit,
4664 };
4665 
4666 
4667 static void __exit packet_exit(void)
4668 {
4669 	unregister_netdevice_notifier(&packet_netdev_notifier);
4670 	unregister_pernet_subsys(&packet_net_ops);
4671 	sock_unregister(PF_PACKET);
4672 	proto_unregister(&packet_proto);
4673 }
4674 
4675 static int __init packet_init(void)
4676 {
4677 	int rc;
4678 
4679 	rc = proto_register(&packet_proto, 0);
4680 	if (rc)
4681 		goto out;
4682 	rc = sock_register(&packet_family_ops);
4683 	if (rc)
4684 		goto out_proto;
4685 	rc = register_pernet_subsys(&packet_net_ops);
4686 	if (rc)
4687 		goto out_sock;
4688 	rc = register_netdevice_notifier(&packet_netdev_notifier);
4689 	if (rc)
4690 		goto out_pernet;
4691 
4692 	return 0;
4693 
4694 out_pernet:
4695 	unregister_pernet_subsys(&packet_net_ops);
4696 out_sock:
4697 	sock_unregister(PF_PACKET);
4698 out_proto:
4699 	proto_unregister(&packet_proto);
4700 out:
4701 	return rc;
4702 }
4703 
4704 module_init(packet_init);
4705 module_exit(packet_exit);
4706 MODULE_LICENSE("GPL");
4707 MODULE_ALIAS_NETPROTO(PF_PACKET);
4708