1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PACKET - implements raw packet sockets. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Alan Cox, <gw4pts@gw4pts.ampr.org> 12 * 13 * Fixes: 14 * Alan Cox : verify_area() now used correctly 15 * Alan Cox : new skbuff lists, look ma no backlogs! 16 * Alan Cox : tidied skbuff lists. 17 * Alan Cox : Now uses generic datagram routines I 18 * added. Also fixed the peek/read crash 19 * from all old Linux datagram code. 20 * Alan Cox : Uses the improved datagram code. 21 * Alan Cox : Added NULL's for socket options. 22 * Alan Cox : Re-commented the code. 23 * Alan Cox : Use new kernel side addressing 24 * Rob Janssen : Correct MTU usage. 25 * Dave Platt : Counter leaks caused by incorrect 26 * interrupt locking and some slightly 27 * dubious gcc output. Can you read 28 * compiler: it said _VOLATILE_ 29 * Richard Kooijman : Timestamp fixes. 30 * Alan Cox : New buffers. Use sk->mac.raw. 31 * Alan Cox : sendmsg/recvmsg support. 32 * Alan Cox : Protocol setting support 33 * Alexey Kuznetsov : Untied from IPv4 stack. 34 * Cyrus Durgin : Fixed kerneld for kmod. 35 * Michal Ostrowski : Module initialization cleanup. 36 * Ulises Alonso : Frame number limit removal and 37 * packet_set_ring memory leak. 38 * Eric Biederman : Allow for > 8 byte hardware addresses. 39 * The convention is that longer addresses 40 * will simply extend the hardware address 41 * byte arrays at the end of sockaddr_ll 42 * and packet_mreq. 43 * Johann Baudy : Added TX RING. 44 * Chetan Loke : Implemented TPACKET_V3 block abstraction 45 * layer. 46 * Copyright (C) 2011, <lokec@ccs.neu.edu> 47 */ 48 49 #include <linux/ethtool.h> 50 #include <linux/types.h> 51 #include <linux/mm.h> 52 #include <linux/capability.h> 53 #include <linux/fcntl.h> 54 #include <linux/socket.h> 55 #include <linux/in.h> 56 #include <linux/inet.h> 57 #include <linux/netdevice.h> 58 #include <linux/if_packet.h> 59 #include <linux/wireless.h> 60 #include <linux/kernel.h> 61 #include <linux/kmod.h> 62 #include <linux/slab.h> 63 #include <linux/vmalloc.h> 64 #include <net/net_namespace.h> 65 #include <net/ip.h> 66 #include <net/protocol.h> 67 #include <linux/skbuff.h> 68 #include <net/sock.h> 69 #include <linux/errno.h> 70 #include <linux/timer.h> 71 #include <linux/uaccess.h> 72 #include <asm/ioctls.h> 73 #include <asm/page.h> 74 #include <asm/cacheflush.h> 75 #include <asm/io.h> 76 #include <linux/proc_fs.h> 77 #include <linux/seq_file.h> 78 #include <linux/poll.h> 79 #include <linux/module.h> 80 #include <linux/init.h> 81 #include <linux/mutex.h> 82 #include <linux/if_vlan.h> 83 #include <linux/virtio_net.h> 84 #include <linux/errqueue.h> 85 #include <linux/net_tstamp.h> 86 #include <linux/percpu.h> 87 #ifdef CONFIG_INET 88 #include <net/inet_common.h> 89 #endif 90 #include <linux/bpf.h> 91 #include <net/compat.h> 92 93 #include "internal.h" 94 95 /* 96 Assumptions: 97 - If the device has no dev->header_ops->create, there is no LL header 98 visible above the device. In this case, its hard_header_len should be 0. 99 The device may prepend its own header internally. In this case, its 100 needed_headroom should be set to the space needed for it to add its 101 internal header. 102 For example, a WiFi driver pretending to be an Ethernet driver should 103 set its hard_header_len to be the Ethernet header length, and set its 104 needed_headroom to be (the real WiFi header length - the fake Ethernet 105 header length). 106 - packet socket receives packets with pulled ll header, 107 so that SOCK_RAW should push it back. 108 109 On receive: 110 ----------- 111 112 Incoming, dev_has_header(dev) == true 113 mac_header -> ll header 114 data -> data 115 116 Outgoing, dev_has_header(dev) == true 117 mac_header -> ll header 118 data -> ll header 119 120 Incoming, dev_has_header(dev) == false 121 mac_header -> data 122 However drivers often make it point to the ll header. 123 This is incorrect because the ll header should be invisible to us. 124 data -> data 125 126 Outgoing, dev_has_header(dev) == false 127 mac_header -> data. ll header is invisible to us. 128 data -> data 129 130 Resume 131 If dev_has_header(dev) == false we are unable to restore the ll header, 132 because it is invisible to us. 133 134 135 On transmit: 136 ------------ 137 138 dev->header_ops != NULL 139 mac_header -> ll header 140 data -> ll header 141 142 dev->header_ops == NULL (ll header is invisible to us) 143 mac_header -> data 144 data -> data 145 146 We should set network_header on output to the correct position, 147 packet classifier depends on it. 148 */ 149 150 /* Private packet socket structures. */ 151 152 /* identical to struct packet_mreq except it has 153 * a longer address field. 154 */ 155 struct packet_mreq_max { 156 int mr_ifindex; 157 unsigned short mr_type; 158 unsigned short mr_alen; 159 unsigned char mr_address[MAX_ADDR_LEN]; 160 }; 161 162 union tpacket_uhdr { 163 struct tpacket_hdr *h1; 164 struct tpacket2_hdr *h2; 165 struct tpacket3_hdr *h3; 166 void *raw; 167 }; 168 169 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 170 int closing, int tx_ring); 171 172 #define V3_ALIGNMENT (8) 173 174 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 175 176 #define BLK_PLUS_PRIV(sz_of_priv) \ 177 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 178 179 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 180 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 181 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 182 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 183 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 184 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 185 186 struct packet_sock; 187 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 188 struct packet_type *pt, struct net_device *orig_dev); 189 190 static void *packet_previous_frame(struct packet_sock *po, 191 struct packet_ring_buffer *rb, 192 int status); 193 static void packet_increment_head(struct packet_ring_buffer *buff); 194 static int prb_curr_blk_in_use(struct tpacket_block_desc *); 195 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 196 struct packet_sock *); 197 static void prb_retire_current_block(struct tpacket_kbdq_core *, 198 struct packet_sock *, unsigned int status); 199 static int prb_queue_frozen(struct tpacket_kbdq_core *); 200 static void prb_open_block(struct tpacket_kbdq_core *, 201 struct tpacket_block_desc *); 202 static void prb_retire_rx_blk_timer_expired(struct timer_list *); 203 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 204 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 205 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 206 struct tpacket3_hdr *); 207 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 208 struct tpacket3_hdr *); 209 static void packet_flush_mclist(struct sock *sk); 210 static u16 packet_pick_tx_queue(struct sk_buff *skb); 211 212 struct packet_skb_cb { 213 union { 214 struct sockaddr_pkt pkt; 215 union { 216 /* Trick: alias skb original length with 217 * ll.sll_family and ll.protocol in order 218 * to save room. 219 */ 220 unsigned int origlen; 221 struct sockaddr_ll ll; 222 }; 223 } sa; 224 }; 225 226 #define vio_le() virtio_legacy_is_little_endian() 227 228 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 229 230 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 231 #define GET_PBLOCK_DESC(x, bid) \ 232 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 233 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 234 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 235 #define GET_NEXT_PRB_BLK_NUM(x) \ 236 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 237 ((x)->kactive_blk_num+1) : 0) 238 239 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 240 static void __fanout_link(struct sock *sk, struct packet_sock *po); 241 242 static int packet_direct_xmit(struct sk_buff *skb) 243 { 244 return dev_direct_xmit(skb, packet_pick_tx_queue(skb)); 245 } 246 247 static struct net_device *packet_cached_dev_get(struct packet_sock *po) 248 { 249 struct net_device *dev; 250 251 rcu_read_lock(); 252 dev = rcu_dereference(po->cached_dev); 253 if (likely(dev)) 254 dev_hold(dev); 255 rcu_read_unlock(); 256 257 return dev; 258 } 259 260 static void packet_cached_dev_assign(struct packet_sock *po, 261 struct net_device *dev) 262 { 263 rcu_assign_pointer(po->cached_dev, dev); 264 } 265 266 static void packet_cached_dev_reset(struct packet_sock *po) 267 { 268 RCU_INIT_POINTER(po->cached_dev, NULL); 269 } 270 271 static bool packet_use_direct_xmit(const struct packet_sock *po) 272 { 273 return po->xmit == packet_direct_xmit; 274 } 275 276 static u16 packet_pick_tx_queue(struct sk_buff *skb) 277 { 278 struct net_device *dev = skb->dev; 279 const struct net_device_ops *ops = dev->netdev_ops; 280 int cpu = raw_smp_processor_id(); 281 u16 queue_index; 282 283 #ifdef CONFIG_XPS 284 skb->sender_cpu = cpu + 1; 285 #endif 286 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues); 287 if (ops->ndo_select_queue) { 288 queue_index = ops->ndo_select_queue(dev, skb, NULL); 289 queue_index = netdev_cap_txqueue(dev, queue_index); 290 } else { 291 queue_index = netdev_pick_tx(dev, skb, NULL); 292 } 293 294 return queue_index; 295 } 296 297 /* __register_prot_hook must be invoked through register_prot_hook 298 * or from a context in which asynchronous accesses to the packet 299 * socket is not possible (packet_create()). 300 */ 301 static void __register_prot_hook(struct sock *sk) 302 { 303 struct packet_sock *po = pkt_sk(sk); 304 305 if (!po->running) { 306 if (po->fanout) 307 __fanout_link(sk, po); 308 else 309 dev_add_pack(&po->prot_hook); 310 311 sock_hold(sk); 312 po->running = 1; 313 } 314 } 315 316 static void register_prot_hook(struct sock *sk) 317 { 318 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock); 319 __register_prot_hook(sk); 320 } 321 322 /* If the sync parameter is true, we will temporarily drop 323 * the po->bind_lock and do a synchronize_net to make sure no 324 * asynchronous packet processing paths still refer to the elements 325 * of po->prot_hook. If the sync parameter is false, it is the 326 * callers responsibility to take care of this. 327 */ 328 static void __unregister_prot_hook(struct sock *sk, bool sync) 329 { 330 struct packet_sock *po = pkt_sk(sk); 331 332 lockdep_assert_held_once(&po->bind_lock); 333 334 po->running = 0; 335 336 if (po->fanout) 337 __fanout_unlink(sk, po); 338 else 339 __dev_remove_pack(&po->prot_hook); 340 341 __sock_put(sk); 342 343 if (sync) { 344 spin_unlock(&po->bind_lock); 345 synchronize_net(); 346 spin_lock(&po->bind_lock); 347 } 348 } 349 350 static void unregister_prot_hook(struct sock *sk, bool sync) 351 { 352 struct packet_sock *po = pkt_sk(sk); 353 354 if (po->running) 355 __unregister_prot_hook(sk, sync); 356 } 357 358 static inline struct page * __pure pgv_to_page(void *addr) 359 { 360 if (is_vmalloc_addr(addr)) 361 return vmalloc_to_page(addr); 362 return virt_to_page(addr); 363 } 364 365 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 366 { 367 union tpacket_uhdr h; 368 369 h.raw = frame; 370 switch (po->tp_version) { 371 case TPACKET_V1: 372 h.h1->tp_status = status; 373 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 374 break; 375 case TPACKET_V2: 376 h.h2->tp_status = status; 377 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 378 break; 379 case TPACKET_V3: 380 h.h3->tp_status = status; 381 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 382 break; 383 default: 384 WARN(1, "TPACKET version not supported.\n"); 385 BUG(); 386 } 387 388 smp_wmb(); 389 } 390 391 static int __packet_get_status(const struct packet_sock *po, void *frame) 392 { 393 union tpacket_uhdr h; 394 395 smp_rmb(); 396 397 h.raw = frame; 398 switch (po->tp_version) { 399 case TPACKET_V1: 400 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 401 return h.h1->tp_status; 402 case TPACKET_V2: 403 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 404 return h.h2->tp_status; 405 case TPACKET_V3: 406 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 407 return h.h3->tp_status; 408 default: 409 WARN(1, "TPACKET version not supported.\n"); 410 BUG(); 411 return 0; 412 } 413 } 414 415 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts, 416 unsigned int flags) 417 { 418 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 419 420 if (shhwtstamps && 421 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && 422 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts)) 423 return TP_STATUS_TS_RAW_HARDWARE; 424 425 if (ktime_to_timespec64_cond(skb->tstamp, ts)) 426 return TP_STATUS_TS_SOFTWARE; 427 428 return 0; 429 } 430 431 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, 432 struct sk_buff *skb) 433 { 434 union tpacket_uhdr h; 435 struct timespec64 ts; 436 __u32 ts_status; 437 438 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 439 return 0; 440 441 h.raw = frame; 442 /* 443 * versions 1 through 3 overflow the timestamps in y2106, since they 444 * all store the seconds in a 32-bit unsigned integer. 445 * If we create a version 4, that should have a 64-bit timestamp, 446 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit 447 * nanoseconds. 448 */ 449 switch (po->tp_version) { 450 case TPACKET_V1: 451 h.h1->tp_sec = ts.tv_sec; 452 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 453 break; 454 case TPACKET_V2: 455 h.h2->tp_sec = ts.tv_sec; 456 h.h2->tp_nsec = ts.tv_nsec; 457 break; 458 case TPACKET_V3: 459 h.h3->tp_sec = ts.tv_sec; 460 h.h3->tp_nsec = ts.tv_nsec; 461 break; 462 default: 463 WARN(1, "TPACKET version not supported.\n"); 464 BUG(); 465 } 466 467 /* one flush is safe, as both fields always lie on the same cacheline */ 468 flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); 469 smp_wmb(); 470 471 return ts_status; 472 } 473 474 static void *packet_lookup_frame(const struct packet_sock *po, 475 const struct packet_ring_buffer *rb, 476 unsigned int position, 477 int status) 478 { 479 unsigned int pg_vec_pos, frame_offset; 480 union tpacket_uhdr h; 481 482 pg_vec_pos = position / rb->frames_per_block; 483 frame_offset = position % rb->frames_per_block; 484 485 h.raw = rb->pg_vec[pg_vec_pos].buffer + 486 (frame_offset * rb->frame_size); 487 488 if (status != __packet_get_status(po, h.raw)) 489 return NULL; 490 491 return h.raw; 492 } 493 494 static void *packet_current_frame(struct packet_sock *po, 495 struct packet_ring_buffer *rb, 496 int status) 497 { 498 return packet_lookup_frame(po, rb, rb->head, status); 499 } 500 501 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 502 { 503 del_timer_sync(&pkc->retire_blk_timer); 504 } 505 506 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 507 struct sk_buff_head *rb_queue) 508 { 509 struct tpacket_kbdq_core *pkc; 510 511 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 512 513 spin_lock_bh(&rb_queue->lock); 514 pkc->delete_blk_timer = 1; 515 spin_unlock_bh(&rb_queue->lock); 516 517 prb_del_retire_blk_timer(pkc); 518 } 519 520 static void prb_setup_retire_blk_timer(struct packet_sock *po) 521 { 522 struct tpacket_kbdq_core *pkc; 523 524 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 525 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired, 526 0); 527 pkc->retire_blk_timer.expires = jiffies; 528 } 529 530 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 531 int blk_size_in_bytes) 532 { 533 struct net_device *dev; 534 unsigned int mbits, div; 535 struct ethtool_link_ksettings ecmd; 536 int err; 537 538 rtnl_lock(); 539 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 540 if (unlikely(!dev)) { 541 rtnl_unlock(); 542 return DEFAULT_PRB_RETIRE_TOV; 543 } 544 err = __ethtool_get_link_ksettings(dev, &ecmd); 545 rtnl_unlock(); 546 if (err) 547 return DEFAULT_PRB_RETIRE_TOV; 548 549 /* If the link speed is so slow you don't really 550 * need to worry about perf anyways 551 */ 552 if (ecmd.base.speed < SPEED_1000 || 553 ecmd.base.speed == SPEED_UNKNOWN) 554 return DEFAULT_PRB_RETIRE_TOV; 555 556 div = ecmd.base.speed / 1000; 557 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 558 559 if (div) 560 mbits /= div; 561 562 if (div) 563 return mbits + 1; 564 return mbits; 565 } 566 567 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 568 union tpacket_req_u *req_u) 569 { 570 p1->feature_req_word = req_u->req3.tp_feature_req_word; 571 } 572 573 static void init_prb_bdqc(struct packet_sock *po, 574 struct packet_ring_buffer *rb, 575 struct pgv *pg_vec, 576 union tpacket_req_u *req_u) 577 { 578 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); 579 struct tpacket_block_desc *pbd; 580 581 memset(p1, 0x0, sizeof(*p1)); 582 583 p1->knxt_seq_num = 1; 584 p1->pkbdq = pg_vec; 585 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 586 p1->pkblk_start = pg_vec[0].buffer; 587 p1->kblk_size = req_u->req3.tp_block_size; 588 p1->knum_blocks = req_u->req3.tp_block_nr; 589 p1->hdrlen = po->tp_hdrlen; 590 p1->version = po->tp_version; 591 p1->last_kactive_blk_num = 0; 592 po->stats.stats3.tp_freeze_q_cnt = 0; 593 if (req_u->req3.tp_retire_blk_tov) 594 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 595 else 596 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 597 req_u->req3.tp_block_size); 598 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 599 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 600 rwlock_init(&p1->blk_fill_in_prog_lock); 601 602 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); 603 prb_init_ft_ops(p1, req_u); 604 prb_setup_retire_blk_timer(po); 605 prb_open_block(p1, pbd); 606 } 607 608 /* Do NOT update the last_blk_num first. 609 * Assumes sk_buff_head lock is held. 610 */ 611 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 612 { 613 mod_timer(&pkc->retire_blk_timer, 614 jiffies + pkc->tov_in_jiffies); 615 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 616 } 617 618 /* 619 * Timer logic: 620 * 1) We refresh the timer only when we open a block. 621 * By doing this we don't waste cycles refreshing the timer 622 * on packet-by-packet basis. 623 * 624 * With a 1MB block-size, on a 1Gbps line, it will take 625 * i) ~8 ms to fill a block + ii) memcpy etc. 626 * In this cut we are not accounting for the memcpy time. 627 * 628 * So, if the user sets the 'tmo' to 10ms then the timer 629 * will never fire while the block is still getting filled 630 * (which is what we want). However, the user could choose 631 * to close a block early and that's fine. 632 * 633 * But when the timer does fire, we check whether or not to refresh it. 634 * Since the tmo granularity is in msecs, it is not too expensive 635 * to refresh the timer, lets say every '8' msecs. 636 * Either the user can set the 'tmo' or we can derive it based on 637 * a) line-speed and b) block-size. 638 * prb_calc_retire_blk_tmo() calculates the tmo. 639 * 640 */ 641 static void prb_retire_rx_blk_timer_expired(struct timer_list *t) 642 { 643 struct packet_sock *po = 644 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer); 645 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 646 unsigned int frozen; 647 struct tpacket_block_desc *pbd; 648 649 spin_lock(&po->sk.sk_receive_queue.lock); 650 651 frozen = prb_queue_frozen(pkc); 652 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 653 654 if (unlikely(pkc->delete_blk_timer)) 655 goto out; 656 657 /* We only need to plug the race when the block is partially filled. 658 * tpacket_rcv: 659 * lock(); increment BLOCK_NUM_PKTS; unlock() 660 * copy_bits() is in progress ... 661 * timer fires on other cpu: 662 * we can't retire the current block because copy_bits 663 * is in progress. 664 * 665 */ 666 if (BLOCK_NUM_PKTS(pbd)) { 667 /* Waiting for skb_copy_bits to finish... */ 668 write_lock(&pkc->blk_fill_in_prog_lock); 669 write_unlock(&pkc->blk_fill_in_prog_lock); 670 } 671 672 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 673 if (!frozen) { 674 if (!BLOCK_NUM_PKTS(pbd)) { 675 /* An empty block. Just refresh the timer. */ 676 goto refresh_timer; 677 } 678 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 679 if (!prb_dispatch_next_block(pkc, po)) 680 goto refresh_timer; 681 else 682 goto out; 683 } else { 684 /* Case 1. Queue was frozen because user-space was 685 * lagging behind. 686 */ 687 if (prb_curr_blk_in_use(pbd)) { 688 /* 689 * Ok, user-space is still behind. 690 * So just refresh the timer. 691 */ 692 goto refresh_timer; 693 } else { 694 /* Case 2. queue was frozen,user-space caught up, 695 * now the link went idle && the timer fired. 696 * We don't have a block to close.So we open this 697 * block and restart the timer. 698 * opening a block thaws the queue,restarts timer 699 * Thawing/timer-refresh is a side effect. 700 */ 701 prb_open_block(pkc, pbd); 702 goto out; 703 } 704 } 705 } 706 707 refresh_timer: 708 _prb_refresh_rx_retire_blk_timer(pkc); 709 710 out: 711 spin_unlock(&po->sk.sk_receive_queue.lock); 712 } 713 714 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 715 struct tpacket_block_desc *pbd1, __u32 status) 716 { 717 /* Flush everything minus the block header */ 718 719 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 720 u8 *start, *end; 721 722 start = (u8 *)pbd1; 723 724 /* Skip the block header(we know header WILL fit in 4K) */ 725 start += PAGE_SIZE; 726 727 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 728 for (; start < end; start += PAGE_SIZE) 729 flush_dcache_page(pgv_to_page(start)); 730 731 smp_wmb(); 732 #endif 733 734 /* Now update the block status. */ 735 736 BLOCK_STATUS(pbd1) = status; 737 738 /* Flush the block header */ 739 740 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 741 start = (u8 *)pbd1; 742 flush_dcache_page(pgv_to_page(start)); 743 744 smp_wmb(); 745 #endif 746 } 747 748 /* 749 * Side effect: 750 * 751 * 1) flush the block 752 * 2) Increment active_blk_num 753 * 754 * Note:We DONT refresh the timer on purpose. 755 * Because almost always the next block will be opened. 756 */ 757 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 758 struct tpacket_block_desc *pbd1, 759 struct packet_sock *po, unsigned int stat) 760 { 761 __u32 status = TP_STATUS_USER | stat; 762 763 struct tpacket3_hdr *last_pkt; 764 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 765 struct sock *sk = &po->sk; 766 767 if (atomic_read(&po->tp_drops)) 768 status |= TP_STATUS_LOSING; 769 770 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 771 last_pkt->tp_next_offset = 0; 772 773 /* Get the ts of the last pkt */ 774 if (BLOCK_NUM_PKTS(pbd1)) { 775 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 776 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 777 } else { 778 /* Ok, we tmo'd - so get the current time. 779 * 780 * It shouldn't really happen as we don't close empty 781 * blocks. See prb_retire_rx_blk_timer_expired(). 782 */ 783 struct timespec64 ts; 784 ktime_get_real_ts64(&ts); 785 h1->ts_last_pkt.ts_sec = ts.tv_sec; 786 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 787 } 788 789 smp_wmb(); 790 791 /* Flush the block */ 792 prb_flush_block(pkc1, pbd1, status); 793 794 sk->sk_data_ready(sk); 795 796 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 797 } 798 799 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 800 { 801 pkc->reset_pending_on_curr_blk = 0; 802 } 803 804 /* 805 * Side effect of opening a block: 806 * 807 * 1) prb_queue is thawed. 808 * 2) retire_blk_timer is refreshed. 809 * 810 */ 811 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 812 struct tpacket_block_desc *pbd1) 813 { 814 struct timespec64 ts; 815 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 816 817 smp_rmb(); 818 819 /* We could have just memset this but we will lose the 820 * flexibility of making the priv area sticky 821 */ 822 823 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 824 BLOCK_NUM_PKTS(pbd1) = 0; 825 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 826 827 ktime_get_real_ts64(&ts); 828 829 h1->ts_first_pkt.ts_sec = ts.tv_sec; 830 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 831 832 pkc1->pkblk_start = (char *)pbd1; 833 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 834 835 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 836 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 837 838 pbd1->version = pkc1->version; 839 pkc1->prev = pkc1->nxt_offset; 840 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 841 842 prb_thaw_queue(pkc1); 843 _prb_refresh_rx_retire_blk_timer(pkc1); 844 845 smp_wmb(); 846 } 847 848 /* 849 * Queue freeze logic: 850 * 1) Assume tp_block_nr = 8 blocks. 851 * 2) At time 't0', user opens Rx ring. 852 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 853 * 4) user-space is either sleeping or processing block '0'. 854 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 855 * it will close block-7,loop around and try to fill block '0'. 856 * call-flow: 857 * __packet_lookup_frame_in_block 858 * prb_retire_current_block() 859 * prb_dispatch_next_block() 860 * |->(BLOCK_STATUS == USER) evaluates to true 861 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 862 * 6) Now there are two cases: 863 * 6.1) Link goes idle right after the queue is frozen. 864 * But remember, the last open_block() refreshed the timer. 865 * When this timer expires,it will refresh itself so that we can 866 * re-open block-0 in near future. 867 * 6.2) Link is busy and keeps on receiving packets. This is a simple 868 * case and __packet_lookup_frame_in_block will check if block-0 869 * is free and can now be re-used. 870 */ 871 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 872 struct packet_sock *po) 873 { 874 pkc->reset_pending_on_curr_blk = 1; 875 po->stats.stats3.tp_freeze_q_cnt++; 876 } 877 878 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 879 880 /* 881 * If the next block is free then we will dispatch it 882 * and return a good offset. 883 * Else, we will freeze the queue. 884 * So, caller must check the return value. 885 */ 886 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 887 struct packet_sock *po) 888 { 889 struct tpacket_block_desc *pbd; 890 891 smp_rmb(); 892 893 /* 1. Get current block num */ 894 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 895 896 /* 2. If this block is currently in_use then freeze the queue */ 897 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 898 prb_freeze_queue(pkc, po); 899 return NULL; 900 } 901 902 /* 903 * 3. 904 * open this block and return the offset where the first packet 905 * needs to get stored. 906 */ 907 prb_open_block(pkc, pbd); 908 return (void *)pkc->nxt_offset; 909 } 910 911 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 912 struct packet_sock *po, unsigned int status) 913 { 914 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 915 916 /* retire/close the current block */ 917 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 918 /* 919 * Plug the case where copy_bits() is in progress on 920 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 921 * have space to copy the pkt in the current block and 922 * called prb_retire_current_block() 923 * 924 * We don't need to worry about the TMO case because 925 * the timer-handler already handled this case. 926 */ 927 if (!(status & TP_STATUS_BLK_TMO)) { 928 /* Waiting for skb_copy_bits to finish... */ 929 write_lock(&pkc->blk_fill_in_prog_lock); 930 write_unlock(&pkc->blk_fill_in_prog_lock); 931 } 932 prb_close_block(pkc, pbd, po, status); 933 return; 934 } 935 } 936 937 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd) 938 { 939 return TP_STATUS_USER & BLOCK_STATUS(pbd); 940 } 941 942 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 943 { 944 return pkc->reset_pending_on_curr_blk; 945 } 946 947 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 948 __releases(&pkc->blk_fill_in_prog_lock) 949 { 950 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 951 952 read_unlock(&pkc->blk_fill_in_prog_lock); 953 } 954 955 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 956 struct tpacket3_hdr *ppd) 957 { 958 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); 959 } 960 961 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 962 struct tpacket3_hdr *ppd) 963 { 964 ppd->hv1.tp_rxhash = 0; 965 } 966 967 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 968 struct tpacket3_hdr *ppd) 969 { 970 if (skb_vlan_tag_present(pkc->skb)) { 971 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); 972 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); 973 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 974 } else { 975 ppd->hv1.tp_vlan_tci = 0; 976 ppd->hv1.tp_vlan_tpid = 0; 977 ppd->tp_status = TP_STATUS_AVAILABLE; 978 } 979 } 980 981 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 982 struct tpacket3_hdr *ppd) 983 { 984 ppd->hv1.tp_padding = 0; 985 prb_fill_vlan_info(pkc, ppd); 986 987 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 988 prb_fill_rxhash(pkc, ppd); 989 else 990 prb_clear_rxhash(pkc, ppd); 991 } 992 993 static void prb_fill_curr_block(char *curr, 994 struct tpacket_kbdq_core *pkc, 995 struct tpacket_block_desc *pbd, 996 unsigned int len) 997 __acquires(&pkc->blk_fill_in_prog_lock) 998 { 999 struct tpacket3_hdr *ppd; 1000 1001 ppd = (struct tpacket3_hdr *)curr; 1002 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 1003 pkc->prev = curr; 1004 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 1005 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1006 BLOCK_NUM_PKTS(pbd) += 1; 1007 read_lock(&pkc->blk_fill_in_prog_lock); 1008 prb_run_all_ft_ops(pkc, ppd); 1009 } 1010 1011 /* Assumes caller has the sk->rx_queue.lock */ 1012 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1013 struct sk_buff *skb, 1014 unsigned int len 1015 ) 1016 { 1017 struct tpacket_kbdq_core *pkc; 1018 struct tpacket_block_desc *pbd; 1019 char *curr, *end; 1020 1021 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 1022 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1023 1024 /* Queue is frozen when user space is lagging behind */ 1025 if (prb_queue_frozen(pkc)) { 1026 /* 1027 * Check if that last block which caused the queue to freeze, 1028 * is still in_use by user-space. 1029 */ 1030 if (prb_curr_blk_in_use(pbd)) { 1031 /* Can't record this packet */ 1032 return NULL; 1033 } else { 1034 /* 1035 * Ok, the block was released by user-space. 1036 * Now let's open that block. 1037 * opening a block also thaws the queue. 1038 * Thawing is a side effect. 1039 */ 1040 prb_open_block(pkc, pbd); 1041 } 1042 } 1043 1044 smp_mb(); 1045 curr = pkc->nxt_offset; 1046 pkc->skb = skb; 1047 end = (char *)pbd + pkc->kblk_size; 1048 1049 /* first try the current block */ 1050 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1051 prb_fill_curr_block(curr, pkc, pbd, len); 1052 return (void *)curr; 1053 } 1054 1055 /* Ok, close the current block */ 1056 prb_retire_current_block(pkc, po, 0); 1057 1058 /* Now, try to dispatch the next block */ 1059 curr = (char *)prb_dispatch_next_block(pkc, po); 1060 if (curr) { 1061 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1062 prb_fill_curr_block(curr, pkc, pbd, len); 1063 return (void *)curr; 1064 } 1065 1066 /* 1067 * No free blocks are available.user_space hasn't caught up yet. 1068 * Queue was just frozen and now this packet will get dropped. 1069 */ 1070 return NULL; 1071 } 1072 1073 static void *packet_current_rx_frame(struct packet_sock *po, 1074 struct sk_buff *skb, 1075 int status, unsigned int len) 1076 { 1077 char *curr = NULL; 1078 switch (po->tp_version) { 1079 case TPACKET_V1: 1080 case TPACKET_V2: 1081 curr = packet_lookup_frame(po, &po->rx_ring, 1082 po->rx_ring.head, status); 1083 return curr; 1084 case TPACKET_V3: 1085 return __packet_lookup_frame_in_block(po, skb, len); 1086 default: 1087 WARN(1, "TPACKET version not supported\n"); 1088 BUG(); 1089 return NULL; 1090 } 1091 } 1092 1093 static void *prb_lookup_block(const struct packet_sock *po, 1094 const struct packet_ring_buffer *rb, 1095 unsigned int idx, 1096 int status) 1097 { 1098 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1099 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); 1100 1101 if (status != BLOCK_STATUS(pbd)) 1102 return NULL; 1103 return pbd; 1104 } 1105 1106 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1107 { 1108 unsigned int prev; 1109 if (rb->prb_bdqc.kactive_blk_num) 1110 prev = rb->prb_bdqc.kactive_blk_num-1; 1111 else 1112 prev = rb->prb_bdqc.knum_blocks-1; 1113 return prev; 1114 } 1115 1116 /* Assumes caller has held the rx_queue.lock */ 1117 static void *__prb_previous_block(struct packet_sock *po, 1118 struct packet_ring_buffer *rb, 1119 int status) 1120 { 1121 unsigned int previous = prb_previous_blk_num(rb); 1122 return prb_lookup_block(po, rb, previous, status); 1123 } 1124 1125 static void *packet_previous_rx_frame(struct packet_sock *po, 1126 struct packet_ring_buffer *rb, 1127 int status) 1128 { 1129 if (po->tp_version <= TPACKET_V2) 1130 return packet_previous_frame(po, rb, status); 1131 1132 return __prb_previous_block(po, rb, status); 1133 } 1134 1135 static void packet_increment_rx_head(struct packet_sock *po, 1136 struct packet_ring_buffer *rb) 1137 { 1138 switch (po->tp_version) { 1139 case TPACKET_V1: 1140 case TPACKET_V2: 1141 return packet_increment_head(rb); 1142 case TPACKET_V3: 1143 default: 1144 WARN(1, "TPACKET version not supported.\n"); 1145 BUG(); 1146 return; 1147 } 1148 } 1149 1150 static void *packet_previous_frame(struct packet_sock *po, 1151 struct packet_ring_buffer *rb, 1152 int status) 1153 { 1154 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1155 return packet_lookup_frame(po, rb, previous, status); 1156 } 1157 1158 static void packet_increment_head(struct packet_ring_buffer *buff) 1159 { 1160 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1161 } 1162 1163 static void packet_inc_pending(struct packet_ring_buffer *rb) 1164 { 1165 this_cpu_inc(*rb->pending_refcnt); 1166 } 1167 1168 static void packet_dec_pending(struct packet_ring_buffer *rb) 1169 { 1170 this_cpu_dec(*rb->pending_refcnt); 1171 } 1172 1173 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) 1174 { 1175 unsigned int refcnt = 0; 1176 int cpu; 1177 1178 /* We don't use pending refcount in rx_ring. */ 1179 if (rb->pending_refcnt == NULL) 1180 return 0; 1181 1182 for_each_possible_cpu(cpu) 1183 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); 1184 1185 return refcnt; 1186 } 1187 1188 static int packet_alloc_pending(struct packet_sock *po) 1189 { 1190 po->rx_ring.pending_refcnt = NULL; 1191 1192 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); 1193 if (unlikely(po->tx_ring.pending_refcnt == NULL)) 1194 return -ENOBUFS; 1195 1196 return 0; 1197 } 1198 1199 static void packet_free_pending(struct packet_sock *po) 1200 { 1201 free_percpu(po->tx_ring.pending_refcnt); 1202 } 1203 1204 #define ROOM_POW_OFF 2 1205 #define ROOM_NONE 0x0 1206 #define ROOM_LOW 0x1 1207 #define ROOM_NORMAL 0x2 1208 1209 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off) 1210 { 1211 int idx, len; 1212 1213 len = READ_ONCE(po->rx_ring.frame_max) + 1; 1214 idx = READ_ONCE(po->rx_ring.head); 1215 if (pow_off) 1216 idx += len >> pow_off; 1217 if (idx >= len) 1218 idx -= len; 1219 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1220 } 1221 1222 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off) 1223 { 1224 int idx, len; 1225 1226 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks); 1227 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num); 1228 if (pow_off) 1229 idx += len >> pow_off; 1230 if (idx >= len) 1231 idx -= len; 1232 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1233 } 1234 1235 static int __packet_rcv_has_room(const struct packet_sock *po, 1236 const struct sk_buff *skb) 1237 { 1238 const struct sock *sk = &po->sk; 1239 int ret = ROOM_NONE; 1240 1241 if (po->prot_hook.func != tpacket_rcv) { 1242 int rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1243 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc) 1244 - (skb ? skb->truesize : 0); 1245 1246 if (avail > (rcvbuf >> ROOM_POW_OFF)) 1247 return ROOM_NORMAL; 1248 else if (avail > 0) 1249 return ROOM_LOW; 1250 else 1251 return ROOM_NONE; 1252 } 1253 1254 if (po->tp_version == TPACKET_V3) { 1255 if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) 1256 ret = ROOM_NORMAL; 1257 else if (__tpacket_v3_has_room(po, 0)) 1258 ret = ROOM_LOW; 1259 } else { 1260 if (__tpacket_has_room(po, ROOM_POW_OFF)) 1261 ret = ROOM_NORMAL; 1262 else if (__tpacket_has_room(po, 0)) 1263 ret = ROOM_LOW; 1264 } 1265 1266 return ret; 1267 } 1268 1269 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1270 { 1271 int pressure, ret; 1272 1273 ret = __packet_rcv_has_room(po, skb); 1274 pressure = ret != ROOM_NORMAL; 1275 1276 if (READ_ONCE(po->pressure) != pressure) 1277 WRITE_ONCE(po->pressure, pressure); 1278 1279 return ret; 1280 } 1281 1282 static void packet_rcv_try_clear_pressure(struct packet_sock *po) 1283 { 1284 if (READ_ONCE(po->pressure) && 1285 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) 1286 WRITE_ONCE(po->pressure, 0); 1287 } 1288 1289 static void packet_sock_destruct(struct sock *sk) 1290 { 1291 skb_queue_purge(&sk->sk_error_queue); 1292 1293 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1294 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 1295 1296 if (!sock_flag(sk, SOCK_DEAD)) { 1297 pr_err("Attempt to release alive packet socket: %p\n", sk); 1298 return; 1299 } 1300 1301 sk_refcnt_debug_dec(sk); 1302 } 1303 1304 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) 1305 { 1306 u32 *history = po->rollover->history; 1307 u32 victim, rxhash; 1308 int i, count = 0; 1309 1310 rxhash = skb_get_hash(skb); 1311 for (i = 0; i < ROLLOVER_HLEN; i++) 1312 if (READ_ONCE(history[i]) == rxhash) 1313 count++; 1314 1315 victim = prandom_u32() % ROLLOVER_HLEN; 1316 1317 /* Avoid dirtying the cache line if possible */ 1318 if (READ_ONCE(history[victim]) != rxhash) 1319 WRITE_ONCE(history[victim], rxhash); 1320 1321 return count > (ROLLOVER_HLEN >> 1); 1322 } 1323 1324 static unsigned int fanout_demux_hash(struct packet_fanout *f, 1325 struct sk_buff *skb, 1326 unsigned int num) 1327 { 1328 return reciprocal_scale(__skb_get_hash_symmetric(skb), num); 1329 } 1330 1331 static unsigned int fanout_demux_lb(struct packet_fanout *f, 1332 struct sk_buff *skb, 1333 unsigned int num) 1334 { 1335 unsigned int val = atomic_inc_return(&f->rr_cur); 1336 1337 return val % num; 1338 } 1339 1340 static unsigned int fanout_demux_cpu(struct packet_fanout *f, 1341 struct sk_buff *skb, 1342 unsigned int num) 1343 { 1344 return smp_processor_id() % num; 1345 } 1346 1347 static unsigned int fanout_demux_rnd(struct packet_fanout *f, 1348 struct sk_buff *skb, 1349 unsigned int num) 1350 { 1351 return prandom_u32_max(num); 1352 } 1353 1354 static unsigned int fanout_demux_rollover(struct packet_fanout *f, 1355 struct sk_buff *skb, 1356 unsigned int idx, bool try_self, 1357 unsigned int num) 1358 { 1359 struct packet_sock *po, *po_next, *po_skip = NULL; 1360 unsigned int i, j, room = ROOM_NONE; 1361 1362 po = pkt_sk(f->arr[idx]); 1363 1364 if (try_self) { 1365 room = packet_rcv_has_room(po, skb); 1366 if (room == ROOM_NORMAL || 1367 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) 1368 return idx; 1369 po_skip = po; 1370 } 1371 1372 i = j = min_t(int, po->rollover->sock, num - 1); 1373 do { 1374 po_next = pkt_sk(f->arr[i]); 1375 if (po_next != po_skip && !READ_ONCE(po_next->pressure) && 1376 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { 1377 if (i != j) 1378 po->rollover->sock = i; 1379 atomic_long_inc(&po->rollover->num); 1380 if (room == ROOM_LOW) 1381 atomic_long_inc(&po->rollover->num_huge); 1382 return i; 1383 } 1384 1385 if (++i == num) 1386 i = 0; 1387 } while (i != j); 1388 1389 atomic_long_inc(&po->rollover->num_failed); 1390 return idx; 1391 } 1392 1393 static unsigned int fanout_demux_qm(struct packet_fanout *f, 1394 struct sk_buff *skb, 1395 unsigned int num) 1396 { 1397 return skb_get_queue_mapping(skb) % num; 1398 } 1399 1400 static unsigned int fanout_demux_bpf(struct packet_fanout *f, 1401 struct sk_buff *skb, 1402 unsigned int num) 1403 { 1404 struct bpf_prog *prog; 1405 unsigned int ret = 0; 1406 1407 rcu_read_lock(); 1408 prog = rcu_dereference(f->bpf_prog); 1409 if (prog) 1410 ret = bpf_prog_run_clear_cb(prog, skb) % num; 1411 rcu_read_unlock(); 1412 1413 return ret; 1414 } 1415 1416 static bool fanout_has_flag(struct packet_fanout *f, u16 flag) 1417 { 1418 return f->flags & (flag >> 8); 1419 } 1420 1421 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1422 struct packet_type *pt, struct net_device *orig_dev) 1423 { 1424 struct packet_fanout *f = pt->af_packet_priv; 1425 unsigned int num = READ_ONCE(f->num_members); 1426 struct net *net = read_pnet(&f->net); 1427 struct packet_sock *po; 1428 unsigned int idx; 1429 1430 if (!net_eq(dev_net(dev), net) || !num) { 1431 kfree_skb(skb); 1432 return 0; 1433 } 1434 1435 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { 1436 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET); 1437 if (!skb) 1438 return 0; 1439 } 1440 switch (f->type) { 1441 case PACKET_FANOUT_HASH: 1442 default: 1443 idx = fanout_demux_hash(f, skb, num); 1444 break; 1445 case PACKET_FANOUT_LB: 1446 idx = fanout_demux_lb(f, skb, num); 1447 break; 1448 case PACKET_FANOUT_CPU: 1449 idx = fanout_demux_cpu(f, skb, num); 1450 break; 1451 case PACKET_FANOUT_RND: 1452 idx = fanout_demux_rnd(f, skb, num); 1453 break; 1454 case PACKET_FANOUT_QM: 1455 idx = fanout_demux_qm(f, skb, num); 1456 break; 1457 case PACKET_FANOUT_ROLLOVER: 1458 idx = fanout_demux_rollover(f, skb, 0, false, num); 1459 break; 1460 case PACKET_FANOUT_CBPF: 1461 case PACKET_FANOUT_EBPF: 1462 idx = fanout_demux_bpf(f, skb, num); 1463 break; 1464 } 1465 1466 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) 1467 idx = fanout_demux_rollover(f, skb, idx, true, num); 1468 1469 po = pkt_sk(f->arr[idx]); 1470 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1471 } 1472 1473 DEFINE_MUTEX(fanout_mutex); 1474 EXPORT_SYMBOL_GPL(fanout_mutex); 1475 static LIST_HEAD(fanout_list); 1476 static u16 fanout_next_id; 1477 1478 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1479 { 1480 struct packet_fanout *f = po->fanout; 1481 1482 spin_lock(&f->lock); 1483 f->arr[f->num_members] = sk; 1484 smp_wmb(); 1485 f->num_members++; 1486 if (f->num_members == 1) 1487 dev_add_pack(&f->prot_hook); 1488 spin_unlock(&f->lock); 1489 } 1490 1491 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1492 { 1493 struct packet_fanout *f = po->fanout; 1494 int i; 1495 1496 spin_lock(&f->lock); 1497 for (i = 0; i < f->num_members; i++) { 1498 if (f->arr[i] == sk) 1499 break; 1500 } 1501 BUG_ON(i >= f->num_members); 1502 f->arr[i] = f->arr[f->num_members - 1]; 1503 f->num_members--; 1504 if (f->num_members == 0) 1505 __dev_remove_pack(&f->prot_hook); 1506 spin_unlock(&f->lock); 1507 } 1508 1509 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) 1510 { 1511 if (sk->sk_family != PF_PACKET) 1512 return false; 1513 1514 return ptype->af_packet_priv == pkt_sk(sk)->fanout; 1515 } 1516 1517 static void fanout_init_data(struct packet_fanout *f) 1518 { 1519 switch (f->type) { 1520 case PACKET_FANOUT_LB: 1521 atomic_set(&f->rr_cur, 0); 1522 break; 1523 case PACKET_FANOUT_CBPF: 1524 case PACKET_FANOUT_EBPF: 1525 RCU_INIT_POINTER(f->bpf_prog, NULL); 1526 break; 1527 } 1528 } 1529 1530 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) 1531 { 1532 struct bpf_prog *old; 1533 1534 spin_lock(&f->lock); 1535 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); 1536 rcu_assign_pointer(f->bpf_prog, new); 1537 spin_unlock(&f->lock); 1538 1539 if (old) { 1540 synchronize_net(); 1541 bpf_prog_destroy(old); 1542 } 1543 } 1544 1545 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data, 1546 unsigned int len) 1547 { 1548 struct bpf_prog *new; 1549 struct sock_fprog fprog; 1550 int ret; 1551 1552 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1553 return -EPERM; 1554 1555 ret = copy_bpf_fprog_from_user(&fprog, data, len); 1556 if (ret) 1557 return ret; 1558 1559 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false); 1560 if (ret) 1561 return ret; 1562 1563 __fanout_set_data_bpf(po->fanout, new); 1564 return 0; 1565 } 1566 1567 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data, 1568 unsigned int len) 1569 { 1570 struct bpf_prog *new; 1571 u32 fd; 1572 1573 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1574 return -EPERM; 1575 if (len != sizeof(fd)) 1576 return -EINVAL; 1577 if (copy_from_sockptr(&fd, data, len)) 1578 return -EFAULT; 1579 1580 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); 1581 if (IS_ERR(new)) 1582 return PTR_ERR(new); 1583 1584 __fanout_set_data_bpf(po->fanout, new); 1585 return 0; 1586 } 1587 1588 static int fanout_set_data(struct packet_sock *po, sockptr_t data, 1589 unsigned int len) 1590 { 1591 switch (po->fanout->type) { 1592 case PACKET_FANOUT_CBPF: 1593 return fanout_set_data_cbpf(po, data, len); 1594 case PACKET_FANOUT_EBPF: 1595 return fanout_set_data_ebpf(po, data, len); 1596 default: 1597 return -EINVAL; 1598 } 1599 } 1600 1601 static void fanout_release_data(struct packet_fanout *f) 1602 { 1603 switch (f->type) { 1604 case PACKET_FANOUT_CBPF: 1605 case PACKET_FANOUT_EBPF: 1606 __fanout_set_data_bpf(f, NULL); 1607 } 1608 } 1609 1610 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id) 1611 { 1612 struct packet_fanout *f; 1613 1614 list_for_each_entry(f, &fanout_list, list) { 1615 if (f->id == candidate_id && 1616 read_pnet(&f->net) == sock_net(sk)) { 1617 return false; 1618 } 1619 } 1620 return true; 1621 } 1622 1623 static bool fanout_find_new_id(struct sock *sk, u16 *new_id) 1624 { 1625 u16 id = fanout_next_id; 1626 1627 do { 1628 if (__fanout_id_is_free(sk, id)) { 1629 *new_id = id; 1630 fanout_next_id = id + 1; 1631 return true; 1632 } 1633 1634 id++; 1635 } while (id != fanout_next_id); 1636 1637 return false; 1638 } 1639 1640 static int fanout_add(struct sock *sk, struct fanout_args *args) 1641 { 1642 struct packet_rollover *rollover = NULL; 1643 struct packet_sock *po = pkt_sk(sk); 1644 u16 type_flags = args->type_flags; 1645 struct packet_fanout *f, *match; 1646 u8 type = type_flags & 0xff; 1647 u8 flags = type_flags >> 8; 1648 u16 id = args->id; 1649 int err; 1650 1651 switch (type) { 1652 case PACKET_FANOUT_ROLLOVER: 1653 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) 1654 return -EINVAL; 1655 case PACKET_FANOUT_HASH: 1656 case PACKET_FANOUT_LB: 1657 case PACKET_FANOUT_CPU: 1658 case PACKET_FANOUT_RND: 1659 case PACKET_FANOUT_QM: 1660 case PACKET_FANOUT_CBPF: 1661 case PACKET_FANOUT_EBPF: 1662 break; 1663 default: 1664 return -EINVAL; 1665 } 1666 1667 mutex_lock(&fanout_mutex); 1668 1669 err = -EALREADY; 1670 if (po->fanout) 1671 goto out; 1672 1673 if (type == PACKET_FANOUT_ROLLOVER || 1674 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { 1675 err = -ENOMEM; 1676 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL); 1677 if (!rollover) 1678 goto out; 1679 atomic_long_set(&rollover->num, 0); 1680 atomic_long_set(&rollover->num_huge, 0); 1681 atomic_long_set(&rollover->num_failed, 0); 1682 } 1683 1684 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) { 1685 if (id != 0) { 1686 err = -EINVAL; 1687 goto out; 1688 } 1689 if (!fanout_find_new_id(sk, &id)) { 1690 err = -ENOMEM; 1691 goto out; 1692 } 1693 /* ephemeral flag for the first socket in the group: drop it */ 1694 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8); 1695 } 1696 1697 match = NULL; 1698 list_for_each_entry(f, &fanout_list, list) { 1699 if (f->id == id && 1700 read_pnet(&f->net) == sock_net(sk)) { 1701 match = f; 1702 break; 1703 } 1704 } 1705 err = -EINVAL; 1706 if (match) { 1707 if (match->flags != flags) 1708 goto out; 1709 if (args->max_num_members && 1710 args->max_num_members != match->max_num_members) 1711 goto out; 1712 } else { 1713 if (args->max_num_members > PACKET_FANOUT_MAX) 1714 goto out; 1715 if (!args->max_num_members) 1716 /* legacy PACKET_FANOUT_MAX */ 1717 args->max_num_members = 256; 1718 err = -ENOMEM; 1719 match = kvzalloc(struct_size(match, arr, args->max_num_members), 1720 GFP_KERNEL); 1721 if (!match) 1722 goto out; 1723 write_pnet(&match->net, sock_net(sk)); 1724 match->id = id; 1725 match->type = type; 1726 match->flags = flags; 1727 INIT_LIST_HEAD(&match->list); 1728 spin_lock_init(&match->lock); 1729 refcount_set(&match->sk_ref, 0); 1730 fanout_init_data(match); 1731 match->prot_hook.type = po->prot_hook.type; 1732 match->prot_hook.dev = po->prot_hook.dev; 1733 match->prot_hook.func = packet_rcv_fanout; 1734 match->prot_hook.af_packet_priv = match; 1735 match->prot_hook.id_match = match_fanout_group; 1736 match->max_num_members = args->max_num_members; 1737 list_add(&match->list, &fanout_list); 1738 } 1739 err = -EINVAL; 1740 1741 spin_lock(&po->bind_lock); 1742 if (po->running && 1743 match->type == type && 1744 match->prot_hook.type == po->prot_hook.type && 1745 match->prot_hook.dev == po->prot_hook.dev) { 1746 err = -ENOSPC; 1747 if (refcount_read(&match->sk_ref) < match->max_num_members) { 1748 __dev_remove_pack(&po->prot_hook); 1749 po->fanout = match; 1750 po->rollover = rollover; 1751 rollover = NULL; 1752 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1); 1753 __fanout_link(sk, po); 1754 err = 0; 1755 } 1756 } 1757 spin_unlock(&po->bind_lock); 1758 1759 if (err && !refcount_read(&match->sk_ref)) { 1760 list_del(&match->list); 1761 kvfree(match); 1762 } 1763 1764 out: 1765 kfree(rollover); 1766 mutex_unlock(&fanout_mutex); 1767 return err; 1768 } 1769 1770 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes 1771 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout. 1772 * It is the responsibility of the caller to call fanout_release_data() and 1773 * free the returned packet_fanout (after synchronize_net()) 1774 */ 1775 static struct packet_fanout *fanout_release(struct sock *sk) 1776 { 1777 struct packet_sock *po = pkt_sk(sk); 1778 struct packet_fanout *f; 1779 1780 mutex_lock(&fanout_mutex); 1781 f = po->fanout; 1782 if (f) { 1783 po->fanout = NULL; 1784 1785 if (refcount_dec_and_test(&f->sk_ref)) 1786 list_del(&f->list); 1787 else 1788 f = NULL; 1789 } 1790 mutex_unlock(&fanout_mutex); 1791 1792 return f; 1793 } 1794 1795 static bool packet_extra_vlan_len_allowed(const struct net_device *dev, 1796 struct sk_buff *skb) 1797 { 1798 /* Earlier code assumed this would be a VLAN pkt, double-check 1799 * this now that we have the actual packet in hand. We can only 1800 * do this check on Ethernet devices. 1801 */ 1802 if (unlikely(dev->type != ARPHRD_ETHER)) 1803 return false; 1804 1805 skb_reset_mac_header(skb); 1806 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)); 1807 } 1808 1809 static const struct proto_ops packet_ops; 1810 1811 static const struct proto_ops packet_ops_spkt; 1812 1813 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1814 struct packet_type *pt, struct net_device *orig_dev) 1815 { 1816 struct sock *sk; 1817 struct sockaddr_pkt *spkt; 1818 1819 /* 1820 * When we registered the protocol we saved the socket in the data 1821 * field for just this event. 1822 */ 1823 1824 sk = pt->af_packet_priv; 1825 1826 /* 1827 * Yank back the headers [hope the device set this 1828 * right or kerboom...] 1829 * 1830 * Incoming packets have ll header pulled, 1831 * push it back. 1832 * 1833 * For outgoing ones skb->data == skb_mac_header(skb) 1834 * so that this procedure is noop. 1835 */ 1836 1837 if (skb->pkt_type == PACKET_LOOPBACK) 1838 goto out; 1839 1840 if (!net_eq(dev_net(dev), sock_net(sk))) 1841 goto out; 1842 1843 skb = skb_share_check(skb, GFP_ATOMIC); 1844 if (skb == NULL) 1845 goto oom; 1846 1847 /* drop any routing info */ 1848 skb_dst_drop(skb); 1849 1850 /* drop conntrack reference */ 1851 nf_reset_ct(skb); 1852 1853 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1854 1855 skb_push(skb, skb->data - skb_mac_header(skb)); 1856 1857 /* 1858 * The SOCK_PACKET socket receives _all_ frames. 1859 */ 1860 1861 spkt->spkt_family = dev->type; 1862 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1863 spkt->spkt_protocol = skb->protocol; 1864 1865 /* 1866 * Charge the memory to the socket. This is done specifically 1867 * to prevent sockets using all the memory up. 1868 */ 1869 1870 if (sock_queue_rcv_skb(sk, skb) == 0) 1871 return 0; 1872 1873 out: 1874 kfree_skb(skb); 1875 oom: 1876 return 0; 1877 } 1878 1879 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock) 1880 { 1881 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) && 1882 sock->type == SOCK_RAW) { 1883 skb_reset_mac_header(skb); 1884 skb->protocol = dev_parse_header_protocol(skb); 1885 } 1886 1887 skb_probe_transport_header(skb); 1888 } 1889 1890 /* 1891 * Output a raw packet to a device layer. This bypasses all the other 1892 * protocol layers and you must therefore supply it with a complete frame 1893 */ 1894 1895 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, 1896 size_t len) 1897 { 1898 struct sock *sk = sock->sk; 1899 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); 1900 struct sk_buff *skb = NULL; 1901 struct net_device *dev; 1902 struct sockcm_cookie sockc; 1903 __be16 proto = 0; 1904 int err; 1905 int extra_len = 0; 1906 1907 /* 1908 * Get and verify the address. 1909 */ 1910 1911 if (saddr) { 1912 if (msg->msg_namelen < sizeof(struct sockaddr)) 1913 return -EINVAL; 1914 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1915 proto = saddr->spkt_protocol; 1916 } else 1917 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1918 1919 /* 1920 * Find the device first to size check it 1921 */ 1922 1923 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; 1924 retry: 1925 rcu_read_lock(); 1926 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1927 err = -ENODEV; 1928 if (dev == NULL) 1929 goto out_unlock; 1930 1931 err = -ENETDOWN; 1932 if (!(dev->flags & IFF_UP)) 1933 goto out_unlock; 1934 1935 /* 1936 * You may not queue a frame bigger than the mtu. This is the lowest level 1937 * raw protocol and you must do your own fragmentation at this level. 1938 */ 1939 1940 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 1941 if (!netif_supports_nofcs(dev)) { 1942 err = -EPROTONOSUPPORT; 1943 goto out_unlock; 1944 } 1945 extra_len = 4; /* We're doing our own CRC */ 1946 } 1947 1948 err = -EMSGSIZE; 1949 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) 1950 goto out_unlock; 1951 1952 if (!skb) { 1953 size_t reserved = LL_RESERVED_SPACE(dev); 1954 int tlen = dev->needed_tailroom; 1955 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 1956 1957 rcu_read_unlock(); 1958 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 1959 if (skb == NULL) 1960 return -ENOBUFS; 1961 /* FIXME: Save some space for broken drivers that write a hard 1962 * header at transmission time by themselves. PPP is the notable 1963 * one here. This should really be fixed at the driver level. 1964 */ 1965 skb_reserve(skb, reserved); 1966 skb_reset_network_header(skb); 1967 1968 /* Try to align data part correctly */ 1969 if (hhlen) { 1970 skb->data -= hhlen; 1971 skb->tail -= hhlen; 1972 if (len < hhlen) 1973 skb_reset_network_header(skb); 1974 } 1975 err = memcpy_from_msg(skb_put(skb, len), msg, len); 1976 if (err) 1977 goto out_free; 1978 goto retry; 1979 } 1980 1981 if (!dev_validate_header(dev, skb->data, len)) { 1982 err = -EINVAL; 1983 goto out_unlock; 1984 } 1985 if (len > (dev->mtu + dev->hard_header_len + extra_len) && 1986 !packet_extra_vlan_len_allowed(dev, skb)) { 1987 err = -EMSGSIZE; 1988 goto out_unlock; 1989 } 1990 1991 sockcm_init(&sockc, sk); 1992 if (msg->msg_controllen) { 1993 err = sock_cmsg_send(sk, msg, &sockc); 1994 if (unlikely(err)) 1995 goto out_unlock; 1996 } 1997 1998 skb->protocol = proto; 1999 skb->dev = dev; 2000 skb->priority = sk->sk_priority; 2001 skb->mark = sk->sk_mark; 2002 skb->tstamp = sockc.transmit_time; 2003 2004 skb_setup_tx_timestamp(skb, sockc.tsflags); 2005 2006 if (unlikely(extra_len == 4)) 2007 skb->no_fcs = 1; 2008 2009 packet_parse_headers(skb, sock); 2010 2011 dev_queue_xmit(skb); 2012 rcu_read_unlock(); 2013 return len; 2014 2015 out_unlock: 2016 rcu_read_unlock(); 2017 out_free: 2018 kfree_skb(skb); 2019 return err; 2020 } 2021 2022 static unsigned int run_filter(struct sk_buff *skb, 2023 const struct sock *sk, 2024 unsigned int res) 2025 { 2026 struct sk_filter *filter; 2027 2028 rcu_read_lock(); 2029 filter = rcu_dereference(sk->sk_filter); 2030 if (filter != NULL) 2031 res = bpf_prog_run_clear_cb(filter->prog, skb); 2032 rcu_read_unlock(); 2033 2034 return res; 2035 } 2036 2037 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb, 2038 size_t *len) 2039 { 2040 struct virtio_net_hdr vnet_hdr; 2041 2042 if (*len < sizeof(vnet_hdr)) 2043 return -EINVAL; 2044 *len -= sizeof(vnet_hdr); 2045 2046 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0)) 2047 return -EINVAL; 2048 2049 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr)); 2050 } 2051 2052 /* 2053 * This function makes lazy skb cloning in hope that most of packets 2054 * are discarded by BPF. 2055 * 2056 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 2057 * and skb->cb are mangled. It works because (and until) packets 2058 * falling here are owned by current CPU. Output packets are cloned 2059 * by dev_queue_xmit_nit(), input packets are processed by net_bh 2060 * sequencially, so that if we return skb to original state on exit, 2061 * we will not harm anyone. 2062 */ 2063 2064 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 2065 struct packet_type *pt, struct net_device *orig_dev) 2066 { 2067 struct sock *sk; 2068 struct sockaddr_ll *sll; 2069 struct packet_sock *po; 2070 u8 *skb_head = skb->data; 2071 int skb_len = skb->len; 2072 unsigned int snaplen, res; 2073 bool is_drop_n_account = false; 2074 2075 if (skb->pkt_type == PACKET_LOOPBACK) 2076 goto drop; 2077 2078 sk = pt->af_packet_priv; 2079 po = pkt_sk(sk); 2080 2081 if (!net_eq(dev_net(dev), sock_net(sk))) 2082 goto drop; 2083 2084 skb->dev = dev; 2085 2086 if (dev_has_header(dev)) { 2087 /* The device has an explicit notion of ll header, 2088 * exported to higher levels. 2089 * 2090 * Otherwise, the device hides details of its frame 2091 * structure, so that corresponding packet head is 2092 * never delivered to user. 2093 */ 2094 if (sk->sk_type != SOCK_DGRAM) 2095 skb_push(skb, skb->data - skb_mac_header(skb)); 2096 else if (skb->pkt_type == PACKET_OUTGOING) { 2097 /* Special case: outgoing packets have ll header at head */ 2098 skb_pull(skb, skb_network_offset(skb)); 2099 } 2100 } 2101 2102 snaplen = skb->len; 2103 2104 res = run_filter(skb, sk, snaplen); 2105 if (!res) 2106 goto drop_n_restore; 2107 if (snaplen > res) 2108 snaplen = res; 2109 2110 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2111 goto drop_n_acct; 2112 2113 if (skb_shared(skb)) { 2114 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2115 if (nskb == NULL) 2116 goto drop_n_acct; 2117 2118 if (skb_head != skb->data) { 2119 skb->data = skb_head; 2120 skb->len = skb_len; 2121 } 2122 consume_skb(skb); 2123 skb = nskb; 2124 } 2125 2126 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); 2127 2128 sll = &PACKET_SKB_CB(skb)->sa.ll; 2129 sll->sll_hatype = dev->type; 2130 sll->sll_pkttype = skb->pkt_type; 2131 if (unlikely(po->origdev)) 2132 sll->sll_ifindex = orig_dev->ifindex; 2133 else 2134 sll->sll_ifindex = dev->ifindex; 2135 2136 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2137 2138 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). 2139 * Use their space for storing the original skb length. 2140 */ 2141 PACKET_SKB_CB(skb)->sa.origlen = skb->len; 2142 2143 if (pskb_trim(skb, snaplen)) 2144 goto drop_n_acct; 2145 2146 skb_set_owner_r(skb, sk); 2147 skb->dev = NULL; 2148 skb_dst_drop(skb); 2149 2150 /* drop conntrack reference */ 2151 nf_reset_ct(skb); 2152 2153 spin_lock(&sk->sk_receive_queue.lock); 2154 po->stats.stats1.tp_packets++; 2155 sock_skb_set_dropcount(sk, skb); 2156 __skb_queue_tail(&sk->sk_receive_queue, skb); 2157 spin_unlock(&sk->sk_receive_queue.lock); 2158 sk->sk_data_ready(sk); 2159 return 0; 2160 2161 drop_n_acct: 2162 is_drop_n_account = true; 2163 atomic_inc(&po->tp_drops); 2164 atomic_inc(&sk->sk_drops); 2165 2166 drop_n_restore: 2167 if (skb_head != skb->data && skb_shared(skb)) { 2168 skb->data = skb_head; 2169 skb->len = skb_len; 2170 } 2171 drop: 2172 if (!is_drop_n_account) 2173 consume_skb(skb); 2174 else 2175 kfree_skb(skb); 2176 return 0; 2177 } 2178 2179 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 2180 struct packet_type *pt, struct net_device *orig_dev) 2181 { 2182 struct sock *sk; 2183 struct packet_sock *po; 2184 struct sockaddr_ll *sll; 2185 union tpacket_uhdr h; 2186 u8 *skb_head = skb->data; 2187 int skb_len = skb->len; 2188 unsigned int snaplen, res; 2189 unsigned long status = TP_STATUS_USER; 2190 unsigned short macoff, hdrlen; 2191 unsigned int netoff; 2192 struct sk_buff *copy_skb = NULL; 2193 struct timespec64 ts; 2194 __u32 ts_status; 2195 bool is_drop_n_account = false; 2196 unsigned int slot_id = 0; 2197 bool do_vnet = false; 2198 2199 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. 2200 * We may add members to them until current aligned size without forcing 2201 * userspace to call getsockopt(..., PACKET_HDRLEN, ...). 2202 */ 2203 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); 2204 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); 2205 2206 if (skb->pkt_type == PACKET_LOOPBACK) 2207 goto drop; 2208 2209 sk = pt->af_packet_priv; 2210 po = pkt_sk(sk); 2211 2212 if (!net_eq(dev_net(dev), sock_net(sk))) 2213 goto drop; 2214 2215 if (dev_has_header(dev)) { 2216 if (sk->sk_type != SOCK_DGRAM) 2217 skb_push(skb, skb->data - skb_mac_header(skb)); 2218 else if (skb->pkt_type == PACKET_OUTGOING) { 2219 /* Special case: outgoing packets have ll header at head */ 2220 skb_pull(skb, skb_network_offset(skb)); 2221 } 2222 } 2223 2224 snaplen = skb->len; 2225 2226 res = run_filter(skb, sk, snaplen); 2227 if (!res) 2228 goto drop_n_restore; 2229 2230 /* If we are flooded, just give up */ 2231 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) { 2232 atomic_inc(&po->tp_drops); 2233 goto drop_n_restore; 2234 } 2235 2236 if (skb->ip_summed == CHECKSUM_PARTIAL) 2237 status |= TP_STATUS_CSUMNOTREADY; 2238 else if (skb->pkt_type != PACKET_OUTGOING && 2239 (skb->ip_summed == CHECKSUM_COMPLETE || 2240 skb_csum_unnecessary(skb))) 2241 status |= TP_STATUS_CSUM_VALID; 2242 2243 if (snaplen > res) 2244 snaplen = res; 2245 2246 if (sk->sk_type == SOCK_DGRAM) { 2247 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 2248 po->tp_reserve; 2249 } else { 2250 unsigned int maclen = skb_network_offset(skb); 2251 netoff = TPACKET_ALIGN(po->tp_hdrlen + 2252 (maclen < 16 ? 16 : maclen)) + 2253 po->tp_reserve; 2254 if (po->has_vnet_hdr) { 2255 netoff += sizeof(struct virtio_net_hdr); 2256 do_vnet = true; 2257 } 2258 macoff = netoff - maclen; 2259 } 2260 if (netoff > USHRT_MAX) { 2261 atomic_inc(&po->tp_drops); 2262 goto drop_n_restore; 2263 } 2264 if (po->tp_version <= TPACKET_V2) { 2265 if (macoff + snaplen > po->rx_ring.frame_size) { 2266 if (po->copy_thresh && 2267 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 2268 if (skb_shared(skb)) { 2269 copy_skb = skb_clone(skb, GFP_ATOMIC); 2270 } else { 2271 copy_skb = skb_get(skb); 2272 skb_head = skb->data; 2273 } 2274 if (copy_skb) 2275 skb_set_owner_r(copy_skb, sk); 2276 } 2277 snaplen = po->rx_ring.frame_size - macoff; 2278 if ((int)snaplen < 0) { 2279 snaplen = 0; 2280 do_vnet = false; 2281 } 2282 } 2283 } else if (unlikely(macoff + snaplen > 2284 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { 2285 u32 nval; 2286 2287 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; 2288 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", 2289 snaplen, nval, macoff); 2290 snaplen = nval; 2291 if (unlikely((int)snaplen < 0)) { 2292 snaplen = 0; 2293 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; 2294 do_vnet = false; 2295 } 2296 } 2297 spin_lock(&sk->sk_receive_queue.lock); 2298 h.raw = packet_current_rx_frame(po, skb, 2299 TP_STATUS_KERNEL, (macoff+snaplen)); 2300 if (!h.raw) 2301 goto drop_n_account; 2302 2303 if (po->tp_version <= TPACKET_V2) { 2304 slot_id = po->rx_ring.head; 2305 if (test_bit(slot_id, po->rx_ring.rx_owner_map)) 2306 goto drop_n_account; 2307 __set_bit(slot_id, po->rx_ring.rx_owner_map); 2308 } 2309 2310 if (do_vnet && 2311 virtio_net_hdr_from_skb(skb, h.raw + macoff - 2312 sizeof(struct virtio_net_hdr), 2313 vio_le(), true, 0)) { 2314 if (po->tp_version == TPACKET_V3) 2315 prb_clear_blk_fill_status(&po->rx_ring); 2316 goto drop_n_account; 2317 } 2318 2319 if (po->tp_version <= TPACKET_V2) { 2320 packet_increment_rx_head(po, &po->rx_ring); 2321 /* 2322 * LOSING will be reported till you read the stats, 2323 * because it's COR - Clear On Read. 2324 * Anyways, moving it for V1/V2 only as V3 doesn't need this 2325 * at packet level. 2326 */ 2327 if (atomic_read(&po->tp_drops)) 2328 status |= TP_STATUS_LOSING; 2329 } 2330 2331 po->stats.stats1.tp_packets++; 2332 if (copy_skb) { 2333 status |= TP_STATUS_COPY; 2334 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 2335 } 2336 spin_unlock(&sk->sk_receive_queue.lock); 2337 2338 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 2339 2340 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 2341 ktime_get_real_ts64(&ts); 2342 2343 status |= ts_status; 2344 2345 switch (po->tp_version) { 2346 case TPACKET_V1: 2347 h.h1->tp_len = skb->len; 2348 h.h1->tp_snaplen = snaplen; 2349 h.h1->tp_mac = macoff; 2350 h.h1->tp_net = netoff; 2351 h.h1->tp_sec = ts.tv_sec; 2352 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 2353 hdrlen = sizeof(*h.h1); 2354 break; 2355 case TPACKET_V2: 2356 h.h2->tp_len = skb->len; 2357 h.h2->tp_snaplen = snaplen; 2358 h.h2->tp_mac = macoff; 2359 h.h2->tp_net = netoff; 2360 h.h2->tp_sec = ts.tv_sec; 2361 h.h2->tp_nsec = ts.tv_nsec; 2362 if (skb_vlan_tag_present(skb)) { 2363 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); 2364 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); 2365 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 2366 } else { 2367 h.h2->tp_vlan_tci = 0; 2368 h.h2->tp_vlan_tpid = 0; 2369 } 2370 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); 2371 hdrlen = sizeof(*h.h2); 2372 break; 2373 case TPACKET_V3: 2374 /* tp_nxt_offset,vlan are already populated above. 2375 * So DONT clear those fields here 2376 */ 2377 h.h3->tp_status |= status; 2378 h.h3->tp_len = skb->len; 2379 h.h3->tp_snaplen = snaplen; 2380 h.h3->tp_mac = macoff; 2381 h.h3->tp_net = netoff; 2382 h.h3->tp_sec = ts.tv_sec; 2383 h.h3->tp_nsec = ts.tv_nsec; 2384 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); 2385 hdrlen = sizeof(*h.h3); 2386 break; 2387 default: 2388 BUG(); 2389 } 2390 2391 sll = h.raw + TPACKET_ALIGN(hdrlen); 2392 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2393 sll->sll_family = AF_PACKET; 2394 sll->sll_hatype = dev->type; 2395 sll->sll_protocol = skb->protocol; 2396 sll->sll_pkttype = skb->pkt_type; 2397 if (unlikely(po->origdev)) 2398 sll->sll_ifindex = orig_dev->ifindex; 2399 else 2400 sll->sll_ifindex = dev->ifindex; 2401 2402 smp_mb(); 2403 2404 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 2405 if (po->tp_version <= TPACKET_V2) { 2406 u8 *start, *end; 2407 2408 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + 2409 macoff + snaplen); 2410 2411 for (start = h.raw; start < end; start += PAGE_SIZE) 2412 flush_dcache_page(pgv_to_page(start)); 2413 } 2414 smp_wmb(); 2415 #endif 2416 2417 if (po->tp_version <= TPACKET_V2) { 2418 spin_lock(&sk->sk_receive_queue.lock); 2419 __packet_set_status(po, h.raw, status); 2420 __clear_bit(slot_id, po->rx_ring.rx_owner_map); 2421 spin_unlock(&sk->sk_receive_queue.lock); 2422 sk->sk_data_ready(sk); 2423 } else if (po->tp_version == TPACKET_V3) { 2424 prb_clear_blk_fill_status(&po->rx_ring); 2425 } 2426 2427 drop_n_restore: 2428 if (skb_head != skb->data && skb_shared(skb)) { 2429 skb->data = skb_head; 2430 skb->len = skb_len; 2431 } 2432 drop: 2433 if (!is_drop_n_account) 2434 consume_skb(skb); 2435 else 2436 kfree_skb(skb); 2437 return 0; 2438 2439 drop_n_account: 2440 spin_unlock(&sk->sk_receive_queue.lock); 2441 atomic_inc(&po->tp_drops); 2442 is_drop_n_account = true; 2443 2444 sk->sk_data_ready(sk); 2445 kfree_skb(copy_skb); 2446 goto drop_n_restore; 2447 } 2448 2449 static void tpacket_destruct_skb(struct sk_buff *skb) 2450 { 2451 struct packet_sock *po = pkt_sk(skb->sk); 2452 2453 if (likely(po->tx_ring.pg_vec)) { 2454 void *ph; 2455 __u32 ts; 2456 2457 ph = skb_zcopy_get_nouarg(skb); 2458 packet_dec_pending(&po->tx_ring); 2459 2460 ts = __packet_set_timestamp(po, ph, skb); 2461 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); 2462 2463 if (!packet_read_pending(&po->tx_ring)) 2464 complete(&po->skb_completion); 2465 } 2466 2467 sock_wfree(skb); 2468 } 2469 2470 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len) 2471 { 2472 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2473 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2474 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 > 2475 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len))) 2476 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(), 2477 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2478 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2); 2479 2480 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len) 2481 return -EINVAL; 2482 2483 return 0; 2484 } 2485 2486 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len, 2487 struct virtio_net_hdr *vnet_hdr) 2488 { 2489 if (*len < sizeof(*vnet_hdr)) 2490 return -EINVAL; 2491 *len -= sizeof(*vnet_hdr); 2492 2493 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter)) 2494 return -EFAULT; 2495 2496 return __packet_snd_vnet_parse(vnet_hdr, *len); 2497 } 2498 2499 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 2500 void *frame, struct net_device *dev, void *data, int tp_len, 2501 __be16 proto, unsigned char *addr, int hlen, int copylen, 2502 const struct sockcm_cookie *sockc) 2503 { 2504 union tpacket_uhdr ph; 2505 int to_write, offset, len, nr_frags, len_max; 2506 struct socket *sock = po->sk.sk_socket; 2507 struct page *page; 2508 int err; 2509 2510 ph.raw = frame; 2511 2512 skb->protocol = proto; 2513 skb->dev = dev; 2514 skb->priority = po->sk.sk_priority; 2515 skb->mark = po->sk.sk_mark; 2516 skb->tstamp = sockc->transmit_time; 2517 skb_setup_tx_timestamp(skb, sockc->tsflags); 2518 skb_zcopy_set_nouarg(skb, ph.raw); 2519 2520 skb_reserve(skb, hlen); 2521 skb_reset_network_header(skb); 2522 2523 to_write = tp_len; 2524 2525 if (sock->type == SOCK_DGRAM) { 2526 err = dev_hard_header(skb, dev, ntohs(proto), addr, 2527 NULL, tp_len); 2528 if (unlikely(err < 0)) 2529 return -EINVAL; 2530 } else if (copylen) { 2531 int hdrlen = min_t(int, copylen, tp_len); 2532 2533 skb_push(skb, dev->hard_header_len); 2534 skb_put(skb, copylen - dev->hard_header_len); 2535 err = skb_store_bits(skb, 0, data, hdrlen); 2536 if (unlikely(err)) 2537 return err; 2538 if (!dev_validate_header(dev, skb->data, hdrlen)) 2539 return -EINVAL; 2540 2541 data += hdrlen; 2542 to_write -= hdrlen; 2543 } 2544 2545 offset = offset_in_page(data); 2546 len_max = PAGE_SIZE - offset; 2547 len = ((to_write > len_max) ? len_max : to_write); 2548 2549 skb->data_len = to_write; 2550 skb->len += to_write; 2551 skb->truesize += to_write; 2552 refcount_add(to_write, &po->sk.sk_wmem_alloc); 2553 2554 while (likely(to_write)) { 2555 nr_frags = skb_shinfo(skb)->nr_frags; 2556 2557 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2558 pr_err("Packet exceed the number of skb frags(%lu)\n", 2559 MAX_SKB_FRAGS); 2560 return -EFAULT; 2561 } 2562 2563 page = pgv_to_page(data); 2564 data += len; 2565 flush_dcache_page(page); 2566 get_page(page); 2567 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2568 to_write -= len; 2569 offset = 0; 2570 len_max = PAGE_SIZE; 2571 len = ((to_write > len_max) ? len_max : to_write); 2572 } 2573 2574 packet_parse_headers(skb, sock); 2575 2576 return tp_len; 2577 } 2578 2579 static int tpacket_parse_header(struct packet_sock *po, void *frame, 2580 int size_max, void **data) 2581 { 2582 union tpacket_uhdr ph; 2583 int tp_len, off; 2584 2585 ph.raw = frame; 2586 2587 switch (po->tp_version) { 2588 case TPACKET_V3: 2589 if (ph.h3->tp_next_offset != 0) { 2590 pr_warn_once("variable sized slot not supported"); 2591 return -EINVAL; 2592 } 2593 tp_len = ph.h3->tp_len; 2594 break; 2595 case TPACKET_V2: 2596 tp_len = ph.h2->tp_len; 2597 break; 2598 default: 2599 tp_len = ph.h1->tp_len; 2600 break; 2601 } 2602 if (unlikely(tp_len > size_max)) { 2603 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 2604 return -EMSGSIZE; 2605 } 2606 2607 if (unlikely(po->tp_tx_has_off)) { 2608 int off_min, off_max; 2609 2610 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2611 off_max = po->tx_ring.frame_size - tp_len; 2612 if (po->sk.sk_type == SOCK_DGRAM) { 2613 switch (po->tp_version) { 2614 case TPACKET_V3: 2615 off = ph.h3->tp_net; 2616 break; 2617 case TPACKET_V2: 2618 off = ph.h2->tp_net; 2619 break; 2620 default: 2621 off = ph.h1->tp_net; 2622 break; 2623 } 2624 } else { 2625 switch (po->tp_version) { 2626 case TPACKET_V3: 2627 off = ph.h3->tp_mac; 2628 break; 2629 case TPACKET_V2: 2630 off = ph.h2->tp_mac; 2631 break; 2632 default: 2633 off = ph.h1->tp_mac; 2634 break; 2635 } 2636 } 2637 if (unlikely((off < off_min) || (off_max < off))) 2638 return -EINVAL; 2639 } else { 2640 off = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2641 } 2642 2643 *data = frame + off; 2644 return tp_len; 2645 } 2646 2647 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2648 { 2649 struct sk_buff *skb = NULL; 2650 struct net_device *dev; 2651 struct virtio_net_hdr *vnet_hdr = NULL; 2652 struct sockcm_cookie sockc; 2653 __be16 proto; 2654 int err, reserve = 0; 2655 void *ph; 2656 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2657 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); 2658 unsigned char *addr = NULL; 2659 int tp_len, size_max; 2660 void *data; 2661 int len_sum = 0; 2662 int status = TP_STATUS_AVAILABLE; 2663 int hlen, tlen, copylen = 0; 2664 long timeo = 0; 2665 2666 mutex_lock(&po->pg_vec_lock); 2667 2668 /* packet_sendmsg() check on tx_ring.pg_vec was lockless, 2669 * we need to confirm it under protection of pg_vec_lock. 2670 */ 2671 if (unlikely(!po->tx_ring.pg_vec)) { 2672 err = -EBUSY; 2673 goto out; 2674 } 2675 if (likely(saddr == NULL)) { 2676 dev = packet_cached_dev_get(po); 2677 proto = po->num; 2678 } else { 2679 err = -EINVAL; 2680 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2681 goto out; 2682 if (msg->msg_namelen < (saddr->sll_halen 2683 + offsetof(struct sockaddr_ll, 2684 sll_addr))) 2685 goto out; 2686 proto = saddr->sll_protocol; 2687 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2688 if (po->sk.sk_socket->type == SOCK_DGRAM) { 2689 if (dev && msg->msg_namelen < dev->addr_len + 2690 offsetof(struct sockaddr_ll, sll_addr)) 2691 goto out_put; 2692 addr = saddr->sll_addr; 2693 } 2694 } 2695 2696 err = -ENXIO; 2697 if (unlikely(dev == NULL)) 2698 goto out; 2699 err = -ENETDOWN; 2700 if (unlikely(!(dev->flags & IFF_UP))) 2701 goto out_put; 2702 2703 sockcm_init(&sockc, &po->sk); 2704 if (msg->msg_controllen) { 2705 err = sock_cmsg_send(&po->sk, msg, &sockc); 2706 if (unlikely(err)) 2707 goto out_put; 2708 } 2709 2710 if (po->sk.sk_socket->type == SOCK_RAW) 2711 reserve = dev->hard_header_len; 2712 size_max = po->tx_ring.frame_size 2713 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2714 2715 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr) 2716 size_max = dev->mtu + reserve + VLAN_HLEN; 2717 2718 reinit_completion(&po->skb_completion); 2719 2720 do { 2721 ph = packet_current_frame(po, &po->tx_ring, 2722 TP_STATUS_SEND_REQUEST); 2723 if (unlikely(ph == NULL)) { 2724 if (need_wait && skb) { 2725 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT); 2726 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo); 2727 if (timeo <= 0) { 2728 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS; 2729 goto out_put; 2730 } 2731 } 2732 /* check for additional frames */ 2733 continue; 2734 } 2735 2736 skb = NULL; 2737 tp_len = tpacket_parse_header(po, ph, size_max, &data); 2738 if (tp_len < 0) 2739 goto tpacket_error; 2740 2741 status = TP_STATUS_SEND_REQUEST; 2742 hlen = LL_RESERVED_SPACE(dev); 2743 tlen = dev->needed_tailroom; 2744 if (po->has_vnet_hdr) { 2745 vnet_hdr = data; 2746 data += sizeof(*vnet_hdr); 2747 tp_len -= sizeof(*vnet_hdr); 2748 if (tp_len < 0 || 2749 __packet_snd_vnet_parse(vnet_hdr, tp_len)) { 2750 tp_len = -EINVAL; 2751 goto tpacket_error; 2752 } 2753 copylen = __virtio16_to_cpu(vio_le(), 2754 vnet_hdr->hdr_len); 2755 } 2756 copylen = max_t(int, copylen, dev->hard_header_len); 2757 skb = sock_alloc_send_skb(&po->sk, 2758 hlen + tlen + sizeof(struct sockaddr_ll) + 2759 (copylen - dev->hard_header_len), 2760 !need_wait, &err); 2761 2762 if (unlikely(skb == NULL)) { 2763 /* we assume the socket was initially writeable ... */ 2764 if (likely(len_sum > 0)) 2765 err = len_sum; 2766 goto out_status; 2767 } 2768 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto, 2769 addr, hlen, copylen, &sockc); 2770 if (likely(tp_len >= 0) && 2771 tp_len > dev->mtu + reserve && 2772 !po->has_vnet_hdr && 2773 !packet_extra_vlan_len_allowed(dev, skb)) 2774 tp_len = -EMSGSIZE; 2775 2776 if (unlikely(tp_len < 0)) { 2777 tpacket_error: 2778 if (po->tp_loss) { 2779 __packet_set_status(po, ph, 2780 TP_STATUS_AVAILABLE); 2781 packet_increment_head(&po->tx_ring); 2782 kfree_skb(skb); 2783 continue; 2784 } else { 2785 status = TP_STATUS_WRONG_FORMAT; 2786 err = tp_len; 2787 goto out_status; 2788 } 2789 } 2790 2791 if (po->has_vnet_hdr) { 2792 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) { 2793 tp_len = -EINVAL; 2794 goto tpacket_error; 2795 } 2796 virtio_net_hdr_set_proto(skb, vnet_hdr); 2797 } 2798 2799 skb->destructor = tpacket_destruct_skb; 2800 __packet_set_status(po, ph, TP_STATUS_SENDING); 2801 packet_inc_pending(&po->tx_ring); 2802 2803 status = TP_STATUS_SEND_REQUEST; 2804 err = po->xmit(skb); 2805 if (unlikely(err > 0)) { 2806 err = net_xmit_errno(err); 2807 if (err && __packet_get_status(po, ph) == 2808 TP_STATUS_AVAILABLE) { 2809 /* skb was destructed already */ 2810 skb = NULL; 2811 goto out_status; 2812 } 2813 /* 2814 * skb was dropped but not destructed yet; 2815 * let's treat it like congestion or err < 0 2816 */ 2817 err = 0; 2818 } 2819 packet_increment_head(&po->tx_ring); 2820 len_sum += tp_len; 2821 } while (likely((ph != NULL) || 2822 /* Note: packet_read_pending() might be slow if we have 2823 * to call it as it's per_cpu variable, but in fast-path 2824 * we already short-circuit the loop with the first 2825 * condition, and luckily don't have to go that path 2826 * anyway. 2827 */ 2828 (need_wait && packet_read_pending(&po->tx_ring)))); 2829 2830 err = len_sum; 2831 goto out_put; 2832 2833 out_status: 2834 __packet_set_status(po, ph, status); 2835 kfree_skb(skb); 2836 out_put: 2837 dev_put(dev); 2838 out: 2839 mutex_unlock(&po->pg_vec_lock); 2840 return err; 2841 } 2842 2843 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2844 size_t reserve, size_t len, 2845 size_t linear, int noblock, 2846 int *err) 2847 { 2848 struct sk_buff *skb; 2849 2850 /* Under a page? Don't bother with paged skb. */ 2851 if (prepad + len < PAGE_SIZE || !linear) 2852 linear = len; 2853 2854 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2855 err, 0); 2856 if (!skb) 2857 return NULL; 2858 2859 skb_reserve(skb, reserve); 2860 skb_put(skb, linear); 2861 skb->data_len = len - linear; 2862 skb->len += len - linear; 2863 2864 return skb; 2865 } 2866 2867 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) 2868 { 2869 struct sock *sk = sock->sk; 2870 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2871 struct sk_buff *skb; 2872 struct net_device *dev; 2873 __be16 proto; 2874 unsigned char *addr = NULL; 2875 int err, reserve = 0; 2876 struct sockcm_cookie sockc; 2877 struct virtio_net_hdr vnet_hdr = { 0 }; 2878 int offset = 0; 2879 struct packet_sock *po = pkt_sk(sk); 2880 bool has_vnet_hdr = false; 2881 int hlen, tlen, linear; 2882 int extra_len = 0; 2883 2884 /* 2885 * Get and verify the address. 2886 */ 2887 2888 if (likely(saddr == NULL)) { 2889 dev = packet_cached_dev_get(po); 2890 proto = po->num; 2891 } else { 2892 err = -EINVAL; 2893 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2894 goto out; 2895 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2896 goto out; 2897 proto = saddr->sll_protocol; 2898 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2899 if (sock->type == SOCK_DGRAM) { 2900 if (dev && msg->msg_namelen < dev->addr_len + 2901 offsetof(struct sockaddr_ll, sll_addr)) 2902 goto out_unlock; 2903 addr = saddr->sll_addr; 2904 } 2905 } 2906 2907 err = -ENXIO; 2908 if (unlikely(dev == NULL)) 2909 goto out_unlock; 2910 err = -ENETDOWN; 2911 if (unlikely(!(dev->flags & IFF_UP))) 2912 goto out_unlock; 2913 2914 sockcm_init(&sockc, sk); 2915 sockc.mark = sk->sk_mark; 2916 if (msg->msg_controllen) { 2917 err = sock_cmsg_send(sk, msg, &sockc); 2918 if (unlikely(err)) 2919 goto out_unlock; 2920 } 2921 2922 if (sock->type == SOCK_RAW) 2923 reserve = dev->hard_header_len; 2924 if (po->has_vnet_hdr) { 2925 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr); 2926 if (err) 2927 goto out_unlock; 2928 has_vnet_hdr = true; 2929 } 2930 2931 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 2932 if (!netif_supports_nofcs(dev)) { 2933 err = -EPROTONOSUPPORT; 2934 goto out_unlock; 2935 } 2936 extra_len = 4; /* We're doing our own CRC */ 2937 } 2938 2939 err = -EMSGSIZE; 2940 if (!vnet_hdr.gso_type && 2941 (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) 2942 goto out_unlock; 2943 2944 err = -ENOBUFS; 2945 hlen = LL_RESERVED_SPACE(dev); 2946 tlen = dev->needed_tailroom; 2947 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len); 2948 linear = max(linear, min_t(int, len, dev->hard_header_len)); 2949 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear, 2950 msg->msg_flags & MSG_DONTWAIT, &err); 2951 if (skb == NULL) 2952 goto out_unlock; 2953 2954 skb_reset_network_header(skb); 2955 2956 err = -EINVAL; 2957 if (sock->type == SOCK_DGRAM) { 2958 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); 2959 if (unlikely(offset < 0)) 2960 goto out_free; 2961 } else if (reserve) { 2962 skb_reserve(skb, -reserve); 2963 if (len < reserve + sizeof(struct ipv6hdr) && 2964 dev->min_header_len != dev->hard_header_len) 2965 skb_reset_network_header(skb); 2966 } 2967 2968 /* Returns -EFAULT on error */ 2969 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); 2970 if (err) 2971 goto out_free; 2972 2973 if (sock->type == SOCK_RAW && 2974 !dev_validate_header(dev, skb->data, len)) { 2975 err = -EINVAL; 2976 goto out_free; 2977 } 2978 2979 skb_setup_tx_timestamp(skb, sockc.tsflags); 2980 2981 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) && 2982 !packet_extra_vlan_len_allowed(dev, skb)) { 2983 err = -EMSGSIZE; 2984 goto out_free; 2985 } 2986 2987 skb->protocol = proto; 2988 skb->dev = dev; 2989 skb->priority = sk->sk_priority; 2990 skb->mark = sockc.mark; 2991 skb->tstamp = sockc.transmit_time; 2992 2993 if (has_vnet_hdr) { 2994 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le()); 2995 if (err) 2996 goto out_free; 2997 len += sizeof(vnet_hdr); 2998 virtio_net_hdr_set_proto(skb, &vnet_hdr); 2999 } 3000 3001 packet_parse_headers(skb, sock); 3002 3003 if (unlikely(extra_len == 4)) 3004 skb->no_fcs = 1; 3005 3006 err = po->xmit(skb); 3007 if (err > 0 && (err = net_xmit_errno(err)) != 0) 3008 goto out_unlock; 3009 3010 dev_put(dev); 3011 3012 return len; 3013 3014 out_free: 3015 kfree_skb(skb); 3016 out_unlock: 3017 if (dev) 3018 dev_put(dev); 3019 out: 3020 return err; 3021 } 3022 3023 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 3024 { 3025 struct sock *sk = sock->sk; 3026 struct packet_sock *po = pkt_sk(sk); 3027 3028 if (po->tx_ring.pg_vec) 3029 return tpacket_snd(po, msg); 3030 else 3031 return packet_snd(sock, msg, len); 3032 } 3033 3034 /* 3035 * Close a PACKET socket. This is fairly simple. We immediately go 3036 * to 'closed' state and remove our protocol entry in the device list. 3037 */ 3038 3039 static int packet_release(struct socket *sock) 3040 { 3041 struct sock *sk = sock->sk; 3042 struct packet_sock *po; 3043 struct packet_fanout *f; 3044 struct net *net; 3045 union tpacket_req_u req_u; 3046 3047 if (!sk) 3048 return 0; 3049 3050 net = sock_net(sk); 3051 po = pkt_sk(sk); 3052 3053 mutex_lock(&net->packet.sklist_lock); 3054 sk_del_node_init_rcu(sk); 3055 mutex_unlock(&net->packet.sklist_lock); 3056 3057 preempt_disable(); 3058 sock_prot_inuse_add(net, sk->sk_prot, -1); 3059 preempt_enable(); 3060 3061 spin_lock(&po->bind_lock); 3062 unregister_prot_hook(sk, false); 3063 packet_cached_dev_reset(po); 3064 3065 if (po->prot_hook.dev) { 3066 dev_put(po->prot_hook.dev); 3067 po->prot_hook.dev = NULL; 3068 } 3069 spin_unlock(&po->bind_lock); 3070 3071 packet_flush_mclist(sk); 3072 3073 lock_sock(sk); 3074 if (po->rx_ring.pg_vec) { 3075 memset(&req_u, 0, sizeof(req_u)); 3076 packet_set_ring(sk, &req_u, 1, 0); 3077 } 3078 3079 if (po->tx_ring.pg_vec) { 3080 memset(&req_u, 0, sizeof(req_u)); 3081 packet_set_ring(sk, &req_u, 1, 1); 3082 } 3083 release_sock(sk); 3084 3085 f = fanout_release(sk); 3086 3087 synchronize_net(); 3088 3089 kfree(po->rollover); 3090 if (f) { 3091 fanout_release_data(f); 3092 kvfree(f); 3093 } 3094 /* 3095 * Now the socket is dead. No more input will appear. 3096 */ 3097 sock_orphan(sk); 3098 sock->sk = NULL; 3099 3100 /* Purge queues */ 3101 3102 skb_queue_purge(&sk->sk_receive_queue); 3103 packet_free_pending(po); 3104 sk_refcnt_debug_release(sk); 3105 3106 sock_put(sk); 3107 return 0; 3108 } 3109 3110 /* 3111 * Attach a packet hook. 3112 */ 3113 3114 static int packet_do_bind(struct sock *sk, const char *name, int ifindex, 3115 __be16 proto) 3116 { 3117 struct packet_sock *po = pkt_sk(sk); 3118 struct net_device *dev_curr; 3119 __be16 proto_curr; 3120 bool need_rehook; 3121 struct net_device *dev = NULL; 3122 int ret = 0; 3123 bool unlisted = false; 3124 3125 lock_sock(sk); 3126 spin_lock(&po->bind_lock); 3127 rcu_read_lock(); 3128 3129 if (po->fanout) { 3130 ret = -EINVAL; 3131 goto out_unlock; 3132 } 3133 3134 if (name) { 3135 dev = dev_get_by_name_rcu(sock_net(sk), name); 3136 if (!dev) { 3137 ret = -ENODEV; 3138 goto out_unlock; 3139 } 3140 } else if (ifindex) { 3141 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3142 if (!dev) { 3143 ret = -ENODEV; 3144 goto out_unlock; 3145 } 3146 } 3147 3148 if (dev) 3149 dev_hold(dev); 3150 3151 proto_curr = po->prot_hook.type; 3152 dev_curr = po->prot_hook.dev; 3153 3154 need_rehook = proto_curr != proto || dev_curr != dev; 3155 3156 if (need_rehook) { 3157 if (po->running) { 3158 rcu_read_unlock(); 3159 /* prevents packet_notifier() from calling 3160 * register_prot_hook() 3161 */ 3162 po->num = 0; 3163 __unregister_prot_hook(sk, true); 3164 rcu_read_lock(); 3165 dev_curr = po->prot_hook.dev; 3166 if (dev) 3167 unlisted = !dev_get_by_index_rcu(sock_net(sk), 3168 dev->ifindex); 3169 } 3170 3171 BUG_ON(po->running); 3172 po->num = proto; 3173 po->prot_hook.type = proto; 3174 3175 if (unlikely(unlisted)) { 3176 dev_put(dev); 3177 po->prot_hook.dev = NULL; 3178 po->ifindex = -1; 3179 packet_cached_dev_reset(po); 3180 } else { 3181 po->prot_hook.dev = dev; 3182 po->ifindex = dev ? dev->ifindex : 0; 3183 packet_cached_dev_assign(po, dev); 3184 } 3185 } 3186 if (dev_curr) 3187 dev_put(dev_curr); 3188 3189 if (proto == 0 || !need_rehook) 3190 goto out_unlock; 3191 3192 if (!unlisted && (!dev || (dev->flags & IFF_UP))) { 3193 register_prot_hook(sk); 3194 } else { 3195 sk->sk_err = ENETDOWN; 3196 if (!sock_flag(sk, SOCK_DEAD)) 3197 sk->sk_error_report(sk); 3198 } 3199 3200 out_unlock: 3201 rcu_read_unlock(); 3202 spin_unlock(&po->bind_lock); 3203 release_sock(sk); 3204 return ret; 3205 } 3206 3207 /* 3208 * Bind a packet socket to a device 3209 */ 3210 3211 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 3212 int addr_len) 3213 { 3214 struct sock *sk = sock->sk; 3215 char name[sizeof(uaddr->sa_data) + 1]; 3216 3217 /* 3218 * Check legality 3219 */ 3220 3221 if (addr_len != sizeof(struct sockaddr)) 3222 return -EINVAL; 3223 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be 3224 * zero-terminated. 3225 */ 3226 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data)); 3227 name[sizeof(uaddr->sa_data)] = 0; 3228 3229 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num); 3230 } 3231 3232 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3233 { 3234 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 3235 struct sock *sk = sock->sk; 3236 3237 /* 3238 * Check legality 3239 */ 3240 3241 if (addr_len < sizeof(struct sockaddr_ll)) 3242 return -EINVAL; 3243 if (sll->sll_family != AF_PACKET) 3244 return -EINVAL; 3245 3246 return packet_do_bind(sk, NULL, sll->sll_ifindex, 3247 sll->sll_protocol ? : pkt_sk(sk)->num); 3248 } 3249 3250 static struct proto packet_proto = { 3251 .name = "PACKET", 3252 .owner = THIS_MODULE, 3253 .obj_size = sizeof(struct packet_sock), 3254 }; 3255 3256 /* 3257 * Create a packet of type SOCK_PACKET. 3258 */ 3259 3260 static int packet_create(struct net *net, struct socket *sock, int protocol, 3261 int kern) 3262 { 3263 struct sock *sk; 3264 struct packet_sock *po; 3265 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 3266 int err; 3267 3268 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 3269 return -EPERM; 3270 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 3271 sock->type != SOCK_PACKET) 3272 return -ESOCKTNOSUPPORT; 3273 3274 sock->state = SS_UNCONNECTED; 3275 3276 err = -ENOBUFS; 3277 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); 3278 if (sk == NULL) 3279 goto out; 3280 3281 sock->ops = &packet_ops; 3282 if (sock->type == SOCK_PACKET) 3283 sock->ops = &packet_ops_spkt; 3284 3285 sock_init_data(sock, sk); 3286 3287 po = pkt_sk(sk); 3288 init_completion(&po->skb_completion); 3289 sk->sk_family = PF_PACKET; 3290 po->num = proto; 3291 po->xmit = dev_queue_xmit; 3292 3293 err = packet_alloc_pending(po); 3294 if (err) 3295 goto out2; 3296 3297 packet_cached_dev_reset(po); 3298 3299 sk->sk_destruct = packet_sock_destruct; 3300 sk_refcnt_debug_inc(sk); 3301 3302 /* 3303 * Attach a protocol block 3304 */ 3305 3306 spin_lock_init(&po->bind_lock); 3307 mutex_init(&po->pg_vec_lock); 3308 po->rollover = NULL; 3309 po->prot_hook.func = packet_rcv; 3310 3311 if (sock->type == SOCK_PACKET) 3312 po->prot_hook.func = packet_rcv_spkt; 3313 3314 po->prot_hook.af_packet_priv = sk; 3315 3316 if (proto) { 3317 po->prot_hook.type = proto; 3318 __register_prot_hook(sk); 3319 } 3320 3321 mutex_lock(&net->packet.sklist_lock); 3322 sk_add_node_tail_rcu(sk, &net->packet.sklist); 3323 mutex_unlock(&net->packet.sklist_lock); 3324 3325 preempt_disable(); 3326 sock_prot_inuse_add(net, &packet_proto, 1); 3327 preempt_enable(); 3328 3329 return 0; 3330 out2: 3331 sk_free(sk); 3332 out: 3333 return err; 3334 } 3335 3336 /* 3337 * Pull a packet from our receive queue and hand it to the user. 3338 * If necessary we block. 3339 */ 3340 3341 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 3342 int flags) 3343 { 3344 struct sock *sk = sock->sk; 3345 struct sk_buff *skb; 3346 int copied, err; 3347 int vnet_hdr_len = 0; 3348 unsigned int origlen = 0; 3349 3350 err = -EINVAL; 3351 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 3352 goto out; 3353 3354 #if 0 3355 /* What error should we return now? EUNATTACH? */ 3356 if (pkt_sk(sk)->ifindex < 0) 3357 return -ENODEV; 3358 #endif 3359 3360 if (flags & MSG_ERRQUEUE) { 3361 err = sock_recv_errqueue(sk, msg, len, 3362 SOL_PACKET, PACKET_TX_TIMESTAMP); 3363 goto out; 3364 } 3365 3366 /* 3367 * Call the generic datagram receiver. This handles all sorts 3368 * of horrible races and re-entrancy so we can forget about it 3369 * in the protocol layers. 3370 * 3371 * Now it will return ENETDOWN, if device have just gone down, 3372 * but then it will block. 3373 */ 3374 3375 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 3376 3377 /* 3378 * An error occurred so return it. Because skb_recv_datagram() 3379 * handles the blocking we don't see and worry about blocking 3380 * retries. 3381 */ 3382 3383 if (skb == NULL) 3384 goto out; 3385 3386 packet_rcv_try_clear_pressure(pkt_sk(sk)); 3387 3388 if (pkt_sk(sk)->has_vnet_hdr) { 3389 err = packet_rcv_vnet(msg, skb, &len); 3390 if (err) 3391 goto out_free; 3392 vnet_hdr_len = sizeof(struct virtio_net_hdr); 3393 } 3394 3395 /* You lose any data beyond the buffer you gave. If it worries 3396 * a user program they can ask the device for its MTU 3397 * anyway. 3398 */ 3399 copied = skb->len; 3400 if (copied > len) { 3401 copied = len; 3402 msg->msg_flags |= MSG_TRUNC; 3403 } 3404 3405 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3406 if (err) 3407 goto out_free; 3408 3409 if (sock->type != SOCK_PACKET) { 3410 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3411 3412 /* Original length was stored in sockaddr_ll fields */ 3413 origlen = PACKET_SKB_CB(skb)->sa.origlen; 3414 sll->sll_family = AF_PACKET; 3415 sll->sll_protocol = skb->protocol; 3416 } 3417 3418 sock_recv_ts_and_drops(msg, sk, skb); 3419 3420 if (msg->msg_name) { 3421 int copy_len; 3422 3423 /* If the address length field is there to be filled 3424 * in, we fill it in now. 3425 */ 3426 if (sock->type == SOCK_PACKET) { 3427 __sockaddr_check_size(sizeof(struct sockaddr_pkt)); 3428 msg->msg_namelen = sizeof(struct sockaddr_pkt); 3429 copy_len = msg->msg_namelen; 3430 } else { 3431 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3432 3433 msg->msg_namelen = sll->sll_halen + 3434 offsetof(struct sockaddr_ll, sll_addr); 3435 copy_len = msg->msg_namelen; 3436 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) { 3437 memset(msg->msg_name + 3438 offsetof(struct sockaddr_ll, sll_addr), 3439 0, sizeof(sll->sll_addr)); 3440 msg->msg_namelen = sizeof(struct sockaddr_ll); 3441 } 3442 } 3443 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len); 3444 } 3445 3446 if (pkt_sk(sk)->auxdata) { 3447 struct tpacket_auxdata aux; 3448 3449 aux.tp_status = TP_STATUS_USER; 3450 if (skb->ip_summed == CHECKSUM_PARTIAL) 3451 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 3452 else if (skb->pkt_type != PACKET_OUTGOING && 3453 (skb->ip_summed == CHECKSUM_COMPLETE || 3454 skb_csum_unnecessary(skb))) 3455 aux.tp_status |= TP_STATUS_CSUM_VALID; 3456 3457 aux.tp_len = origlen; 3458 aux.tp_snaplen = skb->len; 3459 aux.tp_mac = 0; 3460 aux.tp_net = skb_network_offset(skb); 3461 if (skb_vlan_tag_present(skb)) { 3462 aux.tp_vlan_tci = skb_vlan_tag_get(skb); 3463 aux.tp_vlan_tpid = ntohs(skb->vlan_proto); 3464 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 3465 } else { 3466 aux.tp_vlan_tci = 0; 3467 aux.tp_vlan_tpid = 0; 3468 } 3469 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 3470 } 3471 3472 /* 3473 * Free or return the buffer as appropriate. Again this 3474 * hides all the races and re-entrancy issues from us. 3475 */ 3476 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 3477 3478 out_free: 3479 skb_free_datagram(sk, skb); 3480 out: 3481 return err; 3482 } 3483 3484 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 3485 int peer) 3486 { 3487 struct net_device *dev; 3488 struct sock *sk = sock->sk; 3489 3490 if (peer) 3491 return -EOPNOTSUPP; 3492 3493 uaddr->sa_family = AF_PACKET; 3494 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data)); 3495 rcu_read_lock(); 3496 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex); 3497 if (dev) 3498 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data)); 3499 rcu_read_unlock(); 3500 3501 return sizeof(*uaddr); 3502 } 3503 3504 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 3505 int peer) 3506 { 3507 struct net_device *dev; 3508 struct sock *sk = sock->sk; 3509 struct packet_sock *po = pkt_sk(sk); 3510 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 3511 3512 if (peer) 3513 return -EOPNOTSUPP; 3514 3515 sll->sll_family = AF_PACKET; 3516 sll->sll_ifindex = po->ifindex; 3517 sll->sll_protocol = po->num; 3518 sll->sll_pkttype = 0; 3519 rcu_read_lock(); 3520 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex); 3521 if (dev) { 3522 sll->sll_hatype = dev->type; 3523 sll->sll_halen = dev->addr_len; 3524 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 3525 } else { 3526 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 3527 sll->sll_halen = 0; 3528 } 3529 rcu_read_unlock(); 3530 3531 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 3532 } 3533 3534 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 3535 int what) 3536 { 3537 switch (i->type) { 3538 case PACKET_MR_MULTICAST: 3539 if (i->alen != dev->addr_len) 3540 return -EINVAL; 3541 if (what > 0) 3542 return dev_mc_add(dev, i->addr); 3543 else 3544 return dev_mc_del(dev, i->addr); 3545 break; 3546 case PACKET_MR_PROMISC: 3547 return dev_set_promiscuity(dev, what); 3548 case PACKET_MR_ALLMULTI: 3549 return dev_set_allmulti(dev, what); 3550 case PACKET_MR_UNICAST: 3551 if (i->alen != dev->addr_len) 3552 return -EINVAL; 3553 if (what > 0) 3554 return dev_uc_add(dev, i->addr); 3555 else 3556 return dev_uc_del(dev, i->addr); 3557 break; 3558 default: 3559 break; 3560 } 3561 return 0; 3562 } 3563 3564 static void packet_dev_mclist_delete(struct net_device *dev, 3565 struct packet_mclist **mlp) 3566 { 3567 struct packet_mclist *ml; 3568 3569 while ((ml = *mlp) != NULL) { 3570 if (ml->ifindex == dev->ifindex) { 3571 packet_dev_mc(dev, ml, -1); 3572 *mlp = ml->next; 3573 kfree(ml); 3574 } else 3575 mlp = &ml->next; 3576 } 3577 } 3578 3579 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 3580 { 3581 struct packet_sock *po = pkt_sk(sk); 3582 struct packet_mclist *ml, *i; 3583 struct net_device *dev; 3584 int err; 3585 3586 rtnl_lock(); 3587 3588 err = -ENODEV; 3589 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 3590 if (!dev) 3591 goto done; 3592 3593 err = -EINVAL; 3594 if (mreq->mr_alen > dev->addr_len) 3595 goto done; 3596 3597 err = -ENOBUFS; 3598 i = kmalloc(sizeof(*i), GFP_KERNEL); 3599 if (i == NULL) 3600 goto done; 3601 3602 err = 0; 3603 for (ml = po->mclist; ml; ml = ml->next) { 3604 if (ml->ifindex == mreq->mr_ifindex && 3605 ml->type == mreq->mr_type && 3606 ml->alen == mreq->mr_alen && 3607 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3608 ml->count++; 3609 /* Free the new element ... */ 3610 kfree(i); 3611 goto done; 3612 } 3613 } 3614 3615 i->type = mreq->mr_type; 3616 i->ifindex = mreq->mr_ifindex; 3617 i->alen = mreq->mr_alen; 3618 memcpy(i->addr, mreq->mr_address, i->alen); 3619 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen); 3620 i->count = 1; 3621 i->next = po->mclist; 3622 po->mclist = i; 3623 err = packet_dev_mc(dev, i, 1); 3624 if (err) { 3625 po->mclist = i->next; 3626 kfree(i); 3627 } 3628 3629 done: 3630 rtnl_unlock(); 3631 return err; 3632 } 3633 3634 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 3635 { 3636 struct packet_mclist *ml, **mlp; 3637 3638 rtnl_lock(); 3639 3640 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 3641 if (ml->ifindex == mreq->mr_ifindex && 3642 ml->type == mreq->mr_type && 3643 ml->alen == mreq->mr_alen && 3644 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3645 if (--ml->count == 0) { 3646 struct net_device *dev; 3647 *mlp = ml->next; 3648 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3649 if (dev) 3650 packet_dev_mc(dev, ml, -1); 3651 kfree(ml); 3652 } 3653 break; 3654 } 3655 } 3656 rtnl_unlock(); 3657 return 0; 3658 } 3659 3660 static void packet_flush_mclist(struct sock *sk) 3661 { 3662 struct packet_sock *po = pkt_sk(sk); 3663 struct packet_mclist *ml; 3664 3665 if (!po->mclist) 3666 return; 3667 3668 rtnl_lock(); 3669 while ((ml = po->mclist) != NULL) { 3670 struct net_device *dev; 3671 3672 po->mclist = ml->next; 3673 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3674 if (dev != NULL) 3675 packet_dev_mc(dev, ml, -1); 3676 kfree(ml); 3677 } 3678 rtnl_unlock(); 3679 } 3680 3681 static int 3682 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, 3683 unsigned int optlen) 3684 { 3685 struct sock *sk = sock->sk; 3686 struct packet_sock *po = pkt_sk(sk); 3687 int ret; 3688 3689 if (level != SOL_PACKET) 3690 return -ENOPROTOOPT; 3691 3692 switch (optname) { 3693 case PACKET_ADD_MEMBERSHIP: 3694 case PACKET_DROP_MEMBERSHIP: 3695 { 3696 struct packet_mreq_max mreq; 3697 int len = optlen; 3698 memset(&mreq, 0, sizeof(mreq)); 3699 if (len < sizeof(struct packet_mreq)) 3700 return -EINVAL; 3701 if (len > sizeof(mreq)) 3702 len = sizeof(mreq); 3703 if (copy_from_sockptr(&mreq, optval, len)) 3704 return -EFAULT; 3705 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3706 return -EINVAL; 3707 if (optname == PACKET_ADD_MEMBERSHIP) 3708 ret = packet_mc_add(sk, &mreq); 3709 else 3710 ret = packet_mc_drop(sk, &mreq); 3711 return ret; 3712 } 3713 3714 case PACKET_RX_RING: 3715 case PACKET_TX_RING: 3716 { 3717 union tpacket_req_u req_u; 3718 int len; 3719 3720 lock_sock(sk); 3721 switch (po->tp_version) { 3722 case TPACKET_V1: 3723 case TPACKET_V2: 3724 len = sizeof(req_u.req); 3725 break; 3726 case TPACKET_V3: 3727 default: 3728 len = sizeof(req_u.req3); 3729 break; 3730 } 3731 if (optlen < len) { 3732 ret = -EINVAL; 3733 } else { 3734 if (copy_from_sockptr(&req_u.req, optval, len)) 3735 ret = -EFAULT; 3736 else 3737 ret = packet_set_ring(sk, &req_u, 0, 3738 optname == PACKET_TX_RING); 3739 } 3740 release_sock(sk); 3741 return ret; 3742 } 3743 case PACKET_COPY_THRESH: 3744 { 3745 int val; 3746 3747 if (optlen != sizeof(val)) 3748 return -EINVAL; 3749 if (copy_from_sockptr(&val, optval, sizeof(val))) 3750 return -EFAULT; 3751 3752 pkt_sk(sk)->copy_thresh = val; 3753 return 0; 3754 } 3755 case PACKET_VERSION: 3756 { 3757 int val; 3758 3759 if (optlen != sizeof(val)) 3760 return -EINVAL; 3761 if (copy_from_sockptr(&val, optval, sizeof(val))) 3762 return -EFAULT; 3763 switch (val) { 3764 case TPACKET_V1: 3765 case TPACKET_V2: 3766 case TPACKET_V3: 3767 break; 3768 default: 3769 return -EINVAL; 3770 } 3771 lock_sock(sk); 3772 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3773 ret = -EBUSY; 3774 } else { 3775 po->tp_version = val; 3776 ret = 0; 3777 } 3778 release_sock(sk); 3779 return ret; 3780 } 3781 case PACKET_RESERVE: 3782 { 3783 unsigned int val; 3784 3785 if (optlen != sizeof(val)) 3786 return -EINVAL; 3787 if (copy_from_sockptr(&val, optval, sizeof(val))) 3788 return -EFAULT; 3789 if (val > INT_MAX) 3790 return -EINVAL; 3791 lock_sock(sk); 3792 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3793 ret = -EBUSY; 3794 } else { 3795 po->tp_reserve = val; 3796 ret = 0; 3797 } 3798 release_sock(sk); 3799 return ret; 3800 } 3801 case PACKET_LOSS: 3802 { 3803 unsigned int val; 3804 3805 if (optlen != sizeof(val)) 3806 return -EINVAL; 3807 if (copy_from_sockptr(&val, optval, sizeof(val))) 3808 return -EFAULT; 3809 3810 lock_sock(sk); 3811 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3812 ret = -EBUSY; 3813 } else { 3814 po->tp_loss = !!val; 3815 ret = 0; 3816 } 3817 release_sock(sk); 3818 return ret; 3819 } 3820 case PACKET_AUXDATA: 3821 { 3822 int val; 3823 3824 if (optlen < sizeof(val)) 3825 return -EINVAL; 3826 if (copy_from_sockptr(&val, optval, sizeof(val))) 3827 return -EFAULT; 3828 3829 lock_sock(sk); 3830 po->auxdata = !!val; 3831 release_sock(sk); 3832 return 0; 3833 } 3834 case PACKET_ORIGDEV: 3835 { 3836 int val; 3837 3838 if (optlen < sizeof(val)) 3839 return -EINVAL; 3840 if (copy_from_sockptr(&val, optval, sizeof(val))) 3841 return -EFAULT; 3842 3843 lock_sock(sk); 3844 po->origdev = !!val; 3845 release_sock(sk); 3846 return 0; 3847 } 3848 case PACKET_VNET_HDR: 3849 { 3850 int val; 3851 3852 if (sock->type != SOCK_RAW) 3853 return -EINVAL; 3854 if (optlen < sizeof(val)) 3855 return -EINVAL; 3856 if (copy_from_sockptr(&val, optval, sizeof(val))) 3857 return -EFAULT; 3858 3859 lock_sock(sk); 3860 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3861 ret = -EBUSY; 3862 } else { 3863 po->has_vnet_hdr = !!val; 3864 ret = 0; 3865 } 3866 release_sock(sk); 3867 return ret; 3868 } 3869 case PACKET_TIMESTAMP: 3870 { 3871 int val; 3872 3873 if (optlen != sizeof(val)) 3874 return -EINVAL; 3875 if (copy_from_sockptr(&val, optval, sizeof(val))) 3876 return -EFAULT; 3877 3878 po->tp_tstamp = val; 3879 return 0; 3880 } 3881 case PACKET_FANOUT: 3882 { 3883 struct fanout_args args = { 0 }; 3884 3885 if (optlen != sizeof(int) && optlen != sizeof(args)) 3886 return -EINVAL; 3887 if (copy_from_sockptr(&args, optval, optlen)) 3888 return -EFAULT; 3889 3890 return fanout_add(sk, &args); 3891 } 3892 case PACKET_FANOUT_DATA: 3893 { 3894 if (!po->fanout) 3895 return -EINVAL; 3896 3897 return fanout_set_data(po, optval, optlen); 3898 } 3899 case PACKET_IGNORE_OUTGOING: 3900 { 3901 int val; 3902 3903 if (optlen != sizeof(val)) 3904 return -EINVAL; 3905 if (copy_from_sockptr(&val, optval, sizeof(val))) 3906 return -EFAULT; 3907 if (val < 0 || val > 1) 3908 return -EINVAL; 3909 3910 po->prot_hook.ignore_outgoing = !!val; 3911 return 0; 3912 } 3913 case PACKET_TX_HAS_OFF: 3914 { 3915 unsigned int val; 3916 3917 if (optlen != sizeof(val)) 3918 return -EINVAL; 3919 if (copy_from_sockptr(&val, optval, sizeof(val))) 3920 return -EFAULT; 3921 3922 lock_sock(sk); 3923 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3924 ret = -EBUSY; 3925 } else { 3926 po->tp_tx_has_off = !!val; 3927 ret = 0; 3928 } 3929 release_sock(sk); 3930 return 0; 3931 } 3932 case PACKET_QDISC_BYPASS: 3933 { 3934 int val; 3935 3936 if (optlen != sizeof(val)) 3937 return -EINVAL; 3938 if (copy_from_sockptr(&val, optval, sizeof(val))) 3939 return -EFAULT; 3940 3941 po->xmit = val ? packet_direct_xmit : dev_queue_xmit; 3942 return 0; 3943 } 3944 default: 3945 return -ENOPROTOOPT; 3946 } 3947 } 3948 3949 static int packet_getsockopt(struct socket *sock, int level, int optname, 3950 char __user *optval, int __user *optlen) 3951 { 3952 int len; 3953 int val, lv = sizeof(val); 3954 struct sock *sk = sock->sk; 3955 struct packet_sock *po = pkt_sk(sk); 3956 void *data = &val; 3957 union tpacket_stats_u st; 3958 struct tpacket_rollover_stats rstats; 3959 int drops; 3960 3961 if (level != SOL_PACKET) 3962 return -ENOPROTOOPT; 3963 3964 if (get_user(len, optlen)) 3965 return -EFAULT; 3966 3967 if (len < 0) 3968 return -EINVAL; 3969 3970 switch (optname) { 3971 case PACKET_STATISTICS: 3972 spin_lock_bh(&sk->sk_receive_queue.lock); 3973 memcpy(&st, &po->stats, sizeof(st)); 3974 memset(&po->stats, 0, sizeof(po->stats)); 3975 spin_unlock_bh(&sk->sk_receive_queue.lock); 3976 drops = atomic_xchg(&po->tp_drops, 0); 3977 3978 if (po->tp_version == TPACKET_V3) { 3979 lv = sizeof(struct tpacket_stats_v3); 3980 st.stats3.tp_drops = drops; 3981 st.stats3.tp_packets += drops; 3982 data = &st.stats3; 3983 } else { 3984 lv = sizeof(struct tpacket_stats); 3985 st.stats1.tp_drops = drops; 3986 st.stats1.tp_packets += drops; 3987 data = &st.stats1; 3988 } 3989 3990 break; 3991 case PACKET_AUXDATA: 3992 val = po->auxdata; 3993 break; 3994 case PACKET_ORIGDEV: 3995 val = po->origdev; 3996 break; 3997 case PACKET_VNET_HDR: 3998 val = po->has_vnet_hdr; 3999 break; 4000 case PACKET_VERSION: 4001 val = po->tp_version; 4002 break; 4003 case PACKET_HDRLEN: 4004 if (len > sizeof(int)) 4005 len = sizeof(int); 4006 if (len < sizeof(int)) 4007 return -EINVAL; 4008 if (copy_from_user(&val, optval, len)) 4009 return -EFAULT; 4010 switch (val) { 4011 case TPACKET_V1: 4012 val = sizeof(struct tpacket_hdr); 4013 break; 4014 case TPACKET_V2: 4015 val = sizeof(struct tpacket2_hdr); 4016 break; 4017 case TPACKET_V3: 4018 val = sizeof(struct tpacket3_hdr); 4019 break; 4020 default: 4021 return -EINVAL; 4022 } 4023 break; 4024 case PACKET_RESERVE: 4025 val = po->tp_reserve; 4026 break; 4027 case PACKET_LOSS: 4028 val = po->tp_loss; 4029 break; 4030 case PACKET_TIMESTAMP: 4031 val = po->tp_tstamp; 4032 break; 4033 case PACKET_FANOUT: 4034 val = (po->fanout ? 4035 ((u32)po->fanout->id | 4036 ((u32)po->fanout->type << 16) | 4037 ((u32)po->fanout->flags << 24)) : 4038 0); 4039 break; 4040 case PACKET_IGNORE_OUTGOING: 4041 val = po->prot_hook.ignore_outgoing; 4042 break; 4043 case PACKET_ROLLOVER_STATS: 4044 if (!po->rollover) 4045 return -EINVAL; 4046 rstats.tp_all = atomic_long_read(&po->rollover->num); 4047 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); 4048 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); 4049 data = &rstats; 4050 lv = sizeof(rstats); 4051 break; 4052 case PACKET_TX_HAS_OFF: 4053 val = po->tp_tx_has_off; 4054 break; 4055 case PACKET_QDISC_BYPASS: 4056 val = packet_use_direct_xmit(po); 4057 break; 4058 default: 4059 return -ENOPROTOOPT; 4060 } 4061 4062 if (len > lv) 4063 len = lv; 4064 if (put_user(len, optlen)) 4065 return -EFAULT; 4066 if (copy_to_user(optval, data, len)) 4067 return -EFAULT; 4068 return 0; 4069 } 4070 4071 static int packet_notifier(struct notifier_block *this, 4072 unsigned long msg, void *ptr) 4073 { 4074 struct sock *sk; 4075 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4076 struct net *net = dev_net(dev); 4077 4078 rcu_read_lock(); 4079 sk_for_each_rcu(sk, &net->packet.sklist) { 4080 struct packet_sock *po = pkt_sk(sk); 4081 4082 switch (msg) { 4083 case NETDEV_UNREGISTER: 4084 if (po->mclist) 4085 packet_dev_mclist_delete(dev, &po->mclist); 4086 fallthrough; 4087 4088 case NETDEV_DOWN: 4089 if (dev->ifindex == po->ifindex) { 4090 spin_lock(&po->bind_lock); 4091 if (po->running) { 4092 __unregister_prot_hook(sk, false); 4093 sk->sk_err = ENETDOWN; 4094 if (!sock_flag(sk, SOCK_DEAD)) 4095 sk->sk_error_report(sk); 4096 } 4097 if (msg == NETDEV_UNREGISTER) { 4098 packet_cached_dev_reset(po); 4099 po->ifindex = -1; 4100 if (po->prot_hook.dev) 4101 dev_put(po->prot_hook.dev); 4102 po->prot_hook.dev = NULL; 4103 } 4104 spin_unlock(&po->bind_lock); 4105 } 4106 break; 4107 case NETDEV_UP: 4108 if (dev->ifindex == po->ifindex) { 4109 spin_lock(&po->bind_lock); 4110 if (po->num) 4111 register_prot_hook(sk); 4112 spin_unlock(&po->bind_lock); 4113 } 4114 break; 4115 } 4116 } 4117 rcu_read_unlock(); 4118 return NOTIFY_DONE; 4119 } 4120 4121 4122 static int packet_ioctl(struct socket *sock, unsigned int cmd, 4123 unsigned long arg) 4124 { 4125 struct sock *sk = sock->sk; 4126 4127 switch (cmd) { 4128 case SIOCOUTQ: 4129 { 4130 int amount = sk_wmem_alloc_get(sk); 4131 4132 return put_user(amount, (int __user *)arg); 4133 } 4134 case SIOCINQ: 4135 { 4136 struct sk_buff *skb; 4137 int amount = 0; 4138 4139 spin_lock_bh(&sk->sk_receive_queue.lock); 4140 skb = skb_peek(&sk->sk_receive_queue); 4141 if (skb) 4142 amount = skb->len; 4143 spin_unlock_bh(&sk->sk_receive_queue.lock); 4144 return put_user(amount, (int __user *)arg); 4145 } 4146 #ifdef CONFIG_INET 4147 case SIOCADDRT: 4148 case SIOCDELRT: 4149 case SIOCDARP: 4150 case SIOCGARP: 4151 case SIOCSARP: 4152 case SIOCGIFADDR: 4153 case SIOCSIFADDR: 4154 case SIOCGIFBRDADDR: 4155 case SIOCSIFBRDADDR: 4156 case SIOCGIFNETMASK: 4157 case SIOCSIFNETMASK: 4158 case SIOCGIFDSTADDR: 4159 case SIOCSIFDSTADDR: 4160 case SIOCSIFFLAGS: 4161 return inet_dgram_ops.ioctl(sock, cmd, arg); 4162 #endif 4163 4164 default: 4165 return -ENOIOCTLCMD; 4166 } 4167 return 0; 4168 } 4169 4170 static __poll_t packet_poll(struct file *file, struct socket *sock, 4171 poll_table *wait) 4172 { 4173 struct sock *sk = sock->sk; 4174 struct packet_sock *po = pkt_sk(sk); 4175 __poll_t mask = datagram_poll(file, sock, wait); 4176 4177 spin_lock_bh(&sk->sk_receive_queue.lock); 4178 if (po->rx_ring.pg_vec) { 4179 if (!packet_previous_rx_frame(po, &po->rx_ring, 4180 TP_STATUS_KERNEL)) 4181 mask |= EPOLLIN | EPOLLRDNORM; 4182 } 4183 packet_rcv_try_clear_pressure(po); 4184 spin_unlock_bh(&sk->sk_receive_queue.lock); 4185 spin_lock_bh(&sk->sk_write_queue.lock); 4186 if (po->tx_ring.pg_vec) { 4187 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 4188 mask |= EPOLLOUT | EPOLLWRNORM; 4189 } 4190 spin_unlock_bh(&sk->sk_write_queue.lock); 4191 return mask; 4192 } 4193 4194 4195 /* Dirty? Well, I still did not learn better way to account 4196 * for user mmaps. 4197 */ 4198 4199 static void packet_mm_open(struct vm_area_struct *vma) 4200 { 4201 struct file *file = vma->vm_file; 4202 struct socket *sock = file->private_data; 4203 struct sock *sk = sock->sk; 4204 4205 if (sk) 4206 atomic_inc(&pkt_sk(sk)->mapped); 4207 } 4208 4209 static void packet_mm_close(struct vm_area_struct *vma) 4210 { 4211 struct file *file = vma->vm_file; 4212 struct socket *sock = file->private_data; 4213 struct sock *sk = sock->sk; 4214 4215 if (sk) 4216 atomic_dec(&pkt_sk(sk)->mapped); 4217 } 4218 4219 static const struct vm_operations_struct packet_mmap_ops = { 4220 .open = packet_mm_open, 4221 .close = packet_mm_close, 4222 }; 4223 4224 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 4225 unsigned int len) 4226 { 4227 int i; 4228 4229 for (i = 0; i < len; i++) { 4230 if (likely(pg_vec[i].buffer)) { 4231 if (is_vmalloc_addr(pg_vec[i].buffer)) 4232 vfree(pg_vec[i].buffer); 4233 else 4234 free_pages((unsigned long)pg_vec[i].buffer, 4235 order); 4236 pg_vec[i].buffer = NULL; 4237 } 4238 } 4239 kfree(pg_vec); 4240 } 4241 4242 static char *alloc_one_pg_vec_page(unsigned long order) 4243 { 4244 char *buffer; 4245 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 4246 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 4247 4248 buffer = (char *) __get_free_pages(gfp_flags, order); 4249 if (buffer) 4250 return buffer; 4251 4252 /* __get_free_pages failed, fall back to vmalloc */ 4253 buffer = vzalloc(array_size((1 << order), PAGE_SIZE)); 4254 if (buffer) 4255 return buffer; 4256 4257 /* vmalloc failed, lets dig into swap here */ 4258 gfp_flags &= ~__GFP_NORETRY; 4259 buffer = (char *) __get_free_pages(gfp_flags, order); 4260 if (buffer) 4261 return buffer; 4262 4263 /* complete and utter failure */ 4264 return NULL; 4265 } 4266 4267 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 4268 { 4269 unsigned int block_nr = req->tp_block_nr; 4270 struct pgv *pg_vec; 4271 int i; 4272 4273 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN); 4274 if (unlikely(!pg_vec)) 4275 goto out; 4276 4277 for (i = 0; i < block_nr; i++) { 4278 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 4279 if (unlikely(!pg_vec[i].buffer)) 4280 goto out_free_pgvec; 4281 } 4282 4283 out: 4284 return pg_vec; 4285 4286 out_free_pgvec: 4287 free_pg_vec(pg_vec, order, block_nr); 4288 pg_vec = NULL; 4289 goto out; 4290 } 4291 4292 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 4293 int closing, int tx_ring) 4294 { 4295 struct pgv *pg_vec = NULL; 4296 struct packet_sock *po = pkt_sk(sk); 4297 unsigned long *rx_owner_map = NULL; 4298 int was_running, order = 0; 4299 struct packet_ring_buffer *rb; 4300 struct sk_buff_head *rb_queue; 4301 __be16 num; 4302 int err; 4303 /* Added to avoid minimal code churn */ 4304 struct tpacket_req *req = &req_u->req; 4305 4306 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 4307 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 4308 4309 err = -EBUSY; 4310 if (!closing) { 4311 if (atomic_read(&po->mapped)) 4312 goto out; 4313 if (packet_read_pending(rb)) 4314 goto out; 4315 } 4316 4317 if (req->tp_block_nr) { 4318 unsigned int min_frame_size; 4319 4320 /* Sanity tests and some calculations */ 4321 err = -EBUSY; 4322 if (unlikely(rb->pg_vec)) 4323 goto out; 4324 4325 switch (po->tp_version) { 4326 case TPACKET_V1: 4327 po->tp_hdrlen = TPACKET_HDRLEN; 4328 break; 4329 case TPACKET_V2: 4330 po->tp_hdrlen = TPACKET2_HDRLEN; 4331 break; 4332 case TPACKET_V3: 4333 po->tp_hdrlen = TPACKET3_HDRLEN; 4334 break; 4335 } 4336 4337 err = -EINVAL; 4338 if (unlikely((int)req->tp_block_size <= 0)) 4339 goto out; 4340 if (unlikely(!PAGE_ALIGNED(req->tp_block_size))) 4341 goto out; 4342 min_frame_size = po->tp_hdrlen + po->tp_reserve; 4343 if (po->tp_version >= TPACKET_V3 && 4344 req->tp_block_size < 4345 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size) 4346 goto out; 4347 if (unlikely(req->tp_frame_size < min_frame_size)) 4348 goto out; 4349 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 4350 goto out; 4351 4352 rb->frames_per_block = req->tp_block_size / req->tp_frame_size; 4353 if (unlikely(rb->frames_per_block == 0)) 4354 goto out; 4355 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr)) 4356 goto out; 4357 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 4358 req->tp_frame_nr)) 4359 goto out; 4360 4361 err = -ENOMEM; 4362 order = get_order(req->tp_block_size); 4363 pg_vec = alloc_pg_vec(req, order); 4364 if (unlikely(!pg_vec)) 4365 goto out; 4366 switch (po->tp_version) { 4367 case TPACKET_V3: 4368 /* Block transmit is not supported yet */ 4369 if (!tx_ring) { 4370 init_prb_bdqc(po, rb, pg_vec, req_u); 4371 } else { 4372 struct tpacket_req3 *req3 = &req_u->req3; 4373 4374 if (req3->tp_retire_blk_tov || 4375 req3->tp_sizeof_priv || 4376 req3->tp_feature_req_word) { 4377 err = -EINVAL; 4378 goto out_free_pg_vec; 4379 } 4380 } 4381 break; 4382 default: 4383 if (!tx_ring) { 4384 rx_owner_map = bitmap_alloc(req->tp_frame_nr, 4385 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); 4386 if (!rx_owner_map) 4387 goto out_free_pg_vec; 4388 } 4389 break; 4390 } 4391 } 4392 /* Done */ 4393 else { 4394 err = -EINVAL; 4395 if (unlikely(req->tp_frame_nr)) 4396 goto out; 4397 } 4398 4399 4400 /* Detach socket from network */ 4401 spin_lock(&po->bind_lock); 4402 was_running = po->running; 4403 num = po->num; 4404 if (was_running) { 4405 po->num = 0; 4406 __unregister_prot_hook(sk, false); 4407 } 4408 spin_unlock(&po->bind_lock); 4409 4410 synchronize_net(); 4411 4412 err = -EBUSY; 4413 mutex_lock(&po->pg_vec_lock); 4414 if (closing || atomic_read(&po->mapped) == 0) { 4415 err = 0; 4416 spin_lock_bh(&rb_queue->lock); 4417 swap(rb->pg_vec, pg_vec); 4418 if (po->tp_version <= TPACKET_V2) 4419 swap(rb->rx_owner_map, rx_owner_map); 4420 rb->frame_max = (req->tp_frame_nr - 1); 4421 rb->head = 0; 4422 rb->frame_size = req->tp_frame_size; 4423 spin_unlock_bh(&rb_queue->lock); 4424 4425 swap(rb->pg_vec_order, order); 4426 swap(rb->pg_vec_len, req->tp_block_nr); 4427 4428 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 4429 po->prot_hook.func = (po->rx_ring.pg_vec) ? 4430 tpacket_rcv : packet_rcv; 4431 skb_queue_purge(rb_queue); 4432 if (atomic_read(&po->mapped)) 4433 pr_err("packet_mmap: vma is busy: %d\n", 4434 atomic_read(&po->mapped)); 4435 } 4436 mutex_unlock(&po->pg_vec_lock); 4437 4438 spin_lock(&po->bind_lock); 4439 if (was_running) { 4440 po->num = num; 4441 register_prot_hook(sk); 4442 } 4443 spin_unlock(&po->bind_lock); 4444 if (pg_vec && (po->tp_version > TPACKET_V2)) { 4445 /* Because we don't support block-based V3 on tx-ring */ 4446 if (!tx_ring) 4447 prb_shutdown_retire_blk_timer(po, rb_queue); 4448 } 4449 4450 out_free_pg_vec: 4451 bitmap_free(rx_owner_map); 4452 if (pg_vec) 4453 free_pg_vec(pg_vec, order, req->tp_block_nr); 4454 out: 4455 return err; 4456 } 4457 4458 static int packet_mmap(struct file *file, struct socket *sock, 4459 struct vm_area_struct *vma) 4460 { 4461 struct sock *sk = sock->sk; 4462 struct packet_sock *po = pkt_sk(sk); 4463 unsigned long size, expected_size; 4464 struct packet_ring_buffer *rb; 4465 unsigned long start; 4466 int err = -EINVAL; 4467 int i; 4468 4469 if (vma->vm_pgoff) 4470 return -EINVAL; 4471 4472 mutex_lock(&po->pg_vec_lock); 4473 4474 expected_size = 0; 4475 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4476 if (rb->pg_vec) { 4477 expected_size += rb->pg_vec_len 4478 * rb->pg_vec_pages 4479 * PAGE_SIZE; 4480 } 4481 } 4482 4483 if (expected_size == 0) 4484 goto out; 4485 4486 size = vma->vm_end - vma->vm_start; 4487 if (size != expected_size) 4488 goto out; 4489 4490 start = vma->vm_start; 4491 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4492 if (rb->pg_vec == NULL) 4493 continue; 4494 4495 for (i = 0; i < rb->pg_vec_len; i++) { 4496 struct page *page; 4497 void *kaddr = rb->pg_vec[i].buffer; 4498 int pg_num; 4499 4500 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 4501 page = pgv_to_page(kaddr); 4502 err = vm_insert_page(vma, start, page); 4503 if (unlikely(err)) 4504 goto out; 4505 start += PAGE_SIZE; 4506 kaddr += PAGE_SIZE; 4507 } 4508 } 4509 } 4510 4511 atomic_inc(&po->mapped); 4512 vma->vm_ops = &packet_mmap_ops; 4513 err = 0; 4514 4515 out: 4516 mutex_unlock(&po->pg_vec_lock); 4517 return err; 4518 } 4519 4520 static const struct proto_ops packet_ops_spkt = { 4521 .family = PF_PACKET, 4522 .owner = THIS_MODULE, 4523 .release = packet_release, 4524 .bind = packet_bind_spkt, 4525 .connect = sock_no_connect, 4526 .socketpair = sock_no_socketpair, 4527 .accept = sock_no_accept, 4528 .getname = packet_getname_spkt, 4529 .poll = datagram_poll, 4530 .ioctl = packet_ioctl, 4531 .gettstamp = sock_gettstamp, 4532 .listen = sock_no_listen, 4533 .shutdown = sock_no_shutdown, 4534 .sendmsg = packet_sendmsg_spkt, 4535 .recvmsg = packet_recvmsg, 4536 .mmap = sock_no_mmap, 4537 .sendpage = sock_no_sendpage, 4538 }; 4539 4540 static const struct proto_ops packet_ops = { 4541 .family = PF_PACKET, 4542 .owner = THIS_MODULE, 4543 .release = packet_release, 4544 .bind = packet_bind, 4545 .connect = sock_no_connect, 4546 .socketpair = sock_no_socketpair, 4547 .accept = sock_no_accept, 4548 .getname = packet_getname, 4549 .poll = packet_poll, 4550 .ioctl = packet_ioctl, 4551 .gettstamp = sock_gettstamp, 4552 .listen = sock_no_listen, 4553 .shutdown = sock_no_shutdown, 4554 .setsockopt = packet_setsockopt, 4555 .getsockopt = packet_getsockopt, 4556 .sendmsg = packet_sendmsg, 4557 .recvmsg = packet_recvmsg, 4558 .mmap = packet_mmap, 4559 .sendpage = sock_no_sendpage, 4560 }; 4561 4562 static const struct net_proto_family packet_family_ops = { 4563 .family = PF_PACKET, 4564 .create = packet_create, 4565 .owner = THIS_MODULE, 4566 }; 4567 4568 static struct notifier_block packet_netdev_notifier = { 4569 .notifier_call = packet_notifier, 4570 }; 4571 4572 #ifdef CONFIG_PROC_FS 4573 4574 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 4575 __acquires(RCU) 4576 { 4577 struct net *net = seq_file_net(seq); 4578 4579 rcu_read_lock(); 4580 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 4581 } 4582 4583 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4584 { 4585 struct net *net = seq_file_net(seq); 4586 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 4587 } 4588 4589 static void packet_seq_stop(struct seq_file *seq, void *v) 4590 __releases(RCU) 4591 { 4592 rcu_read_unlock(); 4593 } 4594 4595 static int packet_seq_show(struct seq_file *seq, void *v) 4596 { 4597 if (v == SEQ_START_TOKEN) 4598 seq_printf(seq, 4599 "%*sRefCnt Type Proto Iface R Rmem User Inode\n", 4600 IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk"); 4601 else { 4602 struct sock *s = sk_entry(v); 4603 const struct packet_sock *po = pkt_sk(s); 4604 4605 seq_printf(seq, 4606 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 4607 s, 4608 refcount_read(&s->sk_refcnt), 4609 s->sk_type, 4610 ntohs(po->num), 4611 po->ifindex, 4612 po->running, 4613 atomic_read(&s->sk_rmem_alloc), 4614 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), 4615 sock_i_ino(s)); 4616 } 4617 4618 return 0; 4619 } 4620 4621 static const struct seq_operations packet_seq_ops = { 4622 .start = packet_seq_start, 4623 .next = packet_seq_next, 4624 .stop = packet_seq_stop, 4625 .show = packet_seq_show, 4626 }; 4627 #endif 4628 4629 static int __net_init packet_net_init(struct net *net) 4630 { 4631 mutex_init(&net->packet.sklist_lock); 4632 INIT_HLIST_HEAD(&net->packet.sklist); 4633 4634 #ifdef CONFIG_PROC_FS 4635 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops, 4636 sizeof(struct seq_net_private))) 4637 return -ENOMEM; 4638 #endif /* CONFIG_PROC_FS */ 4639 4640 return 0; 4641 } 4642 4643 static void __net_exit packet_net_exit(struct net *net) 4644 { 4645 remove_proc_entry("packet", net->proc_net); 4646 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist)); 4647 } 4648 4649 static struct pernet_operations packet_net_ops = { 4650 .init = packet_net_init, 4651 .exit = packet_net_exit, 4652 }; 4653 4654 4655 static void __exit packet_exit(void) 4656 { 4657 unregister_netdevice_notifier(&packet_netdev_notifier); 4658 unregister_pernet_subsys(&packet_net_ops); 4659 sock_unregister(PF_PACKET); 4660 proto_unregister(&packet_proto); 4661 } 4662 4663 static int __init packet_init(void) 4664 { 4665 int rc; 4666 4667 rc = proto_register(&packet_proto, 0); 4668 if (rc) 4669 goto out; 4670 rc = sock_register(&packet_family_ops); 4671 if (rc) 4672 goto out_proto; 4673 rc = register_pernet_subsys(&packet_net_ops); 4674 if (rc) 4675 goto out_sock; 4676 rc = register_netdevice_notifier(&packet_netdev_notifier); 4677 if (rc) 4678 goto out_pernet; 4679 4680 return 0; 4681 4682 out_pernet: 4683 unregister_pernet_subsys(&packet_net_ops); 4684 out_sock: 4685 sock_unregister(PF_PACKET); 4686 out_proto: 4687 proto_unregister(&packet_proto); 4688 out: 4689 return rc; 4690 } 4691 4692 module_init(packet_init); 4693 module_exit(packet_exit); 4694 MODULE_LICENSE("GPL"); 4695 MODULE_ALIAS_NETPROTO(PF_PACKET); 4696