1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PACKET - implements raw packet sockets. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Alan Cox, <gw4pts@gw4pts.ampr.org> 12 * 13 * Fixes: 14 * Alan Cox : verify_area() now used correctly 15 * Alan Cox : new skbuff lists, look ma no backlogs! 16 * Alan Cox : tidied skbuff lists. 17 * Alan Cox : Now uses generic datagram routines I 18 * added. Also fixed the peek/read crash 19 * from all old Linux datagram code. 20 * Alan Cox : Uses the improved datagram code. 21 * Alan Cox : Added NULL's for socket options. 22 * Alan Cox : Re-commented the code. 23 * Alan Cox : Use new kernel side addressing 24 * Rob Janssen : Correct MTU usage. 25 * Dave Platt : Counter leaks caused by incorrect 26 * interrupt locking and some slightly 27 * dubious gcc output. Can you read 28 * compiler: it said _VOLATILE_ 29 * Richard Kooijman : Timestamp fixes. 30 * Alan Cox : New buffers. Use sk->mac.raw. 31 * Alan Cox : sendmsg/recvmsg support. 32 * Alan Cox : Protocol setting support 33 * Alexey Kuznetsov : Untied from IPv4 stack. 34 * Cyrus Durgin : Fixed kerneld for kmod. 35 * Michal Ostrowski : Module initialization cleanup. 36 * Ulises Alonso : Frame number limit removal and 37 * packet_set_ring memory leak. 38 * Eric Biederman : Allow for > 8 byte hardware addresses. 39 * The convention is that longer addresses 40 * will simply extend the hardware address 41 * byte arrays at the end of sockaddr_ll 42 * and packet_mreq. 43 * Johann Baudy : Added TX RING. 44 * Chetan Loke : Implemented TPACKET_V3 block abstraction 45 * layer. 46 * Copyright (C) 2011, <lokec@ccs.neu.edu> 47 */ 48 49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 50 51 #include <linux/ethtool.h> 52 #include <linux/filter.h> 53 #include <linux/types.h> 54 #include <linux/mm.h> 55 #include <linux/capability.h> 56 #include <linux/fcntl.h> 57 #include <linux/socket.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/if_packet.h> 62 #include <linux/wireless.h> 63 #include <linux/kernel.h> 64 #include <linux/kmod.h> 65 #include <linux/slab.h> 66 #include <linux/vmalloc.h> 67 #include <net/net_namespace.h> 68 #include <net/ip.h> 69 #include <net/protocol.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <linux/errno.h> 73 #include <linux/timer.h> 74 #include <linux/uaccess.h> 75 #include <asm/ioctls.h> 76 #include <asm/page.h> 77 #include <asm/cacheflush.h> 78 #include <asm/io.h> 79 #include <linux/proc_fs.h> 80 #include <linux/seq_file.h> 81 #include <linux/poll.h> 82 #include <linux/module.h> 83 #include <linux/init.h> 84 #include <linux/mutex.h> 85 #include <linux/if_vlan.h> 86 #include <linux/virtio_net.h> 87 #include <linux/errqueue.h> 88 #include <linux/net_tstamp.h> 89 #include <linux/percpu.h> 90 #ifdef CONFIG_INET 91 #include <net/inet_common.h> 92 #endif 93 #include <linux/bpf.h> 94 #include <net/compat.h> 95 #include <linux/netfilter_netdev.h> 96 97 #include "internal.h" 98 99 /* 100 Assumptions: 101 - If the device has no dev->header_ops->create, there is no LL header 102 visible above the device. In this case, its hard_header_len should be 0. 103 The device may prepend its own header internally. In this case, its 104 needed_headroom should be set to the space needed for it to add its 105 internal header. 106 For example, a WiFi driver pretending to be an Ethernet driver should 107 set its hard_header_len to be the Ethernet header length, and set its 108 needed_headroom to be (the real WiFi header length - the fake Ethernet 109 header length). 110 - packet socket receives packets with pulled ll header, 111 so that SOCK_RAW should push it back. 112 113 On receive: 114 ----------- 115 116 Incoming, dev_has_header(dev) == true 117 mac_header -> ll header 118 data -> data 119 120 Outgoing, dev_has_header(dev) == true 121 mac_header -> ll header 122 data -> ll header 123 124 Incoming, dev_has_header(dev) == false 125 mac_header -> data 126 However drivers often make it point to the ll header. 127 This is incorrect because the ll header should be invisible to us. 128 data -> data 129 130 Outgoing, dev_has_header(dev) == false 131 mac_header -> data. ll header is invisible to us. 132 data -> data 133 134 Resume 135 If dev_has_header(dev) == false we are unable to restore the ll header, 136 because it is invisible to us. 137 138 139 On transmit: 140 ------------ 141 142 dev_has_header(dev) == true 143 mac_header -> ll header 144 data -> ll header 145 146 dev_has_header(dev) == false (ll header is invisible to us) 147 mac_header -> data 148 data -> data 149 150 We should set network_header on output to the correct position, 151 packet classifier depends on it. 152 */ 153 154 /* Private packet socket structures. */ 155 156 /* identical to struct packet_mreq except it has 157 * a longer address field. 158 */ 159 struct packet_mreq_max { 160 int mr_ifindex; 161 unsigned short mr_type; 162 unsigned short mr_alen; 163 unsigned char mr_address[MAX_ADDR_LEN]; 164 }; 165 166 union tpacket_uhdr { 167 struct tpacket_hdr *h1; 168 struct tpacket2_hdr *h2; 169 struct tpacket3_hdr *h3; 170 void *raw; 171 }; 172 173 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 174 int closing, int tx_ring); 175 176 #define V3_ALIGNMENT (8) 177 178 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 179 180 #define BLK_PLUS_PRIV(sz_of_priv) \ 181 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 182 183 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 184 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 185 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 186 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 187 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 188 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 189 190 struct packet_sock; 191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 192 struct packet_type *pt, struct net_device *orig_dev); 193 194 static void *packet_previous_frame(struct packet_sock *po, 195 struct packet_ring_buffer *rb, 196 int status); 197 static void packet_increment_head(struct packet_ring_buffer *buff); 198 static int prb_curr_blk_in_use(struct tpacket_block_desc *); 199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 200 struct packet_sock *); 201 static void prb_retire_current_block(struct tpacket_kbdq_core *, 202 struct packet_sock *, unsigned int status); 203 static int prb_queue_frozen(struct tpacket_kbdq_core *); 204 static void prb_open_block(struct tpacket_kbdq_core *, 205 struct tpacket_block_desc *); 206 static void prb_retire_rx_blk_timer_expired(struct timer_list *); 207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 208 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 209 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 210 struct tpacket3_hdr *); 211 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 212 struct tpacket3_hdr *); 213 static void packet_flush_mclist(struct sock *sk); 214 static u16 packet_pick_tx_queue(struct sk_buff *skb); 215 216 struct packet_skb_cb { 217 union { 218 struct sockaddr_pkt pkt; 219 union { 220 /* Trick: alias skb original length with 221 * ll.sll_family and ll.protocol in order 222 * to save room. 223 */ 224 unsigned int origlen; 225 struct sockaddr_ll ll; 226 }; 227 } sa; 228 }; 229 230 #define vio_le() virtio_legacy_is_little_endian() 231 232 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 233 234 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 235 #define GET_PBLOCK_DESC(x, bid) \ 236 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 237 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 238 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 239 #define GET_NEXT_PRB_BLK_NUM(x) \ 240 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 241 ((x)->kactive_blk_num+1) : 0) 242 243 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 244 static void __fanout_link(struct sock *sk, struct packet_sock *po); 245 246 #ifdef CONFIG_NETFILTER_EGRESS 247 static noinline struct sk_buff *nf_hook_direct_egress(struct sk_buff *skb) 248 { 249 struct sk_buff *next, *head = NULL, *tail; 250 int rc; 251 252 rcu_read_lock(); 253 for (; skb != NULL; skb = next) { 254 next = skb->next; 255 skb_mark_not_on_list(skb); 256 257 if (!nf_hook_egress(skb, &rc, skb->dev)) 258 continue; 259 260 if (!head) 261 head = skb; 262 else 263 tail->next = skb; 264 265 tail = skb; 266 } 267 rcu_read_unlock(); 268 269 return head; 270 } 271 #endif 272 273 static int packet_direct_xmit(struct sk_buff *skb) 274 { 275 #ifdef CONFIG_NETFILTER_EGRESS 276 if (nf_hook_egress_active()) { 277 skb = nf_hook_direct_egress(skb); 278 if (!skb) 279 return NET_XMIT_DROP; 280 } 281 #endif 282 return dev_direct_xmit(skb, packet_pick_tx_queue(skb)); 283 } 284 285 static struct net_device *packet_cached_dev_get(struct packet_sock *po) 286 { 287 struct net_device *dev; 288 289 rcu_read_lock(); 290 dev = rcu_dereference(po->cached_dev); 291 dev_hold(dev); 292 rcu_read_unlock(); 293 294 return dev; 295 } 296 297 static void packet_cached_dev_assign(struct packet_sock *po, 298 struct net_device *dev) 299 { 300 rcu_assign_pointer(po->cached_dev, dev); 301 } 302 303 static void packet_cached_dev_reset(struct packet_sock *po) 304 { 305 RCU_INIT_POINTER(po->cached_dev, NULL); 306 } 307 308 static bool packet_use_direct_xmit(const struct packet_sock *po) 309 { 310 return po->xmit == packet_direct_xmit; 311 } 312 313 static u16 packet_pick_tx_queue(struct sk_buff *skb) 314 { 315 struct net_device *dev = skb->dev; 316 const struct net_device_ops *ops = dev->netdev_ops; 317 int cpu = raw_smp_processor_id(); 318 u16 queue_index; 319 320 #ifdef CONFIG_XPS 321 skb->sender_cpu = cpu + 1; 322 #endif 323 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues); 324 if (ops->ndo_select_queue) { 325 queue_index = ops->ndo_select_queue(dev, skb, NULL); 326 queue_index = netdev_cap_txqueue(dev, queue_index); 327 } else { 328 queue_index = netdev_pick_tx(dev, skb, NULL); 329 } 330 331 return queue_index; 332 } 333 334 /* __register_prot_hook must be invoked through register_prot_hook 335 * or from a context in which asynchronous accesses to the packet 336 * socket is not possible (packet_create()). 337 */ 338 static void __register_prot_hook(struct sock *sk) 339 { 340 struct packet_sock *po = pkt_sk(sk); 341 342 if (!po->running) { 343 if (po->fanout) 344 __fanout_link(sk, po); 345 else 346 dev_add_pack(&po->prot_hook); 347 348 sock_hold(sk); 349 po->running = 1; 350 } 351 } 352 353 static void register_prot_hook(struct sock *sk) 354 { 355 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock); 356 __register_prot_hook(sk); 357 } 358 359 /* If the sync parameter is true, we will temporarily drop 360 * the po->bind_lock and do a synchronize_net to make sure no 361 * asynchronous packet processing paths still refer to the elements 362 * of po->prot_hook. If the sync parameter is false, it is the 363 * callers responsibility to take care of this. 364 */ 365 static void __unregister_prot_hook(struct sock *sk, bool sync) 366 { 367 struct packet_sock *po = pkt_sk(sk); 368 369 lockdep_assert_held_once(&po->bind_lock); 370 371 po->running = 0; 372 373 if (po->fanout) 374 __fanout_unlink(sk, po); 375 else 376 __dev_remove_pack(&po->prot_hook); 377 378 __sock_put(sk); 379 380 if (sync) { 381 spin_unlock(&po->bind_lock); 382 synchronize_net(); 383 spin_lock(&po->bind_lock); 384 } 385 } 386 387 static void unregister_prot_hook(struct sock *sk, bool sync) 388 { 389 struct packet_sock *po = pkt_sk(sk); 390 391 if (po->running) 392 __unregister_prot_hook(sk, sync); 393 } 394 395 static inline struct page * __pure pgv_to_page(void *addr) 396 { 397 if (is_vmalloc_addr(addr)) 398 return vmalloc_to_page(addr); 399 return virt_to_page(addr); 400 } 401 402 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 403 { 404 union tpacket_uhdr h; 405 406 h.raw = frame; 407 switch (po->tp_version) { 408 case TPACKET_V1: 409 h.h1->tp_status = status; 410 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 411 break; 412 case TPACKET_V2: 413 h.h2->tp_status = status; 414 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 415 break; 416 case TPACKET_V3: 417 h.h3->tp_status = status; 418 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 419 break; 420 default: 421 WARN(1, "TPACKET version not supported.\n"); 422 BUG(); 423 } 424 425 smp_wmb(); 426 } 427 428 static int __packet_get_status(const struct packet_sock *po, void *frame) 429 { 430 union tpacket_uhdr h; 431 432 smp_rmb(); 433 434 h.raw = frame; 435 switch (po->tp_version) { 436 case TPACKET_V1: 437 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 438 return h.h1->tp_status; 439 case TPACKET_V2: 440 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 441 return h.h2->tp_status; 442 case TPACKET_V3: 443 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 444 return h.h3->tp_status; 445 default: 446 WARN(1, "TPACKET version not supported.\n"); 447 BUG(); 448 return 0; 449 } 450 } 451 452 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts, 453 unsigned int flags) 454 { 455 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 456 457 if (shhwtstamps && 458 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && 459 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts)) 460 return TP_STATUS_TS_RAW_HARDWARE; 461 462 if ((flags & SOF_TIMESTAMPING_SOFTWARE) && 463 ktime_to_timespec64_cond(skb_tstamp(skb), ts)) 464 return TP_STATUS_TS_SOFTWARE; 465 466 return 0; 467 } 468 469 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, 470 struct sk_buff *skb) 471 { 472 union tpacket_uhdr h; 473 struct timespec64 ts; 474 __u32 ts_status; 475 476 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 477 return 0; 478 479 h.raw = frame; 480 /* 481 * versions 1 through 3 overflow the timestamps in y2106, since they 482 * all store the seconds in a 32-bit unsigned integer. 483 * If we create a version 4, that should have a 64-bit timestamp, 484 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit 485 * nanoseconds. 486 */ 487 switch (po->tp_version) { 488 case TPACKET_V1: 489 h.h1->tp_sec = ts.tv_sec; 490 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 491 break; 492 case TPACKET_V2: 493 h.h2->tp_sec = ts.tv_sec; 494 h.h2->tp_nsec = ts.tv_nsec; 495 break; 496 case TPACKET_V3: 497 h.h3->tp_sec = ts.tv_sec; 498 h.h3->tp_nsec = ts.tv_nsec; 499 break; 500 default: 501 WARN(1, "TPACKET version not supported.\n"); 502 BUG(); 503 } 504 505 /* one flush is safe, as both fields always lie on the same cacheline */ 506 flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); 507 smp_wmb(); 508 509 return ts_status; 510 } 511 512 static void *packet_lookup_frame(const struct packet_sock *po, 513 const struct packet_ring_buffer *rb, 514 unsigned int position, 515 int status) 516 { 517 unsigned int pg_vec_pos, frame_offset; 518 union tpacket_uhdr h; 519 520 pg_vec_pos = position / rb->frames_per_block; 521 frame_offset = position % rb->frames_per_block; 522 523 h.raw = rb->pg_vec[pg_vec_pos].buffer + 524 (frame_offset * rb->frame_size); 525 526 if (status != __packet_get_status(po, h.raw)) 527 return NULL; 528 529 return h.raw; 530 } 531 532 static void *packet_current_frame(struct packet_sock *po, 533 struct packet_ring_buffer *rb, 534 int status) 535 { 536 return packet_lookup_frame(po, rb, rb->head, status); 537 } 538 539 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 540 { 541 del_timer_sync(&pkc->retire_blk_timer); 542 } 543 544 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 545 struct sk_buff_head *rb_queue) 546 { 547 struct tpacket_kbdq_core *pkc; 548 549 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 550 551 spin_lock_bh(&rb_queue->lock); 552 pkc->delete_blk_timer = 1; 553 spin_unlock_bh(&rb_queue->lock); 554 555 prb_del_retire_blk_timer(pkc); 556 } 557 558 static void prb_setup_retire_blk_timer(struct packet_sock *po) 559 { 560 struct tpacket_kbdq_core *pkc; 561 562 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 563 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired, 564 0); 565 pkc->retire_blk_timer.expires = jiffies; 566 } 567 568 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 569 int blk_size_in_bytes) 570 { 571 struct net_device *dev; 572 unsigned int mbits, div; 573 struct ethtool_link_ksettings ecmd; 574 int err; 575 576 rtnl_lock(); 577 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 578 if (unlikely(!dev)) { 579 rtnl_unlock(); 580 return DEFAULT_PRB_RETIRE_TOV; 581 } 582 err = __ethtool_get_link_ksettings(dev, &ecmd); 583 rtnl_unlock(); 584 if (err) 585 return DEFAULT_PRB_RETIRE_TOV; 586 587 /* If the link speed is so slow you don't really 588 * need to worry about perf anyways 589 */ 590 if (ecmd.base.speed < SPEED_1000 || 591 ecmd.base.speed == SPEED_UNKNOWN) 592 return DEFAULT_PRB_RETIRE_TOV; 593 594 div = ecmd.base.speed / 1000; 595 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 596 597 if (div) 598 mbits /= div; 599 600 if (div) 601 return mbits + 1; 602 return mbits; 603 } 604 605 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 606 union tpacket_req_u *req_u) 607 { 608 p1->feature_req_word = req_u->req3.tp_feature_req_word; 609 } 610 611 static void init_prb_bdqc(struct packet_sock *po, 612 struct packet_ring_buffer *rb, 613 struct pgv *pg_vec, 614 union tpacket_req_u *req_u) 615 { 616 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); 617 struct tpacket_block_desc *pbd; 618 619 memset(p1, 0x0, sizeof(*p1)); 620 621 p1->knxt_seq_num = 1; 622 p1->pkbdq = pg_vec; 623 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 624 p1->pkblk_start = pg_vec[0].buffer; 625 p1->kblk_size = req_u->req3.tp_block_size; 626 p1->knum_blocks = req_u->req3.tp_block_nr; 627 p1->hdrlen = po->tp_hdrlen; 628 p1->version = po->tp_version; 629 p1->last_kactive_blk_num = 0; 630 po->stats.stats3.tp_freeze_q_cnt = 0; 631 if (req_u->req3.tp_retire_blk_tov) 632 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 633 else 634 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 635 req_u->req3.tp_block_size); 636 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 637 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 638 rwlock_init(&p1->blk_fill_in_prog_lock); 639 640 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); 641 prb_init_ft_ops(p1, req_u); 642 prb_setup_retire_blk_timer(po); 643 prb_open_block(p1, pbd); 644 } 645 646 /* Do NOT update the last_blk_num first. 647 * Assumes sk_buff_head lock is held. 648 */ 649 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 650 { 651 mod_timer(&pkc->retire_blk_timer, 652 jiffies + pkc->tov_in_jiffies); 653 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 654 } 655 656 /* 657 * Timer logic: 658 * 1) We refresh the timer only when we open a block. 659 * By doing this we don't waste cycles refreshing the timer 660 * on packet-by-packet basis. 661 * 662 * With a 1MB block-size, on a 1Gbps line, it will take 663 * i) ~8 ms to fill a block + ii) memcpy etc. 664 * In this cut we are not accounting for the memcpy time. 665 * 666 * So, if the user sets the 'tmo' to 10ms then the timer 667 * will never fire while the block is still getting filled 668 * (which is what we want). However, the user could choose 669 * to close a block early and that's fine. 670 * 671 * But when the timer does fire, we check whether or not to refresh it. 672 * Since the tmo granularity is in msecs, it is not too expensive 673 * to refresh the timer, lets say every '8' msecs. 674 * Either the user can set the 'tmo' or we can derive it based on 675 * a) line-speed and b) block-size. 676 * prb_calc_retire_blk_tmo() calculates the tmo. 677 * 678 */ 679 static void prb_retire_rx_blk_timer_expired(struct timer_list *t) 680 { 681 struct packet_sock *po = 682 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer); 683 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 684 unsigned int frozen; 685 struct tpacket_block_desc *pbd; 686 687 spin_lock(&po->sk.sk_receive_queue.lock); 688 689 frozen = prb_queue_frozen(pkc); 690 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 691 692 if (unlikely(pkc->delete_blk_timer)) 693 goto out; 694 695 /* We only need to plug the race when the block is partially filled. 696 * tpacket_rcv: 697 * lock(); increment BLOCK_NUM_PKTS; unlock() 698 * copy_bits() is in progress ... 699 * timer fires on other cpu: 700 * we can't retire the current block because copy_bits 701 * is in progress. 702 * 703 */ 704 if (BLOCK_NUM_PKTS(pbd)) { 705 /* Waiting for skb_copy_bits to finish... */ 706 write_lock(&pkc->blk_fill_in_prog_lock); 707 write_unlock(&pkc->blk_fill_in_prog_lock); 708 } 709 710 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 711 if (!frozen) { 712 if (!BLOCK_NUM_PKTS(pbd)) { 713 /* An empty block. Just refresh the timer. */ 714 goto refresh_timer; 715 } 716 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 717 if (!prb_dispatch_next_block(pkc, po)) 718 goto refresh_timer; 719 else 720 goto out; 721 } else { 722 /* Case 1. Queue was frozen because user-space was 723 * lagging behind. 724 */ 725 if (prb_curr_blk_in_use(pbd)) { 726 /* 727 * Ok, user-space is still behind. 728 * So just refresh the timer. 729 */ 730 goto refresh_timer; 731 } else { 732 /* Case 2. queue was frozen,user-space caught up, 733 * now the link went idle && the timer fired. 734 * We don't have a block to close.So we open this 735 * block and restart the timer. 736 * opening a block thaws the queue,restarts timer 737 * Thawing/timer-refresh is a side effect. 738 */ 739 prb_open_block(pkc, pbd); 740 goto out; 741 } 742 } 743 } 744 745 refresh_timer: 746 _prb_refresh_rx_retire_blk_timer(pkc); 747 748 out: 749 spin_unlock(&po->sk.sk_receive_queue.lock); 750 } 751 752 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 753 struct tpacket_block_desc *pbd1, __u32 status) 754 { 755 /* Flush everything minus the block header */ 756 757 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 758 u8 *start, *end; 759 760 start = (u8 *)pbd1; 761 762 /* Skip the block header(we know header WILL fit in 4K) */ 763 start += PAGE_SIZE; 764 765 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 766 for (; start < end; start += PAGE_SIZE) 767 flush_dcache_page(pgv_to_page(start)); 768 769 smp_wmb(); 770 #endif 771 772 /* Now update the block status. */ 773 774 BLOCK_STATUS(pbd1) = status; 775 776 /* Flush the block header */ 777 778 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 779 start = (u8 *)pbd1; 780 flush_dcache_page(pgv_to_page(start)); 781 782 smp_wmb(); 783 #endif 784 } 785 786 /* 787 * Side effect: 788 * 789 * 1) flush the block 790 * 2) Increment active_blk_num 791 * 792 * Note:We DONT refresh the timer on purpose. 793 * Because almost always the next block will be opened. 794 */ 795 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 796 struct tpacket_block_desc *pbd1, 797 struct packet_sock *po, unsigned int stat) 798 { 799 __u32 status = TP_STATUS_USER | stat; 800 801 struct tpacket3_hdr *last_pkt; 802 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 803 struct sock *sk = &po->sk; 804 805 if (atomic_read(&po->tp_drops)) 806 status |= TP_STATUS_LOSING; 807 808 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 809 last_pkt->tp_next_offset = 0; 810 811 /* Get the ts of the last pkt */ 812 if (BLOCK_NUM_PKTS(pbd1)) { 813 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 814 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 815 } else { 816 /* Ok, we tmo'd - so get the current time. 817 * 818 * It shouldn't really happen as we don't close empty 819 * blocks. See prb_retire_rx_blk_timer_expired(). 820 */ 821 struct timespec64 ts; 822 ktime_get_real_ts64(&ts); 823 h1->ts_last_pkt.ts_sec = ts.tv_sec; 824 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 825 } 826 827 smp_wmb(); 828 829 /* Flush the block */ 830 prb_flush_block(pkc1, pbd1, status); 831 832 sk->sk_data_ready(sk); 833 834 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 835 } 836 837 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 838 { 839 pkc->reset_pending_on_curr_blk = 0; 840 } 841 842 /* 843 * Side effect of opening a block: 844 * 845 * 1) prb_queue is thawed. 846 * 2) retire_blk_timer is refreshed. 847 * 848 */ 849 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 850 struct tpacket_block_desc *pbd1) 851 { 852 struct timespec64 ts; 853 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 854 855 smp_rmb(); 856 857 /* We could have just memset this but we will lose the 858 * flexibility of making the priv area sticky 859 */ 860 861 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 862 BLOCK_NUM_PKTS(pbd1) = 0; 863 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 864 865 ktime_get_real_ts64(&ts); 866 867 h1->ts_first_pkt.ts_sec = ts.tv_sec; 868 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 869 870 pkc1->pkblk_start = (char *)pbd1; 871 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 872 873 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 874 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 875 876 pbd1->version = pkc1->version; 877 pkc1->prev = pkc1->nxt_offset; 878 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 879 880 prb_thaw_queue(pkc1); 881 _prb_refresh_rx_retire_blk_timer(pkc1); 882 883 smp_wmb(); 884 } 885 886 /* 887 * Queue freeze logic: 888 * 1) Assume tp_block_nr = 8 blocks. 889 * 2) At time 't0', user opens Rx ring. 890 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 891 * 4) user-space is either sleeping or processing block '0'. 892 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 893 * it will close block-7,loop around and try to fill block '0'. 894 * call-flow: 895 * __packet_lookup_frame_in_block 896 * prb_retire_current_block() 897 * prb_dispatch_next_block() 898 * |->(BLOCK_STATUS == USER) evaluates to true 899 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 900 * 6) Now there are two cases: 901 * 6.1) Link goes idle right after the queue is frozen. 902 * But remember, the last open_block() refreshed the timer. 903 * When this timer expires,it will refresh itself so that we can 904 * re-open block-0 in near future. 905 * 6.2) Link is busy and keeps on receiving packets. This is a simple 906 * case and __packet_lookup_frame_in_block will check if block-0 907 * is free and can now be re-used. 908 */ 909 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 910 struct packet_sock *po) 911 { 912 pkc->reset_pending_on_curr_blk = 1; 913 po->stats.stats3.tp_freeze_q_cnt++; 914 } 915 916 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 917 918 /* 919 * If the next block is free then we will dispatch it 920 * and return a good offset. 921 * Else, we will freeze the queue. 922 * So, caller must check the return value. 923 */ 924 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 925 struct packet_sock *po) 926 { 927 struct tpacket_block_desc *pbd; 928 929 smp_rmb(); 930 931 /* 1. Get current block num */ 932 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 933 934 /* 2. If this block is currently in_use then freeze the queue */ 935 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 936 prb_freeze_queue(pkc, po); 937 return NULL; 938 } 939 940 /* 941 * 3. 942 * open this block and return the offset where the first packet 943 * needs to get stored. 944 */ 945 prb_open_block(pkc, pbd); 946 return (void *)pkc->nxt_offset; 947 } 948 949 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 950 struct packet_sock *po, unsigned int status) 951 { 952 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 953 954 /* retire/close the current block */ 955 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 956 /* 957 * Plug the case where copy_bits() is in progress on 958 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 959 * have space to copy the pkt in the current block and 960 * called prb_retire_current_block() 961 * 962 * We don't need to worry about the TMO case because 963 * the timer-handler already handled this case. 964 */ 965 if (!(status & TP_STATUS_BLK_TMO)) { 966 /* Waiting for skb_copy_bits to finish... */ 967 write_lock(&pkc->blk_fill_in_prog_lock); 968 write_unlock(&pkc->blk_fill_in_prog_lock); 969 } 970 prb_close_block(pkc, pbd, po, status); 971 return; 972 } 973 } 974 975 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd) 976 { 977 return TP_STATUS_USER & BLOCK_STATUS(pbd); 978 } 979 980 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 981 { 982 return pkc->reset_pending_on_curr_blk; 983 } 984 985 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 986 __releases(&pkc->blk_fill_in_prog_lock) 987 { 988 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 989 990 read_unlock(&pkc->blk_fill_in_prog_lock); 991 } 992 993 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 994 struct tpacket3_hdr *ppd) 995 { 996 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); 997 } 998 999 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 1000 struct tpacket3_hdr *ppd) 1001 { 1002 ppd->hv1.tp_rxhash = 0; 1003 } 1004 1005 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 1006 struct tpacket3_hdr *ppd) 1007 { 1008 if (skb_vlan_tag_present(pkc->skb)) { 1009 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); 1010 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); 1011 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 1012 } else { 1013 ppd->hv1.tp_vlan_tci = 0; 1014 ppd->hv1.tp_vlan_tpid = 0; 1015 ppd->tp_status = TP_STATUS_AVAILABLE; 1016 } 1017 } 1018 1019 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 1020 struct tpacket3_hdr *ppd) 1021 { 1022 ppd->hv1.tp_padding = 0; 1023 prb_fill_vlan_info(pkc, ppd); 1024 1025 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 1026 prb_fill_rxhash(pkc, ppd); 1027 else 1028 prb_clear_rxhash(pkc, ppd); 1029 } 1030 1031 static void prb_fill_curr_block(char *curr, 1032 struct tpacket_kbdq_core *pkc, 1033 struct tpacket_block_desc *pbd, 1034 unsigned int len) 1035 __acquires(&pkc->blk_fill_in_prog_lock) 1036 { 1037 struct tpacket3_hdr *ppd; 1038 1039 ppd = (struct tpacket3_hdr *)curr; 1040 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 1041 pkc->prev = curr; 1042 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 1043 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1044 BLOCK_NUM_PKTS(pbd) += 1; 1045 read_lock(&pkc->blk_fill_in_prog_lock); 1046 prb_run_all_ft_ops(pkc, ppd); 1047 } 1048 1049 /* Assumes caller has the sk->rx_queue.lock */ 1050 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1051 struct sk_buff *skb, 1052 unsigned int len 1053 ) 1054 { 1055 struct tpacket_kbdq_core *pkc; 1056 struct tpacket_block_desc *pbd; 1057 char *curr, *end; 1058 1059 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 1060 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1061 1062 /* Queue is frozen when user space is lagging behind */ 1063 if (prb_queue_frozen(pkc)) { 1064 /* 1065 * Check if that last block which caused the queue to freeze, 1066 * is still in_use by user-space. 1067 */ 1068 if (prb_curr_blk_in_use(pbd)) { 1069 /* Can't record this packet */ 1070 return NULL; 1071 } else { 1072 /* 1073 * Ok, the block was released by user-space. 1074 * Now let's open that block. 1075 * opening a block also thaws the queue. 1076 * Thawing is a side effect. 1077 */ 1078 prb_open_block(pkc, pbd); 1079 } 1080 } 1081 1082 smp_mb(); 1083 curr = pkc->nxt_offset; 1084 pkc->skb = skb; 1085 end = (char *)pbd + pkc->kblk_size; 1086 1087 /* first try the current block */ 1088 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1089 prb_fill_curr_block(curr, pkc, pbd, len); 1090 return (void *)curr; 1091 } 1092 1093 /* Ok, close the current block */ 1094 prb_retire_current_block(pkc, po, 0); 1095 1096 /* Now, try to dispatch the next block */ 1097 curr = (char *)prb_dispatch_next_block(pkc, po); 1098 if (curr) { 1099 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1100 prb_fill_curr_block(curr, pkc, pbd, len); 1101 return (void *)curr; 1102 } 1103 1104 /* 1105 * No free blocks are available.user_space hasn't caught up yet. 1106 * Queue was just frozen and now this packet will get dropped. 1107 */ 1108 return NULL; 1109 } 1110 1111 static void *packet_current_rx_frame(struct packet_sock *po, 1112 struct sk_buff *skb, 1113 int status, unsigned int len) 1114 { 1115 char *curr = NULL; 1116 switch (po->tp_version) { 1117 case TPACKET_V1: 1118 case TPACKET_V2: 1119 curr = packet_lookup_frame(po, &po->rx_ring, 1120 po->rx_ring.head, status); 1121 return curr; 1122 case TPACKET_V3: 1123 return __packet_lookup_frame_in_block(po, skb, len); 1124 default: 1125 WARN(1, "TPACKET version not supported\n"); 1126 BUG(); 1127 return NULL; 1128 } 1129 } 1130 1131 static void *prb_lookup_block(const struct packet_sock *po, 1132 const struct packet_ring_buffer *rb, 1133 unsigned int idx, 1134 int status) 1135 { 1136 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1137 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); 1138 1139 if (status != BLOCK_STATUS(pbd)) 1140 return NULL; 1141 return pbd; 1142 } 1143 1144 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1145 { 1146 unsigned int prev; 1147 if (rb->prb_bdqc.kactive_blk_num) 1148 prev = rb->prb_bdqc.kactive_blk_num-1; 1149 else 1150 prev = rb->prb_bdqc.knum_blocks-1; 1151 return prev; 1152 } 1153 1154 /* Assumes caller has held the rx_queue.lock */ 1155 static void *__prb_previous_block(struct packet_sock *po, 1156 struct packet_ring_buffer *rb, 1157 int status) 1158 { 1159 unsigned int previous = prb_previous_blk_num(rb); 1160 return prb_lookup_block(po, rb, previous, status); 1161 } 1162 1163 static void *packet_previous_rx_frame(struct packet_sock *po, 1164 struct packet_ring_buffer *rb, 1165 int status) 1166 { 1167 if (po->tp_version <= TPACKET_V2) 1168 return packet_previous_frame(po, rb, status); 1169 1170 return __prb_previous_block(po, rb, status); 1171 } 1172 1173 static void packet_increment_rx_head(struct packet_sock *po, 1174 struct packet_ring_buffer *rb) 1175 { 1176 switch (po->tp_version) { 1177 case TPACKET_V1: 1178 case TPACKET_V2: 1179 return packet_increment_head(rb); 1180 case TPACKET_V3: 1181 default: 1182 WARN(1, "TPACKET version not supported.\n"); 1183 BUG(); 1184 return; 1185 } 1186 } 1187 1188 static void *packet_previous_frame(struct packet_sock *po, 1189 struct packet_ring_buffer *rb, 1190 int status) 1191 { 1192 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1193 return packet_lookup_frame(po, rb, previous, status); 1194 } 1195 1196 static void packet_increment_head(struct packet_ring_buffer *buff) 1197 { 1198 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1199 } 1200 1201 static void packet_inc_pending(struct packet_ring_buffer *rb) 1202 { 1203 this_cpu_inc(*rb->pending_refcnt); 1204 } 1205 1206 static void packet_dec_pending(struct packet_ring_buffer *rb) 1207 { 1208 this_cpu_dec(*rb->pending_refcnt); 1209 } 1210 1211 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) 1212 { 1213 unsigned int refcnt = 0; 1214 int cpu; 1215 1216 /* We don't use pending refcount in rx_ring. */ 1217 if (rb->pending_refcnt == NULL) 1218 return 0; 1219 1220 for_each_possible_cpu(cpu) 1221 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); 1222 1223 return refcnt; 1224 } 1225 1226 static int packet_alloc_pending(struct packet_sock *po) 1227 { 1228 po->rx_ring.pending_refcnt = NULL; 1229 1230 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); 1231 if (unlikely(po->tx_ring.pending_refcnt == NULL)) 1232 return -ENOBUFS; 1233 1234 return 0; 1235 } 1236 1237 static void packet_free_pending(struct packet_sock *po) 1238 { 1239 free_percpu(po->tx_ring.pending_refcnt); 1240 } 1241 1242 #define ROOM_POW_OFF 2 1243 #define ROOM_NONE 0x0 1244 #define ROOM_LOW 0x1 1245 #define ROOM_NORMAL 0x2 1246 1247 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off) 1248 { 1249 int idx, len; 1250 1251 len = READ_ONCE(po->rx_ring.frame_max) + 1; 1252 idx = READ_ONCE(po->rx_ring.head); 1253 if (pow_off) 1254 idx += len >> pow_off; 1255 if (idx >= len) 1256 idx -= len; 1257 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1258 } 1259 1260 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off) 1261 { 1262 int idx, len; 1263 1264 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks); 1265 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num); 1266 if (pow_off) 1267 idx += len >> pow_off; 1268 if (idx >= len) 1269 idx -= len; 1270 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1271 } 1272 1273 static int __packet_rcv_has_room(const struct packet_sock *po, 1274 const struct sk_buff *skb) 1275 { 1276 const struct sock *sk = &po->sk; 1277 int ret = ROOM_NONE; 1278 1279 if (po->prot_hook.func != tpacket_rcv) { 1280 int rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1281 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc) 1282 - (skb ? skb->truesize : 0); 1283 1284 if (avail > (rcvbuf >> ROOM_POW_OFF)) 1285 return ROOM_NORMAL; 1286 else if (avail > 0) 1287 return ROOM_LOW; 1288 else 1289 return ROOM_NONE; 1290 } 1291 1292 if (po->tp_version == TPACKET_V3) { 1293 if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) 1294 ret = ROOM_NORMAL; 1295 else if (__tpacket_v3_has_room(po, 0)) 1296 ret = ROOM_LOW; 1297 } else { 1298 if (__tpacket_has_room(po, ROOM_POW_OFF)) 1299 ret = ROOM_NORMAL; 1300 else if (__tpacket_has_room(po, 0)) 1301 ret = ROOM_LOW; 1302 } 1303 1304 return ret; 1305 } 1306 1307 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1308 { 1309 int pressure, ret; 1310 1311 ret = __packet_rcv_has_room(po, skb); 1312 pressure = ret != ROOM_NORMAL; 1313 1314 if (READ_ONCE(po->pressure) != pressure) 1315 WRITE_ONCE(po->pressure, pressure); 1316 1317 return ret; 1318 } 1319 1320 static void packet_rcv_try_clear_pressure(struct packet_sock *po) 1321 { 1322 if (READ_ONCE(po->pressure) && 1323 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) 1324 WRITE_ONCE(po->pressure, 0); 1325 } 1326 1327 static void packet_sock_destruct(struct sock *sk) 1328 { 1329 skb_queue_purge(&sk->sk_error_queue); 1330 1331 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1332 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 1333 1334 if (!sock_flag(sk, SOCK_DEAD)) { 1335 pr_err("Attempt to release alive packet socket: %p\n", sk); 1336 return; 1337 } 1338 1339 sk_refcnt_debug_dec(sk); 1340 } 1341 1342 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) 1343 { 1344 u32 *history = po->rollover->history; 1345 u32 victim, rxhash; 1346 int i, count = 0; 1347 1348 rxhash = skb_get_hash(skb); 1349 for (i = 0; i < ROLLOVER_HLEN; i++) 1350 if (READ_ONCE(history[i]) == rxhash) 1351 count++; 1352 1353 victim = prandom_u32() % ROLLOVER_HLEN; 1354 1355 /* Avoid dirtying the cache line if possible */ 1356 if (READ_ONCE(history[victim]) != rxhash) 1357 WRITE_ONCE(history[victim], rxhash); 1358 1359 return count > (ROLLOVER_HLEN >> 1); 1360 } 1361 1362 static unsigned int fanout_demux_hash(struct packet_fanout *f, 1363 struct sk_buff *skb, 1364 unsigned int num) 1365 { 1366 return reciprocal_scale(__skb_get_hash_symmetric(skb), num); 1367 } 1368 1369 static unsigned int fanout_demux_lb(struct packet_fanout *f, 1370 struct sk_buff *skb, 1371 unsigned int num) 1372 { 1373 unsigned int val = atomic_inc_return(&f->rr_cur); 1374 1375 return val % num; 1376 } 1377 1378 static unsigned int fanout_demux_cpu(struct packet_fanout *f, 1379 struct sk_buff *skb, 1380 unsigned int num) 1381 { 1382 return smp_processor_id() % num; 1383 } 1384 1385 static unsigned int fanout_demux_rnd(struct packet_fanout *f, 1386 struct sk_buff *skb, 1387 unsigned int num) 1388 { 1389 return prandom_u32_max(num); 1390 } 1391 1392 static unsigned int fanout_demux_rollover(struct packet_fanout *f, 1393 struct sk_buff *skb, 1394 unsigned int idx, bool try_self, 1395 unsigned int num) 1396 { 1397 struct packet_sock *po, *po_next, *po_skip = NULL; 1398 unsigned int i, j, room = ROOM_NONE; 1399 1400 po = pkt_sk(rcu_dereference(f->arr[idx])); 1401 1402 if (try_self) { 1403 room = packet_rcv_has_room(po, skb); 1404 if (room == ROOM_NORMAL || 1405 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) 1406 return idx; 1407 po_skip = po; 1408 } 1409 1410 i = j = min_t(int, po->rollover->sock, num - 1); 1411 do { 1412 po_next = pkt_sk(rcu_dereference(f->arr[i])); 1413 if (po_next != po_skip && !READ_ONCE(po_next->pressure) && 1414 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { 1415 if (i != j) 1416 po->rollover->sock = i; 1417 atomic_long_inc(&po->rollover->num); 1418 if (room == ROOM_LOW) 1419 atomic_long_inc(&po->rollover->num_huge); 1420 return i; 1421 } 1422 1423 if (++i == num) 1424 i = 0; 1425 } while (i != j); 1426 1427 atomic_long_inc(&po->rollover->num_failed); 1428 return idx; 1429 } 1430 1431 static unsigned int fanout_demux_qm(struct packet_fanout *f, 1432 struct sk_buff *skb, 1433 unsigned int num) 1434 { 1435 return skb_get_queue_mapping(skb) % num; 1436 } 1437 1438 static unsigned int fanout_demux_bpf(struct packet_fanout *f, 1439 struct sk_buff *skb, 1440 unsigned int num) 1441 { 1442 struct bpf_prog *prog; 1443 unsigned int ret = 0; 1444 1445 rcu_read_lock(); 1446 prog = rcu_dereference(f->bpf_prog); 1447 if (prog) 1448 ret = bpf_prog_run_clear_cb(prog, skb) % num; 1449 rcu_read_unlock(); 1450 1451 return ret; 1452 } 1453 1454 static bool fanout_has_flag(struct packet_fanout *f, u16 flag) 1455 { 1456 return f->flags & (flag >> 8); 1457 } 1458 1459 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1460 struct packet_type *pt, struct net_device *orig_dev) 1461 { 1462 struct packet_fanout *f = pt->af_packet_priv; 1463 unsigned int num = READ_ONCE(f->num_members); 1464 struct net *net = read_pnet(&f->net); 1465 struct packet_sock *po; 1466 unsigned int idx; 1467 1468 if (!net_eq(dev_net(dev), net) || !num) { 1469 kfree_skb(skb); 1470 return 0; 1471 } 1472 1473 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { 1474 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET); 1475 if (!skb) 1476 return 0; 1477 } 1478 switch (f->type) { 1479 case PACKET_FANOUT_HASH: 1480 default: 1481 idx = fanout_demux_hash(f, skb, num); 1482 break; 1483 case PACKET_FANOUT_LB: 1484 idx = fanout_demux_lb(f, skb, num); 1485 break; 1486 case PACKET_FANOUT_CPU: 1487 idx = fanout_demux_cpu(f, skb, num); 1488 break; 1489 case PACKET_FANOUT_RND: 1490 idx = fanout_demux_rnd(f, skb, num); 1491 break; 1492 case PACKET_FANOUT_QM: 1493 idx = fanout_demux_qm(f, skb, num); 1494 break; 1495 case PACKET_FANOUT_ROLLOVER: 1496 idx = fanout_demux_rollover(f, skb, 0, false, num); 1497 break; 1498 case PACKET_FANOUT_CBPF: 1499 case PACKET_FANOUT_EBPF: 1500 idx = fanout_demux_bpf(f, skb, num); 1501 break; 1502 } 1503 1504 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) 1505 idx = fanout_demux_rollover(f, skb, idx, true, num); 1506 1507 po = pkt_sk(rcu_dereference(f->arr[idx])); 1508 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1509 } 1510 1511 DEFINE_MUTEX(fanout_mutex); 1512 EXPORT_SYMBOL_GPL(fanout_mutex); 1513 static LIST_HEAD(fanout_list); 1514 static u16 fanout_next_id; 1515 1516 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1517 { 1518 struct packet_fanout *f = po->fanout; 1519 1520 spin_lock(&f->lock); 1521 rcu_assign_pointer(f->arr[f->num_members], sk); 1522 smp_wmb(); 1523 f->num_members++; 1524 if (f->num_members == 1) 1525 dev_add_pack(&f->prot_hook); 1526 spin_unlock(&f->lock); 1527 } 1528 1529 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1530 { 1531 struct packet_fanout *f = po->fanout; 1532 int i; 1533 1534 spin_lock(&f->lock); 1535 for (i = 0; i < f->num_members; i++) { 1536 if (rcu_dereference_protected(f->arr[i], 1537 lockdep_is_held(&f->lock)) == sk) 1538 break; 1539 } 1540 BUG_ON(i >= f->num_members); 1541 rcu_assign_pointer(f->arr[i], 1542 rcu_dereference_protected(f->arr[f->num_members - 1], 1543 lockdep_is_held(&f->lock))); 1544 f->num_members--; 1545 if (f->num_members == 0) 1546 __dev_remove_pack(&f->prot_hook); 1547 spin_unlock(&f->lock); 1548 } 1549 1550 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) 1551 { 1552 if (sk->sk_family != PF_PACKET) 1553 return false; 1554 1555 return ptype->af_packet_priv == pkt_sk(sk)->fanout; 1556 } 1557 1558 static void fanout_init_data(struct packet_fanout *f) 1559 { 1560 switch (f->type) { 1561 case PACKET_FANOUT_LB: 1562 atomic_set(&f->rr_cur, 0); 1563 break; 1564 case PACKET_FANOUT_CBPF: 1565 case PACKET_FANOUT_EBPF: 1566 RCU_INIT_POINTER(f->bpf_prog, NULL); 1567 break; 1568 } 1569 } 1570 1571 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) 1572 { 1573 struct bpf_prog *old; 1574 1575 spin_lock(&f->lock); 1576 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); 1577 rcu_assign_pointer(f->bpf_prog, new); 1578 spin_unlock(&f->lock); 1579 1580 if (old) { 1581 synchronize_net(); 1582 bpf_prog_destroy(old); 1583 } 1584 } 1585 1586 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data, 1587 unsigned int len) 1588 { 1589 struct bpf_prog *new; 1590 struct sock_fprog fprog; 1591 int ret; 1592 1593 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1594 return -EPERM; 1595 1596 ret = copy_bpf_fprog_from_user(&fprog, data, len); 1597 if (ret) 1598 return ret; 1599 1600 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false); 1601 if (ret) 1602 return ret; 1603 1604 __fanout_set_data_bpf(po->fanout, new); 1605 return 0; 1606 } 1607 1608 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data, 1609 unsigned int len) 1610 { 1611 struct bpf_prog *new; 1612 u32 fd; 1613 1614 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1615 return -EPERM; 1616 if (len != sizeof(fd)) 1617 return -EINVAL; 1618 if (copy_from_sockptr(&fd, data, len)) 1619 return -EFAULT; 1620 1621 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); 1622 if (IS_ERR(new)) 1623 return PTR_ERR(new); 1624 1625 __fanout_set_data_bpf(po->fanout, new); 1626 return 0; 1627 } 1628 1629 static int fanout_set_data(struct packet_sock *po, sockptr_t data, 1630 unsigned int len) 1631 { 1632 switch (po->fanout->type) { 1633 case PACKET_FANOUT_CBPF: 1634 return fanout_set_data_cbpf(po, data, len); 1635 case PACKET_FANOUT_EBPF: 1636 return fanout_set_data_ebpf(po, data, len); 1637 default: 1638 return -EINVAL; 1639 } 1640 } 1641 1642 static void fanout_release_data(struct packet_fanout *f) 1643 { 1644 switch (f->type) { 1645 case PACKET_FANOUT_CBPF: 1646 case PACKET_FANOUT_EBPF: 1647 __fanout_set_data_bpf(f, NULL); 1648 } 1649 } 1650 1651 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id) 1652 { 1653 struct packet_fanout *f; 1654 1655 list_for_each_entry(f, &fanout_list, list) { 1656 if (f->id == candidate_id && 1657 read_pnet(&f->net) == sock_net(sk)) { 1658 return false; 1659 } 1660 } 1661 return true; 1662 } 1663 1664 static bool fanout_find_new_id(struct sock *sk, u16 *new_id) 1665 { 1666 u16 id = fanout_next_id; 1667 1668 do { 1669 if (__fanout_id_is_free(sk, id)) { 1670 *new_id = id; 1671 fanout_next_id = id + 1; 1672 return true; 1673 } 1674 1675 id++; 1676 } while (id != fanout_next_id); 1677 1678 return false; 1679 } 1680 1681 static int fanout_add(struct sock *sk, struct fanout_args *args) 1682 { 1683 struct packet_rollover *rollover = NULL; 1684 struct packet_sock *po = pkt_sk(sk); 1685 u16 type_flags = args->type_flags; 1686 struct packet_fanout *f, *match; 1687 u8 type = type_flags & 0xff; 1688 u8 flags = type_flags >> 8; 1689 u16 id = args->id; 1690 int err; 1691 1692 switch (type) { 1693 case PACKET_FANOUT_ROLLOVER: 1694 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) 1695 return -EINVAL; 1696 break; 1697 case PACKET_FANOUT_HASH: 1698 case PACKET_FANOUT_LB: 1699 case PACKET_FANOUT_CPU: 1700 case PACKET_FANOUT_RND: 1701 case PACKET_FANOUT_QM: 1702 case PACKET_FANOUT_CBPF: 1703 case PACKET_FANOUT_EBPF: 1704 break; 1705 default: 1706 return -EINVAL; 1707 } 1708 1709 mutex_lock(&fanout_mutex); 1710 1711 err = -EALREADY; 1712 if (po->fanout) 1713 goto out; 1714 1715 if (type == PACKET_FANOUT_ROLLOVER || 1716 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { 1717 err = -ENOMEM; 1718 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL); 1719 if (!rollover) 1720 goto out; 1721 atomic_long_set(&rollover->num, 0); 1722 atomic_long_set(&rollover->num_huge, 0); 1723 atomic_long_set(&rollover->num_failed, 0); 1724 } 1725 1726 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) { 1727 if (id != 0) { 1728 err = -EINVAL; 1729 goto out; 1730 } 1731 if (!fanout_find_new_id(sk, &id)) { 1732 err = -ENOMEM; 1733 goto out; 1734 } 1735 /* ephemeral flag for the first socket in the group: drop it */ 1736 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8); 1737 } 1738 1739 match = NULL; 1740 list_for_each_entry(f, &fanout_list, list) { 1741 if (f->id == id && 1742 read_pnet(&f->net) == sock_net(sk)) { 1743 match = f; 1744 break; 1745 } 1746 } 1747 err = -EINVAL; 1748 if (match) { 1749 if (match->flags != flags) 1750 goto out; 1751 if (args->max_num_members && 1752 args->max_num_members != match->max_num_members) 1753 goto out; 1754 } else { 1755 if (args->max_num_members > PACKET_FANOUT_MAX) 1756 goto out; 1757 if (!args->max_num_members) 1758 /* legacy PACKET_FANOUT_MAX */ 1759 args->max_num_members = 256; 1760 err = -ENOMEM; 1761 match = kvzalloc(struct_size(match, arr, args->max_num_members), 1762 GFP_KERNEL); 1763 if (!match) 1764 goto out; 1765 write_pnet(&match->net, sock_net(sk)); 1766 match->id = id; 1767 match->type = type; 1768 match->flags = flags; 1769 INIT_LIST_HEAD(&match->list); 1770 spin_lock_init(&match->lock); 1771 refcount_set(&match->sk_ref, 0); 1772 fanout_init_data(match); 1773 match->prot_hook.type = po->prot_hook.type; 1774 match->prot_hook.dev = po->prot_hook.dev; 1775 match->prot_hook.func = packet_rcv_fanout; 1776 match->prot_hook.af_packet_priv = match; 1777 match->prot_hook.af_packet_net = read_pnet(&match->net); 1778 match->prot_hook.id_match = match_fanout_group; 1779 match->max_num_members = args->max_num_members; 1780 list_add(&match->list, &fanout_list); 1781 } 1782 err = -EINVAL; 1783 1784 spin_lock(&po->bind_lock); 1785 if (po->running && 1786 match->type == type && 1787 match->prot_hook.type == po->prot_hook.type && 1788 match->prot_hook.dev == po->prot_hook.dev) { 1789 err = -ENOSPC; 1790 if (refcount_read(&match->sk_ref) < match->max_num_members) { 1791 __dev_remove_pack(&po->prot_hook); 1792 1793 /* Paired with packet_setsockopt(PACKET_FANOUT_DATA) */ 1794 WRITE_ONCE(po->fanout, match); 1795 1796 po->rollover = rollover; 1797 rollover = NULL; 1798 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1); 1799 __fanout_link(sk, po); 1800 err = 0; 1801 } 1802 } 1803 spin_unlock(&po->bind_lock); 1804 1805 if (err && !refcount_read(&match->sk_ref)) { 1806 list_del(&match->list); 1807 kvfree(match); 1808 } 1809 1810 out: 1811 kfree(rollover); 1812 mutex_unlock(&fanout_mutex); 1813 return err; 1814 } 1815 1816 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes 1817 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout. 1818 * It is the responsibility of the caller to call fanout_release_data() and 1819 * free the returned packet_fanout (after synchronize_net()) 1820 */ 1821 static struct packet_fanout *fanout_release(struct sock *sk) 1822 { 1823 struct packet_sock *po = pkt_sk(sk); 1824 struct packet_fanout *f; 1825 1826 mutex_lock(&fanout_mutex); 1827 f = po->fanout; 1828 if (f) { 1829 po->fanout = NULL; 1830 1831 if (refcount_dec_and_test(&f->sk_ref)) 1832 list_del(&f->list); 1833 else 1834 f = NULL; 1835 } 1836 mutex_unlock(&fanout_mutex); 1837 1838 return f; 1839 } 1840 1841 static bool packet_extra_vlan_len_allowed(const struct net_device *dev, 1842 struct sk_buff *skb) 1843 { 1844 /* Earlier code assumed this would be a VLAN pkt, double-check 1845 * this now that we have the actual packet in hand. We can only 1846 * do this check on Ethernet devices. 1847 */ 1848 if (unlikely(dev->type != ARPHRD_ETHER)) 1849 return false; 1850 1851 skb_reset_mac_header(skb); 1852 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)); 1853 } 1854 1855 static const struct proto_ops packet_ops; 1856 1857 static const struct proto_ops packet_ops_spkt; 1858 1859 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1860 struct packet_type *pt, struct net_device *orig_dev) 1861 { 1862 struct sock *sk; 1863 struct sockaddr_pkt *spkt; 1864 1865 /* 1866 * When we registered the protocol we saved the socket in the data 1867 * field for just this event. 1868 */ 1869 1870 sk = pt->af_packet_priv; 1871 1872 /* 1873 * Yank back the headers [hope the device set this 1874 * right or kerboom...] 1875 * 1876 * Incoming packets have ll header pulled, 1877 * push it back. 1878 * 1879 * For outgoing ones skb->data == skb_mac_header(skb) 1880 * so that this procedure is noop. 1881 */ 1882 1883 if (skb->pkt_type == PACKET_LOOPBACK) 1884 goto out; 1885 1886 if (!net_eq(dev_net(dev), sock_net(sk))) 1887 goto out; 1888 1889 skb = skb_share_check(skb, GFP_ATOMIC); 1890 if (skb == NULL) 1891 goto oom; 1892 1893 /* drop any routing info */ 1894 skb_dst_drop(skb); 1895 1896 /* drop conntrack reference */ 1897 nf_reset_ct(skb); 1898 1899 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1900 1901 skb_push(skb, skb->data - skb_mac_header(skb)); 1902 1903 /* 1904 * The SOCK_PACKET socket receives _all_ frames. 1905 */ 1906 1907 spkt->spkt_family = dev->type; 1908 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1909 spkt->spkt_protocol = skb->protocol; 1910 1911 /* 1912 * Charge the memory to the socket. This is done specifically 1913 * to prevent sockets using all the memory up. 1914 */ 1915 1916 if (sock_queue_rcv_skb(sk, skb) == 0) 1917 return 0; 1918 1919 out: 1920 kfree_skb(skb); 1921 oom: 1922 return 0; 1923 } 1924 1925 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock) 1926 { 1927 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) && 1928 sock->type == SOCK_RAW) { 1929 skb_reset_mac_header(skb); 1930 skb->protocol = dev_parse_header_protocol(skb); 1931 } 1932 1933 skb_probe_transport_header(skb); 1934 } 1935 1936 /* 1937 * Output a raw packet to a device layer. This bypasses all the other 1938 * protocol layers and you must therefore supply it with a complete frame 1939 */ 1940 1941 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, 1942 size_t len) 1943 { 1944 struct sock *sk = sock->sk; 1945 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); 1946 struct sk_buff *skb = NULL; 1947 struct net_device *dev; 1948 struct sockcm_cookie sockc; 1949 __be16 proto = 0; 1950 int err; 1951 int extra_len = 0; 1952 1953 /* 1954 * Get and verify the address. 1955 */ 1956 1957 if (saddr) { 1958 if (msg->msg_namelen < sizeof(struct sockaddr)) 1959 return -EINVAL; 1960 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1961 proto = saddr->spkt_protocol; 1962 } else 1963 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1964 1965 /* 1966 * Find the device first to size check it 1967 */ 1968 1969 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; 1970 retry: 1971 rcu_read_lock(); 1972 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1973 err = -ENODEV; 1974 if (dev == NULL) 1975 goto out_unlock; 1976 1977 err = -ENETDOWN; 1978 if (!(dev->flags & IFF_UP)) 1979 goto out_unlock; 1980 1981 /* 1982 * You may not queue a frame bigger than the mtu. This is the lowest level 1983 * raw protocol and you must do your own fragmentation at this level. 1984 */ 1985 1986 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 1987 if (!netif_supports_nofcs(dev)) { 1988 err = -EPROTONOSUPPORT; 1989 goto out_unlock; 1990 } 1991 extra_len = 4; /* We're doing our own CRC */ 1992 } 1993 1994 err = -EMSGSIZE; 1995 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) 1996 goto out_unlock; 1997 1998 if (!skb) { 1999 size_t reserved = LL_RESERVED_SPACE(dev); 2000 int tlen = dev->needed_tailroom; 2001 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 2002 2003 rcu_read_unlock(); 2004 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 2005 if (skb == NULL) 2006 return -ENOBUFS; 2007 /* FIXME: Save some space for broken drivers that write a hard 2008 * header at transmission time by themselves. PPP is the notable 2009 * one here. This should really be fixed at the driver level. 2010 */ 2011 skb_reserve(skb, reserved); 2012 skb_reset_network_header(skb); 2013 2014 /* Try to align data part correctly */ 2015 if (hhlen) { 2016 skb->data -= hhlen; 2017 skb->tail -= hhlen; 2018 if (len < hhlen) 2019 skb_reset_network_header(skb); 2020 } 2021 err = memcpy_from_msg(skb_put(skb, len), msg, len); 2022 if (err) 2023 goto out_free; 2024 goto retry; 2025 } 2026 2027 if (!dev_validate_header(dev, skb->data, len)) { 2028 err = -EINVAL; 2029 goto out_unlock; 2030 } 2031 if (len > (dev->mtu + dev->hard_header_len + extra_len) && 2032 !packet_extra_vlan_len_allowed(dev, skb)) { 2033 err = -EMSGSIZE; 2034 goto out_unlock; 2035 } 2036 2037 sockcm_init(&sockc, sk); 2038 if (msg->msg_controllen) { 2039 err = sock_cmsg_send(sk, msg, &sockc); 2040 if (unlikely(err)) 2041 goto out_unlock; 2042 } 2043 2044 skb->protocol = proto; 2045 skb->dev = dev; 2046 skb->priority = sk->sk_priority; 2047 skb->mark = sk->sk_mark; 2048 skb->tstamp = sockc.transmit_time; 2049 2050 skb_setup_tx_timestamp(skb, sockc.tsflags); 2051 2052 if (unlikely(extra_len == 4)) 2053 skb->no_fcs = 1; 2054 2055 packet_parse_headers(skb, sock); 2056 2057 dev_queue_xmit(skb); 2058 rcu_read_unlock(); 2059 return len; 2060 2061 out_unlock: 2062 rcu_read_unlock(); 2063 out_free: 2064 kfree_skb(skb); 2065 return err; 2066 } 2067 2068 static unsigned int run_filter(struct sk_buff *skb, 2069 const struct sock *sk, 2070 unsigned int res) 2071 { 2072 struct sk_filter *filter; 2073 2074 rcu_read_lock(); 2075 filter = rcu_dereference(sk->sk_filter); 2076 if (filter != NULL) 2077 res = bpf_prog_run_clear_cb(filter->prog, skb); 2078 rcu_read_unlock(); 2079 2080 return res; 2081 } 2082 2083 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb, 2084 size_t *len) 2085 { 2086 struct virtio_net_hdr vnet_hdr; 2087 2088 if (*len < sizeof(vnet_hdr)) 2089 return -EINVAL; 2090 *len -= sizeof(vnet_hdr); 2091 2092 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0)) 2093 return -EINVAL; 2094 2095 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr)); 2096 } 2097 2098 /* 2099 * This function makes lazy skb cloning in hope that most of packets 2100 * are discarded by BPF. 2101 * 2102 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 2103 * and skb->cb are mangled. It works because (and until) packets 2104 * falling here are owned by current CPU. Output packets are cloned 2105 * by dev_queue_xmit_nit(), input packets are processed by net_bh 2106 * sequentially, so that if we return skb to original state on exit, 2107 * we will not harm anyone. 2108 */ 2109 2110 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 2111 struct packet_type *pt, struct net_device *orig_dev) 2112 { 2113 struct sock *sk; 2114 struct sockaddr_ll *sll; 2115 struct packet_sock *po; 2116 u8 *skb_head = skb->data; 2117 int skb_len = skb->len; 2118 unsigned int snaplen, res; 2119 bool is_drop_n_account = false; 2120 2121 if (skb->pkt_type == PACKET_LOOPBACK) 2122 goto drop; 2123 2124 sk = pt->af_packet_priv; 2125 po = pkt_sk(sk); 2126 2127 if (!net_eq(dev_net(dev), sock_net(sk))) 2128 goto drop; 2129 2130 skb->dev = dev; 2131 2132 if (dev_has_header(dev)) { 2133 /* The device has an explicit notion of ll header, 2134 * exported to higher levels. 2135 * 2136 * Otherwise, the device hides details of its frame 2137 * structure, so that corresponding packet head is 2138 * never delivered to user. 2139 */ 2140 if (sk->sk_type != SOCK_DGRAM) 2141 skb_push(skb, skb->data - skb_mac_header(skb)); 2142 else if (skb->pkt_type == PACKET_OUTGOING) { 2143 /* Special case: outgoing packets have ll header at head */ 2144 skb_pull(skb, skb_network_offset(skb)); 2145 } 2146 } 2147 2148 snaplen = skb->len; 2149 2150 res = run_filter(skb, sk, snaplen); 2151 if (!res) 2152 goto drop_n_restore; 2153 if (snaplen > res) 2154 snaplen = res; 2155 2156 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2157 goto drop_n_acct; 2158 2159 if (skb_shared(skb)) { 2160 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2161 if (nskb == NULL) 2162 goto drop_n_acct; 2163 2164 if (skb_head != skb->data) { 2165 skb->data = skb_head; 2166 skb->len = skb_len; 2167 } 2168 consume_skb(skb); 2169 skb = nskb; 2170 } 2171 2172 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); 2173 2174 sll = &PACKET_SKB_CB(skb)->sa.ll; 2175 sll->sll_hatype = dev->type; 2176 sll->sll_pkttype = skb->pkt_type; 2177 if (unlikely(po->origdev)) 2178 sll->sll_ifindex = orig_dev->ifindex; 2179 else 2180 sll->sll_ifindex = dev->ifindex; 2181 2182 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2183 2184 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). 2185 * Use their space for storing the original skb length. 2186 */ 2187 PACKET_SKB_CB(skb)->sa.origlen = skb->len; 2188 2189 if (pskb_trim(skb, snaplen)) 2190 goto drop_n_acct; 2191 2192 skb_set_owner_r(skb, sk); 2193 skb->dev = NULL; 2194 skb_dst_drop(skb); 2195 2196 /* drop conntrack reference */ 2197 nf_reset_ct(skb); 2198 2199 spin_lock(&sk->sk_receive_queue.lock); 2200 po->stats.stats1.tp_packets++; 2201 sock_skb_set_dropcount(sk, skb); 2202 skb_clear_delivery_time(skb); 2203 __skb_queue_tail(&sk->sk_receive_queue, skb); 2204 spin_unlock(&sk->sk_receive_queue.lock); 2205 sk->sk_data_ready(sk); 2206 return 0; 2207 2208 drop_n_acct: 2209 is_drop_n_account = true; 2210 atomic_inc(&po->tp_drops); 2211 atomic_inc(&sk->sk_drops); 2212 2213 drop_n_restore: 2214 if (skb_head != skb->data && skb_shared(skb)) { 2215 skb->data = skb_head; 2216 skb->len = skb_len; 2217 } 2218 drop: 2219 if (!is_drop_n_account) 2220 consume_skb(skb); 2221 else 2222 kfree_skb(skb); 2223 return 0; 2224 } 2225 2226 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 2227 struct packet_type *pt, struct net_device *orig_dev) 2228 { 2229 struct sock *sk; 2230 struct packet_sock *po; 2231 struct sockaddr_ll *sll; 2232 union tpacket_uhdr h; 2233 u8 *skb_head = skb->data; 2234 int skb_len = skb->len; 2235 unsigned int snaplen, res; 2236 unsigned long status = TP_STATUS_USER; 2237 unsigned short macoff, hdrlen; 2238 unsigned int netoff; 2239 struct sk_buff *copy_skb = NULL; 2240 struct timespec64 ts; 2241 __u32 ts_status; 2242 bool is_drop_n_account = false; 2243 unsigned int slot_id = 0; 2244 bool do_vnet = false; 2245 2246 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. 2247 * We may add members to them until current aligned size without forcing 2248 * userspace to call getsockopt(..., PACKET_HDRLEN, ...). 2249 */ 2250 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); 2251 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); 2252 2253 if (skb->pkt_type == PACKET_LOOPBACK) 2254 goto drop; 2255 2256 sk = pt->af_packet_priv; 2257 po = pkt_sk(sk); 2258 2259 if (!net_eq(dev_net(dev), sock_net(sk))) 2260 goto drop; 2261 2262 if (dev_has_header(dev)) { 2263 if (sk->sk_type != SOCK_DGRAM) 2264 skb_push(skb, skb->data - skb_mac_header(skb)); 2265 else if (skb->pkt_type == PACKET_OUTGOING) { 2266 /* Special case: outgoing packets have ll header at head */ 2267 skb_pull(skb, skb_network_offset(skb)); 2268 } 2269 } 2270 2271 snaplen = skb->len; 2272 2273 res = run_filter(skb, sk, snaplen); 2274 if (!res) 2275 goto drop_n_restore; 2276 2277 /* If we are flooded, just give up */ 2278 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) { 2279 atomic_inc(&po->tp_drops); 2280 goto drop_n_restore; 2281 } 2282 2283 if (skb->ip_summed == CHECKSUM_PARTIAL) 2284 status |= TP_STATUS_CSUMNOTREADY; 2285 else if (skb->pkt_type != PACKET_OUTGOING && 2286 (skb->ip_summed == CHECKSUM_COMPLETE || 2287 skb_csum_unnecessary(skb))) 2288 status |= TP_STATUS_CSUM_VALID; 2289 2290 if (snaplen > res) 2291 snaplen = res; 2292 2293 if (sk->sk_type == SOCK_DGRAM) { 2294 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 2295 po->tp_reserve; 2296 } else { 2297 unsigned int maclen = skb_network_offset(skb); 2298 netoff = TPACKET_ALIGN(po->tp_hdrlen + 2299 (maclen < 16 ? 16 : maclen)) + 2300 po->tp_reserve; 2301 if (po->has_vnet_hdr) { 2302 netoff += sizeof(struct virtio_net_hdr); 2303 do_vnet = true; 2304 } 2305 macoff = netoff - maclen; 2306 } 2307 if (netoff > USHRT_MAX) { 2308 atomic_inc(&po->tp_drops); 2309 goto drop_n_restore; 2310 } 2311 if (po->tp_version <= TPACKET_V2) { 2312 if (macoff + snaplen > po->rx_ring.frame_size) { 2313 if (po->copy_thresh && 2314 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 2315 if (skb_shared(skb)) { 2316 copy_skb = skb_clone(skb, GFP_ATOMIC); 2317 } else { 2318 copy_skb = skb_get(skb); 2319 skb_head = skb->data; 2320 } 2321 if (copy_skb) 2322 skb_set_owner_r(copy_skb, sk); 2323 } 2324 snaplen = po->rx_ring.frame_size - macoff; 2325 if ((int)snaplen < 0) { 2326 snaplen = 0; 2327 do_vnet = false; 2328 } 2329 } 2330 } else if (unlikely(macoff + snaplen > 2331 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { 2332 u32 nval; 2333 2334 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; 2335 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", 2336 snaplen, nval, macoff); 2337 snaplen = nval; 2338 if (unlikely((int)snaplen < 0)) { 2339 snaplen = 0; 2340 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; 2341 do_vnet = false; 2342 } 2343 } 2344 spin_lock(&sk->sk_receive_queue.lock); 2345 h.raw = packet_current_rx_frame(po, skb, 2346 TP_STATUS_KERNEL, (macoff+snaplen)); 2347 if (!h.raw) 2348 goto drop_n_account; 2349 2350 if (po->tp_version <= TPACKET_V2) { 2351 slot_id = po->rx_ring.head; 2352 if (test_bit(slot_id, po->rx_ring.rx_owner_map)) 2353 goto drop_n_account; 2354 __set_bit(slot_id, po->rx_ring.rx_owner_map); 2355 } 2356 2357 if (do_vnet && 2358 virtio_net_hdr_from_skb(skb, h.raw + macoff - 2359 sizeof(struct virtio_net_hdr), 2360 vio_le(), true, 0)) { 2361 if (po->tp_version == TPACKET_V3) 2362 prb_clear_blk_fill_status(&po->rx_ring); 2363 goto drop_n_account; 2364 } 2365 2366 if (po->tp_version <= TPACKET_V2) { 2367 packet_increment_rx_head(po, &po->rx_ring); 2368 /* 2369 * LOSING will be reported till you read the stats, 2370 * because it's COR - Clear On Read. 2371 * Anyways, moving it for V1/V2 only as V3 doesn't need this 2372 * at packet level. 2373 */ 2374 if (atomic_read(&po->tp_drops)) 2375 status |= TP_STATUS_LOSING; 2376 } 2377 2378 po->stats.stats1.tp_packets++; 2379 if (copy_skb) { 2380 status |= TP_STATUS_COPY; 2381 skb_clear_delivery_time(copy_skb); 2382 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 2383 } 2384 spin_unlock(&sk->sk_receive_queue.lock); 2385 2386 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 2387 2388 /* Always timestamp; prefer an existing software timestamp taken 2389 * closer to the time of capture. 2390 */ 2391 ts_status = tpacket_get_timestamp(skb, &ts, 2392 po->tp_tstamp | SOF_TIMESTAMPING_SOFTWARE); 2393 if (!ts_status) 2394 ktime_get_real_ts64(&ts); 2395 2396 status |= ts_status; 2397 2398 switch (po->tp_version) { 2399 case TPACKET_V1: 2400 h.h1->tp_len = skb->len; 2401 h.h1->tp_snaplen = snaplen; 2402 h.h1->tp_mac = macoff; 2403 h.h1->tp_net = netoff; 2404 h.h1->tp_sec = ts.tv_sec; 2405 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 2406 hdrlen = sizeof(*h.h1); 2407 break; 2408 case TPACKET_V2: 2409 h.h2->tp_len = skb->len; 2410 h.h2->tp_snaplen = snaplen; 2411 h.h2->tp_mac = macoff; 2412 h.h2->tp_net = netoff; 2413 h.h2->tp_sec = ts.tv_sec; 2414 h.h2->tp_nsec = ts.tv_nsec; 2415 if (skb_vlan_tag_present(skb)) { 2416 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); 2417 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); 2418 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 2419 } else { 2420 h.h2->tp_vlan_tci = 0; 2421 h.h2->tp_vlan_tpid = 0; 2422 } 2423 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); 2424 hdrlen = sizeof(*h.h2); 2425 break; 2426 case TPACKET_V3: 2427 /* tp_nxt_offset,vlan are already populated above. 2428 * So DONT clear those fields here 2429 */ 2430 h.h3->tp_status |= status; 2431 h.h3->tp_len = skb->len; 2432 h.h3->tp_snaplen = snaplen; 2433 h.h3->tp_mac = macoff; 2434 h.h3->tp_net = netoff; 2435 h.h3->tp_sec = ts.tv_sec; 2436 h.h3->tp_nsec = ts.tv_nsec; 2437 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); 2438 hdrlen = sizeof(*h.h3); 2439 break; 2440 default: 2441 BUG(); 2442 } 2443 2444 sll = h.raw + TPACKET_ALIGN(hdrlen); 2445 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2446 sll->sll_family = AF_PACKET; 2447 sll->sll_hatype = dev->type; 2448 sll->sll_protocol = skb->protocol; 2449 sll->sll_pkttype = skb->pkt_type; 2450 if (unlikely(po->origdev)) 2451 sll->sll_ifindex = orig_dev->ifindex; 2452 else 2453 sll->sll_ifindex = dev->ifindex; 2454 2455 smp_mb(); 2456 2457 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 2458 if (po->tp_version <= TPACKET_V2) { 2459 u8 *start, *end; 2460 2461 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + 2462 macoff + snaplen); 2463 2464 for (start = h.raw; start < end; start += PAGE_SIZE) 2465 flush_dcache_page(pgv_to_page(start)); 2466 } 2467 smp_wmb(); 2468 #endif 2469 2470 if (po->tp_version <= TPACKET_V2) { 2471 spin_lock(&sk->sk_receive_queue.lock); 2472 __packet_set_status(po, h.raw, status); 2473 __clear_bit(slot_id, po->rx_ring.rx_owner_map); 2474 spin_unlock(&sk->sk_receive_queue.lock); 2475 sk->sk_data_ready(sk); 2476 } else if (po->tp_version == TPACKET_V3) { 2477 prb_clear_blk_fill_status(&po->rx_ring); 2478 } 2479 2480 drop_n_restore: 2481 if (skb_head != skb->data && skb_shared(skb)) { 2482 skb->data = skb_head; 2483 skb->len = skb_len; 2484 } 2485 drop: 2486 if (!is_drop_n_account) 2487 consume_skb(skb); 2488 else 2489 kfree_skb(skb); 2490 return 0; 2491 2492 drop_n_account: 2493 spin_unlock(&sk->sk_receive_queue.lock); 2494 atomic_inc(&po->tp_drops); 2495 is_drop_n_account = true; 2496 2497 sk->sk_data_ready(sk); 2498 kfree_skb(copy_skb); 2499 goto drop_n_restore; 2500 } 2501 2502 static void tpacket_destruct_skb(struct sk_buff *skb) 2503 { 2504 struct packet_sock *po = pkt_sk(skb->sk); 2505 2506 if (likely(po->tx_ring.pg_vec)) { 2507 void *ph; 2508 __u32 ts; 2509 2510 ph = skb_zcopy_get_nouarg(skb); 2511 packet_dec_pending(&po->tx_ring); 2512 2513 ts = __packet_set_timestamp(po, ph, skb); 2514 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); 2515 2516 if (!packet_read_pending(&po->tx_ring)) 2517 complete(&po->skb_completion); 2518 } 2519 2520 sock_wfree(skb); 2521 } 2522 2523 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len) 2524 { 2525 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2526 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2527 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 > 2528 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len))) 2529 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(), 2530 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2531 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2); 2532 2533 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len) 2534 return -EINVAL; 2535 2536 return 0; 2537 } 2538 2539 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len, 2540 struct virtio_net_hdr *vnet_hdr) 2541 { 2542 if (*len < sizeof(*vnet_hdr)) 2543 return -EINVAL; 2544 *len -= sizeof(*vnet_hdr); 2545 2546 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter)) 2547 return -EFAULT; 2548 2549 return __packet_snd_vnet_parse(vnet_hdr, *len); 2550 } 2551 2552 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 2553 void *frame, struct net_device *dev, void *data, int tp_len, 2554 __be16 proto, unsigned char *addr, int hlen, int copylen, 2555 const struct sockcm_cookie *sockc) 2556 { 2557 union tpacket_uhdr ph; 2558 int to_write, offset, len, nr_frags, len_max; 2559 struct socket *sock = po->sk.sk_socket; 2560 struct page *page; 2561 int err; 2562 2563 ph.raw = frame; 2564 2565 skb->protocol = proto; 2566 skb->dev = dev; 2567 skb->priority = po->sk.sk_priority; 2568 skb->mark = po->sk.sk_mark; 2569 skb->tstamp = sockc->transmit_time; 2570 skb_setup_tx_timestamp(skb, sockc->tsflags); 2571 skb_zcopy_set_nouarg(skb, ph.raw); 2572 2573 skb_reserve(skb, hlen); 2574 skb_reset_network_header(skb); 2575 2576 to_write = tp_len; 2577 2578 if (sock->type == SOCK_DGRAM) { 2579 err = dev_hard_header(skb, dev, ntohs(proto), addr, 2580 NULL, tp_len); 2581 if (unlikely(err < 0)) 2582 return -EINVAL; 2583 } else if (copylen) { 2584 int hdrlen = min_t(int, copylen, tp_len); 2585 2586 skb_push(skb, dev->hard_header_len); 2587 skb_put(skb, copylen - dev->hard_header_len); 2588 err = skb_store_bits(skb, 0, data, hdrlen); 2589 if (unlikely(err)) 2590 return err; 2591 if (!dev_validate_header(dev, skb->data, hdrlen)) 2592 return -EINVAL; 2593 2594 data += hdrlen; 2595 to_write -= hdrlen; 2596 } 2597 2598 offset = offset_in_page(data); 2599 len_max = PAGE_SIZE - offset; 2600 len = ((to_write > len_max) ? len_max : to_write); 2601 2602 skb->data_len = to_write; 2603 skb->len += to_write; 2604 skb->truesize += to_write; 2605 refcount_add(to_write, &po->sk.sk_wmem_alloc); 2606 2607 while (likely(to_write)) { 2608 nr_frags = skb_shinfo(skb)->nr_frags; 2609 2610 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2611 pr_err("Packet exceed the number of skb frags(%lu)\n", 2612 MAX_SKB_FRAGS); 2613 return -EFAULT; 2614 } 2615 2616 page = pgv_to_page(data); 2617 data += len; 2618 flush_dcache_page(page); 2619 get_page(page); 2620 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2621 to_write -= len; 2622 offset = 0; 2623 len_max = PAGE_SIZE; 2624 len = ((to_write > len_max) ? len_max : to_write); 2625 } 2626 2627 packet_parse_headers(skb, sock); 2628 2629 return tp_len; 2630 } 2631 2632 static int tpacket_parse_header(struct packet_sock *po, void *frame, 2633 int size_max, void **data) 2634 { 2635 union tpacket_uhdr ph; 2636 int tp_len, off; 2637 2638 ph.raw = frame; 2639 2640 switch (po->tp_version) { 2641 case TPACKET_V3: 2642 if (ph.h3->tp_next_offset != 0) { 2643 pr_warn_once("variable sized slot not supported"); 2644 return -EINVAL; 2645 } 2646 tp_len = ph.h3->tp_len; 2647 break; 2648 case TPACKET_V2: 2649 tp_len = ph.h2->tp_len; 2650 break; 2651 default: 2652 tp_len = ph.h1->tp_len; 2653 break; 2654 } 2655 if (unlikely(tp_len > size_max)) { 2656 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 2657 return -EMSGSIZE; 2658 } 2659 2660 if (unlikely(po->tp_tx_has_off)) { 2661 int off_min, off_max; 2662 2663 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2664 off_max = po->tx_ring.frame_size - tp_len; 2665 if (po->sk.sk_type == SOCK_DGRAM) { 2666 switch (po->tp_version) { 2667 case TPACKET_V3: 2668 off = ph.h3->tp_net; 2669 break; 2670 case TPACKET_V2: 2671 off = ph.h2->tp_net; 2672 break; 2673 default: 2674 off = ph.h1->tp_net; 2675 break; 2676 } 2677 } else { 2678 switch (po->tp_version) { 2679 case TPACKET_V3: 2680 off = ph.h3->tp_mac; 2681 break; 2682 case TPACKET_V2: 2683 off = ph.h2->tp_mac; 2684 break; 2685 default: 2686 off = ph.h1->tp_mac; 2687 break; 2688 } 2689 } 2690 if (unlikely((off < off_min) || (off_max < off))) 2691 return -EINVAL; 2692 } else { 2693 off = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2694 } 2695 2696 *data = frame + off; 2697 return tp_len; 2698 } 2699 2700 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2701 { 2702 struct sk_buff *skb = NULL; 2703 struct net_device *dev; 2704 struct virtio_net_hdr *vnet_hdr = NULL; 2705 struct sockcm_cookie sockc; 2706 __be16 proto; 2707 int err, reserve = 0; 2708 void *ph; 2709 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2710 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); 2711 unsigned char *addr = NULL; 2712 int tp_len, size_max; 2713 void *data; 2714 int len_sum = 0; 2715 int status = TP_STATUS_AVAILABLE; 2716 int hlen, tlen, copylen = 0; 2717 long timeo = 0; 2718 2719 mutex_lock(&po->pg_vec_lock); 2720 2721 /* packet_sendmsg() check on tx_ring.pg_vec was lockless, 2722 * we need to confirm it under protection of pg_vec_lock. 2723 */ 2724 if (unlikely(!po->tx_ring.pg_vec)) { 2725 err = -EBUSY; 2726 goto out; 2727 } 2728 if (likely(saddr == NULL)) { 2729 dev = packet_cached_dev_get(po); 2730 proto = READ_ONCE(po->num); 2731 } else { 2732 err = -EINVAL; 2733 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2734 goto out; 2735 if (msg->msg_namelen < (saddr->sll_halen 2736 + offsetof(struct sockaddr_ll, 2737 sll_addr))) 2738 goto out; 2739 proto = saddr->sll_protocol; 2740 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2741 if (po->sk.sk_socket->type == SOCK_DGRAM) { 2742 if (dev && msg->msg_namelen < dev->addr_len + 2743 offsetof(struct sockaddr_ll, sll_addr)) 2744 goto out_put; 2745 addr = saddr->sll_addr; 2746 } 2747 } 2748 2749 err = -ENXIO; 2750 if (unlikely(dev == NULL)) 2751 goto out; 2752 err = -ENETDOWN; 2753 if (unlikely(!(dev->flags & IFF_UP))) 2754 goto out_put; 2755 2756 sockcm_init(&sockc, &po->sk); 2757 if (msg->msg_controllen) { 2758 err = sock_cmsg_send(&po->sk, msg, &sockc); 2759 if (unlikely(err)) 2760 goto out_put; 2761 } 2762 2763 if (po->sk.sk_socket->type == SOCK_RAW) 2764 reserve = dev->hard_header_len; 2765 size_max = po->tx_ring.frame_size 2766 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2767 2768 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr) 2769 size_max = dev->mtu + reserve + VLAN_HLEN; 2770 2771 reinit_completion(&po->skb_completion); 2772 2773 do { 2774 ph = packet_current_frame(po, &po->tx_ring, 2775 TP_STATUS_SEND_REQUEST); 2776 if (unlikely(ph == NULL)) { 2777 if (need_wait && skb) { 2778 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT); 2779 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo); 2780 if (timeo <= 0) { 2781 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS; 2782 goto out_put; 2783 } 2784 } 2785 /* check for additional frames */ 2786 continue; 2787 } 2788 2789 skb = NULL; 2790 tp_len = tpacket_parse_header(po, ph, size_max, &data); 2791 if (tp_len < 0) 2792 goto tpacket_error; 2793 2794 status = TP_STATUS_SEND_REQUEST; 2795 hlen = LL_RESERVED_SPACE(dev); 2796 tlen = dev->needed_tailroom; 2797 if (po->has_vnet_hdr) { 2798 vnet_hdr = data; 2799 data += sizeof(*vnet_hdr); 2800 tp_len -= sizeof(*vnet_hdr); 2801 if (tp_len < 0 || 2802 __packet_snd_vnet_parse(vnet_hdr, tp_len)) { 2803 tp_len = -EINVAL; 2804 goto tpacket_error; 2805 } 2806 copylen = __virtio16_to_cpu(vio_le(), 2807 vnet_hdr->hdr_len); 2808 } 2809 copylen = max_t(int, copylen, dev->hard_header_len); 2810 skb = sock_alloc_send_skb(&po->sk, 2811 hlen + tlen + sizeof(struct sockaddr_ll) + 2812 (copylen - dev->hard_header_len), 2813 !need_wait, &err); 2814 2815 if (unlikely(skb == NULL)) { 2816 /* we assume the socket was initially writeable ... */ 2817 if (likely(len_sum > 0)) 2818 err = len_sum; 2819 goto out_status; 2820 } 2821 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto, 2822 addr, hlen, copylen, &sockc); 2823 if (likely(tp_len >= 0) && 2824 tp_len > dev->mtu + reserve && 2825 !po->has_vnet_hdr && 2826 !packet_extra_vlan_len_allowed(dev, skb)) 2827 tp_len = -EMSGSIZE; 2828 2829 if (unlikely(tp_len < 0)) { 2830 tpacket_error: 2831 if (po->tp_loss) { 2832 __packet_set_status(po, ph, 2833 TP_STATUS_AVAILABLE); 2834 packet_increment_head(&po->tx_ring); 2835 kfree_skb(skb); 2836 continue; 2837 } else { 2838 status = TP_STATUS_WRONG_FORMAT; 2839 err = tp_len; 2840 goto out_status; 2841 } 2842 } 2843 2844 if (po->has_vnet_hdr) { 2845 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) { 2846 tp_len = -EINVAL; 2847 goto tpacket_error; 2848 } 2849 virtio_net_hdr_set_proto(skb, vnet_hdr); 2850 } 2851 2852 skb->destructor = tpacket_destruct_skb; 2853 __packet_set_status(po, ph, TP_STATUS_SENDING); 2854 packet_inc_pending(&po->tx_ring); 2855 2856 status = TP_STATUS_SEND_REQUEST; 2857 err = po->xmit(skb); 2858 if (unlikely(err > 0)) { 2859 err = net_xmit_errno(err); 2860 if (err && __packet_get_status(po, ph) == 2861 TP_STATUS_AVAILABLE) { 2862 /* skb was destructed already */ 2863 skb = NULL; 2864 goto out_status; 2865 } 2866 /* 2867 * skb was dropped but not destructed yet; 2868 * let's treat it like congestion or err < 0 2869 */ 2870 err = 0; 2871 } 2872 packet_increment_head(&po->tx_ring); 2873 len_sum += tp_len; 2874 } while (likely((ph != NULL) || 2875 /* Note: packet_read_pending() might be slow if we have 2876 * to call it as it's per_cpu variable, but in fast-path 2877 * we already short-circuit the loop with the first 2878 * condition, and luckily don't have to go that path 2879 * anyway. 2880 */ 2881 (need_wait && packet_read_pending(&po->tx_ring)))); 2882 2883 err = len_sum; 2884 goto out_put; 2885 2886 out_status: 2887 __packet_set_status(po, ph, status); 2888 kfree_skb(skb); 2889 out_put: 2890 dev_put(dev); 2891 out: 2892 mutex_unlock(&po->pg_vec_lock); 2893 return err; 2894 } 2895 2896 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2897 size_t reserve, size_t len, 2898 size_t linear, int noblock, 2899 int *err) 2900 { 2901 struct sk_buff *skb; 2902 2903 /* Under a page? Don't bother with paged skb. */ 2904 if (prepad + len < PAGE_SIZE || !linear) 2905 linear = len; 2906 2907 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2908 err, 0); 2909 if (!skb) 2910 return NULL; 2911 2912 skb_reserve(skb, reserve); 2913 skb_put(skb, linear); 2914 skb->data_len = len - linear; 2915 skb->len += len - linear; 2916 2917 return skb; 2918 } 2919 2920 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) 2921 { 2922 struct sock *sk = sock->sk; 2923 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2924 struct sk_buff *skb; 2925 struct net_device *dev; 2926 __be16 proto; 2927 unsigned char *addr = NULL; 2928 int err, reserve = 0; 2929 struct sockcm_cookie sockc; 2930 struct virtio_net_hdr vnet_hdr = { 0 }; 2931 int offset = 0; 2932 struct packet_sock *po = pkt_sk(sk); 2933 bool has_vnet_hdr = false; 2934 int hlen, tlen, linear; 2935 int extra_len = 0; 2936 2937 /* 2938 * Get and verify the address. 2939 */ 2940 2941 if (likely(saddr == NULL)) { 2942 dev = packet_cached_dev_get(po); 2943 proto = READ_ONCE(po->num); 2944 } else { 2945 err = -EINVAL; 2946 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2947 goto out; 2948 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2949 goto out; 2950 proto = saddr->sll_protocol; 2951 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2952 if (sock->type == SOCK_DGRAM) { 2953 if (dev && msg->msg_namelen < dev->addr_len + 2954 offsetof(struct sockaddr_ll, sll_addr)) 2955 goto out_unlock; 2956 addr = saddr->sll_addr; 2957 } 2958 } 2959 2960 err = -ENXIO; 2961 if (unlikely(dev == NULL)) 2962 goto out_unlock; 2963 err = -ENETDOWN; 2964 if (unlikely(!(dev->flags & IFF_UP))) 2965 goto out_unlock; 2966 2967 sockcm_init(&sockc, sk); 2968 sockc.mark = sk->sk_mark; 2969 if (msg->msg_controllen) { 2970 err = sock_cmsg_send(sk, msg, &sockc); 2971 if (unlikely(err)) 2972 goto out_unlock; 2973 } 2974 2975 if (sock->type == SOCK_RAW) 2976 reserve = dev->hard_header_len; 2977 if (po->has_vnet_hdr) { 2978 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr); 2979 if (err) 2980 goto out_unlock; 2981 has_vnet_hdr = true; 2982 } 2983 2984 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 2985 if (!netif_supports_nofcs(dev)) { 2986 err = -EPROTONOSUPPORT; 2987 goto out_unlock; 2988 } 2989 extra_len = 4; /* We're doing our own CRC */ 2990 } 2991 2992 err = -EMSGSIZE; 2993 if (!vnet_hdr.gso_type && 2994 (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) 2995 goto out_unlock; 2996 2997 err = -ENOBUFS; 2998 hlen = LL_RESERVED_SPACE(dev); 2999 tlen = dev->needed_tailroom; 3000 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len); 3001 linear = max(linear, min_t(int, len, dev->hard_header_len)); 3002 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear, 3003 msg->msg_flags & MSG_DONTWAIT, &err); 3004 if (skb == NULL) 3005 goto out_unlock; 3006 3007 skb_reset_network_header(skb); 3008 3009 err = -EINVAL; 3010 if (sock->type == SOCK_DGRAM) { 3011 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); 3012 if (unlikely(offset < 0)) 3013 goto out_free; 3014 } else if (reserve) { 3015 skb_reserve(skb, -reserve); 3016 if (len < reserve + sizeof(struct ipv6hdr) && 3017 dev->min_header_len != dev->hard_header_len) 3018 skb_reset_network_header(skb); 3019 } 3020 3021 /* Returns -EFAULT on error */ 3022 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); 3023 if (err) 3024 goto out_free; 3025 3026 if (sock->type == SOCK_RAW && 3027 !dev_validate_header(dev, skb->data, len)) { 3028 err = -EINVAL; 3029 goto out_free; 3030 } 3031 3032 skb_setup_tx_timestamp(skb, sockc.tsflags); 3033 3034 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) && 3035 !packet_extra_vlan_len_allowed(dev, skb)) { 3036 err = -EMSGSIZE; 3037 goto out_free; 3038 } 3039 3040 skb->protocol = proto; 3041 skb->dev = dev; 3042 skb->priority = sk->sk_priority; 3043 skb->mark = sockc.mark; 3044 skb->tstamp = sockc.transmit_time; 3045 3046 if (has_vnet_hdr) { 3047 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le()); 3048 if (err) 3049 goto out_free; 3050 len += sizeof(vnet_hdr); 3051 virtio_net_hdr_set_proto(skb, &vnet_hdr); 3052 } 3053 3054 packet_parse_headers(skb, sock); 3055 3056 if (unlikely(extra_len == 4)) 3057 skb->no_fcs = 1; 3058 3059 err = po->xmit(skb); 3060 if (err > 0 && (err = net_xmit_errno(err)) != 0) 3061 goto out_unlock; 3062 3063 dev_put(dev); 3064 3065 return len; 3066 3067 out_free: 3068 kfree_skb(skb); 3069 out_unlock: 3070 dev_put(dev); 3071 out: 3072 return err; 3073 } 3074 3075 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 3076 { 3077 struct sock *sk = sock->sk; 3078 struct packet_sock *po = pkt_sk(sk); 3079 3080 /* Reading tx_ring.pg_vec without holding pg_vec_lock is racy. 3081 * tpacket_snd() will redo the check safely. 3082 */ 3083 if (data_race(po->tx_ring.pg_vec)) 3084 return tpacket_snd(po, msg); 3085 3086 return packet_snd(sock, msg, len); 3087 } 3088 3089 /* 3090 * Close a PACKET socket. This is fairly simple. We immediately go 3091 * to 'closed' state and remove our protocol entry in the device list. 3092 */ 3093 3094 static int packet_release(struct socket *sock) 3095 { 3096 struct sock *sk = sock->sk; 3097 struct packet_sock *po; 3098 struct packet_fanout *f; 3099 struct net *net; 3100 union tpacket_req_u req_u; 3101 3102 if (!sk) 3103 return 0; 3104 3105 net = sock_net(sk); 3106 po = pkt_sk(sk); 3107 3108 mutex_lock(&net->packet.sklist_lock); 3109 sk_del_node_init_rcu(sk); 3110 mutex_unlock(&net->packet.sklist_lock); 3111 3112 sock_prot_inuse_add(net, sk->sk_prot, -1); 3113 3114 spin_lock(&po->bind_lock); 3115 unregister_prot_hook(sk, false); 3116 packet_cached_dev_reset(po); 3117 3118 if (po->prot_hook.dev) { 3119 dev_put_track(po->prot_hook.dev, &po->prot_hook.dev_tracker); 3120 po->prot_hook.dev = NULL; 3121 } 3122 spin_unlock(&po->bind_lock); 3123 3124 packet_flush_mclist(sk); 3125 3126 lock_sock(sk); 3127 if (po->rx_ring.pg_vec) { 3128 memset(&req_u, 0, sizeof(req_u)); 3129 packet_set_ring(sk, &req_u, 1, 0); 3130 } 3131 3132 if (po->tx_ring.pg_vec) { 3133 memset(&req_u, 0, sizeof(req_u)); 3134 packet_set_ring(sk, &req_u, 1, 1); 3135 } 3136 release_sock(sk); 3137 3138 f = fanout_release(sk); 3139 3140 synchronize_net(); 3141 3142 kfree(po->rollover); 3143 if (f) { 3144 fanout_release_data(f); 3145 kvfree(f); 3146 } 3147 /* 3148 * Now the socket is dead. No more input will appear. 3149 */ 3150 sock_orphan(sk); 3151 sock->sk = NULL; 3152 3153 /* Purge queues */ 3154 3155 skb_queue_purge(&sk->sk_receive_queue); 3156 packet_free_pending(po); 3157 sk_refcnt_debug_release(sk); 3158 3159 sock_put(sk); 3160 return 0; 3161 } 3162 3163 /* 3164 * Attach a packet hook. 3165 */ 3166 3167 static int packet_do_bind(struct sock *sk, const char *name, int ifindex, 3168 __be16 proto) 3169 { 3170 struct packet_sock *po = pkt_sk(sk); 3171 struct net_device *dev = NULL; 3172 bool unlisted = false; 3173 bool need_rehook; 3174 int ret = 0; 3175 3176 lock_sock(sk); 3177 spin_lock(&po->bind_lock); 3178 rcu_read_lock(); 3179 3180 if (po->fanout) { 3181 ret = -EINVAL; 3182 goto out_unlock; 3183 } 3184 3185 if (name) { 3186 dev = dev_get_by_name_rcu(sock_net(sk), name); 3187 if (!dev) { 3188 ret = -ENODEV; 3189 goto out_unlock; 3190 } 3191 } else if (ifindex) { 3192 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3193 if (!dev) { 3194 ret = -ENODEV; 3195 goto out_unlock; 3196 } 3197 } 3198 3199 need_rehook = po->prot_hook.type != proto || po->prot_hook.dev != dev; 3200 3201 if (need_rehook) { 3202 dev_hold(dev); 3203 if (po->running) { 3204 rcu_read_unlock(); 3205 /* prevents packet_notifier() from calling 3206 * register_prot_hook() 3207 */ 3208 WRITE_ONCE(po->num, 0); 3209 __unregister_prot_hook(sk, true); 3210 rcu_read_lock(); 3211 if (dev) 3212 unlisted = !dev_get_by_index_rcu(sock_net(sk), 3213 dev->ifindex); 3214 } 3215 3216 BUG_ON(po->running); 3217 WRITE_ONCE(po->num, proto); 3218 po->prot_hook.type = proto; 3219 3220 dev_put_track(po->prot_hook.dev, &po->prot_hook.dev_tracker); 3221 3222 if (unlikely(unlisted)) { 3223 po->prot_hook.dev = NULL; 3224 WRITE_ONCE(po->ifindex, -1); 3225 packet_cached_dev_reset(po); 3226 } else { 3227 dev_hold_track(dev, &po->prot_hook.dev_tracker, 3228 GFP_ATOMIC); 3229 po->prot_hook.dev = dev; 3230 WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0); 3231 packet_cached_dev_assign(po, dev); 3232 } 3233 dev_put(dev); 3234 } 3235 3236 if (proto == 0 || !need_rehook) 3237 goto out_unlock; 3238 3239 if (!unlisted && (!dev || (dev->flags & IFF_UP))) { 3240 register_prot_hook(sk); 3241 } else { 3242 sk->sk_err = ENETDOWN; 3243 if (!sock_flag(sk, SOCK_DEAD)) 3244 sk_error_report(sk); 3245 } 3246 3247 out_unlock: 3248 rcu_read_unlock(); 3249 spin_unlock(&po->bind_lock); 3250 release_sock(sk); 3251 return ret; 3252 } 3253 3254 /* 3255 * Bind a packet socket to a device 3256 */ 3257 3258 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 3259 int addr_len) 3260 { 3261 struct sock *sk = sock->sk; 3262 char name[sizeof(uaddr->sa_data) + 1]; 3263 3264 /* 3265 * Check legality 3266 */ 3267 3268 if (addr_len != sizeof(struct sockaddr)) 3269 return -EINVAL; 3270 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be 3271 * zero-terminated. 3272 */ 3273 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data)); 3274 name[sizeof(uaddr->sa_data)] = 0; 3275 3276 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num); 3277 } 3278 3279 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3280 { 3281 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 3282 struct sock *sk = sock->sk; 3283 3284 /* 3285 * Check legality 3286 */ 3287 3288 if (addr_len < sizeof(struct sockaddr_ll)) 3289 return -EINVAL; 3290 if (sll->sll_family != AF_PACKET) 3291 return -EINVAL; 3292 3293 return packet_do_bind(sk, NULL, sll->sll_ifindex, 3294 sll->sll_protocol ? : pkt_sk(sk)->num); 3295 } 3296 3297 static struct proto packet_proto = { 3298 .name = "PACKET", 3299 .owner = THIS_MODULE, 3300 .obj_size = sizeof(struct packet_sock), 3301 }; 3302 3303 /* 3304 * Create a packet of type SOCK_PACKET. 3305 */ 3306 3307 static int packet_create(struct net *net, struct socket *sock, int protocol, 3308 int kern) 3309 { 3310 struct sock *sk; 3311 struct packet_sock *po; 3312 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 3313 int err; 3314 3315 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 3316 return -EPERM; 3317 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 3318 sock->type != SOCK_PACKET) 3319 return -ESOCKTNOSUPPORT; 3320 3321 sock->state = SS_UNCONNECTED; 3322 3323 err = -ENOBUFS; 3324 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); 3325 if (sk == NULL) 3326 goto out; 3327 3328 sock->ops = &packet_ops; 3329 if (sock->type == SOCK_PACKET) 3330 sock->ops = &packet_ops_spkt; 3331 3332 sock_init_data(sock, sk); 3333 3334 po = pkt_sk(sk); 3335 init_completion(&po->skb_completion); 3336 sk->sk_family = PF_PACKET; 3337 po->num = proto; 3338 po->xmit = dev_queue_xmit; 3339 3340 err = packet_alloc_pending(po); 3341 if (err) 3342 goto out2; 3343 3344 packet_cached_dev_reset(po); 3345 3346 sk->sk_destruct = packet_sock_destruct; 3347 sk_refcnt_debug_inc(sk); 3348 3349 /* 3350 * Attach a protocol block 3351 */ 3352 3353 spin_lock_init(&po->bind_lock); 3354 mutex_init(&po->pg_vec_lock); 3355 po->rollover = NULL; 3356 po->prot_hook.func = packet_rcv; 3357 3358 if (sock->type == SOCK_PACKET) 3359 po->prot_hook.func = packet_rcv_spkt; 3360 3361 po->prot_hook.af_packet_priv = sk; 3362 po->prot_hook.af_packet_net = sock_net(sk); 3363 3364 if (proto) { 3365 po->prot_hook.type = proto; 3366 __register_prot_hook(sk); 3367 } 3368 3369 mutex_lock(&net->packet.sklist_lock); 3370 sk_add_node_tail_rcu(sk, &net->packet.sklist); 3371 mutex_unlock(&net->packet.sklist_lock); 3372 3373 sock_prot_inuse_add(net, &packet_proto, 1); 3374 3375 return 0; 3376 out2: 3377 sk_free(sk); 3378 out: 3379 return err; 3380 } 3381 3382 /* 3383 * Pull a packet from our receive queue and hand it to the user. 3384 * If necessary we block. 3385 */ 3386 3387 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 3388 int flags) 3389 { 3390 struct sock *sk = sock->sk; 3391 struct sk_buff *skb; 3392 int copied, err; 3393 int vnet_hdr_len = 0; 3394 unsigned int origlen = 0; 3395 3396 err = -EINVAL; 3397 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 3398 goto out; 3399 3400 #if 0 3401 /* What error should we return now? EUNATTACH? */ 3402 if (pkt_sk(sk)->ifindex < 0) 3403 return -ENODEV; 3404 #endif 3405 3406 if (flags & MSG_ERRQUEUE) { 3407 err = sock_recv_errqueue(sk, msg, len, 3408 SOL_PACKET, PACKET_TX_TIMESTAMP); 3409 goto out; 3410 } 3411 3412 /* 3413 * Call the generic datagram receiver. This handles all sorts 3414 * of horrible races and re-entrancy so we can forget about it 3415 * in the protocol layers. 3416 * 3417 * Now it will return ENETDOWN, if device have just gone down, 3418 * but then it will block. 3419 */ 3420 3421 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 3422 3423 /* 3424 * An error occurred so return it. Because skb_recv_datagram() 3425 * handles the blocking we don't see and worry about blocking 3426 * retries. 3427 */ 3428 3429 if (skb == NULL) 3430 goto out; 3431 3432 packet_rcv_try_clear_pressure(pkt_sk(sk)); 3433 3434 if (pkt_sk(sk)->has_vnet_hdr) { 3435 err = packet_rcv_vnet(msg, skb, &len); 3436 if (err) 3437 goto out_free; 3438 vnet_hdr_len = sizeof(struct virtio_net_hdr); 3439 } 3440 3441 /* You lose any data beyond the buffer you gave. If it worries 3442 * a user program they can ask the device for its MTU 3443 * anyway. 3444 */ 3445 copied = skb->len; 3446 if (copied > len) { 3447 copied = len; 3448 msg->msg_flags |= MSG_TRUNC; 3449 } 3450 3451 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3452 if (err) 3453 goto out_free; 3454 3455 if (sock->type != SOCK_PACKET) { 3456 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3457 3458 /* Original length was stored in sockaddr_ll fields */ 3459 origlen = PACKET_SKB_CB(skb)->sa.origlen; 3460 sll->sll_family = AF_PACKET; 3461 sll->sll_protocol = skb->protocol; 3462 } 3463 3464 sock_recv_ts_and_drops(msg, sk, skb); 3465 3466 if (msg->msg_name) { 3467 int copy_len; 3468 3469 /* If the address length field is there to be filled 3470 * in, we fill it in now. 3471 */ 3472 if (sock->type == SOCK_PACKET) { 3473 __sockaddr_check_size(sizeof(struct sockaddr_pkt)); 3474 msg->msg_namelen = sizeof(struct sockaddr_pkt); 3475 copy_len = msg->msg_namelen; 3476 } else { 3477 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3478 3479 msg->msg_namelen = sll->sll_halen + 3480 offsetof(struct sockaddr_ll, sll_addr); 3481 copy_len = msg->msg_namelen; 3482 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) { 3483 memset(msg->msg_name + 3484 offsetof(struct sockaddr_ll, sll_addr), 3485 0, sizeof(sll->sll_addr)); 3486 msg->msg_namelen = sizeof(struct sockaddr_ll); 3487 } 3488 } 3489 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len); 3490 } 3491 3492 if (pkt_sk(sk)->auxdata) { 3493 struct tpacket_auxdata aux; 3494 3495 aux.tp_status = TP_STATUS_USER; 3496 if (skb->ip_summed == CHECKSUM_PARTIAL) 3497 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 3498 else if (skb->pkt_type != PACKET_OUTGOING && 3499 (skb->ip_summed == CHECKSUM_COMPLETE || 3500 skb_csum_unnecessary(skb))) 3501 aux.tp_status |= TP_STATUS_CSUM_VALID; 3502 3503 aux.tp_len = origlen; 3504 aux.tp_snaplen = skb->len; 3505 aux.tp_mac = 0; 3506 aux.tp_net = skb_network_offset(skb); 3507 if (skb_vlan_tag_present(skb)) { 3508 aux.tp_vlan_tci = skb_vlan_tag_get(skb); 3509 aux.tp_vlan_tpid = ntohs(skb->vlan_proto); 3510 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 3511 } else { 3512 aux.tp_vlan_tci = 0; 3513 aux.tp_vlan_tpid = 0; 3514 } 3515 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 3516 } 3517 3518 /* 3519 * Free or return the buffer as appropriate. Again this 3520 * hides all the races and re-entrancy issues from us. 3521 */ 3522 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 3523 3524 out_free: 3525 skb_free_datagram(sk, skb); 3526 out: 3527 return err; 3528 } 3529 3530 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 3531 int peer) 3532 { 3533 struct net_device *dev; 3534 struct sock *sk = sock->sk; 3535 3536 if (peer) 3537 return -EOPNOTSUPP; 3538 3539 uaddr->sa_family = AF_PACKET; 3540 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data)); 3541 rcu_read_lock(); 3542 dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex)); 3543 if (dev) 3544 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data)); 3545 rcu_read_unlock(); 3546 3547 return sizeof(*uaddr); 3548 } 3549 3550 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 3551 int peer) 3552 { 3553 struct net_device *dev; 3554 struct sock *sk = sock->sk; 3555 struct packet_sock *po = pkt_sk(sk); 3556 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 3557 int ifindex; 3558 3559 if (peer) 3560 return -EOPNOTSUPP; 3561 3562 ifindex = READ_ONCE(po->ifindex); 3563 sll->sll_family = AF_PACKET; 3564 sll->sll_ifindex = ifindex; 3565 sll->sll_protocol = READ_ONCE(po->num); 3566 sll->sll_pkttype = 0; 3567 rcu_read_lock(); 3568 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3569 if (dev) { 3570 sll->sll_hatype = dev->type; 3571 sll->sll_halen = dev->addr_len; 3572 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 3573 } else { 3574 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 3575 sll->sll_halen = 0; 3576 } 3577 rcu_read_unlock(); 3578 3579 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 3580 } 3581 3582 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 3583 int what) 3584 { 3585 switch (i->type) { 3586 case PACKET_MR_MULTICAST: 3587 if (i->alen != dev->addr_len) 3588 return -EINVAL; 3589 if (what > 0) 3590 return dev_mc_add(dev, i->addr); 3591 else 3592 return dev_mc_del(dev, i->addr); 3593 break; 3594 case PACKET_MR_PROMISC: 3595 return dev_set_promiscuity(dev, what); 3596 case PACKET_MR_ALLMULTI: 3597 return dev_set_allmulti(dev, what); 3598 case PACKET_MR_UNICAST: 3599 if (i->alen != dev->addr_len) 3600 return -EINVAL; 3601 if (what > 0) 3602 return dev_uc_add(dev, i->addr); 3603 else 3604 return dev_uc_del(dev, i->addr); 3605 break; 3606 default: 3607 break; 3608 } 3609 return 0; 3610 } 3611 3612 static void packet_dev_mclist_delete(struct net_device *dev, 3613 struct packet_mclist **mlp) 3614 { 3615 struct packet_mclist *ml; 3616 3617 while ((ml = *mlp) != NULL) { 3618 if (ml->ifindex == dev->ifindex) { 3619 packet_dev_mc(dev, ml, -1); 3620 *mlp = ml->next; 3621 kfree(ml); 3622 } else 3623 mlp = &ml->next; 3624 } 3625 } 3626 3627 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 3628 { 3629 struct packet_sock *po = pkt_sk(sk); 3630 struct packet_mclist *ml, *i; 3631 struct net_device *dev; 3632 int err; 3633 3634 rtnl_lock(); 3635 3636 err = -ENODEV; 3637 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 3638 if (!dev) 3639 goto done; 3640 3641 err = -EINVAL; 3642 if (mreq->mr_alen > dev->addr_len) 3643 goto done; 3644 3645 err = -ENOBUFS; 3646 i = kmalloc(sizeof(*i), GFP_KERNEL); 3647 if (i == NULL) 3648 goto done; 3649 3650 err = 0; 3651 for (ml = po->mclist; ml; ml = ml->next) { 3652 if (ml->ifindex == mreq->mr_ifindex && 3653 ml->type == mreq->mr_type && 3654 ml->alen == mreq->mr_alen && 3655 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3656 ml->count++; 3657 /* Free the new element ... */ 3658 kfree(i); 3659 goto done; 3660 } 3661 } 3662 3663 i->type = mreq->mr_type; 3664 i->ifindex = mreq->mr_ifindex; 3665 i->alen = mreq->mr_alen; 3666 memcpy(i->addr, mreq->mr_address, i->alen); 3667 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen); 3668 i->count = 1; 3669 i->next = po->mclist; 3670 po->mclist = i; 3671 err = packet_dev_mc(dev, i, 1); 3672 if (err) { 3673 po->mclist = i->next; 3674 kfree(i); 3675 } 3676 3677 done: 3678 rtnl_unlock(); 3679 return err; 3680 } 3681 3682 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 3683 { 3684 struct packet_mclist *ml, **mlp; 3685 3686 rtnl_lock(); 3687 3688 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 3689 if (ml->ifindex == mreq->mr_ifindex && 3690 ml->type == mreq->mr_type && 3691 ml->alen == mreq->mr_alen && 3692 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3693 if (--ml->count == 0) { 3694 struct net_device *dev; 3695 *mlp = ml->next; 3696 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3697 if (dev) 3698 packet_dev_mc(dev, ml, -1); 3699 kfree(ml); 3700 } 3701 break; 3702 } 3703 } 3704 rtnl_unlock(); 3705 return 0; 3706 } 3707 3708 static void packet_flush_mclist(struct sock *sk) 3709 { 3710 struct packet_sock *po = pkt_sk(sk); 3711 struct packet_mclist *ml; 3712 3713 if (!po->mclist) 3714 return; 3715 3716 rtnl_lock(); 3717 while ((ml = po->mclist) != NULL) { 3718 struct net_device *dev; 3719 3720 po->mclist = ml->next; 3721 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3722 if (dev != NULL) 3723 packet_dev_mc(dev, ml, -1); 3724 kfree(ml); 3725 } 3726 rtnl_unlock(); 3727 } 3728 3729 static int 3730 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, 3731 unsigned int optlen) 3732 { 3733 struct sock *sk = sock->sk; 3734 struct packet_sock *po = pkt_sk(sk); 3735 int ret; 3736 3737 if (level != SOL_PACKET) 3738 return -ENOPROTOOPT; 3739 3740 switch (optname) { 3741 case PACKET_ADD_MEMBERSHIP: 3742 case PACKET_DROP_MEMBERSHIP: 3743 { 3744 struct packet_mreq_max mreq; 3745 int len = optlen; 3746 memset(&mreq, 0, sizeof(mreq)); 3747 if (len < sizeof(struct packet_mreq)) 3748 return -EINVAL; 3749 if (len > sizeof(mreq)) 3750 len = sizeof(mreq); 3751 if (copy_from_sockptr(&mreq, optval, len)) 3752 return -EFAULT; 3753 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3754 return -EINVAL; 3755 if (optname == PACKET_ADD_MEMBERSHIP) 3756 ret = packet_mc_add(sk, &mreq); 3757 else 3758 ret = packet_mc_drop(sk, &mreq); 3759 return ret; 3760 } 3761 3762 case PACKET_RX_RING: 3763 case PACKET_TX_RING: 3764 { 3765 union tpacket_req_u req_u; 3766 int len; 3767 3768 lock_sock(sk); 3769 switch (po->tp_version) { 3770 case TPACKET_V1: 3771 case TPACKET_V2: 3772 len = sizeof(req_u.req); 3773 break; 3774 case TPACKET_V3: 3775 default: 3776 len = sizeof(req_u.req3); 3777 break; 3778 } 3779 if (optlen < len) { 3780 ret = -EINVAL; 3781 } else { 3782 if (copy_from_sockptr(&req_u.req, optval, len)) 3783 ret = -EFAULT; 3784 else 3785 ret = packet_set_ring(sk, &req_u, 0, 3786 optname == PACKET_TX_RING); 3787 } 3788 release_sock(sk); 3789 return ret; 3790 } 3791 case PACKET_COPY_THRESH: 3792 { 3793 int val; 3794 3795 if (optlen != sizeof(val)) 3796 return -EINVAL; 3797 if (copy_from_sockptr(&val, optval, sizeof(val))) 3798 return -EFAULT; 3799 3800 pkt_sk(sk)->copy_thresh = val; 3801 return 0; 3802 } 3803 case PACKET_VERSION: 3804 { 3805 int val; 3806 3807 if (optlen != sizeof(val)) 3808 return -EINVAL; 3809 if (copy_from_sockptr(&val, optval, sizeof(val))) 3810 return -EFAULT; 3811 switch (val) { 3812 case TPACKET_V1: 3813 case TPACKET_V2: 3814 case TPACKET_V3: 3815 break; 3816 default: 3817 return -EINVAL; 3818 } 3819 lock_sock(sk); 3820 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3821 ret = -EBUSY; 3822 } else { 3823 po->tp_version = val; 3824 ret = 0; 3825 } 3826 release_sock(sk); 3827 return ret; 3828 } 3829 case PACKET_RESERVE: 3830 { 3831 unsigned int val; 3832 3833 if (optlen != sizeof(val)) 3834 return -EINVAL; 3835 if (copy_from_sockptr(&val, optval, sizeof(val))) 3836 return -EFAULT; 3837 if (val > INT_MAX) 3838 return -EINVAL; 3839 lock_sock(sk); 3840 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3841 ret = -EBUSY; 3842 } else { 3843 po->tp_reserve = val; 3844 ret = 0; 3845 } 3846 release_sock(sk); 3847 return ret; 3848 } 3849 case PACKET_LOSS: 3850 { 3851 unsigned int val; 3852 3853 if (optlen != sizeof(val)) 3854 return -EINVAL; 3855 if (copy_from_sockptr(&val, optval, sizeof(val))) 3856 return -EFAULT; 3857 3858 lock_sock(sk); 3859 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3860 ret = -EBUSY; 3861 } else { 3862 po->tp_loss = !!val; 3863 ret = 0; 3864 } 3865 release_sock(sk); 3866 return ret; 3867 } 3868 case PACKET_AUXDATA: 3869 { 3870 int val; 3871 3872 if (optlen < sizeof(val)) 3873 return -EINVAL; 3874 if (copy_from_sockptr(&val, optval, sizeof(val))) 3875 return -EFAULT; 3876 3877 lock_sock(sk); 3878 po->auxdata = !!val; 3879 release_sock(sk); 3880 return 0; 3881 } 3882 case PACKET_ORIGDEV: 3883 { 3884 int val; 3885 3886 if (optlen < sizeof(val)) 3887 return -EINVAL; 3888 if (copy_from_sockptr(&val, optval, sizeof(val))) 3889 return -EFAULT; 3890 3891 lock_sock(sk); 3892 po->origdev = !!val; 3893 release_sock(sk); 3894 return 0; 3895 } 3896 case PACKET_VNET_HDR: 3897 { 3898 int val; 3899 3900 if (sock->type != SOCK_RAW) 3901 return -EINVAL; 3902 if (optlen < sizeof(val)) 3903 return -EINVAL; 3904 if (copy_from_sockptr(&val, optval, sizeof(val))) 3905 return -EFAULT; 3906 3907 lock_sock(sk); 3908 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3909 ret = -EBUSY; 3910 } else { 3911 po->has_vnet_hdr = !!val; 3912 ret = 0; 3913 } 3914 release_sock(sk); 3915 return ret; 3916 } 3917 case PACKET_TIMESTAMP: 3918 { 3919 int val; 3920 3921 if (optlen != sizeof(val)) 3922 return -EINVAL; 3923 if (copy_from_sockptr(&val, optval, sizeof(val))) 3924 return -EFAULT; 3925 3926 po->tp_tstamp = val; 3927 return 0; 3928 } 3929 case PACKET_FANOUT: 3930 { 3931 struct fanout_args args = { 0 }; 3932 3933 if (optlen != sizeof(int) && optlen != sizeof(args)) 3934 return -EINVAL; 3935 if (copy_from_sockptr(&args, optval, optlen)) 3936 return -EFAULT; 3937 3938 return fanout_add(sk, &args); 3939 } 3940 case PACKET_FANOUT_DATA: 3941 { 3942 /* Paired with the WRITE_ONCE() in fanout_add() */ 3943 if (!READ_ONCE(po->fanout)) 3944 return -EINVAL; 3945 3946 return fanout_set_data(po, optval, optlen); 3947 } 3948 case PACKET_IGNORE_OUTGOING: 3949 { 3950 int val; 3951 3952 if (optlen != sizeof(val)) 3953 return -EINVAL; 3954 if (copy_from_sockptr(&val, optval, sizeof(val))) 3955 return -EFAULT; 3956 if (val < 0 || val > 1) 3957 return -EINVAL; 3958 3959 po->prot_hook.ignore_outgoing = !!val; 3960 return 0; 3961 } 3962 case PACKET_TX_HAS_OFF: 3963 { 3964 unsigned int val; 3965 3966 if (optlen != sizeof(val)) 3967 return -EINVAL; 3968 if (copy_from_sockptr(&val, optval, sizeof(val))) 3969 return -EFAULT; 3970 3971 lock_sock(sk); 3972 if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec) 3973 po->tp_tx_has_off = !!val; 3974 3975 release_sock(sk); 3976 return 0; 3977 } 3978 case PACKET_QDISC_BYPASS: 3979 { 3980 int val; 3981 3982 if (optlen != sizeof(val)) 3983 return -EINVAL; 3984 if (copy_from_sockptr(&val, optval, sizeof(val))) 3985 return -EFAULT; 3986 3987 po->xmit = val ? packet_direct_xmit : dev_queue_xmit; 3988 return 0; 3989 } 3990 default: 3991 return -ENOPROTOOPT; 3992 } 3993 } 3994 3995 static int packet_getsockopt(struct socket *sock, int level, int optname, 3996 char __user *optval, int __user *optlen) 3997 { 3998 int len; 3999 int val, lv = sizeof(val); 4000 struct sock *sk = sock->sk; 4001 struct packet_sock *po = pkt_sk(sk); 4002 void *data = &val; 4003 union tpacket_stats_u st; 4004 struct tpacket_rollover_stats rstats; 4005 int drops; 4006 4007 if (level != SOL_PACKET) 4008 return -ENOPROTOOPT; 4009 4010 if (get_user(len, optlen)) 4011 return -EFAULT; 4012 4013 if (len < 0) 4014 return -EINVAL; 4015 4016 switch (optname) { 4017 case PACKET_STATISTICS: 4018 spin_lock_bh(&sk->sk_receive_queue.lock); 4019 memcpy(&st, &po->stats, sizeof(st)); 4020 memset(&po->stats, 0, sizeof(po->stats)); 4021 spin_unlock_bh(&sk->sk_receive_queue.lock); 4022 drops = atomic_xchg(&po->tp_drops, 0); 4023 4024 if (po->tp_version == TPACKET_V3) { 4025 lv = sizeof(struct tpacket_stats_v3); 4026 st.stats3.tp_drops = drops; 4027 st.stats3.tp_packets += drops; 4028 data = &st.stats3; 4029 } else { 4030 lv = sizeof(struct tpacket_stats); 4031 st.stats1.tp_drops = drops; 4032 st.stats1.tp_packets += drops; 4033 data = &st.stats1; 4034 } 4035 4036 break; 4037 case PACKET_AUXDATA: 4038 val = po->auxdata; 4039 break; 4040 case PACKET_ORIGDEV: 4041 val = po->origdev; 4042 break; 4043 case PACKET_VNET_HDR: 4044 val = po->has_vnet_hdr; 4045 break; 4046 case PACKET_VERSION: 4047 val = po->tp_version; 4048 break; 4049 case PACKET_HDRLEN: 4050 if (len > sizeof(int)) 4051 len = sizeof(int); 4052 if (len < sizeof(int)) 4053 return -EINVAL; 4054 if (copy_from_user(&val, optval, len)) 4055 return -EFAULT; 4056 switch (val) { 4057 case TPACKET_V1: 4058 val = sizeof(struct tpacket_hdr); 4059 break; 4060 case TPACKET_V2: 4061 val = sizeof(struct tpacket2_hdr); 4062 break; 4063 case TPACKET_V3: 4064 val = sizeof(struct tpacket3_hdr); 4065 break; 4066 default: 4067 return -EINVAL; 4068 } 4069 break; 4070 case PACKET_RESERVE: 4071 val = po->tp_reserve; 4072 break; 4073 case PACKET_LOSS: 4074 val = po->tp_loss; 4075 break; 4076 case PACKET_TIMESTAMP: 4077 val = po->tp_tstamp; 4078 break; 4079 case PACKET_FANOUT: 4080 val = (po->fanout ? 4081 ((u32)po->fanout->id | 4082 ((u32)po->fanout->type << 16) | 4083 ((u32)po->fanout->flags << 24)) : 4084 0); 4085 break; 4086 case PACKET_IGNORE_OUTGOING: 4087 val = po->prot_hook.ignore_outgoing; 4088 break; 4089 case PACKET_ROLLOVER_STATS: 4090 if (!po->rollover) 4091 return -EINVAL; 4092 rstats.tp_all = atomic_long_read(&po->rollover->num); 4093 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); 4094 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); 4095 data = &rstats; 4096 lv = sizeof(rstats); 4097 break; 4098 case PACKET_TX_HAS_OFF: 4099 val = po->tp_tx_has_off; 4100 break; 4101 case PACKET_QDISC_BYPASS: 4102 val = packet_use_direct_xmit(po); 4103 break; 4104 default: 4105 return -ENOPROTOOPT; 4106 } 4107 4108 if (len > lv) 4109 len = lv; 4110 if (put_user(len, optlen)) 4111 return -EFAULT; 4112 if (copy_to_user(optval, data, len)) 4113 return -EFAULT; 4114 return 0; 4115 } 4116 4117 static int packet_notifier(struct notifier_block *this, 4118 unsigned long msg, void *ptr) 4119 { 4120 struct sock *sk; 4121 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4122 struct net *net = dev_net(dev); 4123 4124 rcu_read_lock(); 4125 sk_for_each_rcu(sk, &net->packet.sklist) { 4126 struct packet_sock *po = pkt_sk(sk); 4127 4128 switch (msg) { 4129 case NETDEV_UNREGISTER: 4130 if (po->mclist) 4131 packet_dev_mclist_delete(dev, &po->mclist); 4132 fallthrough; 4133 4134 case NETDEV_DOWN: 4135 if (dev->ifindex == po->ifindex) { 4136 spin_lock(&po->bind_lock); 4137 if (po->running) { 4138 __unregister_prot_hook(sk, false); 4139 sk->sk_err = ENETDOWN; 4140 if (!sock_flag(sk, SOCK_DEAD)) 4141 sk_error_report(sk); 4142 } 4143 if (msg == NETDEV_UNREGISTER) { 4144 packet_cached_dev_reset(po); 4145 WRITE_ONCE(po->ifindex, -1); 4146 dev_put_track(po->prot_hook.dev, 4147 &po->prot_hook.dev_tracker); 4148 po->prot_hook.dev = NULL; 4149 } 4150 spin_unlock(&po->bind_lock); 4151 } 4152 break; 4153 case NETDEV_UP: 4154 if (dev->ifindex == po->ifindex) { 4155 spin_lock(&po->bind_lock); 4156 if (po->num) 4157 register_prot_hook(sk); 4158 spin_unlock(&po->bind_lock); 4159 } 4160 break; 4161 } 4162 } 4163 rcu_read_unlock(); 4164 return NOTIFY_DONE; 4165 } 4166 4167 4168 static int packet_ioctl(struct socket *sock, unsigned int cmd, 4169 unsigned long arg) 4170 { 4171 struct sock *sk = sock->sk; 4172 4173 switch (cmd) { 4174 case SIOCOUTQ: 4175 { 4176 int amount = sk_wmem_alloc_get(sk); 4177 4178 return put_user(amount, (int __user *)arg); 4179 } 4180 case SIOCINQ: 4181 { 4182 struct sk_buff *skb; 4183 int amount = 0; 4184 4185 spin_lock_bh(&sk->sk_receive_queue.lock); 4186 skb = skb_peek(&sk->sk_receive_queue); 4187 if (skb) 4188 amount = skb->len; 4189 spin_unlock_bh(&sk->sk_receive_queue.lock); 4190 return put_user(amount, (int __user *)arg); 4191 } 4192 #ifdef CONFIG_INET 4193 case SIOCADDRT: 4194 case SIOCDELRT: 4195 case SIOCDARP: 4196 case SIOCGARP: 4197 case SIOCSARP: 4198 case SIOCGIFADDR: 4199 case SIOCSIFADDR: 4200 case SIOCGIFBRDADDR: 4201 case SIOCSIFBRDADDR: 4202 case SIOCGIFNETMASK: 4203 case SIOCSIFNETMASK: 4204 case SIOCGIFDSTADDR: 4205 case SIOCSIFDSTADDR: 4206 case SIOCSIFFLAGS: 4207 return inet_dgram_ops.ioctl(sock, cmd, arg); 4208 #endif 4209 4210 default: 4211 return -ENOIOCTLCMD; 4212 } 4213 return 0; 4214 } 4215 4216 static __poll_t packet_poll(struct file *file, struct socket *sock, 4217 poll_table *wait) 4218 { 4219 struct sock *sk = sock->sk; 4220 struct packet_sock *po = pkt_sk(sk); 4221 __poll_t mask = datagram_poll(file, sock, wait); 4222 4223 spin_lock_bh(&sk->sk_receive_queue.lock); 4224 if (po->rx_ring.pg_vec) { 4225 if (!packet_previous_rx_frame(po, &po->rx_ring, 4226 TP_STATUS_KERNEL)) 4227 mask |= EPOLLIN | EPOLLRDNORM; 4228 } 4229 packet_rcv_try_clear_pressure(po); 4230 spin_unlock_bh(&sk->sk_receive_queue.lock); 4231 spin_lock_bh(&sk->sk_write_queue.lock); 4232 if (po->tx_ring.pg_vec) { 4233 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 4234 mask |= EPOLLOUT | EPOLLWRNORM; 4235 } 4236 spin_unlock_bh(&sk->sk_write_queue.lock); 4237 return mask; 4238 } 4239 4240 4241 /* Dirty? Well, I still did not learn better way to account 4242 * for user mmaps. 4243 */ 4244 4245 static void packet_mm_open(struct vm_area_struct *vma) 4246 { 4247 struct file *file = vma->vm_file; 4248 struct socket *sock = file->private_data; 4249 struct sock *sk = sock->sk; 4250 4251 if (sk) 4252 atomic_inc(&pkt_sk(sk)->mapped); 4253 } 4254 4255 static void packet_mm_close(struct vm_area_struct *vma) 4256 { 4257 struct file *file = vma->vm_file; 4258 struct socket *sock = file->private_data; 4259 struct sock *sk = sock->sk; 4260 4261 if (sk) 4262 atomic_dec(&pkt_sk(sk)->mapped); 4263 } 4264 4265 static const struct vm_operations_struct packet_mmap_ops = { 4266 .open = packet_mm_open, 4267 .close = packet_mm_close, 4268 }; 4269 4270 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 4271 unsigned int len) 4272 { 4273 int i; 4274 4275 for (i = 0; i < len; i++) { 4276 if (likely(pg_vec[i].buffer)) { 4277 if (is_vmalloc_addr(pg_vec[i].buffer)) 4278 vfree(pg_vec[i].buffer); 4279 else 4280 free_pages((unsigned long)pg_vec[i].buffer, 4281 order); 4282 pg_vec[i].buffer = NULL; 4283 } 4284 } 4285 kfree(pg_vec); 4286 } 4287 4288 static char *alloc_one_pg_vec_page(unsigned long order) 4289 { 4290 char *buffer; 4291 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 4292 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 4293 4294 buffer = (char *) __get_free_pages(gfp_flags, order); 4295 if (buffer) 4296 return buffer; 4297 4298 /* __get_free_pages failed, fall back to vmalloc */ 4299 buffer = vzalloc(array_size((1 << order), PAGE_SIZE)); 4300 if (buffer) 4301 return buffer; 4302 4303 /* vmalloc failed, lets dig into swap here */ 4304 gfp_flags &= ~__GFP_NORETRY; 4305 buffer = (char *) __get_free_pages(gfp_flags, order); 4306 if (buffer) 4307 return buffer; 4308 4309 /* complete and utter failure */ 4310 return NULL; 4311 } 4312 4313 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 4314 { 4315 unsigned int block_nr = req->tp_block_nr; 4316 struct pgv *pg_vec; 4317 int i; 4318 4319 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN); 4320 if (unlikely(!pg_vec)) 4321 goto out; 4322 4323 for (i = 0; i < block_nr; i++) { 4324 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 4325 if (unlikely(!pg_vec[i].buffer)) 4326 goto out_free_pgvec; 4327 } 4328 4329 out: 4330 return pg_vec; 4331 4332 out_free_pgvec: 4333 free_pg_vec(pg_vec, order, block_nr); 4334 pg_vec = NULL; 4335 goto out; 4336 } 4337 4338 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 4339 int closing, int tx_ring) 4340 { 4341 struct pgv *pg_vec = NULL; 4342 struct packet_sock *po = pkt_sk(sk); 4343 unsigned long *rx_owner_map = NULL; 4344 int was_running, order = 0; 4345 struct packet_ring_buffer *rb; 4346 struct sk_buff_head *rb_queue; 4347 __be16 num; 4348 int err; 4349 /* Added to avoid minimal code churn */ 4350 struct tpacket_req *req = &req_u->req; 4351 4352 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 4353 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 4354 4355 err = -EBUSY; 4356 if (!closing) { 4357 if (atomic_read(&po->mapped)) 4358 goto out; 4359 if (packet_read_pending(rb)) 4360 goto out; 4361 } 4362 4363 if (req->tp_block_nr) { 4364 unsigned int min_frame_size; 4365 4366 /* Sanity tests and some calculations */ 4367 err = -EBUSY; 4368 if (unlikely(rb->pg_vec)) 4369 goto out; 4370 4371 switch (po->tp_version) { 4372 case TPACKET_V1: 4373 po->tp_hdrlen = TPACKET_HDRLEN; 4374 break; 4375 case TPACKET_V2: 4376 po->tp_hdrlen = TPACKET2_HDRLEN; 4377 break; 4378 case TPACKET_V3: 4379 po->tp_hdrlen = TPACKET3_HDRLEN; 4380 break; 4381 } 4382 4383 err = -EINVAL; 4384 if (unlikely((int)req->tp_block_size <= 0)) 4385 goto out; 4386 if (unlikely(!PAGE_ALIGNED(req->tp_block_size))) 4387 goto out; 4388 min_frame_size = po->tp_hdrlen + po->tp_reserve; 4389 if (po->tp_version >= TPACKET_V3 && 4390 req->tp_block_size < 4391 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size) 4392 goto out; 4393 if (unlikely(req->tp_frame_size < min_frame_size)) 4394 goto out; 4395 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 4396 goto out; 4397 4398 rb->frames_per_block = req->tp_block_size / req->tp_frame_size; 4399 if (unlikely(rb->frames_per_block == 0)) 4400 goto out; 4401 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr)) 4402 goto out; 4403 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 4404 req->tp_frame_nr)) 4405 goto out; 4406 4407 err = -ENOMEM; 4408 order = get_order(req->tp_block_size); 4409 pg_vec = alloc_pg_vec(req, order); 4410 if (unlikely(!pg_vec)) 4411 goto out; 4412 switch (po->tp_version) { 4413 case TPACKET_V3: 4414 /* Block transmit is not supported yet */ 4415 if (!tx_ring) { 4416 init_prb_bdqc(po, rb, pg_vec, req_u); 4417 } else { 4418 struct tpacket_req3 *req3 = &req_u->req3; 4419 4420 if (req3->tp_retire_blk_tov || 4421 req3->tp_sizeof_priv || 4422 req3->tp_feature_req_word) { 4423 err = -EINVAL; 4424 goto out_free_pg_vec; 4425 } 4426 } 4427 break; 4428 default: 4429 if (!tx_ring) { 4430 rx_owner_map = bitmap_alloc(req->tp_frame_nr, 4431 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); 4432 if (!rx_owner_map) 4433 goto out_free_pg_vec; 4434 } 4435 break; 4436 } 4437 } 4438 /* Done */ 4439 else { 4440 err = -EINVAL; 4441 if (unlikely(req->tp_frame_nr)) 4442 goto out; 4443 } 4444 4445 4446 /* Detach socket from network */ 4447 spin_lock(&po->bind_lock); 4448 was_running = po->running; 4449 num = po->num; 4450 if (was_running) { 4451 WRITE_ONCE(po->num, 0); 4452 __unregister_prot_hook(sk, false); 4453 } 4454 spin_unlock(&po->bind_lock); 4455 4456 synchronize_net(); 4457 4458 err = -EBUSY; 4459 mutex_lock(&po->pg_vec_lock); 4460 if (closing || atomic_read(&po->mapped) == 0) { 4461 err = 0; 4462 spin_lock_bh(&rb_queue->lock); 4463 swap(rb->pg_vec, pg_vec); 4464 if (po->tp_version <= TPACKET_V2) 4465 swap(rb->rx_owner_map, rx_owner_map); 4466 rb->frame_max = (req->tp_frame_nr - 1); 4467 rb->head = 0; 4468 rb->frame_size = req->tp_frame_size; 4469 spin_unlock_bh(&rb_queue->lock); 4470 4471 swap(rb->pg_vec_order, order); 4472 swap(rb->pg_vec_len, req->tp_block_nr); 4473 4474 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 4475 po->prot_hook.func = (po->rx_ring.pg_vec) ? 4476 tpacket_rcv : packet_rcv; 4477 skb_queue_purge(rb_queue); 4478 if (atomic_read(&po->mapped)) 4479 pr_err("packet_mmap: vma is busy: %d\n", 4480 atomic_read(&po->mapped)); 4481 } 4482 mutex_unlock(&po->pg_vec_lock); 4483 4484 spin_lock(&po->bind_lock); 4485 if (was_running) { 4486 WRITE_ONCE(po->num, num); 4487 register_prot_hook(sk); 4488 } 4489 spin_unlock(&po->bind_lock); 4490 if (pg_vec && (po->tp_version > TPACKET_V2)) { 4491 /* Because we don't support block-based V3 on tx-ring */ 4492 if (!tx_ring) 4493 prb_shutdown_retire_blk_timer(po, rb_queue); 4494 } 4495 4496 out_free_pg_vec: 4497 if (pg_vec) { 4498 bitmap_free(rx_owner_map); 4499 free_pg_vec(pg_vec, order, req->tp_block_nr); 4500 } 4501 out: 4502 return err; 4503 } 4504 4505 static int packet_mmap(struct file *file, struct socket *sock, 4506 struct vm_area_struct *vma) 4507 { 4508 struct sock *sk = sock->sk; 4509 struct packet_sock *po = pkt_sk(sk); 4510 unsigned long size, expected_size; 4511 struct packet_ring_buffer *rb; 4512 unsigned long start; 4513 int err = -EINVAL; 4514 int i; 4515 4516 if (vma->vm_pgoff) 4517 return -EINVAL; 4518 4519 mutex_lock(&po->pg_vec_lock); 4520 4521 expected_size = 0; 4522 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4523 if (rb->pg_vec) { 4524 expected_size += rb->pg_vec_len 4525 * rb->pg_vec_pages 4526 * PAGE_SIZE; 4527 } 4528 } 4529 4530 if (expected_size == 0) 4531 goto out; 4532 4533 size = vma->vm_end - vma->vm_start; 4534 if (size != expected_size) 4535 goto out; 4536 4537 start = vma->vm_start; 4538 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4539 if (rb->pg_vec == NULL) 4540 continue; 4541 4542 for (i = 0; i < rb->pg_vec_len; i++) { 4543 struct page *page; 4544 void *kaddr = rb->pg_vec[i].buffer; 4545 int pg_num; 4546 4547 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 4548 page = pgv_to_page(kaddr); 4549 err = vm_insert_page(vma, start, page); 4550 if (unlikely(err)) 4551 goto out; 4552 start += PAGE_SIZE; 4553 kaddr += PAGE_SIZE; 4554 } 4555 } 4556 } 4557 4558 atomic_inc(&po->mapped); 4559 vma->vm_ops = &packet_mmap_ops; 4560 err = 0; 4561 4562 out: 4563 mutex_unlock(&po->pg_vec_lock); 4564 return err; 4565 } 4566 4567 static const struct proto_ops packet_ops_spkt = { 4568 .family = PF_PACKET, 4569 .owner = THIS_MODULE, 4570 .release = packet_release, 4571 .bind = packet_bind_spkt, 4572 .connect = sock_no_connect, 4573 .socketpair = sock_no_socketpair, 4574 .accept = sock_no_accept, 4575 .getname = packet_getname_spkt, 4576 .poll = datagram_poll, 4577 .ioctl = packet_ioctl, 4578 .gettstamp = sock_gettstamp, 4579 .listen = sock_no_listen, 4580 .shutdown = sock_no_shutdown, 4581 .sendmsg = packet_sendmsg_spkt, 4582 .recvmsg = packet_recvmsg, 4583 .mmap = sock_no_mmap, 4584 .sendpage = sock_no_sendpage, 4585 }; 4586 4587 static const struct proto_ops packet_ops = { 4588 .family = PF_PACKET, 4589 .owner = THIS_MODULE, 4590 .release = packet_release, 4591 .bind = packet_bind, 4592 .connect = sock_no_connect, 4593 .socketpair = sock_no_socketpair, 4594 .accept = sock_no_accept, 4595 .getname = packet_getname, 4596 .poll = packet_poll, 4597 .ioctl = packet_ioctl, 4598 .gettstamp = sock_gettstamp, 4599 .listen = sock_no_listen, 4600 .shutdown = sock_no_shutdown, 4601 .setsockopt = packet_setsockopt, 4602 .getsockopt = packet_getsockopt, 4603 .sendmsg = packet_sendmsg, 4604 .recvmsg = packet_recvmsg, 4605 .mmap = packet_mmap, 4606 .sendpage = sock_no_sendpage, 4607 }; 4608 4609 static const struct net_proto_family packet_family_ops = { 4610 .family = PF_PACKET, 4611 .create = packet_create, 4612 .owner = THIS_MODULE, 4613 }; 4614 4615 static struct notifier_block packet_netdev_notifier = { 4616 .notifier_call = packet_notifier, 4617 }; 4618 4619 #ifdef CONFIG_PROC_FS 4620 4621 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 4622 __acquires(RCU) 4623 { 4624 struct net *net = seq_file_net(seq); 4625 4626 rcu_read_lock(); 4627 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 4628 } 4629 4630 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4631 { 4632 struct net *net = seq_file_net(seq); 4633 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 4634 } 4635 4636 static void packet_seq_stop(struct seq_file *seq, void *v) 4637 __releases(RCU) 4638 { 4639 rcu_read_unlock(); 4640 } 4641 4642 static int packet_seq_show(struct seq_file *seq, void *v) 4643 { 4644 if (v == SEQ_START_TOKEN) 4645 seq_printf(seq, 4646 "%*sRefCnt Type Proto Iface R Rmem User Inode\n", 4647 IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk"); 4648 else { 4649 struct sock *s = sk_entry(v); 4650 const struct packet_sock *po = pkt_sk(s); 4651 4652 seq_printf(seq, 4653 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 4654 s, 4655 refcount_read(&s->sk_refcnt), 4656 s->sk_type, 4657 ntohs(READ_ONCE(po->num)), 4658 READ_ONCE(po->ifindex), 4659 po->running, 4660 atomic_read(&s->sk_rmem_alloc), 4661 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), 4662 sock_i_ino(s)); 4663 } 4664 4665 return 0; 4666 } 4667 4668 static const struct seq_operations packet_seq_ops = { 4669 .start = packet_seq_start, 4670 .next = packet_seq_next, 4671 .stop = packet_seq_stop, 4672 .show = packet_seq_show, 4673 }; 4674 #endif 4675 4676 static int __net_init packet_net_init(struct net *net) 4677 { 4678 mutex_init(&net->packet.sklist_lock); 4679 INIT_HLIST_HEAD(&net->packet.sklist); 4680 4681 #ifdef CONFIG_PROC_FS 4682 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops, 4683 sizeof(struct seq_net_private))) 4684 return -ENOMEM; 4685 #endif /* CONFIG_PROC_FS */ 4686 4687 return 0; 4688 } 4689 4690 static void __net_exit packet_net_exit(struct net *net) 4691 { 4692 remove_proc_entry("packet", net->proc_net); 4693 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist)); 4694 } 4695 4696 static struct pernet_operations packet_net_ops = { 4697 .init = packet_net_init, 4698 .exit = packet_net_exit, 4699 }; 4700 4701 4702 static void __exit packet_exit(void) 4703 { 4704 unregister_netdevice_notifier(&packet_netdev_notifier); 4705 unregister_pernet_subsys(&packet_net_ops); 4706 sock_unregister(PF_PACKET); 4707 proto_unregister(&packet_proto); 4708 } 4709 4710 static int __init packet_init(void) 4711 { 4712 int rc; 4713 4714 rc = proto_register(&packet_proto, 0); 4715 if (rc) 4716 goto out; 4717 rc = sock_register(&packet_family_ops); 4718 if (rc) 4719 goto out_proto; 4720 rc = register_pernet_subsys(&packet_net_ops); 4721 if (rc) 4722 goto out_sock; 4723 rc = register_netdevice_notifier(&packet_netdev_notifier); 4724 if (rc) 4725 goto out_pernet; 4726 4727 return 0; 4728 4729 out_pernet: 4730 unregister_pernet_subsys(&packet_net_ops); 4731 out_sock: 4732 sock_unregister(PF_PACKET); 4733 out_proto: 4734 proto_unregister(&packet_proto); 4735 out: 4736 return rc; 4737 } 4738 4739 module_init(packet_init); 4740 module_exit(packet_exit); 4741 MODULE_LICENSE("GPL"); 4742 MODULE_ALIAS_NETPROTO(PF_PACKET); 4743