xref: /linux/net/packet/af_packet.c (revision c39b9fd728d8173ecda993524089fbc38211a17f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		PACKET - implements raw packet sockets.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
11  *
12  * Fixes:
13  *		Alan Cox	:	verify_area() now used correctly
14  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
15  *		Alan Cox	:	tidied skbuff lists.
16  *		Alan Cox	:	Now uses generic datagram routines I
17  *					added. Also fixed the peek/read crash
18  *					from all old Linux datagram code.
19  *		Alan Cox	:	Uses the improved datagram code.
20  *		Alan Cox	:	Added NULL's for socket options.
21  *		Alan Cox	:	Re-commented the code.
22  *		Alan Cox	:	Use new kernel side addressing
23  *		Rob Janssen	:	Correct MTU usage.
24  *		Dave Platt	:	Counter leaks caused by incorrect
25  *					interrupt locking and some slightly
26  *					dubious gcc output. Can you read
27  *					compiler: it said _VOLATILE_
28  *	Richard Kooijman	:	Timestamp fixes.
29  *		Alan Cox	:	New buffers. Use sk->mac.raw.
30  *		Alan Cox	:	sendmsg/recvmsg support.
31  *		Alan Cox	:	Protocol setting support
32  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
33  *	Cyrus Durgin		:	Fixed kerneld for kmod.
34  *	Michal Ostrowski        :       Module initialization cleanup.
35  *         Ulises Alonso        :       Frame number limit removal and
36  *                                      packet_set_ring memory leak.
37  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
38  *					The convention is that longer addresses
39  *					will simply extend the hardware address
40  *					byte arrays at the end of sockaddr_ll
41  *					and packet_mreq.
42  *		Johann Baudy	:	Added TX RING.
43  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
44  *					layer.
45  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
46  *
47  *
48  *		This program is free software; you can redistribute it and/or
49  *		modify it under the terms of the GNU General Public License
50  *		as published by the Free Software Foundation; either version
51  *		2 of the License, or (at your option) any later version.
52  *
53  */
54 
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 
96 #include "internal.h"
97 
98 /*
99    Assumptions:
100    - if device has no dev->hard_header routine, it adds and removes ll header
101      inside itself. In this case ll header is invisible outside of device,
102      but higher levels still should reserve dev->hard_header_len.
103      Some devices are enough clever to reallocate skb, when header
104      will not fit to reserved space (tunnel), another ones are silly
105      (PPP).
106    - packet socket receives packets with pulled ll header,
107      so that SOCK_RAW should push it back.
108 
109 On receive:
110 -----------
111 
112 Incoming, dev->hard_header!=NULL
113    mac_header -> ll header
114    data       -> data
115 
116 Outgoing, dev->hard_header!=NULL
117    mac_header -> ll header
118    data       -> ll header
119 
120 Incoming, dev->hard_header==NULL
121    mac_header -> UNKNOWN position. It is very likely, that it points to ll
122 		 header.  PPP makes it, that is wrong, because introduce
123 		 assymetry between rx and tx paths.
124    data       -> data
125 
126 Outgoing, dev->hard_header==NULL
127    mac_header -> data. ll header is still not built!
128    data       -> data
129 
130 Resume
131   If dev->hard_header==NULL we are unlikely to restore sensible ll header.
132 
133 
134 On transmit:
135 ------------
136 
137 dev->hard_header != NULL
138    mac_header -> ll header
139    data       -> ll header
140 
141 dev->hard_header == NULL (ll header is added by device, we cannot control it)
142    mac_header -> data
143    data       -> data
144 
145    We should set nh.raw on output to correct posistion,
146    packet classifier depends on it.
147  */
148 
149 /* Private packet socket structures. */
150 
151 /* identical to struct packet_mreq except it has
152  * a longer address field.
153  */
154 struct packet_mreq_max {
155 	int		mr_ifindex;
156 	unsigned short	mr_type;
157 	unsigned short	mr_alen;
158 	unsigned char	mr_address[MAX_ADDR_LEN];
159 };
160 
161 union tpacket_uhdr {
162 	struct tpacket_hdr  *h1;
163 	struct tpacket2_hdr *h2;
164 	struct tpacket3_hdr *h3;
165 	void *raw;
166 };
167 
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 		int closing, int tx_ring);
170 
171 #define V3_ALIGNMENT	(8)
172 
173 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174 
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177 
178 #define PGV_FROM_VMALLOC 1
179 
180 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
186 #define BLOCK_PRIV(x)		((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187 
188 struct packet_sock;
189 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
191 		       struct packet_type *pt, struct net_device *orig_dev);
192 
193 static void *packet_previous_frame(struct packet_sock *po,
194 		struct packet_ring_buffer *rb,
195 		int status);
196 static void packet_increment_head(struct packet_ring_buffer *buff);
197 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
198 			struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 			struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 		struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 		struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 		struct tpacket_kbdq_core *,
210 		void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 		struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 		struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217 
218 struct packet_skb_cb {
219 	unsigned int origlen;
220 	union {
221 		struct sockaddr_pkt pkt;
222 		struct sockaddr_ll ll;
223 	} sa;
224 };
225 
226 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
227 
228 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
229 #define GET_PBLOCK_DESC(x, bid)	\
230 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
231 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
232 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
233 #define GET_NEXT_PRB_BLK_NUM(x) \
234 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
235 	((x)->kactive_blk_num+1) : 0)
236 
237 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
238 static void __fanout_link(struct sock *sk, struct packet_sock *po);
239 
240 /* register_prot_hook must be invoked with the po->bind_lock held,
241  * or from a context in which asynchronous accesses to the packet
242  * socket is not possible (packet_create()).
243  */
244 static void register_prot_hook(struct sock *sk)
245 {
246 	struct packet_sock *po = pkt_sk(sk);
247 	if (!po->running) {
248 		if (po->fanout)
249 			__fanout_link(sk, po);
250 		else
251 			dev_add_pack(&po->prot_hook);
252 		sock_hold(sk);
253 		po->running = 1;
254 	}
255 }
256 
257 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
258  * held.   If the sync parameter is true, we will temporarily drop
259  * the po->bind_lock and do a synchronize_net to make sure no
260  * asynchronous packet processing paths still refer to the elements
261  * of po->prot_hook.  If the sync parameter is false, it is the
262  * callers responsibility to take care of this.
263  */
264 static void __unregister_prot_hook(struct sock *sk, bool sync)
265 {
266 	struct packet_sock *po = pkt_sk(sk);
267 
268 	po->running = 0;
269 	if (po->fanout)
270 		__fanout_unlink(sk, po);
271 	else
272 		__dev_remove_pack(&po->prot_hook);
273 	__sock_put(sk);
274 
275 	if (sync) {
276 		spin_unlock(&po->bind_lock);
277 		synchronize_net();
278 		spin_lock(&po->bind_lock);
279 	}
280 }
281 
282 static void unregister_prot_hook(struct sock *sk, bool sync)
283 {
284 	struct packet_sock *po = pkt_sk(sk);
285 
286 	if (po->running)
287 		__unregister_prot_hook(sk, sync);
288 }
289 
290 static inline __pure struct page *pgv_to_page(void *addr)
291 {
292 	if (is_vmalloc_addr(addr))
293 		return vmalloc_to_page(addr);
294 	return virt_to_page(addr);
295 }
296 
297 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
298 {
299 	union tpacket_uhdr h;
300 
301 	h.raw = frame;
302 	switch (po->tp_version) {
303 	case TPACKET_V1:
304 		h.h1->tp_status = status;
305 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
306 		break;
307 	case TPACKET_V2:
308 		h.h2->tp_status = status;
309 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
310 		break;
311 	case TPACKET_V3:
312 	default:
313 		WARN(1, "TPACKET version not supported.\n");
314 		BUG();
315 	}
316 
317 	smp_wmb();
318 }
319 
320 static int __packet_get_status(struct packet_sock *po, void *frame)
321 {
322 	union tpacket_uhdr h;
323 
324 	smp_rmb();
325 
326 	h.raw = frame;
327 	switch (po->tp_version) {
328 	case TPACKET_V1:
329 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
330 		return h.h1->tp_status;
331 	case TPACKET_V2:
332 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
333 		return h.h2->tp_status;
334 	case TPACKET_V3:
335 	default:
336 		WARN(1, "TPACKET version not supported.\n");
337 		BUG();
338 		return 0;
339 	}
340 }
341 
342 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
343 				   unsigned int flags)
344 {
345 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
346 
347 	if (shhwtstamps) {
348 		if ((flags & SOF_TIMESTAMPING_SYS_HARDWARE) &&
349 		    ktime_to_timespec_cond(shhwtstamps->syststamp, ts))
350 			return TP_STATUS_TS_SYS_HARDWARE;
351 		if ((flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
352 		    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
353 			return TP_STATUS_TS_RAW_HARDWARE;
354 	}
355 
356 	if (ktime_to_timespec_cond(skb->tstamp, ts))
357 		return TP_STATUS_TS_SOFTWARE;
358 
359 	return 0;
360 }
361 
362 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
363 				    struct sk_buff *skb)
364 {
365 	union tpacket_uhdr h;
366 	struct timespec ts;
367 	__u32 ts_status;
368 
369 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
370 		return 0;
371 
372 	h.raw = frame;
373 	switch (po->tp_version) {
374 	case TPACKET_V1:
375 		h.h1->tp_sec = ts.tv_sec;
376 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
377 		break;
378 	case TPACKET_V2:
379 		h.h2->tp_sec = ts.tv_sec;
380 		h.h2->tp_nsec = ts.tv_nsec;
381 		break;
382 	case TPACKET_V3:
383 	default:
384 		WARN(1, "TPACKET version not supported.\n");
385 		BUG();
386 	}
387 
388 	/* one flush is safe, as both fields always lie on the same cacheline */
389 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
390 	smp_wmb();
391 
392 	return ts_status;
393 }
394 
395 static void *packet_lookup_frame(struct packet_sock *po,
396 		struct packet_ring_buffer *rb,
397 		unsigned int position,
398 		int status)
399 {
400 	unsigned int pg_vec_pos, frame_offset;
401 	union tpacket_uhdr h;
402 
403 	pg_vec_pos = position / rb->frames_per_block;
404 	frame_offset = position % rb->frames_per_block;
405 
406 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
407 		(frame_offset * rb->frame_size);
408 
409 	if (status != __packet_get_status(po, h.raw))
410 		return NULL;
411 
412 	return h.raw;
413 }
414 
415 static void *packet_current_frame(struct packet_sock *po,
416 		struct packet_ring_buffer *rb,
417 		int status)
418 {
419 	return packet_lookup_frame(po, rb, rb->head, status);
420 }
421 
422 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
423 {
424 	del_timer_sync(&pkc->retire_blk_timer);
425 }
426 
427 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
428 		int tx_ring,
429 		struct sk_buff_head *rb_queue)
430 {
431 	struct tpacket_kbdq_core *pkc;
432 
433 	pkc = tx_ring ? &po->tx_ring.prb_bdqc : &po->rx_ring.prb_bdqc;
434 
435 	spin_lock(&rb_queue->lock);
436 	pkc->delete_blk_timer = 1;
437 	spin_unlock(&rb_queue->lock);
438 
439 	prb_del_retire_blk_timer(pkc);
440 }
441 
442 static void prb_init_blk_timer(struct packet_sock *po,
443 		struct tpacket_kbdq_core *pkc,
444 		void (*func) (unsigned long))
445 {
446 	init_timer(&pkc->retire_blk_timer);
447 	pkc->retire_blk_timer.data = (long)po;
448 	pkc->retire_blk_timer.function = func;
449 	pkc->retire_blk_timer.expires = jiffies;
450 }
451 
452 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring)
453 {
454 	struct tpacket_kbdq_core *pkc;
455 
456 	if (tx_ring)
457 		BUG();
458 
459 	pkc = tx_ring ? &po->tx_ring.prb_bdqc : &po->rx_ring.prb_bdqc;
460 	prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
461 }
462 
463 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
464 				int blk_size_in_bytes)
465 {
466 	struct net_device *dev;
467 	unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
468 	struct ethtool_cmd ecmd;
469 	int err;
470 	u32 speed;
471 
472 	rtnl_lock();
473 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
474 	if (unlikely(!dev)) {
475 		rtnl_unlock();
476 		return DEFAULT_PRB_RETIRE_TOV;
477 	}
478 	err = __ethtool_get_settings(dev, &ecmd);
479 	speed = ethtool_cmd_speed(&ecmd);
480 	rtnl_unlock();
481 	if (!err) {
482 		/*
483 		 * If the link speed is so slow you don't really
484 		 * need to worry about perf anyways
485 		 */
486 		if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
487 			return DEFAULT_PRB_RETIRE_TOV;
488 		} else {
489 			msec = 1;
490 			div = speed / 1000;
491 		}
492 	}
493 
494 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
495 
496 	if (div)
497 		mbits /= div;
498 
499 	tmo = mbits * msec;
500 
501 	if (div)
502 		return tmo+1;
503 	return tmo;
504 }
505 
506 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
507 			union tpacket_req_u *req_u)
508 {
509 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
510 }
511 
512 static void init_prb_bdqc(struct packet_sock *po,
513 			struct packet_ring_buffer *rb,
514 			struct pgv *pg_vec,
515 			union tpacket_req_u *req_u, int tx_ring)
516 {
517 	struct tpacket_kbdq_core *p1 = &rb->prb_bdqc;
518 	struct tpacket_block_desc *pbd;
519 
520 	memset(p1, 0x0, sizeof(*p1));
521 
522 	p1->knxt_seq_num = 1;
523 	p1->pkbdq = pg_vec;
524 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
525 	p1->pkblk_start	= pg_vec[0].buffer;
526 	p1->kblk_size = req_u->req3.tp_block_size;
527 	p1->knum_blocks	= req_u->req3.tp_block_nr;
528 	p1->hdrlen = po->tp_hdrlen;
529 	p1->version = po->tp_version;
530 	p1->last_kactive_blk_num = 0;
531 	po->stats.stats3.tp_freeze_q_cnt = 0;
532 	if (req_u->req3.tp_retire_blk_tov)
533 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
534 	else
535 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
536 						req_u->req3.tp_block_size);
537 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
538 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
539 
540 	prb_init_ft_ops(p1, req_u);
541 	prb_setup_retire_blk_timer(po, tx_ring);
542 	prb_open_block(p1, pbd);
543 }
544 
545 /*  Do NOT update the last_blk_num first.
546  *  Assumes sk_buff_head lock is held.
547  */
548 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
549 {
550 	mod_timer(&pkc->retire_blk_timer,
551 			jiffies + pkc->tov_in_jiffies);
552 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
553 }
554 
555 /*
556  * Timer logic:
557  * 1) We refresh the timer only when we open a block.
558  *    By doing this we don't waste cycles refreshing the timer
559  *	  on packet-by-packet basis.
560  *
561  * With a 1MB block-size, on a 1Gbps line, it will take
562  * i) ~8 ms to fill a block + ii) memcpy etc.
563  * In this cut we are not accounting for the memcpy time.
564  *
565  * So, if the user sets the 'tmo' to 10ms then the timer
566  * will never fire while the block is still getting filled
567  * (which is what we want). However, the user could choose
568  * to close a block early and that's fine.
569  *
570  * But when the timer does fire, we check whether or not to refresh it.
571  * Since the tmo granularity is in msecs, it is not too expensive
572  * to refresh the timer, lets say every '8' msecs.
573  * Either the user can set the 'tmo' or we can derive it based on
574  * a) line-speed and b) block-size.
575  * prb_calc_retire_blk_tmo() calculates the tmo.
576  *
577  */
578 static void prb_retire_rx_blk_timer_expired(unsigned long data)
579 {
580 	struct packet_sock *po = (struct packet_sock *)data;
581 	struct tpacket_kbdq_core *pkc = &po->rx_ring.prb_bdqc;
582 	unsigned int frozen;
583 	struct tpacket_block_desc *pbd;
584 
585 	spin_lock(&po->sk.sk_receive_queue.lock);
586 
587 	frozen = prb_queue_frozen(pkc);
588 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
589 
590 	if (unlikely(pkc->delete_blk_timer))
591 		goto out;
592 
593 	/* We only need to plug the race when the block is partially filled.
594 	 * tpacket_rcv:
595 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
596 	 *		copy_bits() is in progress ...
597 	 *		timer fires on other cpu:
598 	 *		we can't retire the current block because copy_bits
599 	 *		is in progress.
600 	 *
601 	 */
602 	if (BLOCK_NUM_PKTS(pbd)) {
603 		while (atomic_read(&pkc->blk_fill_in_prog)) {
604 			/* Waiting for skb_copy_bits to finish... */
605 			cpu_relax();
606 		}
607 	}
608 
609 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
610 		if (!frozen) {
611 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
612 			if (!prb_dispatch_next_block(pkc, po))
613 				goto refresh_timer;
614 			else
615 				goto out;
616 		} else {
617 			/* Case 1. Queue was frozen because user-space was
618 			 *	   lagging behind.
619 			 */
620 			if (prb_curr_blk_in_use(pkc, pbd)) {
621 				/*
622 				 * Ok, user-space is still behind.
623 				 * So just refresh the timer.
624 				 */
625 				goto refresh_timer;
626 			} else {
627 			       /* Case 2. queue was frozen,user-space caught up,
628 				* now the link went idle && the timer fired.
629 				* We don't have a block to close.So we open this
630 				* block and restart the timer.
631 				* opening a block thaws the queue,restarts timer
632 				* Thawing/timer-refresh is a side effect.
633 				*/
634 				prb_open_block(pkc, pbd);
635 				goto out;
636 			}
637 		}
638 	}
639 
640 refresh_timer:
641 	_prb_refresh_rx_retire_blk_timer(pkc);
642 
643 out:
644 	spin_unlock(&po->sk.sk_receive_queue.lock);
645 }
646 
647 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
648 		struct tpacket_block_desc *pbd1, __u32 status)
649 {
650 	/* Flush everything minus the block header */
651 
652 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
653 	u8 *start, *end;
654 
655 	start = (u8 *)pbd1;
656 
657 	/* Skip the block header(we know header WILL fit in 4K) */
658 	start += PAGE_SIZE;
659 
660 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
661 	for (; start < end; start += PAGE_SIZE)
662 		flush_dcache_page(pgv_to_page(start));
663 
664 	smp_wmb();
665 #endif
666 
667 	/* Now update the block status. */
668 
669 	BLOCK_STATUS(pbd1) = status;
670 
671 	/* Flush the block header */
672 
673 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
674 	start = (u8 *)pbd1;
675 	flush_dcache_page(pgv_to_page(start));
676 
677 	smp_wmb();
678 #endif
679 }
680 
681 /*
682  * Side effect:
683  *
684  * 1) flush the block
685  * 2) Increment active_blk_num
686  *
687  * Note:We DONT refresh the timer on purpose.
688  *	Because almost always the next block will be opened.
689  */
690 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
691 		struct tpacket_block_desc *pbd1,
692 		struct packet_sock *po, unsigned int stat)
693 {
694 	__u32 status = TP_STATUS_USER | stat;
695 
696 	struct tpacket3_hdr *last_pkt;
697 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
698 
699 	if (po->stats.stats3.tp_drops)
700 		status |= TP_STATUS_LOSING;
701 
702 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
703 	last_pkt->tp_next_offset = 0;
704 
705 	/* Get the ts of the last pkt */
706 	if (BLOCK_NUM_PKTS(pbd1)) {
707 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
708 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
709 	} else {
710 		/* Ok, we tmo'd - so get the current time */
711 		struct timespec ts;
712 		getnstimeofday(&ts);
713 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
714 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
715 	}
716 
717 	smp_wmb();
718 
719 	/* Flush the block */
720 	prb_flush_block(pkc1, pbd1, status);
721 
722 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
723 }
724 
725 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
726 {
727 	pkc->reset_pending_on_curr_blk = 0;
728 }
729 
730 /*
731  * Side effect of opening a block:
732  *
733  * 1) prb_queue is thawed.
734  * 2) retire_blk_timer is refreshed.
735  *
736  */
737 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
738 	struct tpacket_block_desc *pbd1)
739 {
740 	struct timespec ts;
741 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
742 
743 	smp_rmb();
744 
745 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd1))) {
746 
747 		/* We could have just memset this but we will lose the
748 		 * flexibility of making the priv area sticky
749 		 */
750 		BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
751 		BLOCK_NUM_PKTS(pbd1) = 0;
752 		BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
753 		getnstimeofday(&ts);
754 		h1->ts_first_pkt.ts_sec = ts.tv_sec;
755 		h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
756 		pkc1->pkblk_start = (char *)pbd1;
757 		pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
758 		BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
759 		BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
760 		pbd1->version = pkc1->version;
761 		pkc1->prev = pkc1->nxt_offset;
762 		pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
763 		prb_thaw_queue(pkc1);
764 		_prb_refresh_rx_retire_blk_timer(pkc1);
765 
766 		smp_wmb();
767 
768 		return;
769 	}
770 
771 	WARN(1, "ERROR block:%p is NOT FREE status:%d kactive_blk_num:%d\n",
772 		pbd1, BLOCK_STATUS(pbd1), pkc1->kactive_blk_num);
773 	dump_stack();
774 	BUG();
775 }
776 
777 /*
778  * Queue freeze logic:
779  * 1) Assume tp_block_nr = 8 blocks.
780  * 2) At time 't0', user opens Rx ring.
781  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
782  * 4) user-space is either sleeping or processing block '0'.
783  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
784  *    it will close block-7,loop around and try to fill block '0'.
785  *    call-flow:
786  *    __packet_lookup_frame_in_block
787  *      prb_retire_current_block()
788  *      prb_dispatch_next_block()
789  *        |->(BLOCK_STATUS == USER) evaluates to true
790  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
791  * 6) Now there are two cases:
792  *    6.1) Link goes idle right after the queue is frozen.
793  *         But remember, the last open_block() refreshed the timer.
794  *         When this timer expires,it will refresh itself so that we can
795  *         re-open block-0 in near future.
796  *    6.2) Link is busy and keeps on receiving packets. This is a simple
797  *         case and __packet_lookup_frame_in_block will check if block-0
798  *         is free and can now be re-used.
799  */
800 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
801 				  struct packet_sock *po)
802 {
803 	pkc->reset_pending_on_curr_blk = 1;
804 	po->stats.stats3.tp_freeze_q_cnt++;
805 }
806 
807 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
808 
809 /*
810  * If the next block is free then we will dispatch it
811  * and return a good offset.
812  * Else, we will freeze the queue.
813  * So, caller must check the return value.
814  */
815 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
816 		struct packet_sock *po)
817 {
818 	struct tpacket_block_desc *pbd;
819 
820 	smp_rmb();
821 
822 	/* 1. Get current block num */
823 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
824 
825 	/* 2. If this block is currently in_use then freeze the queue */
826 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
827 		prb_freeze_queue(pkc, po);
828 		return NULL;
829 	}
830 
831 	/*
832 	 * 3.
833 	 * open this block and return the offset where the first packet
834 	 * needs to get stored.
835 	 */
836 	prb_open_block(pkc, pbd);
837 	return (void *)pkc->nxt_offset;
838 }
839 
840 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
841 		struct packet_sock *po, unsigned int status)
842 {
843 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
844 
845 	/* retire/close the current block */
846 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
847 		/*
848 		 * Plug the case where copy_bits() is in progress on
849 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
850 		 * have space to copy the pkt in the current block and
851 		 * called prb_retire_current_block()
852 		 *
853 		 * We don't need to worry about the TMO case because
854 		 * the timer-handler already handled this case.
855 		 */
856 		if (!(status & TP_STATUS_BLK_TMO)) {
857 			while (atomic_read(&pkc->blk_fill_in_prog)) {
858 				/* Waiting for skb_copy_bits to finish... */
859 				cpu_relax();
860 			}
861 		}
862 		prb_close_block(pkc, pbd, po, status);
863 		return;
864 	}
865 
866 	WARN(1, "ERROR-pbd[%d]:%p\n", pkc->kactive_blk_num, pbd);
867 	dump_stack();
868 	BUG();
869 }
870 
871 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
872 				      struct tpacket_block_desc *pbd)
873 {
874 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
875 }
876 
877 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
878 {
879 	return pkc->reset_pending_on_curr_blk;
880 }
881 
882 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
883 {
884 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
885 	atomic_dec(&pkc->blk_fill_in_prog);
886 }
887 
888 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
889 			struct tpacket3_hdr *ppd)
890 {
891 	ppd->hv1.tp_rxhash = skb_get_rxhash(pkc->skb);
892 }
893 
894 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
895 			struct tpacket3_hdr *ppd)
896 {
897 	ppd->hv1.tp_rxhash = 0;
898 }
899 
900 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
901 			struct tpacket3_hdr *ppd)
902 {
903 	if (vlan_tx_tag_present(pkc->skb)) {
904 		ppd->hv1.tp_vlan_tci = vlan_tx_tag_get(pkc->skb);
905 		ppd->tp_status = TP_STATUS_VLAN_VALID;
906 	} else {
907 		ppd->hv1.tp_vlan_tci = 0;
908 		ppd->tp_status = TP_STATUS_AVAILABLE;
909 	}
910 }
911 
912 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
913 			struct tpacket3_hdr *ppd)
914 {
915 	prb_fill_vlan_info(pkc, ppd);
916 
917 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
918 		prb_fill_rxhash(pkc, ppd);
919 	else
920 		prb_clear_rxhash(pkc, ppd);
921 }
922 
923 static void prb_fill_curr_block(char *curr,
924 				struct tpacket_kbdq_core *pkc,
925 				struct tpacket_block_desc *pbd,
926 				unsigned int len)
927 {
928 	struct tpacket3_hdr *ppd;
929 
930 	ppd  = (struct tpacket3_hdr *)curr;
931 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
932 	pkc->prev = curr;
933 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
934 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
935 	BLOCK_NUM_PKTS(pbd) += 1;
936 	atomic_inc(&pkc->blk_fill_in_prog);
937 	prb_run_all_ft_ops(pkc, ppd);
938 }
939 
940 /* Assumes caller has the sk->rx_queue.lock */
941 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
942 					    struct sk_buff *skb,
943 						int status,
944 					    unsigned int len
945 					    )
946 {
947 	struct tpacket_kbdq_core *pkc;
948 	struct tpacket_block_desc *pbd;
949 	char *curr, *end;
950 
951 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
952 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
953 
954 	/* Queue is frozen when user space is lagging behind */
955 	if (prb_queue_frozen(pkc)) {
956 		/*
957 		 * Check if that last block which caused the queue to freeze,
958 		 * is still in_use by user-space.
959 		 */
960 		if (prb_curr_blk_in_use(pkc, pbd)) {
961 			/* Can't record this packet */
962 			return NULL;
963 		} else {
964 			/*
965 			 * Ok, the block was released by user-space.
966 			 * Now let's open that block.
967 			 * opening a block also thaws the queue.
968 			 * Thawing is a side effect.
969 			 */
970 			prb_open_block(pkc, pbd);
971 		}
972 	}
973 
974 	smp_mb();
975 	curr = pkc->nxt_offset;
976 	pkc->skb = skb;
977 	end = (char *)pbd + pkc->kblk_size;
978 
979 	/* first try the current block */
980 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
981 		prb_fill_curr_block(curr, pkc, pbd, len);
982 		return (void *)curr;
983 	}
984 
985 	/* Ok, close the current block */
986 	prb_retire_current_block(pkc, po, 0);
987 
988 	/* Now, try to dispatch the next block */
989 	curr = (char *)prb_dispatch_next_block(pkc, po);
990 	if (curr) {
991 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
992 		prb_fill_curr_block(curr, pkc, pbd, len);
993 		return (void *)curr;
994 	}
995 
996 	/*
997 	 * No free blocks are available.user_space hasn't caught up yet.
998 	 * Queue was just frozen and now this packet will get dropped.
999 	 */
1000 	return NULL;
1001 }
1002 
1003 static void *packet_current_rx_frame(struct packet_sock *po,
1004 					    struct sk_buff *skb,
1005 					    int status, unsigned int len)
1006 {
1007 	char *curr = NULL;
1008 	switch (po->tp_version) {
1009 	case TPACKET_V1:
1010 	case TPACKET_V2:
1011 		curr = packet_lookup_frame(po, &po->rx_ring,
1012 					po->rx_ring.head, status);
1013 		return curr;
1014 	case TPACKET_V3:
1015 		return __packet_lookup_frame_in_block(po, skb, status, len);
1016 	default:
1017 		WARN(1, "TPACKET version not supported\n");
1018 		BUG();
1019 		return NULL;
1020 	}
1021 }
1022 
1023 static void *prb_lookup_block(struct packet_sock *po,
1024 				     struct packet_ring_buffer *rb,
1025 				     unsigned int idx,
1026 				     int status)
1027 {
1028 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1029 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1030 
1031 	if (status != BLOCK_STATUS(pbd))
1032 		return NULL;
1033 	return pbd;
1034 }
1035 
1036 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1037 {
1038 	unsigned int prev;
1039 	if (rb->prb_bdqc.kactive_blk_num)
1040 		prev = rb->prb_bdqc.kactive_blk_num-1;
1041 	else
1042 		prev = rb->prb_bdqc.knum_blocks-1;
1043 	return prev;
1044 }
1045 
1046 /* Assumes caller has held the rx_queue.lock */
1047 static void *__prb_previous_block(struct packet_sock *po,
1048 					 struct packet_ring_buffer *rb,
1049 					 int status)
1050 {
1051 	unsigned int previous = prb_previous_blk_num(rb);
1052 	return prb_lookup_block(po, rb, previous, status);
1053 }
1054 
1055 static void *packet_previous_rx_frame(struct packet_sock *po,
1056 					     struct packet_ring_buffer *rb,
1057 					     int status)
1058 {
1059 	if (po->tp_version <= TPACKET_V2)
1060 		return packet_previous_frame(po, rb, status);
1061 
1062 	return __prb_previous_block(po, rb, status);
1063 }
1064 
1065 static void packet_increment_rx_head(struct packet_sock *po,
1066 					    struct packet_ring_buffer *rb)
1067 {
1068 	switch (po->tp_version) {
1069 	case TPACKET_V1:
1070 	case TPACKET_V2:
1071 		return packet_increment_head(rb);
1072 	case TPACKET_V3:
1073 	default:
1074 		WARN(1, "TPACKET version not supported.\n");
1075 		BUG();
1076 		return;
1077 	}
1078 }
1079 
1080 static void *packet_previous_frame(struct packet_sock *po,
1081 		struct packet_ring_buffer *rb,
1082 		int status)
1083 {
1084 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1085 	return packet_lookup_frame(po, rb, previous, status);
1086 }
1087 
1088 static void packet_increment_head(struct packet_ring_buffer *buff)
1089 {
1090 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1091 }
1092 
1093 static bool packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1094 {
1095 	struct sock *sk = &po->sk;
1096 	bool has_room;
1097 
1098 	if (po->prot_hook.func != tpacket_rcv)
1099 		return (atomic_read(&sk->sk_rmem_alloc) + skb->truesize)
1100 			<= sk->sk_rcvbuf;
1101 
1102 	spin_lock(&sk->sk_receive_queue.lock);
1103 	if (po->tp_version == TPACKET_V3)
1104 		has_room = prb_lookup_block(po, &po->rx_ring,
1105 					    po->rx_ring.prb_bdqc.kactive_blk_num,
1106 					    TP_STATUS_KERNEL);
1107 	else
1108 		has_room = packet_lookup_frame(po, &po->rx_ring,
1109 					       po->rx_ring.head,
1110 					       TP_STATUS_KERNEL);
1111 	spin_unlock(&sk->sk_receive_queue.lock);
1112 
1113 	return has_room;
1114 }
1115 
1116 static void packet_sock_destruct(struct sock *sk)
1117 {
1118 	skb_queue_purge(&sk->sk_error_queue);
1119 
1120 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1121 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1122 
1123 	if (!sock_flag(sk, SOCK_DEAD)) {
1124 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1125 		return;
1126 	}
1127 
1128 	sk_refcnt_debug_dec(sk);
1129 }
1130 
1131 static int fanout_rr_next(struct packet_fanout *f, unsigned int num)
1132 {
1133 	int x = atomic_read(&f->rr_cur) + 1;
1134 
1135 	if (x >= num)
1136 		x = 0;
1137 
1138 	return x;
1139 }
1140 
1141 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1142 				      struct sk_buff *skb,
1143 				      unsigned int num)
1144 {
1145 	return (((u64)skb->rxhash) * num) >> 32;
1146 }
1147 
1148 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1149 				    struct sk_buff *skb,
1150 				    unsigned int num)
1151 {
1152 	int cur, old;
1153 
1154 	cur = atomic_read(&f->rr_cur);
1155 	while ((old = atomic_cmpxchg(&f->rr_cur, cur,
1156 				     fanout_rr_next(f, num))) != cur)
1157 		cur = old;
1158 	return cur;
1159 }
1160 
1161 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1162 				     struct sk_buff *skb,
1163 				     unsigned int num)
1164 {
1165 	return smp_processor_id() % num;
1166 }
1167 
1168 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1169 					  struct sk_buff *skb,
1170 					  unsigned int idx, unsigned int skip,
1171 					  unsigned int num)
1172 {
1173 	unsigned int i, j;
1174 
1175 	i = j = min_t(int, f->next[idx], num - 1);
1176 	do {
1177 		if (i != skip && packet_rcv_has_room(pkt_sk(f->arr[i]), skb)) {
1178 			if (i != j)
1179 				f->next[idx] = i;
1180 			return i;
1181 		}
1182 		if (++i == num)
1183 			i = 0;
1184 	} while (i != j);
1185 
1186 	return idx;
1187 }
1188 
1189 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1190 {
1191 	return f->flags & (flag >> 8);
1192 }
1193 
1194 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1195 			     struct packet_type *pt, struct net_device *orig_dev)
1196 {
1197 	struct packet_fanout *f = pt->af_packet_priv;
1198 	unsigned int num = f->num_members;
1199 	struct packet_sock *po;
1200 	unsigned int idx;
1201 
1202 	if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1203 	    !num) {
1204 		kfree_skb(skb);
1205 		return 0;
1206 	}
1207 
1208 	switch (f->type) {
1209 	case PACKET_FANOUT_HASH:
1210 	default:
1211 		if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1212 			skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1213 			if (!skb)
1214 				return 0;
1215 		}
1216 		skb_get_rxhash(skb);
1217 		idx = fanout_demux_hash(f, skb, num);
1218 		break;
1219 	case PACKET_FANOUT_LB:
1220 		idx = fanout_demux_lb(f, skb, num);
1221 		break;
1222 	case PACKET_FANOUT_CPU:
1223 		idx = fanout_demux_cpu(f, skb, num);
1224 		break;
1225 	case PACKET_FANOUT_ROLLOVER:
1226 		idx = fanout_demux_rollover(f, skb, 0, (unsigned int) -1, num);
1227 		break;
1228 	}
1229 
1230 	po = pkt_sk(f->arr[idx]);
1231 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER) &&
1232 	    unlikely(!packet_rcv_has_room(po, skb))) {
1233 		idx = fanout_demux_rollover(f, skb, idx, idx, num);
1234 		po = pkt_sk(f->arr[idx]);
1235 	}
1236 
1237 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1238 }
1239 
1240 DEFINE_MUTEX(fanout_mutex);
1241 EXPORT_SYMBOL_GPL(fanout_mutex);
1242 static LIST_HEAD(fanout_list);
1243 
1244 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1245 {
1246 	struct packet_fanout *f = po->fanout;
1247 
1248 	spin_lock(&f->lock);
1249 	f->arr[f->num_members] = sk;
1250 	smp_wmb();
1251 	f->num_members++;
1252 	spin_unlock(&f->lock);
1253 }
1254 
1255 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1256 {
1257 	struct packet_fanout *f = po->fanout;
1258 	int i;
1259 
1260 	spin_lock(&f->lock);
1261 	for (i = 0; i < f->num_members; i++) {
1262 		if (f->arr[i] == sk)
1263 			break;
1264 	}
1265 	BUG_ON(i >= f->num_members);
1266 	f->arr[i] = f->arr[f->num_members - 1];
1267 	f->num_members--;
1268 	spin_unlock(&f->lock);
1269 }
1270 
1271 static bool match_fanout_group(struct packet_type *ptype, struct sock * sk)
1272 {
1273 	if (ptype->af_packet_priv == (void*)((struct packet_sock *)sk)->fanout)
1274 		return true;
1275 
1276 	return false;
1277 }
1278 
1279 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1280 {
1281 	struct packet_sock *po = pkt_sk(sk);
1282 	struct packet_fanout *f, *match;
1283 	u8 type = type_flags & 0xff;
1284 	u8 flags = type_flags >> 8;
1285 	int err;
1286 
1287 	switch (type) {
1288 	case PACKET_FANOUT_ROLLOVER:
1289 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1290 			return -EINVAL;
1291 	case PACKET_FANOUT_HASH:
1292 	case PACKET_FANOUT_LB:
1293 	case PACKET_FANOUT_CPU:
1294 		break;
1295 	default:
1296 		return -EINVAL;
1297 	}
1298 
1299 	if (!po->running)
1300 		return -EINVAL;
1301 
1302 	if (po->fanout)
1303 		return -EALREADY;
1304 
1305 	mutex_lock(&fanout_mutex);
1306 	match = NULL;
1307 	list_for_each_entry(f, &fanout_list, list) {
1308 		if (f->id == id &&
1309 		    read_pnet(&f->net) == sock_net(sk)) {
1310 			match = f;
1311 			break;
1312 		}
1313 	}
1314 	err = -EINVAL;
1315 	if (match && match->flags != flags)
1316 		goto out;
1317 	if (!match) {
1318 		err = -ENOMEM;
1319 		match = kzalloc(sizeof(*match), GFP_KERNEL);
1320 		if (!match)
1321 			goto out;
1322 		write_pnet(&match->net, sock_net(sk));
1323 		match->id = id;
1324 		match->type = type;
1325 		match->flags = flags;
1326 		atomic_set(&match->rr_cur, 0);
1327 		INIT_LIST_HEAD(&match->list);
1328 		spin_lock_init(&match->lock);
1329 		atomic_set(&match->sk_ref, 0);
1330 		match->prot_hook.type = po->prot_hook.type;
1331 		match->prot_hook.dev = po->prot_hook.dev;
1332 		match->prot_hook.func = packet_rcv_fanout;
1333 		match->prot_hook.af_packet_priv = match;
1334 		match->prot_hook.id_match = match_fanout_group;
1335 		dev_add_pack(&match->prot_hook);
1336 		list_add(&match->list, &fanout_list);
1337 	}
1338 	err = -EINVAL;
1339 	if (match->type == type &&
1340 	    match->prot_hook.type == po->prot_hook.type &&
1341 	    match->prot_hook.dev == po->prot_hook.dev) {
1342 		err = -ENOSPC;
1343 		if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1344 			__dev_remove_pack(&po->prot_hook);
1345 			po->fanout = match;
1346 			atomic_inc(&match->sk_ref);
1347 			__fanout_link(sk, po);
1348 			err = 0;
1349 		}
1350 	}
1351 out:
1352 	mutex_unlock(&fanout_mutex);
1353 	return err;
1354 }
1355 
1356 static void fanout_release(struct sock *sk)
1357 {
1358 	struct packet_sock *po = pkt_sk(sk);
1359 	struct packet_fanout *f;
1360 
1361 	f = po->fanout;
1362 	if (!f)
1363 		return;
1364 
1365 	mutex_lock(&fanout_mutex);
1366 	po->fanout = NULL;
1367 
1368 	if (atomic_dec_and_test(&f->sk_ref)) {
1369 		list_del(&f->list);
1370 		dev_remove_pack(&f->prot_hook);
1371 		kfree(f);
1372 	}
1373 	mutex_unlock(&fanout_mutex);
1374 }
1375 
1376 static const struct proto_ops packet_ops;
1377 
1378 static const struct proto_ops packet_ops_spkt;
1379 
1380 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1381 			   struct packet_type *pt, struct net_device *orig_dev)
1382 {
1383 	struct sock *sk;
1384 	struct sockaddr_pkt *spkt;
1385 
1386 	/*
1387 	 *	When we registered the protocol we saved the socket in the data
1388 	 *	field for just this event.
1389 	 */
1390 
1391 	sk = pt->af_packet_priv;
1392 
1393 	/*
1394 	 *	Yank back the headers [hope the device set this
1395 	 *	right or kerboom...]
1396 	 *
1397 	 *	Incoming packets have ll header pulled,
1398 	 *	push it back.
1399 	 *
1400 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1401 	 *	so that this procedure is noop.
1402 	 */
1403 
1404 	if (skb->pkt_type == PACKET_LOOPBACK)
1405 		goto out;
1406 
1407 	if (!net_eq(dev_net(dev), sock_net(sk)))
1408 		goto out;
1409 
1410 	skb = skb_share_check(skb, GFP_ATOMIC);
1411 	if (skb == NULL)
1412 		goto oom;
1413 
1414 	/* drop any routing info */
1415 	skb_dst_drop(skb);
1416 
1417 	/* drop conntrack reference */
1418 	nf_reset(skb);
1419 
1420 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1421 
1422 	skb_push(skb, skb->data - skb_mac_header(skb));
1423 
1424 	/*
1425 	 *	The SOCK_PACKET socket receives _all_ frames.
1426 	 */
1427 
1428 	spkt->spkt_family = dev->type;
1429 	strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1430 	spkt->spkt_protocol = skb->protocol;
1431 
1432 	/*
1433 	 *	Charge the memory to the socket. This is done specifically
1434 	 *	to prevent sockets using all the memory up.
1435 	 */
1436 
1437 	if (sock_queue_rcv_skb(sk, skb) == 0)
1438 		return 0;
1439 
1440 out:
1441 	kfree_skb(skb);
1442 oom:
1443 	return 0;
1444 }
1445 
1446 
1447 /*
1448  *	Output a raw packet to a device layer. This bypasses all the other
1449  *	protocol layers and you must therefore supply it with a complete frame
1450  */
1451 
1452 static int packet_sendmsg_spkt(struct kiocb *iocb, struct socket *sock,
1453 			       struct msghdr *msg, size_t len)
1454 {
1455 	struct sock *sk = sock->sk;
1456 	struct sockaddr_pkt *saddr = (struct sockaddr_pkt *)msg->msg_name;
1457 	struct sk_buff *skb = NULL;
1458 	struct net_device *dev;
1459 	__be16 proto = 0;
1460 	int err;
1461 	int extra_len = 0;
1462 
1463 	/*
1464 	 *	Get and verify the address.
1465 	 */
1466 
1467 	if (saddr) {
1468 		if (msg->msg_namelen < sizeof(struct sockaddr))
1469 			return -EINVAL;
1470 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1471 			proto = saddr->spkt_protocol;
1472 	} else
1473 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1474 
1475 	/*
1476 	 *	Find the device first to size check it
1477 	 */
1478 
1479 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1480 retry:
1481 	rcu_read_lock();
1482 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1483 	err = -ENODEV;
1484 	if (dev == NULL)
1485 		goto out_unlock;
1486 
1487 	err = -ENETDOWN;
1488 	if (!(dev->flags & IFF_UP))
1489 		goto out_unlock;
1490 
1491 	/*
1492 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1493 	 * raw protocol and you must do your own fragmentation at this level.
1494 	 */
1495 
1496 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1497 		if (!netif_supports_nofcs(dev)) {
1498 			err = -EPROTONOSUPPORT;
1499 			goto out_unlock;
1500 		}
1501 		extra_len = 4; /* We're doing our own CRC */
1502 	}
1503 
1504 	err = -EMSGSIZE;
1505 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1506 		goto out_unlock;
1507 
1508 	if (!skb) {
1509 		size_t reserved = LL_RESERVED_SPACE(dev);
1510 		int tlen = dev->needed_tailroom;
1511 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1512 
1513 		rcu_read_unlock();
1514 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1515 		if (skb == NULL)
1516 			return -ENOBUFS;
1517 		/* FIXME: Save some space for broken drivers that write a hard
1518 		 * header at transmission time by themselves. PPP is the notable
1519 		 * one here. This should really be fixed at the driver level.
1520 		 */
1521 		skb_reserve(skb, reserved);
1522 		skb_reset_network_header(skb);
1523 
1524 		/* Try to align data part correctly */
1525 		if (hhlen) {
1526 			skb->data -= hhlen;
1527 			skb->tail -= hhlen;
1528 			if (len < hhlen)
1529 				skb_reset_network_header(skb);
1530 		}
1531 		err = memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len);
1532 		if (err)
1533 			goto out_free;
1534 		goto retry;
1535 	}
1536 
1537 	if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1538 		/* Earlier code assumed this would be a VLAN pkt,
1539 		 * double-check this now that we have the actual
1540 		 * packet in hand.
1541 		 */
1542 		struct ethhdr *ehdr;
1543 		skb_reset_mac_header(skb);
1544 		ehdr = eth_hdr(skb);
1545 		if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1546 			err = -EMSGSIZE;
1547 			goto out_unlock;
1548 		}
1549 	}
1550 
1551 	skb->protocol = proto;
1552 	skb->dev = dev;
1553 	skb->priority = sk->sk_priority;
1554 	skb->mark = sk->sk_mark;
1555 
1556 	sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1557 
1558 	if (unlikely(extra_len == 4))
1559 		skb->no_fcs = 1;
1560 
1561 	skb_probe_transport_header(skb, 0);
1562 
1563 	dev_queue_xmit(skb);
1564 	rcu_read_unlock();
1565 	return len;
1566 
1567 out_unlock:
1568 	rcu_read_unlock();
1569 out_free:
1570 	kfree_skb(skb);
1571 	return err;
1572 }
1573 
1574 static unsigned int run_filter(const struct sk_buff *skb,
1575 				      const struct sock *sk,
1576 				      unsigned int res)
1577 {
1578 	struct sk_filter *filter;
1579 
1580 	rcu_read_lock();
1581 	filter = rcu_dereference(sk->sk_filter);
1582 	if (filter != NULL)
1583 		res = SK_RUN_FILTER(filter, skb);
1584 	rcu_read_unlock();
1585 
1586 	return res;
1587 }
1588 
1589 /*
1590  * This function makes lazy skb cloning in hope that most of packets
1591  * are discarded by BPF.
1592  *
1593  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1594  * and skb->cb are mangled. It works because (and until) packets
1595  * falling here are owned by current CPU. Output packets are cloned
1596  * by dev_queue_xmit_nit(), input packets are processed by net_bh
1597  * sequencially, so that if we return skb to original state on exit,
1598  * we will not harm anyone.
1599  */
1600 
1601 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1602 		      struct packet_type *pt, struct net_device *orig_dev)
1603 {
1604 	struct sock *sk;
1605 	struct sockaddr_ll *sll;
1606 	struct packet_sock *po;
1607 	u8 *skb_head = skb->data;
1608 	int skb_len = skb->len;
1609 	unsigned int snaplen, res;
1610 
1611 	if (skb->pkt_type == PACKET_LOOPBACK)
1612 		goto drop;
1613 
1614 	sk = pt->af_packet_priv;
1615 	po = pkt_sk(sk);
1616 
1617 	if (!net_eq(dev_net(dev), sock_net(sk)))
1618 		goto drop;
1619 
1620 	skb->dev = dev;
1621 
1622 	if (dev->header_ops) {
1623 		/* The device has an explicit notion of ll header,
1624 		 * exported to higher levels.
1625 		 *
1626 		 * Otherwise, the device hides details of its frame
1627 		 * structure, so that corresponding packet head is
1628 		 * never delivered to user.
1629 		 */
1630 		if (sk->sk_type != SOCK_DGRAM)
1631 			skb_push(skb, skb->data - skb_mac_header(skb));
1632 		else if (skb->pkt_type == PACKET_OUTGOING) {
1633 			/* Special case: outgoing packets have ll header at head */
1634 			skb_pull(skb, skb_network_offset(skb));
1635 		}
1636 	}
1637 
1638 	snaplen = skb->len;
1639 
1640 	res = run_filter(skb, sk, snaplen);
1641 	if (!res)
1642 		goto drop_n_restore;
1643 	if (snaplen > res)
1644 		snaplen = res;
1645 
1646 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1647 		goto drop_n_acct;
1648 
1649 	if (skb_shared(skb)) {
1650 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1651 		if (nskb == NULL)
1652 			goto drop_n_acct;
1653 
1654 		if (skb_head != skb->data) {
1655 			skb->data = skb_head;
1656 			skb->len = skb_len;
1657 		}
1658 		consume_skb(skb);
1659 		skb = nskb;
1660 	}
1661 
1662 	BUILD_BUG_ON(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8 >
1663 		     sizeof(skb->cb));
1664 
1665 	sll = &PACKET_SKB_CB(skb)->sa.ll;
1666 	sll->sll_family = AF_PACKET;
1667 	sll->sll_hatype = dev->type;
1668 	sll->sll_protocol = skb->protocol;
1669 	sll->sll_pkttype = skb->pkt_type;
1670 	if (unlikely(po->origdev))
1671 		sll->sll_ifindex = orig_dev->ifindex;
1672 	else
1673 		sll->sll_ifindex = dev->ifindex;
1674 
1675 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1676 
1677 	PACKET_SKB_CB(skb)->origlen = skb->len;
1678 
1679 	if (pskb_trim(skb, snaplen))
1680 		goto drop_n_acct;
1681 
1682 	skb_set_owner_r(skb, sk);
1683 	skb->dev = NULL;
1684 	skb_dst_drop(skb);
1685 
1686 	/* drop conntrack reference */
1687 	nf_reset(skb);
1688 
1689 	spin_lock(&sk->sk_receive_queue.lock);
1690 	po->stats.stats1.tp_packets++;
1691 	skb->dropcount = atomic_read(&sk->sk_drops);
1692 	__skb_queue_tail(&sk->sk_receive_queue, skb);
1693 	spin_unlock(&sk->sk_receive_queue.lock);
1694 	sk->sk_data_ready(sk, skb->len);
1695 	return 0;
1696 
1697 drop_n_acct:
1698 	spin_lock(&sk->sk_receive_queue.lock);
1699 	po->stats.stats1.tp_drops++;
1700 	atomic_inc(&sk->sk_drops);
1701 	spin_unlock(&sk->sk_receive_queue.lock);
1702 
1703 drop_n_restore:
1704 	if (skb_head != skb->data && skb_shared(skb)) {
1705 		skb->data = skb_head;
1706 		skb->len = skb_len;
1707 	}
1708 drop:
1709 	consume_skb(skb);
1710 	return 0;
1711 }
1712 
1713 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1714 		       struct packet_type *pt, struct net_device *orig_dev)
1715 {
1716 	struct sock *sk;
1717 	struct packet_sock *po;
1718 	struct sockaddr_ll *sll;
1719 	union tpacket_uhdr h;
1720 	u8 *skb_head = skb->data;
1721 	int skb_len = skb->len;
1722 	unsigned int snaplen, res;
1723 	unsigned long status = TP_STATUS_USER;
1724 	unsigned short macoff, netoff, hdrlen;
1725 	struct sk_buff *copy_skb = NULL;
1726 	struct timespec ts;
1727 	__u32 ts_status;
1728 
1729 	if (skb->pkt_type == PACKET_LOOPBACK)
1730 		goto drop;
1731 
1732 	sk = pt->af_packet_priv;
1733 	po = pkt_sk(sk);
1734 
1735 	if (!net_eq(dev_net(dev), sock_net(sk)))
1736 		goto drop;
1737 
1738 	if (dev->header_ops) {
1739 		if (sk->sk_type != SOCK_DGRAM)
1740 			skb_push(skb, skb->data - skb_mac_header(skb));
1741 		else if (skb->pkt_type == PACKET_OUTGOING) {
1742 			/* Special case: outgoing packets have ll header at head */
1743 			skb_pull(skb, skb_network_offset(skb));
1744 		}
1745 	}
1746 
1747 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1748 		status |= TP_STATUS_CSUMNOTREADY;
1749 
1750 	snaplen = skb->len;
1751 
1752 	res = run_filter(skb, sk, snaplen);
1753 	if (!res)
1754 		goto drop_n_restore;
1755 	if (snaplen > res)
1756 		snaplen = res;
1757 
1758 	if (sk->sk_type == SOCK_DGRAM) {
1759 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
1760 				  po->tp_reserve;
1761 	} else {
1762 		unsigned int maclen = skb_network_offset(skb);
1763 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
1764 				       (maclen < 16 ? 16 : maclen)) +
1765 			po->tp_reserve;
1766 		macoff = netoff - maclen;
1767 	}
1768 	if (po->tp_version <= TPACKET_V2) {
1769 		if (macoff + snaplen > po->rx_ring.frame_size) {
1770 			if (po->copy_thresh &&
1771 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1772 				if (skb_shared(skb)) {
1773 					copy_skb = skb_clone(skb, GFP_ATOMIC);
1774 				} else {
1775 					copy_skb = skb_get(skb);
1776 					skb_head = skb->data;
1777 				}
1778 				if (copy_skb)
1779 					skb_set_owner_r(copy_skb, sk);
1780 			}
1781 			snaplen = po->rx_ring.frame_size - macoff;
1782 			if ((int)snaplen < 0)
1783 				snaplen = 0;
1784 		}
1785 	}
1786 	spin_lock(&sk->sk_receive_queue.lock);
1787 	h.raw = packet_current_rx_frame(po, skb,
1788 					TP_STATUS_KERNEL, (macoff+snaplen));
1789 	if (!h.raw)
1790 		goto ring_is_full;
1791 	if (po->tp_version <= TPACKET_V2) {
1792 		packet_increment_rx_head(po, &po->rx_ring);
1793 	/*
1794 	 * LOSING will be reported till you read the stats,
1795 	 * because it's COR - Clear On Read.
1796 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
1797 	 * at packet level.
1798 	 */
1799 		if (po->stats.stats1.tp_drops)
1800 			status |= TP_STATUS_LOSING;
1801 	}
1802 	po->stats.stats1.tp_packets++;
1803 	if (copy_skb) {
1804 		status |= TP_STATUS_COPY;
1805 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
1806 	}
1807 	spin_unlock(&sk->sk_receive_queue.lock);
1808 
1809 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
1810 
1811 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
1812 		getnstimeofday(&ts);
1813 
1814 	status |= ts_status;
1815 
1816 	switch (po->tp_version) {
1817 	case TPACKET_V1:
1818 		h.h1->tp_len = skb->len;
1819 		h.h1->tp_snaplen = snaplen;
1820 		h.h1->tp_mac = macoff;
1821 		h.h1->tp_net = netoff;
1822 		h.h1->tp_sec = ts.tv_sec;
1823 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
1824 		hdrlen = sizeof(*h.h1);
1825 		break;
1826 	case TPACKET_V2:
1827 		h.h2->tp_len = skb->len;
1828 		h.h2->tp_snaplen = snaplen;
1829 		h.h2->tp_mac = macoff;
1830 		h.h2->tp_net = netoff;
1831 		h.h2->tp_sec = ts.tv_sec;
1832 		h.h2->tp_nsec = ts.tv_nsec;
1833 		if (vlan_tx_tag_present(skb)) {
1834 			h.h2->tp_vlan_tci = vlan_tx_tag_get(skb);
1835 			status |= TP_STATUS_VLAN_VALID;
1836 		} else {
1837 			h.h2->tp_vlan_tci = 0;
1838 		}
1839 		h.h2->tp_padding = 0;
1840 		hdrlen = sizeof(*h.h2);
1841 		break;
1842 	case TPACKET_V3:
1843 		/* tp_nxt_offset,vlan are already populated above.
1844 		 * So DONT clear those fields here
1845 		 */
1846 		h.h3->tp_status |= status;
1847 		h.h3->tp_len = skb->len;
1848 		h.h3->tp_snaplen = snaplen;
1849 		h.h3->tp_mac = macoff;
1850 		h.h3->tp_net = netoff;
1851 		h.h3->tp_sec  = ts.tv_sec;
1852 		h.h3->tp_nsec = ts.tv_nsec;
1853 		hdrlen = sizeof(*h.h3);
1854 		break;
1855 	default:
1856 		BUG();
1857 	}
1858 
1859 	sll = h.raw + TPACKET_ALIGN(hdrlen);
1860 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1861 	sll->sll_family = AF_PACKET;
1862 	sll->sll_hatype = dev->type;
1863 	sll->sll_protocol = skb->protocol;
1864 	sll->sll_pkttype = skb->pkt_type;
1865 	if (unlikely(po->origdev))
1866 		sll->sll_ifindex = orig_dev->ifindex;
1867 	else
1868 		sll->sll_ifindex = dev->ifindex;
1869 
1870 	smp_mb();
1871 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
1872 	{
1873 		u8 *start, *end;
1874 
1875 		if (po->tp_version <= TPACKET_V2) {
1876 			end = (u8 *)PAGE_ALIGN((unsigned long)h.raw
1877 				+ macoff + snaplen);
1878 			for (start = h.raw; start < end; start += PAGE_SIZE)
1879 				flush_dcache_page(pgv_to_page(start));
1880 		}
1881 		smp_wmb();
1882 	}
1883 #endif
1884 	if (po->tp_version <= TPACKET_V2)
1885 		__packet_set_status(po, h.raw, status);
1886 	else
1887 		prb_clear_blk_fill_status(&po->rx_ring);
1888 
1889 	sk->sk_data_ready(sk, 0);
1890 
1891 drop_n_restore:
1892 	if (skb_head != skb->data && skb_shared(skb)) {
1893 		skb->data = skb_head;
1894 		skb->len = skb_len;
1895 	}
1896 drop:
1897 	kfree_skb(skb);
1898 	return 0;
1899 
1900 ring_is_full:
1901 	po->stats.stats1.tp_drops++;
1902 	spin_unlock(&sk->sk_receive_queue.lock);
1903 
1904 	sk->sk_data_ready(sk, 0);
1905 	kfree_skb(copy_skb);
1906 	goto drop_n_restore;
1907 }
1908 
1909 static void tpacket_destruct_skb(struct sk_buff *skb)
1910 {
1911 	struct packet_sock *po = pkt_sk(skb->sk);
1912 	void *ph;
1913 
1914 	if (likely(po->tx_ring.pg_vec)) {
1915 		__u32 ts;
1916 
1917 		ph = skb_shinfo(skb)->destructor_arg;
1918 		BUG_ON(atomic_read(&po->tx_ring.pending) == 0);
1919 		atomic_dec(&po->tx_ring.pending);
1920 
1921 		ts = __packet_set_timestamp(po, ph, skb);
1922 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
1923 	}
1924 
1925 	sock_wfree(skb);
1926 }
1927 
1928 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
1929 		void *frame, struct net_device *dev, int size_max,
1930 		__be16 proto, unsigned char *addr, int hlen)
1931 {
1932 	union tpacket_uhdr ph;
1933 	int to_write, offset, len, tp_len, nr_frags, len_max;
1934 	struct socket *sock = po->sk.sk_socket;
1935 	struct page *page;
1936 	void *data;
1937 	int err;
1938 
1939 	ph.raw = frame;
1940 
1941 	skb->protocol = proto;
1942 	skb->dev = dev;
1943 	skb->priority = po->sk.sk_priority;
1944 	skb->mark = po->sk.sk_mark;
1945 	sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
1946 	skb_shinfo(skb)->destructor_arg = ph.raw;
1947 
1948 	switch (po->tp_version) {
1949 	case TPACKET_V2:
1950 		tp_len = ph.h2->tp_len;
1951 		break;
1952 	default:
1953 		tp_len = ph.h1->tp_len;
1954 		break;
1955 	}
1956 	if (unlikely(tp_len > size_max)) {
1957 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
1958 		return -EMSGSIZE;
1959 	}
1960 
1961 	skb_reserve(skb, hlen);
1962 	skb_reset_network_header(skb);
1963 	skb_probe_transport_header(skb, 0);
1964 
1965 	if (po->tp_tx_has_off) {
1966 		int off_min, off_max, off;
1967 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
1968 		off_max = po->tx_ring.frame_size - tp_len;
1969 		if (sock->type == SOCK_DGRAM) {
1970 			switch (po->tp_version) {
1971 			case TPACKET_V2:
1972 				off = ph.h2->tp_net;
1973 				break;
1974 			default:
1975 				off = ph.h1->tp_net;
1976 				break;
1977 			}
1978 		} else {
1979 			switch (po->tp_version) {
1980 			case TPACKET_V2:
1981 				off = ph.h2->tp_mac;
1982 				break;
1983 			default:
1984 				off = ph.h1->tp_mac;
1985 				break;
1986 			}
1987 		}
1988 		if (unlikely((off < off_min) || (off_max < off)))
1989 			return -EINVAL;
1990 		data = ph.raw + off;
1991 	} else {
1992 		data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
1993 	}
1994 	to_write = tp_len;
1995 
1996 	if (sock->type == SOCK_DGRAM) {
1997 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
1998 				NULL, tp_len);
1999 		if (unlikely(err < 0))
2000 			return -EINVAL;
2001 	} else if (dev->hard_header_len) {
2002 		/* net device doesn't like empty head */
2003 		if (unlikely(tp_len <= dev->hard_header_len)) {
2004 			pr_err("packet size is too short (%d < %d)\n",
2005 			       tp_len, dev->hard_header_len);
2006 			return -EINVAL;
2007 		}
2008 
2009 		skb_push(skb, dev->hard_header_len);
2010 		err = skb_store_bits(skb, 0, data,
2011 				dev->hard_header_len);
2012 		if (unlikely(err))
2013 			return err;
2014 
2015 		data += dev->hard_header_len;
2016 		to_write -= dev->hard_header_len;
2017 	}
2018 
2019 	offset = offset_in_page(data);
2020 	len_max = PAGE_SIZE - offset;
2021 	len = ((to_write > len_max) ? len_max : to_write);
2022 
2023 	skb->data_len = to_write;
2024 	skb->len += to_write;
2025 	skb->truesize += to_write;
2026 	atomic_add(to_write, &po->sk.sk_wmem_alloc);
2027 
2028 	while (likely(to_write)) {
2029 		nr_frags = skb_shinfo(skb)->nr_frags;
2030 
2031 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2032 			pr_err("Packet exceed the number of skb frags(%lu)\n",
2033 			       MAX_SKB_FRAGS);
2034 			return -EFAULT;
2035 		}
2036 
2037 		page = pgv_to_page(data);
2038 		data += len;
2039 		flush_dcache_page(page);
2040 		get_page(page);
2041 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2042 		to_write -= len;
2043 		offset = 0;
2044 		len_max = PAGE_SIZE;
2045 		len = ((to_write > len_max) ? len_max : to_write);
2046 	}
2047 
2048 	return tp_len;
2049 }
2050 
2051 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2052 {
2053 	struct sk_buff *skb;
2054 	struct net_device *dev;
2055 	__be16 proto;
2056 	bool need_rls_dev = false;
2057 	int err, reserve = 0;
2058 	void *ph;
2059 	struct sockaddr_ll *saddr = (struct sockaddr_ll *)msg->msg_name;
2060 	int tp_len, size_max;
2061 	unsigned char *addr;
2062 	int len_sum = 0;
2063 	int status = TP_STATUS_AVAILABLE;
2064 	int hlen, tlen;
2065 
2066 	mutex_lock(&po->pg_vec_lock);
2067 
2068 	if (saddr == NULL) {
2069 		dev = po->prot_hook.dev;
2070 		proto	= po->num;
2071 		addr	= NULL;
2072 	} else {
2073 		err = -EINVAL;
2074 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2075 			goto out;
2076 		if (msg->msg_namelen < (saddr->sll_halen
2077 					+ offsetof(struct sockaddr_ll,
2078 						sll_addr)))
2079 			goto out;
2080 		proto	= saddr->sll_protocol;
2081 		addr	= saddr->sll_addr;
2082 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2083 		need_rls_dev = true;
2084 	}
2085 
2086 	err = -ENXIO;
2087 	if (unlikely(dev == NULL))
2088 		goto out;
2089 
2090 	reserve = dev->hard_header_len;
2091 
2092 	err = -ENETDOWN;
2093 	if (unlikely(!(dev->flags & IFF_UP)))
2094 		goto out_put;
2095 
2096 	size_max = po->tx_ring.frame_size
2097 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2098 
2099 	if (size_max > dev->mtu + reserve)
2100 		size_max = dev->mtu + reserve;
2101 
2102 	do {
2103 		ph = packet_current_frame(po, &po->tx_ring,
2104 				TP_STATUS_SEND_REQUEST);
2105 
2106 		if (unlikely(ph == NULL)) {
2107 			schedule();
2108 			continue;
2109 		}
2110 
2111 		status = TP_STATUS_SEND_REQUEST;
2112 		hlen = LL_RESERVED_SPACE(dev);
2113 		tlen = dev->needed_tailroom;
2114 		skb = sock_alloc_send_skb(&po->sk,
2115 				hlen + tlen + sizeof(struct sockaddr_ll),
2116 				0, &err);
2117 
2118 		if (unlikely(skb == NULL))
2119 			goto out_status;
2120 
2121 		tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2122 				addr, hlen);
2123 
2124 		if (unlikely(tp_len < 0)) {
2125 			if (po->tp_loss) {
2126 				__packet_set_status(po, ph,
2127 						TP_STATUS_AVAILABLE);
2128 				packet_increment_head(&po->tx_ring);
2129 				kfree_skb(skb);
2130 				continue;
2131 			} else {
2132 				status = TP_STATUS_WRONG_FORMAT;
2133 				err = tp_len;
2134 				goto out_status;
2135 			}
2136 		}
2137 
2138 		skb->destructor = tpacket_destruct_skb;
2139 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2140 		atomic_inc(&po->tx_ring.pending);
2141 
2142 		status = TP_STATUS_SEND_REQUEST;
2143 		err = dev_queue_xmit(skb);
2144 		if (unlikely(err > 0)) {
2145 			err = net_xmit_errno(err);
2146 			if (err && __packet_get_status(po, ph) ==
2147 				   TP_STATUS_AVAILABLE) {
2148 				/* skb was destructed already */
2149 				skb = NULL;
2150 				goto out_status;
2151 			}
2152 			/*
2153 			 * skb was dropped but not destructed yet;
2154 			 * let's treat it like congestion or err < 0
2155 			 */
2156 			err = 0;
2157 		}
2158 		packet_increment_head(&po->tx_ring);
2159 		len_sum += tp_len;
2160 	} while (likely((ph != NULL) ||
2161 			((!(msg->msg_flags & MSG_DONTWAIT)) &&
2162 			 (atomic_read(&po->tx_ring.pending))))
2163 		);
2164 
2165 	err = len_sum;
2166 	goto out_put;
2167 
2168 out_status:
2169 	__packet_set_status(po, ph, status);
2170 	kfree_skb(skb);
2171 out_put:
2172 	if (need_rls_dev)
2173 		dev_put(dev);
2174 out:
2175 	mutex_unlock(&po->pg_vec_lock);
2176 	return err;
2177 }
2178 
2179 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2180 				        size_t reserve, size_t len,
2181 				        size_t linear, int noblock,
2182 				        int *err)
2183 {
2184 	struct sk_buff *skb;
2185 
2186 	/* Under a page?  Don't bother with paged skb. */
2187 	if (prepad + len < PAGE_SIZE || !linear)
2188 		linear = len;
2189 
2190 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2191 				   err);
2192 	if (!skb)
2193 		return NULL;
2194 
2195 	skb_reserve(skb, reserve);
2196 	skb_put(skb, linear);
2197 	skb->data_len = len - linear;
2198 	skb->len += len - linear;
2199 
2200 	return skb;
2201 }
2202 
2203 static int packet_snd(struct socket *sock,
2204 			  struct msghdr *msg, size_t len)
2205 {
2206 	struct sock *sk = sock->sk;
2207 	struct sockaddr_ll *saddr = (struct sockaddr_ll *)msg->msg_name;
2208 	struct sk_buff *skb;
2209 	struct net_device *dev;
2210 	__be16 proto;
2211 	bool need_rls_dev = false;
2212 	unsigned char *addr;
2213 	int err, reserve = 0;
2214 	struct virtio_net_hdr vnet_hdr = { 0 };
2215 	int offset = 0;
2216 	int vnet_hdr_len;
2217 	struct packet_sock *po = pkt_sk(sk);
2218 	unsigned short gso_type = 0;
2219 	int hlen, tlen;
2220 	int extra_len = 0;
2221 
2222 	/*
2223 	 *	Get and verify the address.
2224 	 */
2225 
2226 	if (saddr == NULL) {
2227 		dev = po->prot_hook.dev;
2228 		proto	= po->num;
2229 		addr	= NULL;
2230 	} else {
2231 		err = -EINVAL;
2232 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2233 			goto out;
2234 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2235 			goto out;
2236 		proto	= saddr->sll_protocol;
2237 		addr	= saddr->sll_addr;
2238 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2239 		need_rls_dev = true;
2240 	}
2241 
2242 	err = -ENXIO;
2243 	if (dev == NULL)
2244 		goto out_unlock;
2245 	if (sock->type == SOCK_RAW)
2246 		reserve = dev->hard_header_len;
2247 
2248 	err = -ENETDOWN;
2249 	if (!(dev->flags & IFF_UP))
2250 		goto out_unlock;
2251 
2252 	if (po->has_vnet_hdr) {
2253 		vnet_hdr_len = sizeof(vnet_hdr);
2254 
2255 		err = -EINVAL;
2256 		if (len < vnet_hdr_len)
2257 			goto out_unlock;
2258 
2259 		len -= vnet_hdr_len;
2260 
2261 		err = memcpy_fromiovec((void *)&vnet_hdr, msg->msg_iov,
2262 				       vnet_hdr_len);
2263 		if (err < 0)
2264 			goto out_unlock;
2265 
2266 		if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2267 		    (vnet_hdr.csum_start + vnet_hdr.csum_offset + 2 >
2268 		      vnet_hdr.hdr_len))
2269 			vnet_hdr.hdr_len = vnet_hdr.csum_start +
2270 						 vnet_hdr.csum_offset + 2;
2271 
2272 		err = -EINVAL;
2273 		if (vnet_hdr.hdr_len > len)
2274 			goto out_unlock;
2275 
2276 		if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2277 			switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2278 			case VIRTIO_NET_HDR_GSO_TCPV4:
2279 				gso_type = SKB_GSO_TCPV4;
2280 				break;
2281 			case VIRTIO_NET_HDR_GSO_TCPV6:
2282 				gso_type = SKB_GSO_TCPV6;
2283 				break;
2284 			case VIRTIO_NET_HDR_GSO_UDP:
2285 				gso_type = SKB_GSO_UDP;
2286 				break;
2287 			default:
2288 				goto out_unlock;
2289 			}
2290 
2291 			if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2292 				gso_type |= SKB_GSO_TCP_ECN;
2293 
2294 			if (vnet_hdr.gso_size == 0)
2295 				goto out_unlock;
2296 
2297 		}
2298 	}
2299 
2300 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2301 		if (!netif_supports_nofcs(dev)) {
2302 			err = -EPROTONOSUPPORT;
2303 			goto out_unlock;
2304 		}
2305 		extra_len = 4; /* We're doing our own CRC */
2306 	}
2307 
2308 	err = -EMSGSIZE;
2309 	if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2310 		goto out_unlock;
2311 
2312 	err = -ENOBUFS;
2313 	hlen = LL_RESERVED_SPACE(dev);
2314 	tlen = dev->needed_tailroom;
2315 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, vnet_hdr.hdr_len,
2316 			       msg->msg_flags & MSG_DONTWAIT, &err);
2317 	if (skb == NULL)
2318 		goto out_unlock;
2319 
2320 	skb_set_network_header(skb, reserve);
2321 
2322 	err = -EINVAL;
2323 	if (sock->type == SOCK_DGRAM &&
2324 	    (offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len)) < 0)
2325 		goto out_free;
2326 
2327 	/* Returns -EFAULT on error */
2328 	err = skb_copy_datagram_from_iovec(skb, offset, msg->msg_iov, 0, len);
2329 	if (err)
2330 		goto out_free;
2331 
2332 	sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2333 
2334 	if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2335 		/* Earlier code assumed this would be a VLAN pkt,
2336 		 * double-check this now that we have the actual
2337 		 * packet in hand.
2338 		 */
2339 		struct ethhdr *ehdr;
2340 		skb_reset_mac_header(skb);
2341 		ehdr = eth_hdr(skb);
2342 		if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2343 			err = -EMSGSIZE;
2344 			goto out_free;
2345 		}
2346 	}
2347 
2348 	skb->protocol = proto;
2349 	skb->dev = dev;
2350 	skb->priority = sk->sk_priority;
2351 	skb->mark = sk->sk_mark;
2352 
2353 	if (po->has_vnet_hdr) {
2354 		if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2355 			if (!skb_partial_csum_set(skb, vnet_hdr.csum_start,
2356 						  vnet_hdr.csum_offset)) {
2357 				err = -EINVAL;
2358 				goto out_free;
2359 			}
2360 		}
2361 
2362 		skb_shinfo(skb)->gso_size = vnet_hdr.gso_size;
2363 		skb_shinfo(skb)->gso_type = gso_type;
2364 
2365 		/* Header must be checked, and gso_segs computed. */
2366 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2367 		skb_shinfo(skb)->gso_segs = 0;
2368 
2369 		len += vnet_hdr_len;
2370 	}
2371 
2372 	skb_probe_transport_header(skb, reserve);
2373 
2374 	if (unlikely(extra_len == 4))
2375 		skb->no_fcs = 1;
2376 
2377 	/*
2378 	 *	Now send it
2379 	 */
2380 
2381 	err = dev_queue_xmit(skb);
2382 	if (err > 0 && (err = net_xmit_errno(err)) != 0)
2383 		goto out_unlock;
2384 
2385 	if (need_rls_dev)
2386 		dev_put(dev);
2387 
2388 	return len;
2389 
2390 out_free:
2391 	kfree_skb(skb);
2392 out_unlock:
2393 	if (dev && need_rls_dev)
2394 		dev_put(dev);
2395 out:
2396 	return err;
2397 }
2398 
2399 static int packet_sendmsg(struct kiocb *iocb, struct socket *sock,
2400 		struct msghdr *msg, size_t len)
2401 {
2402 	struct sock *sk = sock->sk;
2403 	struct packet_sock *po = pkt_sk(sk);
2404 	if (po->tx_ring.pg_vec)
2405 		return tpacket_snd(po, msg);
2406 	else
2407 		return packet_snd(sock, msg, len);
2408 }
2409 
2410 /*
2411  *	Close a PACKET socket. This is fairly simple. We immediately go
2412  *	to 'closed' state and remove our protocol entry in the device list.
2413  */
2414 
2415 static int packet_release(struct socket *sock)
2416 {
2417 	struct sock *sk = sock->sk;
2418 	struct packet_sock *po;
2419 	struct net *net;
2420 	union tpacket_req_u req_u;
2421 
2422 	if (!sk)
2423 		return 0;
2424 
2425 	net = sock_net(sk);
2426 	po = pkt_sk(sk);
2427 
2428 	mutex_lock(&net->packet.sklist_lock);
2429 	sk_del_node_init_rcu(sk);
2430 	mutex_unlock(&net->packet.sklist_lock);
2431 
2432 	preempt_disable();
2433 	sock_prot_inuse_add(net, sk->sk_prot, -1);
2434 	preempt_enable();
2435 
2436 	spin_lock(&po->bind_lock);
2437 	unregister_prot_hook(sk, false);
2438 	if (po->prot_hook.dev) {
2439 		dev_put(po->prot_hook.dev);
2440 		po->prot_hook.dev = NULL;
2441 	}
2442 	spin_unlock(&po->bind_lock);
2443 
2444 	packet_flush_mclist(sk);
2445 
2446 	if (po->rx_ring.pg_vec) {
2447 		memset(&req_u, 0, sizeof(req_u));
2448 		packet_set_ring(sk, &req_u, 1, 0);
2449 	}
2450 
2451 	if (po->tx_ring.pg_vec) {
2452 		memset(&req_u, 0, sizeof(req_u));
2453 		packet_set_ring(sk, &req_u, 1, 1);
2454 	}
2455 
2456 	fanout_release(sk);
2457 
2458 	synchronize_net();
2459 	/*
2460 	 *	Now the socket is dead. No more input will appear.
2461 	 */
2462 	sock_orphan(sk);
2463 	sock->sk = NULL;
2464 
2465 	/* Purge queues */
2466 
2467 	skb_queue_purge(&sk->sk_receive_queue);
2468 	sk_refcnt_debug_release(sk);
2469 
2470 	sock_put(sk);
2471 	return 0;
2472 }
2473 
2474 /*
2475  *	Attach a packet hook.
2476  */
2477 
2478 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 protocol)
2479 {
2480 	struct packet_sock *po = pkt_sk(sk);
2481 
2482 	if (po->fanout) {
2483 		if (dev)
2484 			dev_put(dev);
2485 
2486 		return -EINVAL;
2487 	}
2488 
2489 	lock_sock(sk);
2490 
2491 	spin_lock(&po->bind_lock);
2492 	unregister_prot_hook(sk, true);
2493 	po->num = protocol;
2494 	po->prot_hook.type = protocol;
2495 	if (po->prot_hook.dev)
2496 		dev_put(po->prot_hook.dev);
2497 	po->prot_hook.dev = dev;
2498 
2499 	po->ifindex = dev ? dev->ifindex : 0;
2500 
2501 	if (protocol == 0)
2502 		goto out_unlock;
2503 
2504 	if (!dev || (dev->flags & IFF_UP)) {
2505 		register_prot_hook(sk);
2506 	} else {
2507 		sk->sk_err = ENETDOWN;
2508 		if (!sock_flag(sk, SOCK_DEAD))
2509 			sk->sk_error_report(sk);
2510 	}
2511 
2512 out_unlock:
2513 	spin_unlock(&po->bind_lock);
2514 	release_sock(sk);
2515 	return 0;
2516 }
2517 
2518 /*
2519  *	Bind a packet socket to a device
2520  */
2521 
2522 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2523 			    int addr_len)
2524 {
2525 	struct sock *sk = sock->sk;
2526 	char name[15];
2527 	struct net_device *dev;
2528 	int err = -ENODEV;
2529 
2530 	/*
2531 	 *	Check legality
2532 	 */
2533 
2534 	if (addr_len != sizeof(struct sockaddr))
2535 		return -EINVAL;
2536 	strlcpy(name, uaddr->sa_data, sizeof(name));
2537 
2538 	dev = dev_get_by_name(sock_net(sk), name);
2539 	if (dev)
2540 		err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2541 	return err;
2542 }
2543 
2544 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2545 {
2546 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2547 	struct sock *sk = sock->sk;
2548 	struct net_device *dev = NULL;
2549 	int err;
2550 
2551 
2552 	/*
2553 	 *	Check legality
2554 	 */
2555 
2556 	if (addr_len < sizeof(struct sockaddr_ll))
2557 		return -EINVAL;
2558 	if (sll->sll_family != AF_PACKET)
2559 		return -EINVAL;
2560 
2561 	if (sll->sll_ifindex) {
2562 		err = -ENODEV;
2563 		dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2564 		if (dev == NULL)
2565 			goto out;
2566 	}
2567 	err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2568 
2569 out:
2570 	return err;
2571 }
2572 
2573 static struct proto packet_proto = {
2574 	.name	  = "PACKET",
2575 	.owner	  = THIS_MODULE,
2576 	.obj_size = sizeof(struct packet_sock),
2577 };
2578 
2579 /*
2580  *	Create a packet of type SOCK_PACKET.
2581  */
2582 
2583 static int packet_create(struct net *net, struct socket *sock, int protocol,
2584 			 int kern)
2585 {
2586 	struct sock *sk;
2587 	struct packet_sock *po;
2588 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
2589 	int err;
2590 
2591 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
2592 		return -EPERM;
2593 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2594 	    sock->type != SOCK_PACKET)
2595 		return -ESOCKTNOSUPPORT;
2596 
2597 	sock->state = SS_UNCONNECTED;
2598 
2599 	err = -ENOBUFS;
2600 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto);
2601 	if (sk == NULL)
2602 		goto out;
2603 
2604 	sock->ops = &packet_ops;
2605 	if (sock->type == SOCK_PACKET)
2606 		sock->ops = &packet_ops_spkt;
2607 
2608 	sock_init_data(sock, sk);
2609 
2610 	po = pkt_sk(sk);
2611 	sk->sk_family = PF_PACKET;
2612 	po->num = proto;
2613 
2614 	sk->sk_destruct = packet_sock_destruct;
2615 	sk_refcnt_debug_inc(sk);
2616 
2617 	/*
2618 	 *	Attach a protocol block
2619 	 */
2620 
2621 	spin_lock_init(&po->bind_lock);
2622 	mutex_init(&po->pg_vec_lock);
2623 	po->prot_hook.func = packet_rcv;
2624 
2625 	if (sock->type == SOCK_PACKET)
2626 		po->prot_hook.func = packet_rcv_spkt;
2627 
2628 	po->prot_hook.af_packet_priv = sk;
2629 
2630 	if (proto) {
2631 		po->prot_hook.type = proto;
2632 		register_prot_hook(sk);
2633 	}
2634 
2635 	mutex_lock(&net->packet.sklist_lock);
2636 	sk_add_node_rcu(sk, &net->packet.sklist);
2637 	mutex_unlock(&net->packet.sklist_lock);
2638 
2639 	preempt_disable();
2640 	sock_prot_inuse_add(net, &packet_proto, 1);
2641 	preempt_enable();
2642 
2643 	return 0;
2644 out:
2645 	return err;
2646 }
2647 
2648 static int packet_recv_error(struct sock *sk, struct msghdr *msg, int len)
2649 {
2650 	struct sock_exterr_skb *serr;
2651 	struct sk_buff *skb, *skb2;
2652 	int copied, err;
2653 
2654 	err = -EAGAIN;
2655 	skb = skb_dequeue(&sk->sk_error_queue);
2656 	if (skb == NULL)
2657 		goto out;
2658 
2659 	copied = skb->len;
2660 	if (copied > len) {
2661 		msg->msg_flags |= MSG_TRUNC;
2662 		copied = len;
2663 	}
2664 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2665 	if (err)
2666 		goto out_free_skb;
2667 
2668 	sock_recv_timestamp(msg, sk, skb);
2669 
2670 	serr = SKB_EXT_ERR(skb);
2671 	put_cmsg(msg, SOL_PACKET, PACKET_TX_TIMESTAMP,
2672 		 sizeof(serr->ee), &serr->ee);
2673 
2674 	msg->msg_flags |= MSG_ERRQUEUE;
2675 	err = copied;
2676 
2677 	/* Reset and regenerate socket error */
2678 	spin_lock_bh(&sk->sk_error_queue.lock);
2679 	sk->sk_err = 0;
2680 	if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) {
2681 		sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
2682 		spin_unlock_bh(&sk->sk_error_queue.lock);
2683 		sk->sk_error_report(sk);
2684 	} else
2685 		spin_unlock_bh(&sk->sk_error_queue.lock);
2686 
2687 out_free_skb:
2688 	kfree_skb(skb);
2689 out:
2690 	return err;
2691 }
2692 
2693 /*
2694  *	Pull a packet from our receive queue and hand it to the user.
2695  *	If necessary we block.
2696  */
2697 
2698 static int packet_recvmsg(struct kiocb *iocb, struct socket *sock,
2699 			  struct msghdr *msg, size_t len, int flags)
2700 {
2701 	struct sock *sk = sock->sk;
2702 	struct sk_buff *skb;
2703 	int copied, err;
2704 	struct sockaddr_ll *sll;
2705 	int vnet_hdr_len = 0;
2706 
2707 	err = -EINVAL;
2708 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
2709 		goto out;
2710 
2711 #if 0
2712 	/* What error should we return now? EUNATTACH? */
2713 	if (pkt_sk(sk)->ifindex < 0)
2714 		return -ENODEV;
2715 #endif
2716 
2717 	if (flags & MSG_ERRQUEUE) {
2718 		err = packet_recv_error(sk, msg, len);
2719 		goto out;
2720 	}
2721 
2722 	/*
2723 	 *	Call the generic datagram receiver. This handles all sorts
2724 	 *	of horrible races and re-entrancy so we can forget about it
2725 	 *	in the protocol layers.
2726 	 *
2727 	 *	Now it will return ENETDOWN, if device have just gone down,
2728 	 *	but then it will block.
2729 	 */
2730 
2731 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
2732 
2733 	/*
2734 	 *	An error occurred so return it. Because skb_recv_datagram()
2735 	 *	handles the blocking we don't see and worry about blocking
2736 	 *	retries.
2737 	 */
2738 
2739 	if (skb == NULL)
2740 		goto out;
2741 
2742 	if (pkt_sk(sk)->has_vnet_hdr) {
2743 		struct virtio_net_hdr vnet_hdr = { 0 };
2744 
2745 		err = -EINVAL;
2746 		vnet_hdr_len = sizeof(vnet_hdr);
2747 		if (len < vnet_hdr_len)
2748 			goto out_free;
2749 
2750 		len -= vnet_hdr_len;
2751 
2752 		if (skb_is_gso(skb)) {
2753 			struct skb_shared_info *sinfo = skb_shinfo(skb);
2754 
2755 			/* This is a hint as to how much should be linear. */
2756 			vnet_hdr.hdr_len = skb_headlen(skb);
2757 			vnet_hdr.gso_size = sinfo->gso_size;
2758 			if (sinfo->gso_type & SKB_GSO_TCPV4)
2759 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
2760 			else if (sinfo->gso_type & SKB_GSO_TCPV6)
2761 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
2762 			else if (sinfo->gso_type & SKB_GSO_UDP)
2763 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
2764 			else if (sinfo->gso_type & SKB_GSO_FCOE)
2765 				goto out_free;
2766 			else
2767 				BUG();
2768 			if (sinfo->gso_type & SKB_GSO_TCP_ECN)
2769 				vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
2770 		} else
2771 			vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
2772 
2773 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2774 			vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
2775 			vnet_hdr.csum_start = skb_checksum_start_offset(skb);
2776 			vnet_hdr.csum_offset = skb->csum_offset;
2777 		} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2778 			vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
2779 		} /* else everything is zero */
2780 
2781 		err = memcpy_toiovec(msg->msg_iov, (void *)&vnet_hdr,
2782 				     vnet_hdr_len);
2783 		if (err < 0)
2784 			goto out_free;
2785 	}
2786 
2787 	/*
2788 	 *	If the address length field is there to be filled in, we fill
2789 	 *	it in now.
2790 	 */
2791 
2792 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2793 	if (sock->type == SOCK_PACKET)
2794 		msg->msg_namelen = sizeof(struct sockaddr_pkt);
2795 	else
2796 		msg->msg_namelen = sll->sll_halen + offsetof(struct sockaddr_ll, sll_addr);
2797 
2798 	/*
2799 	 *	You lose any data beyond the buffer you gave. If it worries a
2800 	 *	user program they can ask the device for its MTU anyway.
2801 	 */
2802 
2803 	copied = skb->len;
2804 	if (copied > len) {
2805 		copied = len;
2806 		msg->msg_flags |= MSG_TRUNC;
2807 	}
2808 
2809 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2810 	if (err)
2811 		goto out_free;
2812 
2813 	sock_recv_ts_and_drops(msg, sk, skb);
2814 
2815 	if (msg->msg_name)
2816 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
2817 		       msg->msg_namelen);
2818 
2819 	if (pkt_sk(sk)->auxdata) {
2820 		struct tpacket_auxdata aux;
2821 
2822 		aux.tp_status = TP_STATUS_USER;
2823 		if (skb->ip_summed == CHECKSUM_PARTIAL)
2824 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
2825 		aux.tp_len = PACKET_SKB_CB(skb)->origlen;
2826 		aux.tp_snaplen = skb->len;
2827 		aux.tp_mac = 0;
2828 		aux.tp_net = skb_network_offset(skb);
2829 		if (vlan_tx_tag_present(skb)) {
2830 			aux.tp_vlan_tci = vlan_tx_tag_get(skb);
2831 			aux.tp_status |= TP_STATUS_VLAN_VALID;
2832 		} else {
2833 			aux.tp_vlan_tci = 0;
2834 		}
2835 		aux.tp_padding = 0;
2836 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
2837 	}
2838 
2839 	/*
2840 	 *	Free or return the buffer as appropriate. Again this
2841 	 *	hides all the races and re-entrancy issues from us.
2842 	 */
2843 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
2844 
2845 out_free:
2846 	skb_free_datagram(sk, skb);
2847 out:
2848 	return err;
2849 }
2850 
2851 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
2852 			       int *uaddr_len, int peer)
2853 {
2854 	struct net_device *dev;
2855 	struct sock *sk	= sock->sk;
2856 
2857 	if (peer)
2858 		return -EOPNOTSUPP;
2859 
2860 	uaddr->sa_family = AF_PACKET;
2861 	rcu_read_lock();
2862 	dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
2863 	if (dev)
2864 		strncpy(uaddr->sa_data, dev->name, 14);
2865 	else
2866 		memset(uaddr->sa_data, 0, 14);
2867 	rcu_read_unlock();
2868 	*uaddr_len = sizeof(*uaddr);
2869 
2870 	return 0;
2871 }
2872 
2873 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
2874 			  int *uaddr_len, int peer)
2875 {
2876 	struct net_device *dev;
2877 	struct sock *sk = sock->sk;
2878 	struct packet_sock *po = pkt_sk(sk);
2879 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
2880 
2881 	if (peer)
2882 		return -EOPNOTSUPP;
2883 
2884 	sll->sll_family = AF_PACKET;
2885 	sll->sll_ifindex = po->ifindex;
2886 	sll->sll_protocol = po->num;
2887 	sll->sll_pkttype = 0;
2888 	rcu_read_lock();
2889 	dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
2890 	if (dev) {
2891 		sll->sll_hatype = dev->type;
2892 		sll->sll_halen = dev->addr_len;
2893 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
2894 	} else {
2895 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
2896 		sll->sll_halen = 0;
2897 	}
2898 	rcu_read_unlock();
2899 	*uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
2900 
2901 	return 0;
2902 }
2903 
2904 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
2905 			 int what)
2906 {
2907 	switch (i->type) {
2908 	case PACKET_MR_MULTICAST:
2909 		if (i->alen != dev->addr_len)
2910 			return -EINVAL;
2911 		if (what > 0)
2912 			return dev_mc_add(dev, i->addr);
2913 		else
2914 			return dev_mc_del(dev, i->addr);
2915 		break;
2916 	case PACKET_MR_PROMISC:
2917 		return dev_set_promiscuity(dev, what);
2918 		break;
2919 	case PACKET_MR_ALLMULTI:
2920 		return dev_set_allmulti(dev, what);
2921 		break;
2922 	case PACKET_MR_UNICAST:
2923 		if (i->alen != dev->addr_len)
2924 			return -EINVAL;
2925 		if (what > 0)
2926 			return dev_uc_add(dev, i->addr);
2927 		else
2928 			return dev_uc_del(dev, i->addr);
2929 		break;
2930 	default:
2931 		break;
2932 	}
2933 	return 0;
2934 }
2935 
2936 static void packet_dev_mclist(struct net_device *dev, struct packet_mclist *i, int what)
2937 {
2938 	for ( ; i; i = i->next) {
2939 		if (i->ifindex == dev->ifindex)
2940 			packet_dev_mc(dev, i, what);
2941 	}
2942 }
2943 
2944 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
2945 {
2946 	struct packet_sock *po = pkt_sk(sk);
2947 	struct packet_mclist *ml, *i;
2948 	struct net_device *dev;
2949 	int err;
2950 
2951 	rtnl_lock();
2952 
2953 	err = -ENODEV;
2954 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
2955 	if (!dev)
2956 		goto done;
2957 
2958 	err = -EINVAL;
2959 	if (mreq->mr_alen > dev->addr_len)
2960 		goto done;
2961 
2962 	err = -ENOBUFS;
2963 	i = kmalloc(sizeof(*i), GFP_KERNEL);
2964 	if (i == NULL)
2965 		goto done;
2966 
2967 	err = 0;
2968 	for (ml = po->mclist; ml; ml = ml->next) {
2969 		if (ml->ifindex == mreq->mr_ifindex &&
2970 		    ml->type == mreq->mr_type &&
2971 		    ml->alen == mreq->mr_alen &&
2972 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
2973 			ml->count++;
2974 			/* Free the new element ... */
2975 			kfree(i);
2976 			goto done;
2977 		}
2978 	}
2979 
2980 	i->type = mreq->mr_type;
2981 	i->ifindex = mreq->mr_ifindex;
2982 	i->alen = mreq->mr_alen;
2983 	memcpy(i->addr, mreq->mr_address, i->alen);
2984 	i->count = 1;
2985 	i->next = po->mclist;
2986 	po->mclist = i;
2987 	err = packet_dev_mc(dev, i, 1);
2988 	if (err) {
2989 		po->mclist = i->next;
2990 		kfree(i);
2991 	}
2992 
2993 done:
2994 	rtnl_unlock();
2995 	return err;
2996 }
2997 
2998 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
2999 {
3000 	struct packet_mclist *ml, **mlp;
3001 
3002 	rtnl_lock();
3003 
3004 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3005 		if (ml->ifindex == mreq->mr_ifindex &&
3006 		    ml->type == mreq->mr_type &&
3007 		    ml->alen == mreq->mr_alen &&
3008 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3009 			if (--ml->count == 0) {
3010 				struct net_device *dev;
3011 				*mlp = ml->next;
3012 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3013 				if (dev)
3014 					packet_dev_mc(dev, ml, -1);
3015 				kfree(ml);
3016 			}
3017 			rtnl_unlock();
3018 			return 0;
3019 		}
3020 	}
3021 	rtnl_unlock();
3022 	return -EADDRNOTAVAIL;
3023 }
3024 
3025 static void packet_flush_mclist(struct sock *sk)
3026 {
3027 	struct packet_sock *po = pkt_sk(sk);
3028 	struct packet_mclist *ml;
3029 
3030 	if (!po->mclist)
3031 		return;
3032 
3033 	rtnl_lock();
3034 	while ((ml = po->mclist) != NULL) {
3035 		struct net_device *dev;
3036 
3037 		po->mclist = ml->next;
3038 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3039 		if (dev != NULL)
3040 			packet_dev_mc(dev, ml, -1);
3041 		kfree(ml);
3042 	}
3043 	rtnl_unlock();
3044 }
3045 
3046 static int
3047 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3048 {
3049 	struct sock *sk = sock->sk;
3050 	struct packet_sock *po = pkt_sk(sk);
3051 	int ret;
3052 
3053 	if (level != SOL_PACKET)
3054 		return -ENOPROTOOPT;
3055 
3056 	switch (optname) {
3057 	case PACKET_ADD_MEMBERSHIP:
3058 	case PACKET_DROP_MEMBERSHIP:
3059 	{
3060 		struct packet_mreq_max mreq;
3061 		int len = optlen;
3062 		memset(&mreq, 0, sizeof(mreq));
3063 		if (len < sizeof(struct packet_mreq))
3064 			return -EINVAL;
3065 		if (len > sizeof(mreq))
3066 			len = sizeof(mreq);
3067 		if (copy_from_user(&mreq, optval, len))
3068 			return -EFAULT;
3069 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3070 			return -EINVAL;
3071 		if (optname == PACKET_ADD_MEMBERSHIP)
3072 			ret = packet_mc_add(sk, &mreq);
3073 		else
3074 			ret = packet_mc_drop(sk, &mreq);
3075 		return ret;
3076 	}
3077 
3078 	case PACKET_RX_RING:
3079 	case PACKET_TX_RING:
3080 	{
3081 		union tpacket_req_u req_u;
3082 		int len;
3083 
3084 		switch (po->tp_version) {
3085 		case TPACKET_V1:
3086 		case TPACKET_V2:
3087 			len = sizeof(req_u.req);
3088 			break;
3089 		case TPACKET_V3:
3090 		default:
3091 			len = sizeof(req_u.req3);
3092 			break;
3093 		}
3094 		if (optlen < len)
3095 			return -EINVAL;
3096 		if (pkt_sk(sk)->has_vnet_hdr)
3097 			return -EINVAL;
3098 		if (copy_from_user(&req_u.req, optval, len))
3099 			return -EFAULT;
3100 		return packet_set_ring(sk, &req_u, 0,
3101 			optname == PACKET_TX_RING);
3102 	}
3103 	case PACKET_COPY_THRESH:
3104 	{
3105 		int val;
3106 
3107 		if (optlen != sizeof(val))
3108 			return -EINVAL;
3109 		if (copy_from_user(&val, optval, sizeof(val)))
3110 			return -EFAULT;
3111 
3112 		pkt_sk(sk)->copy_thresh = val;
3113 		return 0;
3114 	}
3115 	case PACKET_VERSION:
3116 	{
3117 		int val;
3118 
3119 		if (optlen != sizeof(val))
3120 			return -EINVAL;
3121 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3122 			return -EBUSY;
3123 		if (copy_from_user(&val, optval, sizeof(val)))
3124 			return -EFAULT;
3125 		switch (val) {
3126 		case TPACKET_V1:
3127 		case TPACKET_V2:
3128 		case TPACKET_V3:
3129 			po->tp_version = val;
3130 			return 0;
3131 		default:
3132 			return -EINVAL;
3133 		}
3134 	}
3135 	case PACKET_RESERVE:
3136 	{
3137 		unsigned int val;
3138 
3139 		if (optlen != sizeof(val))
3140 			return -EINVAL;
3141 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3142 			return -EBUSY;
3143 		if (copy_from_user(&val, optval, sizeof(val)))
3144 			return -EFAULT;
3145 		po->tp_reserve = val;
3146 		return 0;
3147 	}
3148 	case PACKET_LOSS:
3149 	{
3150 		unsigned int val;
3151 
3152 		if (optlen != sizeof(val))
3153 			return -EINVAL;
3154 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3155 			return -EBUSY;
3156 		if (copy_from_user(&val, optval, sizeof(val)))
3157 			return -EFAULT;
3158 		po->tp_loss = !!val;
3159 		return 0;
3160 	}
3161 	case PACKET_AUXDATA:
3162 	{
3163 		int val;
3164 
3165 		if (optlen < sizeof(val))
3166 			return -EINVAL;
3167 		if (copy_from_user(&val, optval, sizeof(val)))
3168 			return -EFAULT;
3169 
3170 		po->auxdata = !!val;
3171 		return 0;
3172 	}
3173 	case PACKET_ORIGDEV:
3174 	{
3175 		int val;
3176 
3177 		if (optlen < sizeof(val))
3178 			return -EINVAL;
3179 		if (copy_from_user(&val, optval, sizeof(val)))
3180 			return -EFAULT;
3181 
3182 		po->origdev = !!val;
3183 		return 0;
3184 	}
3185 	case PACKET_VNET_HDR:
3186 	{
3187 		int val;
3188 
3189 		if (sock->type != SOCK_RAW)
3190 			return -EINVAL;
3191 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3192 			return -EBUSY;
3193 		if (optlen < sizeof(val))
3194 			return -EINVAL;
3195 		if (copy_from_user(&val, optval, sizeof(val)))
3196 			return -EFAULT;
3197 
3198 		po->has_vnet_hdr = !!val;
3199 		return 0;
3200 	}
3201 	case PACKET_TIMESTAMP:
3202 	{
3203 		int val;
3204 
3205 		if (optlen != sizeof(val))
3206 			return -EINVAL;
3207 		if (copy_from_user(&val, optval, sizeof(val)))
3208 			return -EFAULT;
3209 
3210 		po->tp_tstamp = val;
3211 		return 0;
3212 	}
3213 	case PACKET_FANOUT:
3214 	{
3215 		int val;
3216 
3217 		if (optlen != sizeof(val))
3218 			return -EINVAL;
3219 		if (copy_from_user(&val, optval, sizeof(val)))
3220 			return -EFAULT;
3221 
3222 		return fanout_add(sk, val & 0xffff, val >> 16);
3223 	}
3224 	case PACKET_TX_HAS_OFF:
3225 	{
3226 		unsigned int val;
3227 
3228 		if (optlen != sizeof(val))
3229 			return -EINVAL;
3230 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3231 			return -EBUSY;
3232 		if (copy_from_user(&val, optval, sizeof(val)))
3233 			return -EFAULT;
3234 		po->tp_tx_has_off = !!val;
3235 		return 0;
3236 	}
3237 	default:
3238 		return -ENOPROTOOPT;
3239 	}
3240 }
3241 
3242 static int packet_getsockopt(struct socket *sock, int level, int optname,
3243 			     char __user *optval, int __user *optlen)
3244 {
3245 	int len;
3246 	int val, lv = sizeof(val);
3247 	struct sock *sk = sock->sk;
3248 	struct packet_sock *po = pkt_sk(sk);
3249 	void *data = &val;
3250 	union tpacket_stats_u st;
3251 
3252 	if (level != SOL_PACKET)
3253 		return -ENOPROTOOPT;
3254 
3255 	if (get_user(len, optlen))
3256 		return -EFAULT;
3257 
3258 	if (len < 0)
3259 		return -EINVAL;
3260 
3261 	switch (optname) {
3262 	case PACKET_STATISTICS:
3263 		spin_lock_bh(&sk->sk_receive_queue.lock);
3264 		memcpy(&st, &po->stats, sizeof(st));
3265 		memset(&po->stats, 0, sizeof(po->stats));
3266 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3267 
3268 		if (po->tp_version == TPACKET_V3) {
3269 			lv = sizeof(struct tpacket_stats_v3);
3270 			data = &st.stats3;
3271 		} else {
3272 			lv = sizeof(struct tpacket_stats);
3273 			data = &st.stats1;
3274 		}
3275 
3276 		break;
3277 	case PACKET_AUXDATA:
3278 		val = po->auxdata;
3279 		break;
3280 	case PACKET_ORIGDEV:
3281 		val = po->origdev;
3282 		break;
3283 	case PACKET_VNET_HDR:
3284 		val = po->has_vnet_hdr;
3285 		break;
3286 	case PACKET_VERSION:
3287 		val = po->tp_version;
3288 		break;
3289 	case PACKET_HDRLEN:
3290 		if (len > sizeof(int))
3291 			len = sizeof(int);
3292 		if (copy_from_user(&val, optval, len))
3293 			return -EFAULT;
3294 		switch (val) {
3295 		case TPACKET_V1:
3296 			val = sizeof(struct tpacket_hdr);
3297 			break;
3298 		case TPACKET_V2:
3299 			val = sizeof(struct tpacket2_hdr);
3300 			break;
3301 		case TPACKET_V3:
3302 			val = sizeof(struct tpacket3_hdr);
3303 			break;
3304 		default:
3305 			return -EINVAL;
3306 		}
3307 		break;
3308 	case PACKET_RESERVE:
3309 		val = po->tp_reserve;
3310 		break;
3311 	case PACKET_LOSS:
3312 		val = po->tp_loss;
3313 		break;
3314 	case PACKET_TIMESTAMP:
3315 		val = po->tp_tstamp;
3316 		break;
3317 	case PACKET_FANOUT:
3318 		val = (po->fanout ?
3319 		       ((u32)po->fanout->id |
3320 			((u32)po->fanout->type << 16) |
3321 			((u32)po->fanout->flags << 24)) :
3322 		       0);
3323 		break;
3324 	case PACKET_TX_HAS_OFF:
3325 		val = po->tp_tx_has_off;
3326 		break;
3327 	default:
3328 		return -ENOPROTOOPT;
3329 	}
3330 
3331 	if (len > lv)
3332 		len = lv;
3333 	if (put_user(len, optlen))
3334 		return -EFAULT;
3335 	if (copy_to_user(optval, data, len))
3336 		return -EFAULT;
3337 	return 0;
3338 }
3339 
3340 
3341 static int packet_notifier(struct notifier_block *this, unsigned long msg, void *data)
3342 {
3343 	struct sock *sk;
3344 	struct net_device *dev = data;
3345 	struct net *net = dev_net(dev);
3346 
3347 	rcu_read_lock();
3348 	sk_for_each_rcu(sk, &net->packet.sklist) {
3349 		struct packet_sock *po = pkt_sk(sk);
3350 
3351 		switch (msg) {
3352 		case NETDEV_UNREGISTER:
3353 			if (po->mclist)
3354 				packet_dev_mclist(dev, po->mclist, -1);
3355 			/* fallthrough */
3356 
3357 		case NETDEV_DOWN:
3358 			if (dev->ifindex == po->ifindex) {
3359 				spin_lock(&po->bind_lock);
3360 				if (po->running) {
3361 					__unregister_prot_hook(sk, false);
3362 					sk->sk_err = ENETDOWN;
3363 					if (!sock_flag(sk, SOCK_DEAD))
3364 						sk->sk_error_report(sk);
3365 				}
3366 				if (msg == NETDEV_UNREGISTER) {
3367 					po->ifindex = -1;
3368 					if (po->prot_hook.dev)
3369 						dev_put(po->prot_hook.dev);
3370 					po->prot_hook.dev = NULL;
3371 				}
3372 				spin_unlock(&po->bind_lock);
3373 			}
3374 			break;
3375 		case NETDEV_UP:
3376 			if (dev->ifindex == po->ifindex) {
3377 				spin_lock(&po->bind_lock);
3378 				if (po->num)
3379 					register_prot_hook(sk);
3380 				spin_unlock(&po->bind_lock);
3381 			}
3382 			break;
3383 		}
3384 	}
3385 	rcu_read_unlock();
3386 	return NOTIFY_DONE;
3387 }
3388 
3389 
3390 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3391 			unsigned long arg)
3392 {
3393 	struct sock *sk = sock->sk;
3394 
3395 	switch (cmd) {
3396 	case SIOCOUTQ:
3397 	{
3398 		int amount = sk_wmem_alloc_get(sk);
3399 
3400 		return put_user(amount, (int __user *)arg);
3401 	}
3402 	case SIOCINQ:
3403 	{
3404 		struct sk_buff *skb;
3405 		int amount = 0;
3406 
3407 		spin_lock_bh(&sk->sk_receive_queue.lock);
3408 		skb = skb_peek(&sk->sk_receive_queue);
3409 		if (skb)
3410 			amount = skb->len;
3411 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3412 		return put_user(amount, (int __user *)arg);
3413 	}
3414 	case SIOCGSTAMP:
3415 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
3416 	case SIOCGSTAMPNS:
3417 		return sock_get_timestampns(sk, (struct timespec __user *)arg);
3418 
3419 #ifdef CONFIG_INET
3420 	case SIOCADDRT:
3421 	case SIOCDELRT:
3422 	case SIOCDARP:
3423 	case SIOCGARP:
3424 	case SIOCSARP:
3425 	case SIOCGIFADDR:
3426 	case SIOCSIFADDR:
3427 	case SIOCGIFBRDADDR:
3428 	case SIOCSIFBRDADDR:
3429 	case SIOCGIFNETMASK:
3430 	case SIOCSIFNETMASK:
3431 	case SIOCGIFDSTADDR:
3432 	case SIOCSIFDSTADDR:
3433 	case SIOCSIFFLAGS:
3434 		return inet_dgram_ops.ioctl(sock, cmd, arg);
3435 #endif
3436 
3437 	default:
3438 		return -ENOIOCTLCMD;
3439 	}
3440 	return 0;
3441 }
3442 
3443 static unsigned int packet_poll(struct file *file, struct socket *sock,
3444 				poll_table *wait)
3445 {
3446 	struct sock *sk = sock->sk;
3447 	struct packet_sock *po = pkt_sk(sk);
3448 	unsigned int mask = datagram_poll(file, sock, wait);
3449 
3450 	spin_lock_bh(&sk->sk_receive_queue.lock);
3451 	if (po->rx_ring.pg_vec) {
3452 		if (!packet_previous_rx_frame(po, &po->rx_ring,
3453 			TP_STATUS_KERNEL))
3454 			mask |= POLLIN | POLLRDNORM;
3455 	}
3456 	spin_unlock_bh(&sk->sk_receive_queue.lock);
3457 	spin_lock_bh(&sk->sk_write_queue.lock);
3458 	if (po->tx_ring.pg_vec) {
3459 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3460 			mask |= POLLOUT | POLLWRNORM;
3461 	}
3462 	spin_unlock_bh(&sk->sk_write_queue.lock);
3463 	return mask;
3464 }
3465 
3466 
3467 /* Dirty? Well, I still did not learn better way to account
3468  * for user mmaps.
3469  */
3470 
3471 static void packet_mm_open(struct vm_area_struct *vma)
3472 {
3473 	struct file *file = vma->vm_file;
3474 	struct socket *sock = file->private_data;
3475 	struct sock *sk = sock->sk;
3476 
3477 	if (sk)
3478 		atomic_inc(&pkt_sk(sk)->mapped);
3479 }
3480 
3481 static void packet_mm_close(struct vm_area_struct *vma)
3482 {
3483 	struct file *file = vma->vm_file;
3484 	struct socket *sock = file->private_data;
3485 	struct sock *sk = sock->sk;
3486 
3487 	if (sk)
3488 		atomic_dec(&pkt_sk(sk)->mapped);
3489 }
3490 
3491 static const struct vm_operations_struct packet_mmap_ops = {
3492 	.open	=	packet_mm_open,
3493 	.close	=	packet_mm_close,
3494 };
3495 
3496 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3497 			unsigned int len)
3498 {
3499 	int i;
3500 
3501 	for (i = 0; i < len; i++) {
3502 		if (likely(pg_vec[i].buffer)) {
3503 			if (is_vmalloc_addr(pg_vec[i].buffer))
3504 				vfree(pg_vec[i].buffer);
3505 			else
3506 				free_pages((unsigned long)pg_vec[i].buffer,
3507 					   order);
3508 			pg_vec[i].buffer = NULL;
3509 		}
3510 	}
3511 	kfree(pg_vec);
3512 }
3513 
3514 static char *alloc_one_pg_vec_page(unsigned long order)
3515 {
3516 	char *buffer = NULL;
3517 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3518 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3519 
3520 	buffer = (char *) __get_free_pages(gfp_flags, order);
3521 
3522 	if (buffer)
3523 		return buffer;
3524 
3525 	/*
3526 	 * __get_free_pages failed, fall back to vmalloc
3527 	 */
3528 	buffer = vzalloc((1 << order) * PAGE_SIZE);
3529 
3530 	if (buffer)
3531 		return buffer;
3532 
3533 	/*
3534 	 * vmalloc failed, lets dig into swap here
3535 	 */
3536 	gfp_flags &= ~__GFP_NORETRY;
3537 	buffer = (char *)__get_free_pages(gfp_flags, order);
3538 	if (buffer)
3539 		return buffer;
3540 
3541 	/*
3542 	 * complete and utter failure
3543 	 */
3544 	return NULL;
3545 }
3546 
3547 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3548 {
3549 	unsigned int block_nr = req->tp_block_nr;
3550 	struct pgv *pg_vec;
3551 	int i;
3552 
3553 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3554 	if (unlikely(!pg_vec))
3555 		goto out;
3556 
3557 	for (i = 0; i < block_nr; i++) {
3558 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3559 		if (unlikely(!pg_vec[i].buffer))
3560 			goto out_free_pgvec;
3561 	}
3562 
3563 out:
3564 	return pg_vec;
3565 
3566 out_free_pgvec:
3567 	free_pg_vec(pg_vec, order, block_nr);
3568 	pg_vec = NULL;
3569 	goto out;
3570 }
3571 
3572 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3573 		int closing, int tx_ring)
3574 {
3575 	struct pgv *pg_vec = NULL;
3576 	struct packet_sock *po = pkt_sk(sk);
3577 	int was_running, order = 0;
3578 	struct packet_ring_buffer *rb;
3579 	struct sk_buff_head *rb_queue;
3580 	__be16 num;
3581 	int err = -EINVAL;
3582 	/* Added to avoid minimal code churn */
3583 	struct tpacket_req *req = &req_u->req;
3584 
3585 	/* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3586 	if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3587 		WARN(1, "Tx-ring is not supported.\n");
3588 		goto out;
3589 	}
3590 
3591 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3592 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3593 
3594 	err = -EBUSY;
3595 	if (!closing) {
3596 		if (atomic_read(&po->mapped))
3597 			goto out;
3598 		if (atomic_read(&rb->pending))
3599 			goto out;
3600 	}
3601 
3602 	if (req->tp_block_nr) {
3603 		/* Sanity tests and some calculations */
3604 		err = -EBUSY;
3605 		if (unlikely(rb->pg_vec))
3606 			goto out;
3607 
3608 		switch (po->tp_version) {
3609 		case TPACKET_V1:
3610 			po->tp_hdrlen = TPACKET_HDRLEN;
3611 			break;
3612 		case TPACKET_V2:
3613 			po->tp_hdrlen = TPACKET2_HDRLEN;
3614 			break;
3615 		case TPACKET_V3:
3616 			po->tp_hdrlen = TPACKET3_HDRLEN;
3617 			break;
3618 		}
3619 
3620 		err = -EINVAL;
3621 		if (unlikely((int)req->tp_block_size <= 0))
3622 			goto out;
3623 		if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3624 			goto out;
3625 		if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3626 					po->tp_reserve))
3627 			goto out;
3628 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3629 			goto out;
3630 
3631 		rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
3632 		if (unlikely(rb->frames_per_block <= 0))
3633 			goto out;
3634 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3635 					req->tp_frame_nr))
3636 			goto out;
3637 
3638 		err = -ENOMEM;
3639 		order = get_order(req->tp_block_size);
3640 		pg_vec = alloc_pg_vec(req, order);
3641 		if (unlikely(!pg_vec))
3642 			goto out;
3643 		switch (po->tp_version) {
3644 		case TPACKET_V3:
3645 		/* Transmit path is not supported. We checked
3646 		 * it above but just being paranoid
3647 		 */
3648 			if (!tx_ring)
3649 				init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring);
3650 				break;
3651 		default:
3652 			break;
3653 		}
3654 	}
3655 	/* Done */
3656 	else {
3657 		err = -EINVAL;
3658 		if (unlikely(req->tp_frame_nr))
3659 			goto out;
3660 	}
3661 
3662 	lock_sock(sk);
3663 
3664 	/* Detach socket from network */
3665 	spin_lock(&po->bind_lock);
3666 	was_running = po->running;
3667 	num = po->num;
3668 	if (was_running) {
3669 		po->num = 0;
3670 		__unregister_prot_hook(sk, false);
3671 	}
3672 	spin_unlock(&po->bind_lock);
3673 
3674 	synchronize_net();
3675 
3676 	err = -EBUSY;
3677 	mutex_lock(&po->pg_vec_lock);
3678 	if (closing || atomic_read(&po->mapped) == 0) {
3679 		err = 0;
3680 		spin_lock_bh(&rb_queue->lock);
3681 		swap(rb->pg_vec, pg_vec);
3682 		rb->frame_max = (req->tp_frame_nr - 1);
3683 		rb->head = 0;
3684 		rb->frame_size = req->tp_frame_size;
3685 		spin_unlock_bh(&rb_queue->lock);
3686 
3687 		swap(rb->pg_vec_order, order);
3688 		swap(rb->pg_vec_len, req->tp_block_nr);
3689 
3690 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
3691 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
3692 						tpacket_rcv : packet_rcv;
3693 		skb_queue_purge(rb_queue);
3694 		if (atomic_read(&po->mapped))
3695 			pr_err("packet_mmap: vma is busy: %d\n",
3696 			       atomic_read(&po->mapped));
3697 	}
3698 	mutex_unlock(&po->pg_vec_lock);
3699 
3700 	spin_lock(&po->bind_lock);
3701 	if (was_running) {
3702 		po->num = num;
3703 		register_prot_hook(sk);
3704 	}
3705 	spin_unlock(&po->bind_lock);
3706 	if (closing && (po->tp_version > TPACKET_V2)) {
3707 		/* Because we don't support block-based V3 on tx-ring */
3708 		if (!tx_ring)
3709 			prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue);
3710 	}
3711 	release_sock(sk);
3712 
3713 	if (pg_vec)
3714 		free_pg_vec(pg_vec, order, req->tp_block_nr);
3715 out:
3716 	return err;
3717 }
3718 
3719 static int packet_mmap(struct file *file, struct socket *sock,
3720 		struct vm_area_struct *vma)
3721 {
3722 	struct sock *sk = sock->sk;
3723 	struct packet_sock *po = pkt_sk(sk);
3724 	unsigned long size, expected_size;
3725 	struct packet_ring_buffer *rb;
3726 	unsigned long start;
3727 	int err = -EINVAL;
3728 	int i;
3729 
3730 	if (vma->vm_pgoff)
3731 		return -EINVAL;
3732 
3733 	mutex_lock(&po->pg_vec_lock);
3734 
3735 	expected_size = 0;
3736 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3737 		if (rb->pg_vec) {
3738 			expected_size += rb->pg_vec_len
3739 						* rb->pg_vec_pages
3740 						* PAGE_SIZE;
3741 		}
3742 	}
3743 
3744 	if (expected_size == 0)
3745 		goto out;
3746 
3747 	size = vma->vm_end - vma->vm_start;
3748 	if (size != expected_size)
3749 		goto out;
3750 
3751 	start = vma->vm_start;
3752 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3753 		if (rb->pg_vec == NULL)
3754 			continue;
3755 
3756 		for (i = 0; i < rb->pg_vec_len; i++) {
3757 			struct page *page;
3758 			void *kaddr = rb->pg_vec[i].buffer;
3759 			int pg_num;
3760 
3761 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
3762 				page = pgv_to_page(kaddr);
3763 				err = vm_insert_page(vma, start, page);
3764 				if (unlikely(err))
3765 					goto out;
3766 				start += PAGE_SIZE;
3767 				kaddr += PAGE_SIZE;
3768 			}
3769 		}
3770 	}
3771 
3772 	atomic_inc(&po->mapped);
3773 	vma->vm_ops = &packet_mmap_ops;
3774 	err = 0;
3775 
3776 out:
3777 	mutex_unlock(&po->pg_vec_lock);
3778 	return err;
3779 }
3780 
3781 static const struct proto_ops packet_ops_spkt = {
3782 	.family =	PF_PACKET,
3783 	.owner =	THIS_MODULE,
3784 	.release =	packet_release,
3785 	.bind =		packet_bind_spkt,
3786 	.connect =	sock_no_connect,
3787 	.socketpair =	sock_no_socketpair,
3788 	.accept =	sock_no_accept,
3789 	.getname =	packet_getname_spkt,
3790 	.poll =		datagram_poll,
3791 	.ioctl =	packet_ioctl,
3792 	.listen =	sock_no_listen,
3793 	.shutdown =	sock_no_shutdown,
3794 	.setsockopt =	sock_no_setsockopt,
3795 	.getsockopt =	sock_no_getsockopt,
3796 	.sendmsg =	packet_sendmsg_spkt,
3797 	.recvmsg =	packet_recvmsg,
3798 	.mmap =		sock_no_mmap,
3799 	.sendpage =	sock_no_sendpage,
3800 };
3801 
3802 static const struct proto_ops packet_ops = {
3803 	.family =	PF_PACKET,
3804 	.owner =	THIS_MODULE,
3805 	.release =	packet_release,
3806 	.bind =		packet_bind,
3807 	.connect =	sock_no_connect,
3808 	.socketpair =	sock_no_socketpair,
3809 	.accept =	sock_no_accept,
3810 	.getname =	packet_getname,
3811 	.poll =		packet_poll,
3812 	.ioctl =	packet_ioctl,
3813 	.listen =	sock_no_listen,
3814 	.shutdown =	sock_no_shutdown,
3815 	.setsockopt =	packet_setsockopt,
3816 	.getsockopt =	packet_getsockopt,
3817 	.sendmsg =	packet_sendmsg,
3818 	.recvmsg =	packet_recvmsg,
3819 	.mmap =		packet_mmap,
3820 	.sendpage =	sock_no_sendpage,
3821 };
3822 
3823 static const struct net_proto_family packet_family_ops = {
3824 	.family =	PF_PACKET,
3825 	.create =	packet_create,
3826 	.owner	=	THIS_MODULE,
3827 };
3828 
3829 static struct notifier_block packet_netdev_notifier = {
3830 	.notifier_call =	packet_notifier,
3831 };
3832 
3833 #ifdef CONFIG_PROC_FS
3834 
3835 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
3836 	__acquires(RCU)
3837 {
3838 	struct net *net = seq_file_net(seq);
3839 
3840 	rcu_read_lock();
3841 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
3842 }
3843 
3844 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3845 {
3846 	struct net *net = seq_file_net(seq);
3847 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
3848 }
3849 
3850 static void packet_seq_stop(struct seq_file *seq, void *v)
3851 	__releases(RCU)
3852 {
3853 	rcu_read_unlock();
3854 }
3855 
3856 static int packet_seq_show(struct seq_file *seq, void *v)
3857 {
3858 	if (v == SEQ_START_TOKEN)
3859 		seq_puts(seq, "sk       RefCnt Type Proto  Iface R Rmem   User   Inode\n");
3860 	else {
3861 		struct sock *s = sk_entry(v);
3862 		const struct packet_sock *po = pkt_sk(s);
3863 
3864 		seq_printf(seq,
3865 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
3866 			   s,
3867 			   atomic_read(&s->sk_refcnt),
3868 			   s->sk_type,
3869 			   ntohs(po->num),
3870 			   po->ifindex,
3871 			   po->running,
3872 			   atomic_read(&s->sk_rmem_alloc),
3873 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
3874 			   sock_i_ino(s));
3875 	}
3876 
3877 	return 0;
3878 }
3879 
3880 static const struct seq_operations packet_seq_ops = {
3881 	.start	= packet_seq_start,
3882 	.next	= packet_seq_next,
3883 	.stop	= packet_seq_stop,
3884 	.show	= packet_seq_show,
3885 };
3886 
3887 static int packet_seq_open(struct inode *inode, struct file *file)
3888 {
3889 	return seq_open_net(inode, file, &packet_seq_ops,
3890 			    sizeof(struct seq_net_private));
3891 }
3892 
3893 static const struct file_operations packet_seq_fops = {
3894 	.owner		= THIS_MODULE,
3895 	.open		= packet_seq_open,
3896 	.read		= seq_read,
3897 	.llseek		= seq_lseek,
3898 	.release	= seq_release_net,
3899 };
3900 
3901 #endif
3902 
3903 static int __net_init packet_net_init(struct net *net)
3904 {
3905 	mutex_init(&net->packet.sklist_lock);
3906 	INIT_HLIST_HEAD(&net->packet.sklist);
3907 
3908 	if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
3909 		return -ENOMEM;
3910 
3911 	return 0;
3912 }
3913 
3914 static void __net_exit packet_net_exit(struct net *net)
3915 {
3916 	remove_proc_entry("packet", net->proc_net);
3917 }
3918 
3919 static struct pernet_operations packet_net_ops = {
3920 	.init = packet_net_init,
3921 	.exit = packet_net_exit,
3922 };
3923 
3924 
3925 static void __exit packet_exit(void)
3926 {
3927 	unregister_netdevice_notifier(&packet_netdev_notifier);
3928 	unregister_pernet_subsys(&packet_net_ops);
3929 	sock_unregister(PF_PACKET);
3930 	proto_unregister(&packet_proto);
3931 }
3932 
3933 static int __init packet_init(void)
3934 {
3935 	int rc = proto_register(&packet_proto, 0);
3936 
3937 	if (rc != 0)
3938 		goto out;
3939 
3940 	sock_register(&packet_family_ops);
3941 	register_pernet_subsys(&packet_net_ops);
3942 	register_netdevice_notifier(&packet_netdev_notifier);
3943 out:
3944 	return rc;
3945 }
3946 
3947 module_init(packet_init);
3948 module_exit(packet_exit);
3949 MODULE_LICENSE("GPL");
3950 MODULE_ALIAS_NETPROTO(PF_PACKET);
3951