xref: /linux/net/packet/af_packet.c (revision 4fd18fc38757217c746aa063ba9e4729814dc737)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		PACKET - implements raw packet sockets.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
12  *
13  * Fixes:
14  *		Alan Cox	:	verify_area() now used correctly
15  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
16  *		Alan Cox	:	tidied skbuff lists.
17  *		Alan Cox	:	Now uses generic datagram routines I
18  *					added. Also fixed the peek/read crash
19  *					from all old Linux datagram code.
20  *		Alan Cox	:	Uses the improved datagram code.
21  *		Alan Cox	:	Added NULL's for socket options.
22  *		Alan Cox	:	Re-commented the code.
23  *		Alan Cox	:	Use new kernel side addressing
24  *		Rob Janssen	:	Correct MTU usage.
25  *		Dave Platt	:	Counter leaks caused by incorrect
26  *					interrupt locking and some slightly
27  *					dubious gcc output. Can you read
28  *					compiler: it said _VOLATILE_
29  *	Richard Kooijman	:	Timestamp fixes.
30  *		Alan Cox	:	New buffers. Use sk->mac.raw.
31  *		Alan Cox	:	sendmsg/recvmsg support.
32  *		Alan Cox	:	Protocol setting support
33  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
34  *	Cyrus Durgin		:	Fixed kerneld for kmod.
35  *	Michal Ostrowski        :       Module initialization cleanup.
36  *         Ulises Alonso        :       Frame number limit removal and
37  *                                      packet_set_ring memory leak.
38  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
39  *					The convention is that longer addresses
40  *					will simply extend the hardware address
41  *					byte arrays at the end of sockaddr_ll
42  *					and packet_mreq.
43  *		Johann Baudy	:	Added TX RING.
44  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
45  *					layer.
46  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
47  */
48 
49 #include <linux/ethtool.h>
50 #include <linux/types.h>
51 #include <linux/mm.h>
52 #include <linux/capability.h>
53 #include <linux/fcntl.h>
54 #include <linux/socket.h>
55 #include <linux/in.h>
56 #include <linux/inet.h>
57 #include <linux/netdevice.h>
58 #include <linux/if_packet.h>
59 #include <linux/wireless.h>
60 #include <linux/kernel.h>
61 #include <linux/kmod.h>
62 #include <linux/slab.h>
63 #include <linux/vmalloc.h>
64 #include <net/net_namespace.h>
65 #include <net/ip.h>
66 #include <net/protocol.h>
67 #include <linux/skbuff.h>
68 #include <net/sock.h>
69 #include <linux/errno.h>
70 #include <linux/timer.h>
71 #include <linux/uaccess.h>
72 #include <asm/ioctls.h>
73 #include <asm/page.h>
74 #include <asm/cacheflush.h>
75 #include <asm/io.h>
76 #include <linux/proc_fs.h>
77 #include <linux/seq_file.h>
78 #include <linux/poll.h>
79 #include <linux/module.h>
80 #include <linux/init.h>
81 #include <linux/mutex.h>
82 #include <linux/if_vlan.h>
83 #include <linux/virtio_net.h>
84 #include <linux/errqueue.h>
85 #include <linux/net_tstamp.h>
86 #include <linux/percpu.h>
87 #ifdef CONFIG_INET
88 #include <net/inet_common.h>
89 #endif
90 #include <linux/bpf.h>
91 #include <net/compat.h>
92 
93 #include "internal.h"
94 
95 /*
96    Assumptions:
97    - If the device has no dev->header_ops->create, there is no LL header
98      visible above the device. In this case, its hard_header_len should be 0.
99      The device may prepend its own header internally. In this case, its
100      needed_headroom should be set to the space needed for it to add its
101      internal header.
102      For example, a WiFi driver pretending to be an Ethernet driver should
103      set its hard_header_len to be the Ethernet header length, and set its
104      needed_headroom to be (the real WiFi header length - the fake Ethernet
105      header length).
106    - packet socket receives packets with pulled ll header,
107      so that SOCK_RAW should push it back.
108 
109 On receive:
110 -----------
111 
112 Incoming, dev_has_header(dev) == true
113    mac_header -> ll header
114    data       -> data
115 
116 Outgoing, dev_has_header(dev) == true
117    mac_header -> ll header
118    data       -> ll header
119 
120 Incoming, dev_has_header(dev) == false
121    mac_header -> data
122      However drivers often make it point to the ll header.
123      This is incorrect because the ll header should be invisible to us.
124    data       -> data
125 
126 Outgoing, dev_has_header(dev) == false
127    mac_header -> data. ll header is invisible to us.
128    data       -> data
129 
130 Resume
131   If dev_has_header(dev) == false we are unable to restore the ll header,
132     because it is invisible to us.
133 
134 
135 On transmit:
136 ------------
137 
138 dev->header_ops != NULL
139    mac_header -> ll header
140    data       -> ll header
141 
142 dev->header_ops == NULL (ll header is invisible to us)
143    mac_header -> data
144    data       -> data
145 
146    We should set network_header on output to the correct position,
147    packet classifier depends on it.
148  */
149 
150 /* Private packet socket structures. */
151 
152 /* identical to struct packet_mreq except it has
153  * a longer address field.
154  */
155 struct packet_mreq_max {
156 	int		mr_ifindex;
157 	unsigned short	mr_type;
158 	unsigned short	mr_alen;
159 	unsigned char	mr_address[MAX_ADDR_LEN];
160 };
161 
162 union tpacket_uhdr {
163 	struct tpacket_hdr  *h1;
164 	struct tpacket2_hdr *h2;
165 	struct tpacket3_hdr *h3;
166 	void *raw;
167 };
168 
169 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
170 		int closing, int tx_ring);
171 
172 #define V3_ALIGNMENT	(8)
173 
174 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
175 
176 #define BLK_PLUS_PRIV(sz_of_priv) \
177 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
178 
179 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
180 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
181 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
182 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
183 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
184 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
185 
186 struct packet_sock;
187 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
188 		       struct packet_type *pt, struct net_device *orig_dev);
189 
190 static void *packet_previous_frame(struct packet_sock *po,
191 		struct packet_ring_buffer *rb,
192 		int status);
193 static void packet_increment_head(struct packet_ring_buffer *buff);
194 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
195 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
196 			struct packet_sock *);
197 static void prb_retire_current_block(struct tpacket_kbdq_core *,
198 		struct packet_sock *, unsigned int status);
199 static int prb_queue_frozen(struct tpacket_kbdq_core *);
200 static void prb_open_block(struct tpacket_kbdq_core *,
201 		struct tpacket_block_desc *);
202 static void prb_retire_rx_blk_timer_expired(struct timer_list *);
203 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
204 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
205 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
206 		struct tpacket3_hdr *);
207 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
208 		struct tpacket3_hdr *);
209 static void packet_flush_mclist(struct sock *sk);
210 static u16 packet_pick_tx_queue(struct sk_buff *skb);
211 
212 struct packet_skb_cb {
213 	union {
214 		struct sockaddr_pkt pkt;
215 		union {
216 			/* Trick: alias skb original length with
217 			 * ll.sll_family and ll.protocol in order
218 			 * to save room.
219 			 */
220 			unsigned int origlen;
221 			struct sockaddr_ll ll;
222 		};
223 	} sa;
224 };
225 
226 #define vio_le() virtio_legacy_is_little_endian()
227 
228 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
229 
230 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
231 #define GET_PBLOCK_DESC(x, bid)	\
232 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
233 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
234 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
235 #define GET_NEXT_PRB_BLK_NUM(x) \
236 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
237 	((x)->kactive_blk_num+1) : 0)
238 
239 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
240 static void __fanout_link(struct sock *sk, struct packet_sock *po);
241 
242 static int packet_direct_xmit(struct sk_buff *skb)
243 {
244 	return dev_direct_xmit(skb, packet_pick_tx_queue(skb));
245 }
246 
247 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
248 {
249 	struct net_device *dev;
250 
251 	rcu_read_lock();
252 	dev = rcu_dereference(po->cached_dev);
253 	if (likely(dev))
254 		dev_hold(dev);
255 	rcu_read_unlock();
256 
257 	return dev;
258 }
259 
260 static void packet_cached_dev_assign(struct packet_sock *po,
261 				     struct net_device *dev)
262 {
263 	rcu_assign_pointer(po->cached_dev, dev);
264 }
265 
266 static void packet_cached_dev_reset(struct packet_sock *po)
267 {
268 	RCU_INIT_POINTER(po->cached_dev, NULL);
269 }
270 
271 static bool packet_use_direct_xmit(const struct packet_sock *po)
272 {
273 	return po->xmit == packet_direct_xmit;
274 }
275 
276 static u16 packet_pick_tx_queue(struct sk_buff *skb)
277 {
278 	struct net_device *dev = skb->dev;
279 	const struct net_device_ops *ops = dev->netdev_ops;
280 	int cpu = raw_smp_processor_id();
281 	u16 queue_index;
282 
283 #ifdef CONFIG_XPS
284 	skb->sender_cpu = cpu + 1;
285 #endif
286 	skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues);
287 	if (ops->ndo_select_queue) {
288 		queue_index = ops->ndo_select_queue(dev, skb, NULL);
289 		queue_index = netdev_cap_txqueue(dev, queue_index);
290 	} else {
291 		queue_index = netdev_pick_tx(dev, skb, NULL);
292 	}
293 
294 	return queue_index;
295 }
296 
297 /* __register_prot_hook must be invoked through register_prot_hook
298  * or from a context in which asynchronous accesses to the packet
299  * socket is not possible (packet_create()).
300  */
301 static void __register_prot_hook(struct sock *sk)
302 {
303 	struct packet_sock *po = pkt_sk(sk);
304 
305 	if (!po->running) {
306 		if (po->fanout)
307 			__fanout_link(sk, po);
308 		else
309 			dev_add_pack(&po->prot_hook);
310 
311 		sock_hold(sk);
312 		po->running = 1;
313 	}
314 }
315 
316 static void register_prot_hook(struct sock *sk)
317 {
318 	lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
319 	__register_prot_hook(sk);
320 }
321 
322 /* If the sync parameter is true, we will temporarily drop
323  * the po->bind_lock and do a synchronize_net to make sure no
324  * asynchronous packet processing paths still refer to the elements
325  * of po->prot_hook.  If the sync parameter is false, it is the
326  * callers responsibility to take care of this.
327  */
328 static void __unregister_prot_hook(struct sock *sk, bool sync)
329 {
330 	struct packet_sock *po = pkt_sk(sk);
331 
332 	lockdep_assert_held_once(&po->bind_lock);
333 
334 	po->running = 0;
335 
336 	if (po->fanout)
337 		__fanout_unlink(sk, po);
338 	else
339 		__dev_remove_pack(&po->prot_hook);
340 
341 	__sock_put(sk);
342 
343 	if (sync) {
344 		spin_unlock(&po->bind_lock);
345 		synchronize_net();
346 		spin_lock(&po->bind_lock);
347 	}
348 }
349 
350 static void unregister_prot_hook(struct sock *sk, bool sync)
351 {
352 	struct packet_sock *po = pkt_sk(sk);
353 
354 	if (po->running)
355 		__unregister_prot_hook(sk, sync);
356 }
357 
358 static inline struct page * __pure pgv_to_page(void *addr)
359 {
360 	if (is_vmalloc_addr(addr))
361 		return vmalloc_to_page(addr);
362 	return virt_to_page(addr);
363 }
364 
365 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
366 {
367 	union tpacket_uhdr h;
368 
369 	h.raw = frame;
370 	switch (po->tp_version) {
371 	case TPACKET_V1:
372 		h.h1->tp_status = status;
373 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
374 		break;
375 	case TPACKET_V2:
376 		h.h2->tp_status = status;
377 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
378 		break;
379 	case TPACKET_V3:
380 		h.h3->tp_status = status;
381 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
382 		break;
383 	default:
384 		WARN(1, "TPACKET version not supported.\n");
385 		BUG();
386 	}
387 
388 	smp_wmb();
389 }
390 
391 static int __packet_get_status(const struct packet_sock *po, void *frame)
392 {
393 	union tpacket_uhdr h;
394 
395 	smp_rmb();
396 
397 	h.raw = frame;
398 	switch (po->tp_version) {
399 	case TPACKET_V1:
400 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
401 		return h.h1->tp_status;
402 	case TPACKET_V2:
403 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
404 		return h.h2->tp_status;
405 	case TPACKET_V3:
406 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
407 		return h.h3->tp_status;
408 	default:
409 		WARN(1, "TPACKET version not supported.\n");
410 		BUG();
411 		return 0;
412 	}
413 }
414 
415 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts,
416 				   unsigned int flags)
417 {
418 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
419 
420 	if (shhwtstamps &&
421 	    (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
422 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts))
423 		return TP_STATUS_TS_RAW_HARDWARE;
424 
425 	if (ktime_to_timespec64_cond(skb->tstamp, ts))
426 		return TP_STATUS_TS_SOFTWARE;
427 
428 	return 0;
429 }
430 
431 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
432 				    struct sk_buff *skb)
433 {
434 	union tpacket_uhdr h;
435 	struct timespec64 ts;
436 	__u32 ts_status;
437 
438 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
439 		return 0;
440 
441 	h.raw = frame;
442 	/*
443 	 * versions 1 through 3 overflow the timestamps in y2106, since they
444 	 * all store the seconds in a 32-bit unsigned integer.
445 	 * If we create a version 4, that should have a 64-bit timestamp,
446 	 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit
447 	 * nanoseconds.
448 	 */
449 	switch (po->tp_version) {
450 	case TPACKET_V1:
451 		h.h1->tp_sec = ts.tv_sec;
452 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
453 		break;
454 	case TPACKET_V2:
455 		h.h2->tp_sec = ts.tv_sec;
456 		h.h2->tp_nsec = ts.tv_nsec;
457 		break;
458 	case TPACKET_V3:
459 		h.h3->tp_sec = ts.tv_sec;
460 		h.h3->tp_nsec = ts.tv_nsec;
461 		break;
462 	default:
463 		WARN(1, "TPACKET version not supported.\n");
464 		BUG();
465 	}
466 
467 	/* one flush is safe, as both fields always lie on the same cacheline */
468 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
469 	smp_wmb();
470 
471 	return ts_status;
472 }
473 
474 static void *packet_lookup_frame(const struct packet_sock *po,
475 				 const struct packet_ring_buffer *rb,
476 				 unsigned int position,
477 				 int status)
478 {
479 	unsigned int pg_vec_pos, frame_offset;
480 	union tpacket_uhdr h;
481 
482 	pg_vec_pos = position / rb->frames_per_block;
483 	frame_offset = position % rb->frames_per_block;
484 
485 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
486 		(frame_offset * rb->frame_size);
487 
488 	if (status != __packet_get_status(po, h.raw))
489 		return NULL;
490 
491 	return h.raw;
492 }
493 
494 static void *packet_current_frame(struct packet_sock *po,
495 		struct packet_ring_buffer *rb,
496 		int status)
497 {
498 	return packet_lookup_frame(po, rb, rb->head, status);
499 }
500 
501 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
502 {
503 	del_timer_sync(&pkc->retire_blk_timer);
504 }
505 
506 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
507 		struct sk_buff_head *rb_queue)
508 {
509 	struct tpacket_kbdq_core *pkc;
510 
511 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
512 
513 	spin_lock_bh(&rb_queue->lock);
514 	pkc->delete_blk_timer = 1;
515 	spin_unlock_bh(&rb_queue->lock);
516 
517 	prb_del_retire_blk_timer(pkc);
518 }
519 
520 static void prb_setup_retire_blk_timer(struct packet_sock *po)
521 {
522 	struct tpacket_kbdq_core *pkc;
523 
524 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
525 	timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
526 		    0);
527 	pkc->retire_blk_timer.expires = jiffies;
528 }
529 
530 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
531 				int blk_size_in_bytes)
532 {
533 	struct net_device *dev;
534 	unsigned int mbits, div;
535 	struct ethtool_link_ksettings ecmd;
536 	int err;
537 
538 	rtnl_lock();
539 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
540 	if (unlikely(!dev)) {
541 		rtnl_unlock();
542 		return DEFAULT_PRB_RETIRE_TOV;
543 	}
544 	err = __ethtool_get_link_ksettings(dev, &ecmd);
545 	rtnl_unlock();
546 	if (err)
547 		return DEFAULT_PRB_RETIRE_TOV;
548 
549 	/* If the link speed is so slow you don't really
550 	 * need to worry about perf anyways
551 	 */
552 	if (ecmd.base.speed < SPEED_1000 ||
553 	    ecmd.base.speed == SPEED_UNKNOWN)
554 		return DEFAULT_PRB_RETIRE_TOV;
555 
556 	div = ecmd.base.speed / 1000;
557 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
558 
559 	if (div)
560 		mbits /= div;
561 
562 	if (div)
563 		return mbits + 1;
564 	return mbits;
565 }
566 
567 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
568 			union tpacket_req_u *req_u)
569 {
570 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
571 }
572 
573 static void init_prb_bdqc(struct packet_sock *po,
574 			struct packet_ring_buffer *rb,
575 			struct pgv *pg_vec,
576 			union tpacket_req_u *req_u)
577 {
578 	struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
579 	struct tpacket_block_desc *pbd;
580 
581 	memset(p1, 0x0, sizeof(*p1));
582 
583 	p1->knxt_seq_num = 1;
584 	p1->pkbdq = pg_vec;
585 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
586 	p1->pkblk_start	= pg_vec[0].buffer;
587 	p1->kblk_size = req_u->req3.tp_block_size;
588 	p1->knum_blocks	= req_u->req3.tp_block_nr;
589 	p1->hdrlen = po->tp_hdrlen;
590 	p1->version = po->tp_version;
591 	p1->last_kactive_blk_num = 0;
592 	po->stats.stats3.tp_freeze_q_cnt = 0;
593 	if (req_u->req3.tp_retire_blk_tov)
594 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
595 	else
596 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
597 						req_u->req3.tp_block_size);
598 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
599 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
600 	rwlock_init(&p1->blk_fill_in_prog_lock);
601 
602 	p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
603 	prb_init_ft_ops(p1, req_u);
604 	prb_setup_retire_blk_timer(po);
605 	prb_open_block(p1, pbd);
606 }
607 
608 /*  Do NOT update the last_blk_num first.
609  *  Assumes sk_buff_head lock is held.
610  */
611 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
612 {
613 	mod_timer(&pkc->retire_blk_timer,
614 			jiffies + pkc->tov_in_jiffies);
615 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
616 }
617 
618 /*
619  * Timer logic:
620  * 1) We refresh the timer only when we open a block.
621  *    By doing this we don't waste cycles refreshing the timer
622  *	  on packet-by-packet basis.
623  *
624  * With a 1MB block-size, on a 1Gbps line, it will take
625  * i) ~8 ms to fill a block + ii) memcpy etc.
626  * In this cut we are not accounting for the memcpy time.
627  *
628  * So, if the user sets the 'tmo' to 10ms then the timer
629  * will never fire while the block is still getting filled
630  * (which is what we want). However, the user could choose
631  * to close a block early and that's fine.
632  *
633  * But when the timer does fire, we check whether or not to refresh it.
634  * Since the tmo granularity is in msecs, it is not too expensive
635  * to refresh the timer, lets say every '8' msecs.
636  * Either the user can set the 'tmo' or we can derive it based on
637  * a) line-speed and b) block-size.
638  * prb_calc_retire_blk_tmo() calculates the tmo.
639  *
640  */
641 static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
642 {
643 	struct packet_sock *po =
644 		from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
645 	struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
646 	unsigned int frozen;
647 	struct tpacket_block_desc *pbd;
648 
649 	spin_lock(&po->sk.sk_receive_queue.lock);
650 
651 	frozen = prb_queue_frozen(pkc);
652 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
653 
654 	if (unlikely(pkc->delete_blk_timer))
655 		goto out;
656 
657 	/* We only need to plug the race when the block is partially filled.
658 	 * tpacket_rcv:
659 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
660 	 *		copy_bits() is in progress ...
661 	 *		timer fires on other cpu:
662 	 *		we can't retire the current block because copy_bits
663 	 *		is in progress.
664 	 *
665 	 */
666 	if (BLOCK_NUM_PKTS(pbd)) {
667 		/* Waiting for skb_copy_bits to finish... */
668 		write_lock(&pkc->blk_fill_in_prog_lock);
669 		write_unlock(&pkc->blk_fill_in_prog_lock);
670 	}
671 
672 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
673 		if (!frozen) {
674 			if (!BLOCK_NUM_PKTS(pbd)) {
675 				/* An empty block. Just refresh the timer. */
676 				goto refresh_timer;
677 			}
678 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
679 			if (!prb_dispatch_next_block(pkc, po))
680 				goto refresh_timer;
681 			else
682 				goto out;
683 		} else {
684 			/* Case 1. Queue was frozen because user-space was
685 			 *	   lagging behind.
686 			 */
687 			if (prb_curr_blk_in_use(pbd)) {
688 				/*
689 				 * Ok, user-space is still behind.
690 				 * So just refresh the timer.
691 				 */
692 				goto refresh_timer;
693 			} else {
694 			       /* Case 2. queue was frozen,user-space caught up,
695 				* now the link went idle && the timer fired.
696 				* We don't have a block to close.So we open this
697 				* block and restart the timer.
698 				* opening a block thaws the queue,restarts timer
699 				* Thawing/timer-refresh is a side effect.
700 				*/
701 				prb_open_block(pkc, pbd);
702 				goto out;
703 			}
704 		}
705 	}
706 
707 refresh_timer:
708 	_prb_refresh_rx_retire_blk_timer(pkc);
709 
710 out:
711 	spin_unlock(&po->sk.sk_receive_queue.lock);
712 }
713 
714 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
715 		struct tpacket_block_desc *pbd1, __u32 status)
716 {
717 	/* Flush everything minus the block header */
718 
719 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
720 	u8 *start, *end;
721 
722 	start = (u8 *)pbd1;
723 
724 	/* Skip the block header(we know header WILL fit in 4K) */
725 	start += PAGE_SIZE;
726 
727 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
728 	for (; start < end; start += PAGE_SIZE)
729 		flush_dcache_page(pgv_to_page(start));
730 
731 	smp_wmb();
732 #endif
733 
734 	/* Now update the block status. */
735 
736 	BLOCK_STATUS(pbd1) = status;
737 
738 	/* Flush the block header */
739 
740 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
741 	start = (u8 *)pbd1;
742 	flush_dcache_page(pgv_to_page(start));
743 
744 	smp_wmb();
745 #endif
746 }
747 
748 /*
749  * Side effect:
750  *
751  * 1) flush the block
752  * 2) Increment active_blk_num
753  *
754  * Note:We DONT refresh the timer on purpose.
755  *	Because almost always the next block will be opened.
756  */
757 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
758 		struct tpacket_block_desc *pbd1,
759 		struct packet_sock *po, unsigned int stat)
760 {
761 	__u32 status = TP_STATUS_USER | stat;
762 
763 	struct tpacket3_hdr *last_pkt;
764 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
765 	struct sock *sk = &po->sk;
766 
767 	if (atomic_read(&po->tp_drops))
768 		status |= TP_STATUS_LOSING;
769 
770 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
771 	last_pkt->tp_next_offset = 0;
772 
773 	/* Get the ts of the last pkt */
774 	if (BLOCK_NUM_PKTS(pbd1)) {
775 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
776 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
777 	} else {
778 		/* Ok, we tmo'd - so get the current time.
779 		 *
780 		 * It shouldn't really happen as we don't close empty
781 		 * blocks. See prb_retire_rx_blk_timer_expired().
782 		 */
783 		struct timespec64 ts;
784 		ktime_get_real_ts64(&ts);
785 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
786 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
787 	}
788 
789 	smp_wmb();
790 
791 	/* Flush the block */
792 	prb_flush_block(pkc1, pbd1, status);
793 
794 	sk->sk_data_ready(sk);
795 
796 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
797 }
798 
799 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
800 {
801 	pkc->reset_pending_on_curr_blk = 0;
802 }
803 
804 /*
805  * Side effect of opening a block:
806  *
807  * 1) prb_queue is thawed.
808  * 2) retire_blk_timer is refreshed.
809  *
810  */
811 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
812 	struct tpacket_block_desc *pbd1)
813 {
814 	struct timespec64 ts;
815 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
816 
817 	smp_rmb();
818 
819 	/* We could have just memset this but we will lose the
820 	 * flexibility of making the priv area sticky
821 	 */
822 
823 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
824 	BLOCK_NUM_PKTS(pbd1) = 0;
825 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
826 
827 	ktime_get_real_ts64(&ts);
828 
829 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
830 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
831 
832 	pkc1->pkblk_start = (char *)pbd1;
833 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
834 
835 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
836 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
837 
838 	pbd1->version = pkc1->version;
839 	pkc1->prev = pkc1->nxt_offset;
840 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
841 
842 	prb_thaw_queue(pkc1);
843 	_prb_refresh_rx_retire_blk_timer(pkc1);
844 
845 	smp_wmb();
846 }
847 
848 /*
849  * Queue freeze logic:
850  * 1) Assume tp_block_nr = 8 blocks.
851  * 2) At time 't0', user opens Rx ring.
852  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
853  * 4) user-space is either sleeping or processing block '0'.
854  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
855  *    it will close block-7,loop around and try to fill block '0'.
856  *    call-flow:
857  *    __packet_lookup_frame_in_block
858  *      prb_retire_current_block()
859  *      prb_dispatch_next_block()
860  *        |->(BLOCK_STATUS == USER) evaluates to true
861  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
862  * 6) Now there are two cases:
863  *    6.1) Link goes idle right after the queue is frozen.
864  *         But remember, the last open_block() refreshed the timer.
865  *         When this timer expires,it will refresh itself so that we can
866  *         re-open block-0 in near future.
867  *    6.2) Link is busy and keeps on receiving packets. This is a simple
868  *         case and __packet_lookup_frame_in_block will check if block-0
869  *         is free and can now be re-used.
870  */
871 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
872 				  struct packet_sock *po)
873 {
874 	pkc->reset_pending_on_curr_blk = 1;
875 	po->stats.stats3.tp_freeze_q_cnt++;
876 }
877 
878 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
879 
880 /*
881  * If the next block is free then we will dispatch it
882  * and return a good offset.
883  * Else, we will freeze the queue.
884  * So, caller must check the return value.
885  */
886 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
887 		struct packet_sock *po)
888 {
889 	struct tpacket_block_desc *pbd;
890 
891 	smp_rmb();
892 
893 	/* 1. Get current block num */
894 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
895 
896 	/* 2. If this block is currently in_use then freeze the queue */
897 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
898 		prb_freeze_queue(pkc, po);
899 		return NULL;
900 	}
901 
902 	/*
903 	 * 3.
904 	 * open this block and return the offset where the first packet
905 	 * needs to get stored.
906 	 */
907 	prb_open_block(pkc, pbd);
908 	return (void *)pkc->nxt_offset;
909 }
910 
911 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
912 		struct packet_sock *po, unsigned int status)
913 {
914 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
915 
916 	/* retire/close the current block */
917 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
918 		/*
919 		 * Plug the case where copy_bits() is in progress on
920 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
921 		 * have space to copy the pkt in the current block and
922 		 * called prb_retire_current_block()
923 		 *
924 		 * We don't need to worry about the TMO case because
925 		 * the timer-handler already handled this case.
926 		 */
927 		if (!(status & TP_STATUS_BLK_TMO)) {
928 			/* Waiting for skb_copy_bits to finish... */
929 			write_lock(&pkc->blk_fill_in_prog_lock);
930 			write_unlock(&pkc->blk_fill_in_prog_lock);
931 		}
932 		prb_close_block(pkc, pbd, po, status);
933 		return;
934 	}
935 }
936 
937 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
938 {
939 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
940 }
941 
942 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
943 {
944 	return pkc->reset_pending_on_curr_blk;
945 }
946 
947 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
948 	__releases(&pkc->blk_fill_in_prog_lock)
949 {
950 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
951 
952 	read_unlock(&pkc->blk_fill_in_prog_lock);
953 }
954 
955 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
956 			struct tpacket3_hdr *ppd)
957 {
958 	ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
959 }
960 
961 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
962 			struct tpacket3_hdr *ppd)
963 {
964 	ppd->hv1.tp_rxhash = 0;
965 }
966 
967 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
968 			struct tpacket3_hdr *ppd)
969 {
970 	if (skb_vlan_tag_present(pkc->skb)) {
971 		ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
972 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
973 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
974 	} else {
975 		ppd->hv1.tp_vlan_tci = 0;
976 		ppd->hv1.tp_vlan_tpid = 0;
977 		ppd->tp_status = TP_STATUS_AVAILABLE;
978 	}
979 }
980 
981 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
982 			struct tpacket3_hdr *ppd)
983 {
984 	ppd->hv1.tp_padding = 0;
985 	prb_fill_vlan_info(pkc, ppd);
986 
987 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
988 		prb_fill_rxhash(pkc, ppd);
989 	else
990 		prb_clear_rxhash(pkc, ppd);
991 }
992 
993 static void prb_fill_curr_block(char *curr,
994 				struct tpacket_kbdq_core *pkc,
995 				struct tpacket_block_desc *pbd,
996 				unsigned int len)
997 	__acquires(&pkc->blk_fill_in_prog_lock)
998 {
999 	struct tpacket3_hdr *ppd;
1000 
1001 	ppd  = (struct tpacket3_hdr *)curr;
1002 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1003 	pkc->prev = curr;
1004 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1005 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1006 	BLOCK_NUM_PKTS(pbd) += 1;
1007 	read_lock(&pkc->blk_fill_in_prog_lock);
1008 	prb_run_all_ft_ops(pkc, ppd);
1009 }
1010 
1011 /* Assumes caller has the sk->rx_queue.lock */
1012 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1013 					    struct sk_buff *skb,
1014 					    unsigned int len
1015 					    )
1016 {
1017 	struct tpacket_kbdq_core *pkc;
1018 	struct tpacket_block_desc *pbd;
1019 	char *curr, *end;
1020 
1021 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1022 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1023 
1024 	/* Queue is frozen when user space is lagging behind */
1025 	if (prb_queue_frozen(pkc)) {
1026 		/*
1027 		 * Check if that last block which caused the queue to freeze,
1028 		 * is still in_use by user-space.
1029 		 */
1030 		if (prb_curr_blk_in_use(pbd)) {
1031 			/* Can't record this packet */
1032 			return NULL;
1033 		} else {
1034 			/*
1035 			 * Ok, the block was released by user-space.
1036 			 * Now let's open that block.
1037 			 * opening a block also thaws the queue.
1038 			 * Thawing is a side effect.
1039 			 */
1040 			prb_open_block(pkc, pbd);
1041 		}
1042 	}
1043 
1044 	smp_mb();
1045 	curr = pkc->nxt_offset;
1046 	pkc->skb = skb;
1047 	end = (char *)pbd + pkc->kblk_size;
1048 
1049 	/* first try the current block */
1050 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1051 		prb_fill_curr_block(curr, pkc, pbd, len);
1052 		return (void *)curr;
1053 	}
1054 
1055 	/* Ok, close the current block */
1056 	prb_retire_current_block(pkc, po, 0);
1057 
1058 	/* Now, try to dispatch the next block */
1059 	curr = (char *)prb_dispatch_next_block(pkc, po);
1060 	if (curr) {
1061 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1062 		prb_fill_curr_block(curr, pkc, pbd, len);
1063 		return (void *)curr;
1064 	}
1065 
1066 	/*
1067 	 * No free blocks are available.user_space hasn't caught up yet.
1068 	 * Queue was just frozen and now this packet will get dropped.
1069 	 */
1070 	return NULL;
1071 }
1072 
1073 static void *packet_current_rx_frame(struct packet_sock *po,
1074 					    struct sk_buff *skb,
1075 					    int status, unsigned int len)
1076 {
1077 	char *curr = NULL;
1078 	switch (po->tp_version) {
1079 	case TPACKET_V1:
1080 	case TPACKET_V2:
1081 		curr = packet_lookup_frame(po, &po->rx_ring,
1082 					po->rx_ring.head, status);
1083 		return curr;
1084 	case TPACKET_V3:
1085 		return __packet_lookup_frame_in_block(po, skb, len);
1086 	default:
1087 		WARN(1, "TPACKET version not supported\n");
1088 		BUG();
1089 		return NULL;
1090 	}
1091 }
1092 
1093 static void *prb_lookup_block(const struct packet_sock *po,
1094 			      const struct packet_ring_buffer *rb,
1095 			      unsigned int idx,
1096 			      int status)
1097 {
1098 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1099 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1100 
1101 	if (status != BLOCK_STATUS(pbd))
1102 		return NULL;
1103 	return pbd;
1104 }
1105 
1106 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1107 {
1108 	unsigned int prev;
1109 	if (rb->prb_bdqc.kactive_blk_num)
1110 		prev = rb->prb_bdqc.kactive_blk_num-1;
1111 	else
1112 		prev = rb->prb_bdqc.knum_blocks-1;
1113 	return prev;
1114 }
1115 
1116 /* Assumes caller has held the rx_queue.lock */
1117 static void *__prb_previous_block(struct packet_sock *po,
1118 					 struct packet_ring_buffer *rb,
1119 					 int status)
1120 {
1121 	unsigned int previous = prb_previous_blk_num(rb);
1122 	return prb_lookup_block(po, rb, previous, status);
1123 }
1124 
1125 static void *packet_previous_rx_frame(struct packet_sock *po,
1126 					     struct packet_ring_buffer *rb,
1127 					     int status)
1128 {
1129 	if (po->tp_version <= TPACKET_V2)
1130 		return packet_previous_frame(po, rb, status);
1131 
1132 	return __prb_previous_block(po, rb, status);
1133 }
1134 
1135 static void packet_increment_rx_head(struct packet_sock *po,
1136 					    struct packet_ring_buffer *rb)
1137 {
1138 	switch (po->tp_version) {
1139 	case TPACKET_V1:
1140 	case TPACKET_V2:
1141 		return packet_increment_head(rb);
1142 	case TPACKET_V3:
1143 	default:
1144 		WARN(1, "TPACKET version not supported.\n");
1145 		BUG();
1146 		return;
1147 	}
1148 }
1149 
1150 static void *packet_previous_frame(struct packet_sock *po,
1151 		struct packet_ring_buffer *rb,
1152 		int status)
1153 {
1154 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1155 	return packet_lookup_frame(po, rb, previous, status);
1156 }
1157 
1158 static void packet_increment_head(struct packet_ring_buffer *buff)
1159 {
1160 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1161 }
1162 
1163 static void packet_inc_pending(struct packet_ring_buffer *rb)
1164 {
1165 	this_cpu_inc(*rb->pending_refcnt);
1166 }
1167 
1168 static void packet_dec_pending(struct packet_ring_buffer *rb)
1169 {
1170 	this_cpu_dec(*rb->pending_refcnt);
1171 }
1172 
1173 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1174 {
1175 	unsigned int refcnt = 0;
1176 	int cpu;
1177 
1178 	/* We don't use pending refcount in rx_ring. */
1179 	if (rb->pending_refcnt == NULL)
1180 		return 0;
1181 
1182 	for_each_possible_cpu(cpu)
1183 		refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1184 
1185 	return refcnt;
1186 }
1187 
1188 static int packet_alloc_pending(struct packet_sock *po)
1189 {
1190 	po->rx_ring.pending_refcnt = NULL;
1191 
1192 	po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1193 	if (unlikely(po->tx_ring.pending_refcnt == NULL))
1194 		return -ENOBUFS;
1195 
1196 	return 0;
1197 }
1198 
1199 static void packet_free_pending(struct packet_sock *po)
1200 {
1201 	free_percpu(po->tx_ring.pending_refcnt);
1202 }
1203 
1204 #define ROOM_POW_OFF	2
1205 #define ROOM_NONE	0x0
1206 #define ROOM_LOW	0x1
1207 #define ROOM_NORMAL	0x2
1208 
1209 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off)
1210 {
1211 	int idx, len;
1212 
1213 	len = READ_ONCE(po->rx_ring.frame_max) + 1;
1214 	idx = READ_ONCE(po->rx_ring.head);
1215 	if (pow_off)
1216 		idx += len >> pow_off;
1217 	if (idx >= len)
1218 		idx -= len;
1219 	return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1220 }
1221 
1222 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off)
1223 {
1224 	int idx, len;
1225 
1226 	len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks);
1227 	idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num);
1228 	if (pow_off)
1229 		idx += len >> pow_off;
1230 	if (idx >= len)
1231 		idx -= len;
1232 	return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1233 }
1234 
1235 static int __packet_rcv_has_room(const struct packet_sock *po,
1236 				 const struct sk_buff *skb)
1237 {
1238 	const struct sock *sk = &po->sk;
1239 	int ret = ROOM_NONE;
1240 
1241 	if (po->prot_hook.func != tpacket_rcv) {
1242 		int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1243 		int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1244 				   - (skb ? skb->truesize : 0);
1245 
1246 		if (avail > (rcvbuf >> ROOM_POW_OFF))
1247 			return ROOM_NORMAL;
1248 		else if (avail > 0)
1249 			return ROOM_LOW;
1250 		else
1251 			return ROOM_NONE;
1252 	}
1253 
1254 	if (po->tp_version == TPACKET_V3) {
1255 		if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1256 			ret = ROOM_NORMAL;
1257 		else if (__tpacket_v3_has_room(po, 0))
1258 			ret = ROOM_LOW;
1259 	} else {
1260 		if (__tpacket_has_room(po, ROOM_POW_OFF))
1261 			ret = ROOM_NORMAL;
1262 		else if (__tpacket_has_room(po, 0))
1263 			ret = ROOM_LOW;
1264 	}
1265 
1266 	return ret;
1267 }
1268 
1269 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1270 {
1271 	int pressure, ret;
1272 
1273 	ret = __packet_rcv_has_room(po, skb);
1274 	pressure = ret != ROOM_NORMAL;
1275 
1276 	if (READ_ONCE(po->pressure) != pressure)
1277 		WRITE_ONCE(po->pressure, pressure);
1278 
1279 	return ret;
1280 }
1281 
1282 static void packet_rcv_try_clear_pressure(struct packet_sock *po)
1283 {
1284 	if (READ_ONCE(po->pressure) &&
1285 	    __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
1286 		WRITE_ONCE(po->pressure,  0);
1287 }
1288 
1289 static void packet_sock_destruct(struct sock *sk)
1290 {
1291 	skb_queue_purge(&sk->sk_error_queue);
1292 
1293 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1294 	WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1295 
1296 	if (!sock_flag(sk, SOCK_DEAD)) {
1297 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1298 		return;
1299 	}
1300 
1301 	sk_refcnt_debug_dec(sk);
1302 }
1303 
1304 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1305 {
1306 	u32 *history = po->rollover->history;
1307 	u32 victim, rxhash;
1308 	int i, count = 0;
1309 
1310 	rxhash = skb_get_hash(skb);
1311 	for (i = 0; i < ROLLOVER_HLEN; i++)
1312 		if (READ_ONCE(history[i]) == rxhash)
1313 			count++;
1314 
1315 	victim = prandom_u32() % ROLLOVER_HLEN;
1316 
1317 	/* Avoid dirtying the cache line if possible */
1318 	if (READ_ONCE(history[victim]) != rxhash)
1319 		WRITE_ONCE(history[victim], rxhash);
1320 
1321 	return count > (ROLLOVER_HLEN >> 1);
1322 }
1323 
1324 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1325 				      struct sk_buff *skb,
1326 				      unsigned int num)
1327 {
1328 	return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1329 }
1330 
1331 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1332 				    struct sk_buff *skb,
1333 				    unsigned int num)
1334 {
1335 	unsigned int val = atomic_inc_return(&f->rr_cur);
1336 
1337 	return val % num;
1338 }
1339 
1340 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1341 				     struct sk_buff *skb,
1342 				     unsigned int num)
1343 {
1344 	return smp_processor_id() % num;
1345 }
1346 
1347 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1348 				     struct sk_buff *skb,
1349 				     unsigned int num)
1350 {
1351 	return prandom_u32_max(num);
1352 }
1353 
1354 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1355 					  struct sk_buff *skb,
1356 					  unsigned int idx, bool try_self,
1357 					  unsigned int num)
1358 {
1359 	struct packet_sock *po, *po_next, *po_skip = NULL;
1360 	unsigned int i, j, room = ROOM_NONE;
1361 
1362 	po = pkt_sk(f->arr[idx]);
1363 
1364 	if (try_self) {
1365 		room = packet_rcv_has_room(po, skb);
1366 		if (room == ROOM_NORMAL ||
1367 		    (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1368 			return idx;
1369 		po_skip = po;
1370 	}
1371 
1372 	i = j = min_t(int, po->rollover->sock, num - 1);
1373 	do {
1374 		po_next = pkt_sk(f->arr[i]);
1375 		if (po_next != po_skip && !READ_ONCE(po_next->pressure) &&
1376 		    packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1377 			if (i != j)
1378 				po->rollover->sock = i;
1379 			atomic_long_inc(&po->rollover->num);
1380 			if (room == ROOM_LOW)
1381 				atomic_long_inc(&po->rollover->num_huge);
1382 			return i;
1383 		}
1384 
1385 		if (++i == num)
1386 			i = 0;
1387 	} while (i != j);
1388 
1389 	atomic_long_inc(&po->rollover->num_failed);
1390 	return idx;
1391 }
1392 
1393 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1394 				    struct sk_buff *skb,
1395 				    unsigned int num)
1396 {
1397 	return skb_get_queue_mapping(skb) % num;
1398 }
1399 
1400 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1401 				     struct sk_buff *skb,
1402 				     unsigned int num)
1403 {
1404 	struct bpf_prog *prog;
1405 	unsigned int ret = 0;
1406 
1407 	rcu_read_lock();
1408 	prog = rcu_dereference(f->bpf_prog);
1409 	if (prog)
1410 		ret = bpf_prog_run_clear_cb(prog, skb) % num;
1411 	rcu_read_unlock();
1412 
1413 	return ret;
1414 }
1415 
1416 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1417 {
1418 	return f->flags & (flag >> 8);
1419 }
1420 
1421 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1422 			     struct packet_type *pt, struct net_device *orig_dev)
1423 {
1424 	struct packet_fanout *f = pt->af_packet_priv;
1425 	unsigned int num = READ_ONCE(f->num_members);
1426 	struct net *net = read_pnet(&f->net);
1427 	struct packet_sock *po;
1428 	unsigned int idx;
1429 
1430 	if (!net_eq(dev_net(dev), net) || !num) {
1431 		kfree_skb(skb);
1432 		return 0;
1433 	}
1434 
1435 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1436 		skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1437 		if (!skb)
1438 			return 0;
1439 	}
1440 	switch (f->type) {
1441 	case PACKET_FANOUT_HASH:
1442 	default:
1443 		idx = fanout_demux_hash(f, skb, num);
1444 		break;
1445 	case PACKET_FANOUT_LB:
1446 		idx = fanout_demux_lb(f, skb, num);
1447 		break;
1448 	case PACKET_FANOUT_CPU:
1449 		idx = fanout_demux_cpu(f, skb, num);
1450 		break;
1451 	case PACKET_FANOUT_RND:
1452 		idx = fanout_demux_rnd(f, skb, num);
1453 		break;
1454 	case PACKET_FANOUT_QM:
1455 		idx = fanout_demux_qm(f, skb, num);
1456 		break;
1457 	case PACKET_FANOUT_ROLLOVER:
1458 		idx = fanout_demux_rollover(f, skb, 0, false, num);
1459 		break;
1460 	case PACKET_FANOUT_CBPF:
1461 	case PACKET_FANOUT_EBPF:
1462 		idx = fanout_demux_bpf(f, skb, num);
1463 		break;
1464 	}
1465 
1466 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1467 		idx = fanout_demux_rollover(f, skb, idx, true, num);
1468 
1469 	po = pkt_sk(f->arr[idx]);
1470 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1471 }
1472 
1473 DEFINE_MUTEX(fanout_mutex);
1474 EXPORT_SYMBOL_GPL(fanout_mutex);
1475 static LIST_HEAD(fanout_list);
1476 static u16 fanout_next_id;
1477 
1478 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1479 {
1480 	struct packet_fanout *f = po->fanout;
1481 
1482 	spin_lock(&f->lock);
1483 	f->arr[f->num_members] = sk;
1484 	smp_wmb();
1485 	f->num_members++;
1486 	if (f->num_members == 1)
1487 		dev_add_pack(&f->prot_hook);
1488 	spin_unlock(&f->lock);
1489 }
1490 
1491 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1492 {
1493 	struct packet_fanout *f = po->fanout;
1494 	int i;
1495 
1496 	spin_lock(&f->lock);
1497 	for (i = 0; i < f->num_members; i++) {
1498 		if (f->arr[i] == sk)
1499 			break;
1500 	}
1501 	BUG_ON(i >= f->num_members);
1502 	f->arr[i] = f->arr[f->num_members - 1];
1503 	f->num_members--;
1504 	if (f->num_members == 0)
1505 		__dev_remove_pack(&f->prot_hook);
1506 	spin_unlock(&f->lock);
1507 }
1508 
1509 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1510 {
1511 	if (sk->sk_family != PF_PACKET)
1512 		return false;
1513 
1514 	return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1515 }
1516 
1517 static void fanout_init_data(struct packet_fanout *f)
1518 {
1519 	switch (f->type) {
1520 	case PACKET_FANOUT_LB:
1521 		atomic_set(&f->rr_cur, 0);
1522 		break;
1523 	case PACKET_FANOUT_CBPF:
1524 	case PACKET_FANOUT_EBPF:
1525 		RCU_INIT_POINTER(f->bpf_prog, NULL);
1526 		break;
1527 	}
1528 }
1529 
1530 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1531 {
1532 	struct bpf_prog *old;
1533 
1534 	spin_lock(&f->lock);
1535 	old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1536 	rcu_assign_pointer(f->bpf_prog, new);
1537 	spin_unlock(&f->lock);
1538 
1539 	if (old) {
1540 		synchronize_net();
1541 		bpf_prog_destroy(old);
1542 	}
1543 }
1544 
1545 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data,
1546 				unsigned int len)
1547 {
1548 	struct bpf_prog *new;
1549 	struct sock_fprog fprog;
1550 	int ret;
1551 
1552 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1553 		return -EPERM;
1554 
1555 	ret = copy_bpf_fprog_from_user(&fprog, data, len);
1556 	if (ret)
1557 		return ret;
1558 
1559 	ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1560 	if (ret)
1561 		return ret;
1562 
1563 	__fanout_set_data_bpf(po->fanout, new);
1564 	return 0;
1565 }
1566 
1567 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data,
1568 				unsigned int len)
1569 {
1570 	struct bpf_prog *new;
1571 	u32 fd;
1572 
1573 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1574 		return -EPERM;
1575 	if (len != sizeof(fd))
1576 		return -EINVAL;
1577 	if (copy_from_sockptr(&fd, data, len))
1578 		return -EFAULT;
1579 
1580 	new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1581 	if (IS_ERR(new))
1582 		return PTR_ERR(new);
1583 
1584 	__fanout_set_data_bpf(po->fanout, new);
1585 	return 0;
1586 }
1587 
1588 static int fanout_set_data(struct packet_sock *po, sockptr_t data,
1589 			   unsigned int len)
1590 {
1591 	switch (po->fanout->type) {
1592 	case PACKET_FANOUT_CBPF:
1593 		return fanout_set_data_cbpf(po, data, len);
1594 	case PACKET_FANOUT_EBPF:
1595 		return fanout_set_data_ebpf(po, data, len);
1596 	default:
1597 		return -EINVAL;
1598 	}
1599 }
1600 
1601 static void fanout_release_data(struct packet_fanout *f)
1602 {
1603 	switch (f->type) {
1604 	case PACKET_FANOUT_CBPF:
1605 	case PACKET_FANOUT_EBPF:
1606 		__fanout_set_data_bpf(f, NULL);
1607 	}
1608 }
1609 
1610 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1611 {
1612 	struct packet_fanout *f;
1613 
1614 	list_for_each_entry(f, &fanout_list, list) {
1615 		if (f->id == candidate_id &&
1616 		    read_pnet(&f->net) == sock_net(sk)) {
1617 			return false;
1618 		}
1619 	}
1620 	return true;
1621 }
1622 
1623 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1624 {
1625 	u16 id = fanout_next_id;
1626 
1627 	do {
1628 		if (__fanout_id_is_free(sk, id)) {
1629 			*new_id = id;
1630 			fanout_next_id = id + 1;
1631 			return true;
1632 		}
1633 
1634 		id++;
1635 	} while (id != fanout_next_id);
1636 
1637 	return false;
1638 }
1639 
1640 static int fanout_add(struct sock *sk, struct fanout_args *args)
1641 {
1642 	struct packet_rollover *rollover = NULL;
1643 	struct packet_sock *po = pkt_sk(sk);
1644 	u16 type_flags = args->type_flags;
1645 	struct packet_fanout *f, *match;
1646 	u8 type = type_flags & 0xff;
1647 	u8 flags = type_flags >> 8;
1648 	u16 id = args->id;
1649 	int err;
1650 
1651 	switch (type) {
1652 	case PACKET_FANOUT_ROLLOVER:
1653 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1654 			return -EINVAL;
1655 	case PACKET_FANOUT_HASH:
1656 	case PACKET_FANOUT_LB:
1657 	case PACKET_FANOUT_CPU:
1658 	case PACKET_FANOUT_RND:
1659 	case PACKET_FANOUT_QM:
1660 	case PACKET_FANOUT_CBPF:
1661 	case PACKET_FANOUT_EBPF:
1662 		break;
1663 	default:
1664 		return -EINVAL;
1665 	}
1666 
1667 	mutex_lock(&fanout_mutex);
1668 
1669 	err = -EALREADY;
1670 	if (po->fanout)
1671 		goto out;
1672 
1673 	if (type == PACKET_FANOUT_ROLLOVER ||
1674 	    (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1675 		err = -ENOMEM;
1676 		rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1677 		if (!rollover)
1678 			goto out;
1679 		atomic_long_set(&rollover->num, 0);
1680 		atomic_long_set(&rollover->num_huge, 0);
1681 		atomic_long_set(&rollover->num_failed, 0);
1682 	}
1683 
1684 	if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1685 		if (id != 0) {
1686 			err = -EINVAL;
1687 			goto out;
1688 		}
1689 		if (!fanout_find_new_id(sk, &id)) {
1690 			err = -ENOMEM;
1691 			goto out;
1692 		}
1693 		/* ephemeral flag for the first socket in the group: drop it */
1694 		flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1695 	}
1696 
1697 	match = NULL;
1698 	list_for_each_entry(f, &fanout_list, list) {
1699 		if (f->id == id &&
1700 		    read_pnet(&f->net) == sock_net(sk)) {
1701 			match = f;
1702 			break;
1703 		}
1704 	}
1705 	err = -EINVAL;
1706 	if (match) {
1707 		if (match->flags != flags)
1708 			goto out;
1709 		if (args->max_num_members &&
1710 		    args->max_num_members != match->max_num_members)
1711 			goto out;
1712 	} else {
1713 		if (args->max_num_members > PACKET_FANOUT_MAX)
1714 			goto out;
1715 		if (!args->max_num_members)
1716 			/* legacy PACKET_FANOUT_MAX */
1717 			args->max_num_members = 256;
1718 		err = -ENOMEM;
1719 		match = kvzalloc(struct_size(match, arr, args->max_num_members),
1720 				 GFP_KERNEL);
1721 		if (!match)
1722 			goto out;
1723 		write_pnet(&match->net, sock_net(sk));
1724 		match->id = id;
1725 		match->type = type;
1726 		match->flags = flags;
1727 		INIT_LIST_HEAD(&match->list);
1728 		spin_lock_init(&match->lock);
1729 		refcount_set(&match->sk_ref, 0);
1730 		fanout_init_data(match);
1731 		match->prot_hook.type = po->prot_hook.type;
1732 		match->prot_hook.dev = po->prot_hook.dev;
1733 		match->prot_hook.func = packet_rcv_fanout;
1734 		match->prot_hook.af_packet_priv = match;
1735 		match->prot_hook.id_match = match_fanout_group;
1736 		match->max_num_members = args->max_num_members;
1737 		list_add(&match->list, &fanout_list);
1738 	}
1739 	err = -EINVAL;
1740 
1741 	spin_lock(&po->bind_lock);
1742 	if (po->running &&
1743 	    match->type == type &&
1744 	    match->prot_hook.type == po->prot_hook.type &&
1745 	    match->prot_hook.dev == po->prot_hook.dev) {
1746 		err = -ENOSPC;
1747 		if (refcount_read(&match->sk_ref) < match->max_num_members) {
1748 			__dev_remove_pack(&po->prot_hook);
1749 			po->fanout = match;
1750 			po->rollover = rollover;
1751 			rollover = NULL;
1752 			refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1753 			__fanout_link(sk, po);
1754 			err = 0;
1755 		}
1756 	}
1757 	spin_unlock(&po->bind_lock);
1758 
1759 	if (err && !refcount_read(&match->sk_ref)) {
1760 		list_del(&match->list);
1761 		kvfree(match);
1762 	}
1763 
1764 out:
1765 	kfree(rollover);
1766 	mutex_unlock(&fanout_mutex);
1767 	return err;
1768 }
1769 
1770 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1771  * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1772  * It is the responsibility of the caller to call fanout_release_data() and
1773  * free the returned packet_fanout (after synchronize_net())
1774  */
1775 static struct packet_fanout *fanout_release(struct sock *sk)
1776 {
1777 	struct packet_sock *po = pkt_sk(sk);
1778 	struct packet_fanout *f;
1779 
1780 	mutex_lock(&fanout_mutex);
1781 	f = po->fanout;
1782 	if (f) {
1783 		po->fanout = NULL;
1784 
1785 		if (refcount_dec_and_test(&f->sk_ref))
1786 			list_del(&f->list);
1787 		else
1788 			f = NULL;
1789 	}
1790 	mutex_unlock(&fanout_mutex);
1791 
1792 	return f;
1793 }
1794 
1795 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1796 					  struct sk_buff *skb)
1797 {
1798 	/* Earlier code assumed this would be a VLAN pkt, double-check
1799 	 * this now that we have the actual packet in hand. We can only
1800 	 * do this check on Ethernet devices.
1801 	 */
1802 	if (unlikely(dev->type != ARPHRD_ETHER))
1803 		return false;
1804 
1805 	skb_reset_mac_header(skb);
1806 	return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1807 }
1808 
1809 static const struct proto_ops packet_ops;
1810 
1811 static const struct proto_ops packet_ops_spkt;
1812 
1813 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1814 			   struct packet_type *pt, struct net_device *orig_dev)
1815 {
1816 	struct sock *sk;
1817 	struct sockaddr_pkt *spkt;
1818 
1819 	/*
1820 	 *	When we registered the protocol we saved the socket in the data
1821 	 *	field for just this event.
1822 	 */
1823 
1824 	sk = pt->af_packet_priv;
1825 
1826 	/*
1827 	 *	Yank back the headers [hope the device set this
1828 	 *	right or kerboom...]
1829 	 *
1830 	 *	Incoming packets have ll header pulled,
1831 	 *	push it back.
1832 	 *
1833 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1834 	 *	so that this procedure is noop.
1835 	 */
1836 
1837 	if (skb->pkt_type == PACKET_LOOPBACK)
1838 		goto out;
1839 
1840 	if (!net_eq(dev_net(dev), sock_net(sk)))
1841 		goto out;
1842 
1843 	skb = skb_share_check(skb, GFP_ATOMIC);
1844 	if (skb == NULL)
1845 		goto oom;
1846 
1847 	/* drop any routing info */
1848 	skb_dst_drop(skb);
1849 
1850 	/* drop conntrack reference */
1851 	nf_reset_ct(skb);
1852 
1853 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1854 
1855 	skb_push(skb, skb->data - skb_mac_header(skb));
1856 
1857 	/*
1858 	 *	The SOCK_PACKET socket receives _all_ frames.
1859 	 */
1860 
1861 	spkt->spkt_family = dev->type;
1862 	strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1863 	spkt->spkt_protocol = skb->protocol;
1864 
1865 	/*
1866 	 *	Charge the memory to the socket. This is done specifically
1867 	 *	to prevent sockets using all the memory up.
1868 	 */
1869 
1870 	if (sock_queue_rcv_skb(sk, skb) == 0)
1871 		return 0;
1872 
1873 out:
1874 	kfree_skb(skb);
1875 oom:
1876 	return 0;
1877 }
1878 
1879 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock)
1880 {
1881 	if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) &&
1882 	    sock->type == SOCK_RAW) {
1883 		skb_reset_mac_header(skb);
1884 		skb->protocol = dev_parse_header_protocol(skb);
1885 	}
1886 
1887 	skb_probe_transport_header(skb);
1888 }
1889 
1890 /*
1891  *	Output a raw packet to a device layer. This bypasses all the other
1892  *	protocol layers and you must therefore supply it with a complete frame
1893  */
1894 
1895 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1896 			       size_t len)
1897 {
1898 	struct sock *sk = sock->sk;
1899 	DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1900 	struct sk_buff *skb = NULL;
1901 	struct net_device *dev;
1902 	struct sockcm_cookie sockc;
1903 	__be16 proto = 0;
1904 	int err;
1905 	int extra_len = 0;
1906 
1907 	/*
1908 	 *	Get and verify the address.
1909 	 */
1910 
1911 	if (saddr) {
1912 		if (msg->msg_namelen < sizeof(struct sockaddr))
1913 			return -EINVAL;
1914 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1915 			proto = saddr->spkt_protocol;
1916 	} else
1917 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1918 
1919 	/*
1920 	 *	Find the device first to size check it
1921 	 */
1922 
1923 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1924 retry:
1925 	rcu_read_lock();
1926 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1927 	err = -ENODEV;
1928 	if (dev == NULL)
1929 		goto out_unlock;
1930 
1931 	err = -ENETDOWN;
1932 	if (!(dev->flags & IFF_UP))
1933 		goto out_unlock;
1934 
1935 	/*
1936 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1937 	 * raw protocol and you must do your own fragmentation at this level.
1938 	 */
1939 
1940 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1941 		if (!netif_supports_nofcs(dev)) {
1942 			err = -EPROTONOSUPPORT;
1943 			goto out_unlock;
1944 		}
1945 		extra_len = 4; /* We're doing our own CRC */
1946 	}
1947 
1948 	err = -EMSGSIZE;
1949 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1950 		goto out_unlock;
1951 
1952 	if (!skb) {
1953 		size_t reserved = LL_RESERVED_SPACE(dev);
1954 		int tlen = dev->needed_tailroom;
1955 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1956 
1957 		rcu_read_unlock();
1958 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1959 		if (skb == NULL)
1960 			return -ENOBUFS;
1961 		/* FIXME: Save some space for broken drivers that write a hard
1962 		 * header at transmission time by themselves. PPP is the notable
1963 		 * one here. This should really be fixed at the driver level.
1964 		 */
1965 		skb_reserve(skb, reserved);
1966 		skb_reset_network_header(skb);
1967 
1968 		/* Try to align data part correctly */
1969 		if (hhlen) {
1970 			skb->data -= hhlen;
1971 			skb->tail -= hhlen;
1972 			if (len < hhlen)
1973 				skb_reset_network_header(skb);
1974 		}
1975 		err = memcpy_from_msg(skb_put(skb, len), msg, len);
1976 		if (err)
1977 			goto out_free;
1978 		goto retry;
1979 	}
1980 
1981 	if (!dev_validate_header(dev, skb->data, len)) {
1982 		err = -EINVAL;
1983 		goto out_unlock;
1984 	}
1985 	if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1986 	    !packet_extra_vlan_len_allowed(dev, skb)) {
1987 		err = -EMSGSIZE;
1988 		goto out_unlock;
1989 	}
1990 
1991 	sockcm_init(&sockc, sk);
1992 	if (msg->msg_controllen) {
1993 		err = sock_cmsg_send(sk, msg, &sockc);
1994 		if (unlikely(err))
1995 			goto out_unlock;
1996 	}
1997 
1998 	skb->protocol = proto;
1999 	skb->dev = dev;
2000 	skb->priority = sk->sk_priority;
2001 	skb->mark = sk->sk_mark;
2002 	skb->tstamp = sockc.transmit_time;
2003 
2004 	skb_setup_tx_timestamp(skb, sockc.tsflags);
2005 
2006 	if (unlikely(extra_len == 4))
2007 		skb->no_fcs = 1;
2008 
2009 	packet_parse_headers(skb, sock);
2010 
2011 	dev_queue_xmit(skb);
2012 	rcu_read_unlock();
2013 	return len;
2014 
2015 out_unlock:
2016 	rcu_read_unlock();
2017 out_free:
2018 	kfree_skb(skb);
2019 	return err;
2020 }
2021 
2022 static unsigned int run_filter(struct sk_buff *skb,
2023 			       const struct sock *sk,
2024 			       unsigned int res)
2025 {
2026 	struct sk_filter *filter;
2027 
2028 	rcu_read_lock();
2029 	filter = rcu_dereference(sk->sk_filter);
2030 	if (filter != NULL)
2031 		res = bpf_prog_run_clear_cb(filter->prog, skb);
2032 	rcu_read_unlock();
2033 
2034 	return res;
2035 }
2036 
2037 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2038 			   size_t *len)
2039 {
2040 	struct virtio_net_hdr vnet_hdr;
2041 
2042 	if (*len < sizeof(vnet_hdr))
2043 		return -EINVAL;
2044 	*len -= sizeof(vnet_hdr);
2045 
2046 	if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0))
2047 		return -EINVAL;
2048 
2049 	return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2050 }
2051 
2052 /*
2053  * This function makes lazy skb cloning in hope that most of packets
2054  * are discarded by BPF.
2055  *
2056  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2057  * and skb->cb are mangled. It works because (and until) packets
2058  * falling here are owned by current CPU. Output packets are cloned
2059  * by dev_queue_xmit_nit(), input packets are processed by net_bh
2060  * sequencially, so that if we return skb to original state on exit,
2061  * we will not harm anyone.
2062  */
2063 
2064 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2065 		      struct packet_type *pt, struct net_device *orig_dev)
2066 {
2067 	struct sock *sk;
2068 	struct sockaddr_ll *sll;
2069 	struct packet_sock *po;
2070 	u8 *skb_head = skb->data;
2071 	int skb_len = skb->len;
2072 	unsigned int snaplen, res;
2073 	bool is_drop_n_account = false;
2074 
2075 	if (skb->pkt_type == PACKET_LOOPBACK)
2076 		goto drop;
2077 
2078 	sk = pt->af_packet_priv;
2079 	po = pkt_sk(sk);
2080 
2081 	if (!net_eq(dev_net(dev), sock_net(sk)))
2082 		goto drop;
2083 
2084 	skb->dev = dev;
2085 
2086 	if (dev_has_header(dev)) {
2087 		/* The device has an explicit notion of ll header,
2088 		 * exported to higher levels.
2089 		 *
2090 		 * Otherwise, the device hides details of its frame
2091 		 * structure, so that corresponding packet head is
2092 		 * never delivered to user.
2093 		 */
2094 		if (sk->sk_type != SOCK_DGRAM)
2095 			skb_push(skb, skb->data - skb_mac_header(skb));
2096 		else if (skb->pkt_type == PACKET_OUTGOING) {
2097 			/* Special case: outgoing packets have ll header at head */
2098 			skb_pull(skb, skb_network_offset(skb));
2099 		}
2100 	}
2101 
2102 	snaplen = skb->len;
2103 
2104 	res = run_filter(skb, sk, snaplen);
2105 	if (!res)
2106 		goto drop_n_restore;
2107 	if (snaplen > res)
2108 		snaplen = res;
2109 
2110 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2111 		goto drop_n_acct;
2112 
2113 	if (skb_shared(skb)) {
2114 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2115 		if (nskb == NULL)
2116 			goto drop_n_acct;
2117 
2118 		if (skb_head != skb->data) {
2119 			skb->data = skb_head;
2120 			skb->len = skb_len;
2121 		}
2122 		consume_skb(skb);
2123 		skb = nskb;
2124 	}
2125 
2126 	sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2127 
2128 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2129 	sll->sll_hatype = dev->type;
2130 	sll->sll_pkttype = skb->pkt_type;
2131 	if (unlikely(po->origdev))
2132 		sll->sll_ifindex = orig_dev->ifindex;
2133 	else
2134 		sll->sll_ifindex = dev->ifindex;
2135 
2136 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2137 
2138 	/* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2139 	 * Use their space for storing the original skb length.
2140 	 */
2141 	PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2142 
2143 	if (pskb_trim(skb, snaplen))
2144 		goto drop_n_acct;
2145 
2146 	skb_set_owner_r(skb, sk);
2147 	skb->dev = NULL;
2148 	skb_dst_drop(skb);
2149 
2150 	/* drop conntrack reference */
2151 	nf_reset_ct(skb);
2152 
2153 	spin_lock(&sk->sk_receive_queue.lock);
2154 	po->stats.stats1.tp_packets++;
2155 	sock_skb_set_dropcount(sk, skb);
2156 	__skb_queue_tail(&sk->sk_receive_queue, skb);
2157 	spin_unlock(&sk->sk_receive_queue.lock);
2158 	sk->sk_data_ready(sk);
2159 	return 0;
2160 
2161 drop_n_acct:
2162 	is_drop_n_account = true;
2163 	atomic_inc(&po->tp_drops);
2164 	atomic_inc(&sk->sk_drops);
2165 
2166 drop_n_restore:
2167 	if (skb_head != skb->data && skb_shared(skb)) {
2168 		skb->data = skb_head;
2169 		skb->len = skb_len;
2170 	}
2171 drop:
2172 	if (!is_drop_n_account)
2173 		consume_skb(skb);
2174 	else
2175 		kfree_skb(skb);
2176 	return 0;
2177 }
2178 
2179 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2180 		       struct packet_type *pt, struct net_device *orig_dev)
2181 {
2182 	struct sock *sk;
2183 	struct packet_sock *po;
2184 	struct sockaddr_ll *sll;
2185 	union tpacket_uhdr h;
2186 	u8 *skb_head = skb->data;
2187 	int skb_len = skb->len;
2188 	unsigned int snaplen, res;
2189 	unsigned long status = TP_STATUS_USER;
2190 	unsigned short macoff, hdrlen;
2191 	unsigned int netoff;
2192 	struct sk_buff *copy_skb = NULL;
2193 	struct timespec64 ts;
2194 	__u32 ts_status;
2195 	bool is_drop_n_account = false;
2196 	unsigned int slot_id = 0;
2197 	bool do_vnet = false;
2198 
2199 	/* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2200 	 * We may add members to them until current aligned size without forcing
2201 	 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2202 	 */
2203 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2204 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2205 
2206 	if (skb->pkt_type == PACKET_LOOPBACK)
2207 		goto drop;
2208 
2209 	sk = pt->af_packet_priv;
2210 	po = pkt_sk(sk);
2211 
2212 	if (!net_eq(dev_net(dev), sock_net(sk)))
2213 		goto drop;
2214 
2215 	if (dev_has_header(dev)) {
2216 		if (sk->sk_type != SOCK_DGRAM)
2217 			skb_push(skb, skb->data - skb_mac_header(skb));
2218 		else if (skb->pkt_type == PACKET_OUTGOING) {
2219 			/* Special case: outgoing packets have ll header at head */
2220 			skb_pull(skb, skb_network_offset(skb));
2221 		}
2222 	}
2223 
2224 	snaplen = skb->len;
2225 
2226 	res = run_filter(skb, sk, snaplen);
2227 	if (!res)
2228 		goto drop_n_restore;
2229 
2230 	/* If we are flooded, just give up */
2231 	if (__packet_rcv_has_room(po, skb) == ROOM_NONE) {
2232 		atomic_inc(&po->tp_drops);
2233 		goto drop_n_restore;
2234 	}
2235 
2236 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2237 		status |= TP_STATUS_CSUMNOTREADY;
2238 	else if (skb->pkt_type != PACKET_OUTGOING &&
2239 		 (skb->ip_summed == CHECKSUM_COMPLETE ||
2240 		  skb_csum_unnecessary(skb)))
2241 		status |= TP_STATUS_CSUM_VALID;
2242 
2243 	if (snaplen > res)
2244 		snaplen = res;
2245 
2246 	if (sk->sk_type == SOCK_DGRAM) {
2247 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2248 				  po->tp_reserve;
2249 	} else {
2250 		unsigned int maclen = skb_network_offset(skb);
2251 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
2252 				       (maclen < 16 ? 16 : maclen)) +
2253 				       po->tp_reserve;
2254 		if (po->has_vnet_hdr) {
2255 			netoff += sizeof(struct virtio_net_hdr);
2256 			do_vnet = true;
2257 		}
2258 		macoff = netoff - maclen;
2259 	}
2260 	if (netoff > USHRT_MAX) {
2261 		atomic_inc(&po->tp_drops);
2262 		goto drop_n_restore;
2263 	}
2264 	if (po->tp_version <= TPACKET_V2) {
2265 		if (macoff + snaplen > po->rx_ring.frame_size) {
2266 			if (po->copy_thresh &&
2267 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2268 				if (skb_shared(skb)) {
2269 					copy_skb = skb_clone(skb, GFP_ATOMIC);
2270 				} else {
2271 					copy_skb = skb_get(skb);
2272 					skb_head = skb->data;
2273 				}
2274 				if (copy_skb)
2275 					skb_set_owner_r(copy_skb, sk);
2276 			}
2277 			snaplen = po->rx_ring.frame_size - macoff;
2278 			if ((int)snaplen < 0) {
2279 				snaplen = 0;
2280 				do_vnet = false;
2281 			}
2282 		}
2283 	} else if (unlikely(macoff + snaplen >
2284 			    GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2285 		u32 nval;
2286 
2287 		nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2288 		pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2289 			    snaplen, nval, macoff);
2290 		snaplen = nval;
2291 		if (unlikely((int)snaplen < 0)) {
2292 			snaplen = 0;
2293 			macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2294 			do_vnet = false;
2295 		}
2296 	}
2297 	spin_lock(&sk->sk_receive_queue.lock);
2298 	h.raw = packet_current_rx_frame(po, skb,
2299 					TP_STATUS_KERNEL, (macoff+snaplen));
2300 	if (!h.raw)
2301 		goto drop_n_account;
2302 
2303 	if (po->tp_version <= TPACKET_V2) {
2304 		slot_id = po->rx_ring.head;
2305 		if (test_bit(slot_id, po->rx_ring.rx_owner_map))
2306 			goto drop_n_account;
2307 		__set_bit(slot_id, po->rx_ring.rx_owner_map);
2308 	}
2309 
2310 	if (do_vnet &&
2311 	    virtio_net_hdr_from_skb(skb, h.raw + macoff -
2312 				    sizeof(struct virtio_net_hdr),
2313 				    vio_le(), true, 0)) {
2314 		if (po->tp_version == TPACKET_V3)
2315 			prb_clear_blk_fill_status(&po->rx_ring);
2316 		goto drop_n_account;
2317 	}
2318 
2319 	if (po->tp_version <= TPACKET_V2) {
2320 		packet_increment_rx_head(po, &po->rx_ring);
2321 	/*
2322 	 * LOSING will be reported till you read the stats,
2323 	 * because it's COR - Clear On Read.
2324 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2325 	 * at packet level.
2326 	 */
2327 		if (atomic_read(&po->tp_drops))
2328 			status |= TP_STATUS_LOSING;
2329 	}
2330 
2331 	po->stats.stats1.tp_packets++;
2332 	if (copy_skb) {
2333 		status |= TP_STATUS_COPY;
2334 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2335 	}
2336 	spin_unlock(&sk->sk_receive_queue.lock);
2337 
2338 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2339 
2340 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2341 		ktime_get_real_ts64(&ts);
2342 
2343 	status |= ts_status;
2344 
2345 	switch (po->tp_version) {
2346 	case TPACKET_V1:
2347 		h.h1->tp_len = skb->len;
2348 		h.h1->tp_snaplen = snaplen;
2349 		h.h1->tp_mac = macoff;
2350 		h.h1->tp_net = netoff;
2351 		h.h1->tp_sec = ts.tv_sec;
2352 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2353 		hdrlen = sizeof(*h.h1);
2354 		break;
2355 	case TPACKET_V2:
2356 		h.h2->tp_len = skb->len;
2357 		h.h2->tp_snaplen = snaplen;
2358 		h.h2->tp_mac = macoff;
2359 		h.h2->tp_net = netoff;
2360 		h.h2->tp_sec = ts.tv_sec;
2361 		h.h2->tp_nsec = ts.tv_nsec;
2362 		if (skb_vlan_tag_present(skb)) {
2363 			h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2364 			h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2365 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2366 		} else {
2367 			h.h2->tp_vlan_tci = 0;
2368 			h.h2->tp_vlan_tpid = 0;
2369 		}
2370 		memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2371 		hdrlen = sizeof(*h.h2);
2372 		break;
2373 	case TPACKET_V3:
2374 		/* tp_nxt_offset,vlan are already populated above.
2375 		 * So DONT clear those fields here
2376 		 */
2377 		h.h3->tp_status |= status;
2378 		h.h3->tp_len = skb->len;
2379 		h.h3->tp_snaplen = snaplen;
2380 		h.h3->tp_mac = macoff;
2381 		h.h3->tp_net = netoff;
2382 		h.h3->tp_sec  = ts.tv_sec;
2383 		h.h3->tp_nsec = ts.tv_nsec;
2384 		memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2385 		hdrlen = sizeof(*h.h3);
2386 		break;
2387 	default:
2388 		BUG();
2389 	}
2390 
2391 	sll = h.raw + TPACKET_ALIGN(hdrlen);
2392 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2393 	sll->sll_family = AF_PACKET;
2394 	sll->sll_hatype = dev->type;
2395 	sll->sll_protocol = skb->protocol;
2396 	sll->sll_pkttype = skb->pkt_type;
2397 	if (unlikely(po->origdev))
2398 		sll->sll_ifindex = orig_dev->ifindex;
2399 	else
2400 		sll->sll_ifindex = dev->ifindex;
2401 
2402 	smp_mb();
2403 
2404 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2405 	if (po->tp_version <= TPACKET_V2) {
2406 		u8 *start, *end;
2407 
2408 		end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2409 					macoff + snaplen);
2410 
2411 		for (start = h.raw; start < end; start += PAGE_SIZE)
2412 			flush_dcache_page(pgv_to_page(start));
2413 	}
2414 	smp_wmb();
2415 #endif
2416 
2417 	if (po->tp_version <= TPACKET_V2) {
2418 		spin_lock(&sk->sk_receive_queue.lock);
2419 		__packet_set_status(po, h.raw, status);
2420 		__clear_bit(slot_id, po->rx_ring.rx_owner_map);
2421 		spin_unlock(&sk->sk_receive_queue.lock);
2422 		sk->sk_data_ready(sk);
2423 	} else if (po->tp_version == TPACKET_V3) {
2424 		prb_clear_blk_fill_status(&po->rx_ring);
2425 	}
2426 
2427 drop_n_restore:
2428 	if (skb_head != skb->data && skb_shared(skb)) {
2429 		skb->data = skb_head;
2430 		skb->len = skb_len;
2431 	}
2432 drop:
2433 	if (!is_drop_n_account)
2434 		consume_skb(skb);
2435 	else
2436 		kfree_skb(skb);
2437 	return 0;
2438 
2439 drop_n_account:
2440 	spin_unlock(&sk->sk_receive_queue.lock);
2441 	atomic_inc(&po->tp_drops);
2442 	is_drop_n_account = true;
2443 
2444 	sk->sk_data_ready(sk);
2445 	kfree_skb(copy_skb);
2446 	goto drop_n_restore;
2447 }
2448 
2449 static void tpacket_destruct_skb(struct sk_buff *skb)
2450 {
2451 	struct packet_sock *po = pkt_sk(skb->sk);
2452 
2453 	if (likely(po->tx_ring.pg_vec)) {
2454 		void *ph;
2455 		__u32 ts;
2456 
2457 		ph = skb_zcopy_get_nouarg(skb);
2458 		packet_dec_pending(&po->tx_ring);
2459 
2460 		ts = __packet_set_timestamp(po, ph, skb);
2461 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2462 
2463 		if (!packet_read_pending(&po->tx_ring))
2464 			complete(&po->skb_completion);
2465 	}
2466 
2467 	sock_wfree(skb);
2468 }
2469 
2470 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2471 {
2472 	if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2473 	    (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2474 	     __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2475 	      __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2476 		vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2477 			 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2478 			__virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2479 
2480 	if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2481 		return -EINVAL;
2482 
2483 	return 0;
2484 }
2485 
2486 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2487 				 struct virtio_net_hdr *vnet_hdr)
2488 {
2489 	if (*len < sizeof(*vnet_hdr))
2490 		return -EINVAL;
2491 	*len -= sizeof(*vnet_hdr);
2492 
2493 	if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2494 		return -EFAULT;
2495 
2496 	return __packet_snd_vnet_parse(vnet_hdr, *len);
2497 }
2498 
2499 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2500 		void *frame, struct net_device *dev, void *data, int tp_len,
2501 		__be16 proto, unsigned char *addr, int hlen, int copylen,
2502 		const struct sockcm_cookie *sockc)
2503 {
2504 	union tpacket_uhdr ph;
2505 	int to_write, offset, len, nr_frags, len_max;
2506 	struct socket *sock = po->sk.sk_socket;
2507 	struct page *page;
2508 	int err;
2509 
2510 	ph.raw = frame;
2511 
2512 	skb->protocol = proto;
2513 	skb->dev = dev;
2514 	skb->priority = po->sk.sk_priority;
2515 	skb->mark = po->sk.sk_mark;
2516 	skb->tstamp = sockc->transmit_time;
2517 	skb_setup_tx_timestamp(skb, sockc->tsflags);
2518 	skb_zcopy_set_nouarg(skb, ph.raw);
2519 
2520 	skb_reserve(skb, hlen);
2521 	skb_reset_network_header(skb);
2522 
2523 	to_write = tp_len;
2524 
2525 	if (sock->type == SOCK_DGRAM) {
2526 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2527 				NULL, tp_len);
2528 		if (unlikely(err < 0))
2529 			return -EINVAL;
2530 	} else if (copylen) {
2531 		int hdrlen = min_t(int, copylen, tp_len);
2532 
2533 		skb_push(skb, dev->hard_header_len);
2534 		skb_put(skb, copylen - dev->hard_header_len);
2535 		err = skb_store_bits(skb, 0, data, hdrlen);
2536 		if (unlikely(err))
2537 			return err;
2538 		if (!dev_validate_header(dev, skb->data, hdrlen))
2539 			return -EINVAL;
2540 
2541 		data += hdrlen;
2542 		to_write -= hdrlen;
2543 	}
2544 
2545 	offset = offset_in_page(data);
2546 	len_max = PAGE_SIZE - offset;
2547 	len = ((to_write > len_max) ? len_max : to_write);
2548 
2549 	skb->data_len = to_write;
2550 	skb->len += to_write;
2551 	skb->truesize += to_write;
2552 	refcount_add(to_write, &po->sk.sk_wmem_alloc);
2553 
2554 	while (likely(to_write)) {
2555 		nr_frags = skb_shinfo(skb)->nr_frags;
2556 
2557 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2558 			pr_err("Packet exceed the number of skb frags(%lu)\n",
2559 			       MAX_SKB_FRAGS);
2560 			return -EFAULT;
2561 		}
2562 
2563 		page = pgv_to_page(data);
2564 		data += len;
2565 		flush_dcache_page(page);
2566 		get_page(page);
2567 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2568 		to_write -= len;
2569 		offset = 0;
2570 		len_max = PAGE_SIZE;
2571 		len = ((to_write > len_max) ? len_max : to_write);
2572 	}
2573 
2574 	packet_parse_headers(skb, sock);
2575 
2576 	return tp_len;
2577 }
2578 
2579 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2580 				int size_max, void **data)
2581 {
2582 	union tpacket_uhdr ph;
2583 	int tp_len, off;
2584 
2585 	ph.raw = frame;
2586 
2587 	switch (po->tp_version) {
2588 	case TPACKET_V3:
2589 		if (ph.h3->tp_next_offset != 0) {
2590 			pr_warn_once("variable sized slot not supported");
2591 			return -EINVAL;
2592 		}
2593 		tp_len = ph.h3->tp_len;
2594 		break;
2595 	case TPACKET_V2:
2596 		tp_len = ph.h2->tp_len;
2597 		break;
2598 	default:
2599 		tp_len = ph.h1->tp_len;
2600 		break;
2601 	}
2602 	if (unlikely(tp_len > size_max)) {
2603 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2604 		return -EMSGSIZE;
2605 	}
2606 
2607 	if (unlikely(po->tp_tx_has_off)) {
2608 		int off_min, off_max;
2609 
2610 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2611 		off_max = po->tx_ring.frame_size - tp_len;
2612 		if (po->sk.sk_type == SOCK_DGRAM) {
2613 			switch (po->tp_version) {
2614 			case TPACKET_V3:
2615 				off = ph.h3->tp_net;
2616 				break;
2617 			case TPACKET_V2:
2618 				off = ph.h2->tp_net;
2619 				break;
2620 			default:
2621 				off = ph.h1->tp_net;
2622 				break;
2623 			}
2624 		} else {
2625 			switch (po->tp_version) {
2626 			case TPACKET_V3:
2627 				off = ph.h3->tp_mac;
2628 				break;
2629 			case TPACKET_V2:
2630 				off = ph.h2->tp_mac;
2631 				break;
2632 			default:
2633 				off = ph.h1->tp_mac;
2634 				break;
2635 			}
2636 		}
2637 		if (unlikely((off < off_min) || (off_max < off)))
2638 			return -EINVAL;
2639 	} else {
2640 		off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2641 	}
2642 
2643 	*data = frame + off;
2644 	return tp_len;
2645 }
2646 
2647 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2648 {
2649 	struct sk_buff *skb = NULL;
2650 	struct net_device *dev;
2651 	struct virtio_net_hdr *vnet_hdr = NULL;
2652 	struct sockcm_cookie sockc;
2653 	__be16 proto;
2654 	int err, reserve = 0;
2655 	void *ph;
2656 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2657 	bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2658 	unsigned char *addr = NULL;
2659 	int tp_len, size_max;
2660 	void *data;
2661 	int len_sum = 0;
2662 	int status = TP_STATUS_AVAILABLE;
2663 	int hlen, tlen, copylen = 0;
2664 	long timeo = 0;
2665 
2666 	mutex_lock(&po->pg_vec_lock);
2667 
2668 	/* packet_sendmsg() check on tx_ring.pg_vec was lockless,
2669 	 * we need to confirm it under protection of pg_vec_lock.
2670 	 */
2671 	if (unlikely(!po->tx_ring.pg_vec)) {
2672 		err = -EBUSY;
2673 		goto out;
2674 	}
2675 	if (likely(saddr == NULL)) {
2676 		dev	= packet_cached_dev_get(po);
2677 		proto	= po->num;
2678 	} else {
2679 		err = -EINVAL;
2680 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2681 			goto out;
2682 		if (msg->msg_namelen < (saddr->sll_halen
2683 					+ offsetof(struct sockaddr_ll,
2684 						sll_addr)))
2685 			goto out;
2686 		proto	= saddr->sll_protocol;
2687 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2688 		if (po->sk.sk_socket->type == SOCK_DGRAM) {
2689 			if (dev && msg->msg_namelen < dev->addr_len +
2690 				   offsetof(struct sockaddr_ll, sll_addr))
2691 				goto out_put;
2692 			addr = saddr->sll_addr;
2693 		}
2694 	}
2695 
2696 	err = -ENXIO;
2697 	if (unlikely(dev == NULL))
2698 		goto out;
2699 	err = -ENETDOWN;
2700 	if (unlikely(!(dev->flags & IFF_UP)))
2701 		goto out_put;
2702 
2703 	sockcm_init(&sockc, &po->sk);
2704 	if (msg->msg_controllen) {
2705 		err = sock_cmsg_send(&po->sk, msg, &sockc);
2706 		if (unlikely(err))
2707 			goto out_put;
2708 	}
2709 
2710 	if (po->sk.sk_socket->type == SOCK_RAW)
2711 		reserve = dev->hard_header_len;
2712 	size_max = po->tx_ring.frame_size
2713 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2714 
2715 	if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2716 		size_max = dev->mtu + reserve + VLAN_HLEN;
2717 
2718 	reinit_completion(&po->skb_completion);
2719 
2720 	do {
2721 		ph = packet_current_frame(po, &po->tx_ring,
2722 					  TP_STATUS_SEND_REQUEST);
2723 		if (unlikely(ph == NULL)) {
2724 			if (need_wait && skb) {
2725 				timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT);
2726 				timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo);
2727 				if (timeo <= 0) {
2728 					err = !timeo ? -ETIMEDOUT : -ERESTARTSYS;
2729 					goto out_put;
2730 				}
2731 			}
2732 			/* check for additional frames */
2733 			continue;
2734 		}
2735 
2736 		skb = NULL;
2737 		tp_len = tpacket_parse_header(po, ph, size_max, &data);
2738 		if (tp_len < 0)
2739 			goto tpacket_error;
2740 
2741 		status = TP_STATUS_SEND_REQUEST;
2742 		hlen = LL_RESERVED_SPACE(dev);
2743 		tlen = dev->needed_tailroom;
2744 		if (po->has_vnet_hdr) {
2745 			vnet_hdr = data;
2746 			data += sizeof(*vnet_hdr);
2747 			tp_len -= sizeof(*vnet_hdr);
2748 			if (tp_len < 0 ||
2749 			    __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2750 				tp_len = -EINVAL;
2751 				goto tpacket_error;
2752 			}
2753 			copylen = __virtio16_to_cpu(vio_le(),
2754 						    vnet_hdr->hdr_len);
2755 		}
2756 		copylen = max_t(int, copylen, dev->hard_header_len);
2757 		skb = sock_alloc_send_skb(&po->sk,
2758 				hlen + tlen + sizeof(struct sockaddr_ll) +
2759 				(copylen - dev->hard_header_len),
2760 				!need_wait, &err);
2761 
2762 		if (unlikely(skb == NULL)) {
2763 			/* we assume the socket was initially writeable ... */
2764 			if (likely(len_sum > 0))
2765 				err = len_sum;
2766 			goto out_status;
2767 		}
2768 		tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2769 					  addr, hlen, copylen, &sockc);
2770 		if (likely(tp_len >= 0) &&
2771 		    tp_len > dev->mtu + reserve &&
2772 		    !po->has_vnet_hdr &&
2773 		    !packet_extra_vlan_len_allowed(dev, skb))
2774 			tp_len = -EMSGSIZE;
2775 
2776 		if (unlikely(tp_len < 0)) {
2777 tpacket_error:
2778 			if (po->tp_loss) {
2779 				__packet_set_status(po, ph,
2780 						TP_STATUS_AVAILABLE);
2781 				packet_increment_head(&po->tx_ring);
2782 				kfree_skb(skb);
2783 				continue;
2784 			} else {
2785 				status = TP_STATUS_WRONG_FORMAT;
2786 				err = tp_len;
2787 				goto out_status;
2788 			}
2789 		}
2790 
2791 		if (po->has_vnet_hdr) {
2792 			if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) {
2793 				tp_len = -EINVAL;
2794 				goto tpacket_error;
2795 			}
2796 			virtio_net_hdr_set_proto(skb, vnet_hdr);
2797 		}
2798 
2799 		skb->destructor = tpacket_destruct_skb;
2800 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2801 		packet_inc_pending(&po->tx_ring);
2802 
2803 		status = TP_STATUS_SEND_REQUEST;
2804 		err = po->xmit(skb);
2805 		if (unlikely(err > 0)) {
2806 			err = net_xmit_errno(err);
2807 			if (err && __packet_get_status(po, ph) ==
2808 				   TP_STATUS_AVAILABLE) {
2809 				/* skb was destructed already */
2810 				skb = NULL;
2811 				goto out_status;
2812 			}
2813 			/*
2814 			 * skb was dropped but not destructed yet;
2815 			 * let's treat it like congestion or err < 0
2816 			 */
2817 			err = 0;
2818 		}
2819 		packet_increment_head(&po->tx_ring);
2820 		len_sum += tp_len;
2821 	} while (likely((ph != NULL) ||
2822 		/* Note: packet_read_pending() might be slow if we have
2823 		 * to call it as it's per_cpu variable, but in fast-path
2824 		 * we already short-circuit the loop with the first
2825 		 * condition, and luckily don't have to go that path
2826 		 * anyway.
2827 		 */
2828 		 (need_wait && packet_read_pending(&po->tx_ring))));
2829 
2830 	err = len_sum;
2831 	goto out_put;
2832 
2833 out_status:
2834 	__packet_set_status(po, ph, status);
2835 	kfree_skb(skb);
2836 out_put:
2837 	dev_put(dev);
2838 out:
2839 	mutex_unlock(&po->pg_vec_lock);
2840 	return err;
2841 }
2842 
2843 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2844 				        size_t reserve, size_t len,
2845 				        size_t linear, int noblock,
2846 				        int *err)
2847 {
2848 	struct sk_buff *skb;
2849 
2850 	/* Under a page?  Don't bother with paged skb. */
2851 	if (prepad + len < PAGE_SIZE || !linear)
2852 		linear = len;
2853 
2854 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2855 				   err, 0);
2856 	if (!skb)
2857 		return NULL;
2858 
2859 	skb_reserve(skb, reserve);
2860 	skb_put(skb, linear);
2861 	skb->data_len = len - linear;
2862 	skb->len += len - linear;
2863 
2864 	return skb;
2865 }
2866 
2867 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2868 {
2869 	struct sock *sk = sock->sk;
2870 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2871 	struct sk_buff *skb;
2872 	struct net_device *dev;
2873 	__be16 proto;
2874 	unsigned char *addr = NULL;
2875 	int err, reserve = 0;
2876 	struct sockcm_cookie sockc;
2877 	struct virtio_net_hdr vnet_hdr = { 0 };
2878 	int offset = 0;
2879 	struct packet_sock *po = pkt_sk(sk);
2880 	bool has_vnet_hdr = false;
2881 	int hlen, tlen, linear;
2882 	int extra_len = 0;
2883 
2884 	/*
2885 	 *	Get and verify the address.
2886 	 */
2887 
2888 	if (likely(saddr == NULL)) {
2889 		dev	= packet_cached_dev_get(po);
2890 		proto	= po->num;
2891 	} else {
2892 		err = -EINVAL;
2893 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2894 			goto out;
2895 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2896 			goto out;
2897 		proto	= saddr->sll_protocol;
2898 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2899 		if (sock->type == SOCK_DGRAM) {
2900 			if (dev && msg->msg_namelen < dev->addr_len +
2901 				   offsetof(struct sockaddr_ll, sll_addr))
2902 				goto out_unlock;
2903 			addr = saddr->sll_addr;
2904 		}
2905 	}
2906 
2907 	err = -ENXIO;
2908 	if (unlikely(dev == NULL))
2909 		goto out_unlock;
2910 	err = -ENETDOWN;
2911 	if (unlikely(!(dev->flags & IFF_UP)))
2912 		goto out_unlock;
2913 
2914 	sockcm_init(&sockc, sk);
2915 	sockc.mark = sk->sk_mark;
2916 	if (msg->msg_controllen) {
2917 		err = sock_cmsg_send(sk, msg, &sockc);
2918 		if (unlikely(err))
2919 			goto out_unlock;
2920 	}
2921 
2922 	if (sock->type == SOCK_RAW)
2923 		reserve = dev->hard_header_len;
2924 	if (po->has_vnet_hdr) {
2925 		err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2926 		if (err)
2927 			goto out_unlock;
2928 		has_vnet_hdr = true;
2929 	}
2930 
2931 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2932 		if (!netif_supports_nofcs(dev)) {
2933 			err = -EPROTONOSUPPORT;
2934 			goto out_unlock;
2935 		}
2936 		extra_len = 4; /* We're doing our own CRC */
2937 	}
2938 
2939 	err = -EMSGSIZE;
2940 	if (!vnet_hdr.gso_type &&
2941 	    (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2942 		goto out_unlock;
2943 
2944 	err = -ENOBUFS;
2945 	hlen = LL_RESERVED_SPACE(dev);
2946 	tlen = dev->needed_tailroom;
2947 	linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2948 	linear = max(linear, min_t(int, len, dev->hard_header_len));
2949 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2950 			       msg->msg_flags & MSG_DONTWAIT, &err);
2951 	if (skb == NULL)
2952 		goto out_unlock;
2953 
2954 	skb_reset_network_header(skb);
2955 
2956 	err = -EINVAL;
2957 	if (sock->type == SOCK_DGRAM) {
2958 		offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2959 		if (unlikely(offset < 0))
2960 			goto out_free;
2961 	} else if (reserve) {
2962 		skb_reserve(skb, -reserve);
2963 		if (len < reserve + sizeof(struct ipv6hdr) &&
2964 		    dev->min_header_len != dev->hard_header_len)
2965 			skb_reset_network_header(skb);
2966 	}
2967 
2968 	/* Returns -EFAULT on error */
2969 	err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2970 	if (err)
2971 		goto out_free;
2972 
2973 	if (sock->type == SOCK_RAW &&
2974 	    !dev_validate_header(dev, skb->data, len)) {
2975 		err = -EINVAL;
2976 		goto out_free;
2977 	}
2978 
2979 	skb_setup_tx_timestamp(skb, sockc.tsflags);
2980 
2981 	if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2982 	    !packet_extra_vlan_len_allowed(dev, skb)) {
2983 		err = -EMSGSIZE;
2984 		goto out_free;
2985 	}
2986 
2987 	skb->protocol = proto;
2988 	skb->dev = dev;
2989 	skb->priority = sk->sk_priority;
2990 	skb->mark = sockc.mark;
2991 	skb->tstamp = sockc.transmit_time;
2992 
2993 	if (has_vnet_hdr) {
2994 		err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
2995 		if (err)
2996 			goto out_free;
2997 		len += sizeof(vnet_hdr);
2998 		virtio_net_hdr_set_proto(skb, &vnet_hdr);
2999 	}
3000 
3001 	packet_parse_headers(skb, sock);
3002 
3003 	if (unlikely(extra_len == 4))
3004 		skb->no_fcs = 1;
3005 
3006 	err = po->xmit(skb);
3007 	if (err > 0 && (err = net_xmit_errno(err)) != 0)
3008 		goto out_unlock;
3009 
3010 	dev_put(dev);
3011 
3012 	return len;
3013 
3014 out_free:
3015 	kfree_skb(skb);
3016 out_unlock:
3017 	if (dev)
3018 		dev_put(dev);
3019 out:
3020 	return err;
3021 }
3022 
3023 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
3024 {
3025 	struct sock *sk = sock->sk;
3026 	struct packet_sock *po = pkt_sk(sk);
3027 
3028 	if (po->tx_ring.pg_vec)
3029 		return tpacket_snd(po, msg);
3030 	else
3031 		return packet_snd(sock, msg, len);
3032 }
3033 
3034 /*
3035  *	Close a PACKET socket. This is fairly simple. We immediately go
3036  *	to 'closed' state and remove our protocol entry in the device list.
3037  */
3038 
3039 static int packet_release(struct socket *sock)
3040 {
3041 	struct sock *sk = sock->sk;
3042 	struct packet_sock *po;
3043 	struct packet_fanout *f;
3044 	struct net *net;
3045 	union tpacket_req_u req_u;
3046 
3047 	if (!sk)
3048 		return 0;
3049 
3050 	net = sock_net(sk);
3051 	po = pkt_sk(sk);
3052 
3053 	mutex_lock(&net->packet.sklist_lock);
3054 	sk_del_node_init_rcu(sk);
3055 	mutex_unlock(&net->packet.sklist_lock);
3056 
3057 	preempt_disable();
3058 	sock_prot_inuse_add(net, sk->sk_prot, -1);
3059 	preempt_enable();
3060 
3061 	spin_lock(&po->bind_lock);
3062 	unregister_prot_hook(sk, false);
3063 	packet_cached_dev_reset(po);
3064 
3065 	if (po->prot_hook.dev) {
3066 		dev_put(po->prot_hook.dev);
3067 		po->prot_hook.dev = NULL;
3068 	}
3069 	spin_unlock(&po->bind_lock);
3070 
3071 	packet_flush_mclist(sk);
3072 
3073 	lock_sock(sk);
3074 	if (po->rx_ring.pg_vec) {
3075 		memset(&req_u, 0, sizeof(req_u));
3076 		packet_set_ring(sk, &req_u, 1, 0);
3077 	}
3078 
3079 	if (po->tx_ring.pg_vec) {
3080 		memset(&req_u, 0, sizeof(req_u));
3081 		packet_set_ring(sk, &req_u, 1, 1);
3082 	}
3083 	release_sock(sk);
3084 
3085 	f = fanout_release(sk);
3086 
3087 	synchronize_net();
3088 
3089 	kfree(po->rollover);
3090 	if (f) {
3091 		fanout_release_data(f);
3092 		kvfree(f);
3093 	}
3094 	/*
3095 	 *	Now the socket is dead. No more input will appear.
3096 	 */
3097 	sock_orphan(sk);
3098 	sock->sk = NULL;
3099 
3100 	/* Purge queues */
3101 
3102 	skb_queue_purge(&sk->sk_receive_queue);
3103 	packet_free_pending(po);
3104 	sk_refcnt_debug_release(sk);
3105 
3106 	sock_put(sk);
3107 	return 0;
3108 }
3109 
3110 /*
3111  *	Attach a packet hook.
3112  */
3113 
3114 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3115 			  __be16 proto)
3116 {
3117 	struct packet_sock *po = pkt_sk(sk);
3118 	struct net_device *dev_curr;
3119 	__be16 proto_curr;
3120 	bool need_rehook;
3121 	struct net_device *dev = NULL;
3122 	int ret = 0;
3123 	bool unlisted = false;
3124 
3125 	lock_sock(sk);
3126 	spin_lock(&po->bind_lock);
3127 	rcu_read_lock();
3128 
3129 	if (po->fanout) {
3130 		ret = -EINVAL;
3131 		goto out_unlock;
3132 	}
3133 
3134 	if (name) {
3135 		dev = dev_get_by_name_rcu(sock_net(sk), name);
3136 		if (!dev) {
3137 			ret = -ENODEV;
3138 			goto out_unlock;
3139 		}
3140 	} else if (ifindex) {
3141 		dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3142 		if (!dev) {
3143 			ret = -ENODEV;
3144 			goto out_unlock;
3145 		}
3146 	}
3147 
3148 	if (dev)
3149 		dev_hold(dev);
3150 
3151 	proto_curr = po->prot_hook.type;
3152 	dev_curr = po->prot_hook.dev;
3153 
3154 	need_rehook = proto_curr != proto || dev_curr != dev;
3155 
3156 	if (need_rehook) {
3157 		if (po->running) {
3158 			rcu_read_unlock();
3159 			/* prevents packet_notifier() from calling
3160 			 * register_prot_hook()
3161 			 */
3162 			po->num = 0;
3163 			__unregister_prot_hook(sk, true);
3164 			rcu_read_lock();
3165 			dev_curr = po->prot_hook.dev;
3166 			if (dev)
3167 				unlisted = !dev_get_by_index_rcu(sock_net(sk),
3168 								 dev->ifindex);
3169 		}
3170 
3171 		BUG_ON(po->running);
3172 		po->num = proto;
3173 		po->prot_hook.type = proto;
3174 
3175 		if (unlikely(unlisted)) {
3176 			dev_put(dev);
3177 			po->prot_hook.dev = NULL;
3178 			po->ifindex = -1;
3179 			packet_cached_dev_reset(po);
3180 		} else {
3181 			po->prot_hook.dev = dev;
3182 			po->ifindex = dev ? dev->ifindex : 0;
3183 			packet_cached_dev_assign(po, dev);
3184 		}
3185 	}
3186 	if (dev_curr)
3187 		dev_put(dev_curr);
3188 
3189 	if (proto == 0 || !need_rehook)
3190 		goto out_unlock;
3191 
3192 	if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3193 		register_prot_hook(sk);
3194 	} else {
3195 		sk->sk_err = ENETDOWN;
3196 		if (!sock_flag(sk, SOCK_DEAD))
3197 			sk->sk_error_report(sk);
3198 	}
3199 
3200 out_unlock:
3201 	rcu_read_unlock();
3202 	spin_unlock(&po->bind_lock);
3203 	release_sock(sk);
3204 	return ret;
3205 }
3206 
3207 /*
3208  *	Bind a packet socket to a device
3209  */
3210 
3211 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3212 			    int addr_len)
3213 {
3214 	struct sock *sk = sock->sk;
3215 	char name[sizeof(uaddr->sa_data) + 1];
3216 
3217 	/*
3218 	 *	Check legality
3219 	 */
3220 
3221 	if (addr_len != sizeof(struct sockaddr))
3222 		return -EINVAL;
3223 	/* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3224 	 * zero-terminated.
3225 	 */
3226 	memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3227 	name[sizeof(uaddr->sa_data)] = 0;
3228 
3229 	return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3230 }
3231 
3232 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3233 {
3234 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3235 	struct sock *sk = sock->sk;
3236 
3237 	/*
3238 	 *	Check legality
3239 	 */
3240 
3241 	if (addr_len < sizeof(struct sockaddr_ll))
3242 		return -EINVAL;
3243 	if (sll->sll_family != AF_PACKET)
3244 		return -EINVAL;
3245 
3246 	return packet_do_bind(sk, NULL, sll->sll_ifindex,
3247 			      sll->sll_protocol ? : pkt_sk(sk)->num);
3248 }
3249 
3250 static struct proto packet_proto = {
3251 	.name	  = "PACKET",
3252 	.owner	  = THIS_MODULE,
3253 	.obj_size = sizeof(struct packet_sock),
3254 };
3255 
3256 /*
3257  *	Create a packet of type SOCK_PACKET.
3258  */
3259 
3260 static int packet_create(struct net *net, struct socket *sock, int protocol,
3261 			 int kern)
3262 {
3263 	struct sock *sk;
3264 	struct packet_sock *po;
3265 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
3266 	int err;
3267 
3268 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
3269 		return -EPERM;
3270 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3271 	    sock->type != SOCK_PACKET)
3272 		return -ESOCKTNOSUPPORT;
3273 
3274 	sock->state = SS_UNCONNECTED;
3275 
3276 	err = -ENOBUFS;
3277 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3278 	if (sk == NULL)
3279 		goto out;
3280 
3281 	sock->ops = &packet_ops;
3282 	if (sock->type == SOCK_PACKET)
3283 		sock->ops = &packet_ops_spkt;
3284 
3285 	sock_init_data(sock, sk);
3286 
3287 	po = pkt_sk(sk);
3288 	init_completion(&po->skb_completion);
3289 	sk->sk_family = PF_PACKET;
3290 	po->num = proto;
3291 	po->xmit = dev_queue_xmit;
3292 
3293 	err = packet_alloc_pending(po);
3294 	if (err)
3295 		goto out2;
3296 
3297 	packet_cached_dev_reset(po);
3298 
3299 	sk->sk_destruct = packet_sock_destruct;
3300 	sk_refcnt_debug_inc(sk);
3301 
3302 	/*
3303 	 *	Attach a protocol block
3304 	 */
3305 
3306 	spin_lock_init(&po->bind_lock);
3307 	mutex_init(&po->pg_vec_lock);
3308 	po->rollover = NULL;
3309 	po->prot_hook.func = packet_rcv;
3310 
3311 	if (sock->type == SOCK_PACKET)
3312 		po->prot_hook.func = packet_rcv_spkt;
3313 
3314 	po->prot_hook.af_packet_priv = sk;
3315 
3316 	if (proto) {
3317 		po->prot_hook.type = proto;
3318 		__register_prot_hook(sk);
3319 	}
3320 
3321 	mutex_lock(&net->packet.sklist_lock);
3322 	sk_add_node_tail_rcu(sk, &net->packet.sklist);
3323 	mutex_unlock(&net->packet.sklist_lock);
3324 
3325 	preempt_disable();
3326 	sock_prot_inuse_add(net, &packet_proto, 1);
3327 	preempt_enable();
3328 
3329 	return 0;
3330 out2:
3331 	sk_free(sk);
3332 out:
3333 	return err;
3334 }
3335 
3336 /*
3337  *	Pull a packet from our receive queue and hand it to the user.
3338  *	If necessary we block.
3339  */
3340 
3341 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3342 			  int flags)
3343 {
3344 	struct sock *sk = sock->sk;
3345 	struct sk_buff *skb;
3346 	int copied, err;
3347 	int vnet_hdr_len = 0;
3348 	unsigned int origlen = 0;
3349 
3350 	err = -EINVAL;
3351 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3352 		goto out;
3353 
3354 #if 0
3355 	/* What error should we return now? EUNATTACH? */
3356 	if (pkt_sk(sk)->ifindex < 0)
3357 		return -ENODEV;
3358 #endif
3359 
3360 	if (flags & MSG_ERRQUEUE) {
3361 		err = sock_recv_errqueue(sk, msg, len,
3362 					 SOL_PACKET, PACKET_TX_TIMESTAMP);
3363 		goto out;
3364 	}
3365 
3366 	/*
3367 	 *	Call the generic datagram receiver. This handles all sorts
3368 	 *	of horrible races and re-entrancy so we can forget about it
3369 	 *	in the protocol layers.
3370 	 *
3371 	 *	Now it will return ENETDOWN, if device have just gone down,
3372 	 *	but then it will block.
3373 	 */
3374 
3375 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3376 
3377 	/*
3378 	 *	An error occurred so return it. Because skb_recv_datagram()
3379 	 *	handles the blocking we don't see and worry about blocking
3380 	 *	retries.
3381 	 */
3382 
3383 	if (skb == NULL)
3384 		goto out;
3385 
3386 	packet_rcv_try_clear_pressure(pkt_sk(sk));
3387 
3388 	if (pkt_sk(sk)->has_vnet_hdr) {
3389 		err = packet_rcv_vnet(msg, skb, &len);
3390 		if (err)
3391 			goto out_free;
3392 		vnet_hdr_len = sizeof(struct virtio_net_hdr);
3393 	}
3394 
3395 	/* You lose any data beyond the buffer you gave. If it worries
3396 	 * a user program they can ask the device for its MTU
3397 	 * anyway.
3398 	 */
3399 	copied = skb->len;
3400 	if (copied > len) {
3401 		copied = len;
3402 		msg->msg_flags |= MSG_TRUNC;
3403 	}
3404 
3405 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3406 	if (err)
3407 		goto out_free;
3408 
3409 	if (sock->type != SOCK_PACKET) {
3410 		struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3411 
3412 		/* Original length was stored in sockaddr_ll fields */
3413 		origlen = PACKET_SKB_CB(skb)->sa.origlen;
3414 		sll->sll_family = AF_PACKET;
3415 		sll->sll_protocol = skb->protocol;
3416 	}
3417 
3418 	sock_recv_ts_and_drops(msg, sk, skb);
3419 
3420 	if (msg->msg_name) {
3421 		int copy_len;
3422 
3423 		/* If the address length field is there to be filled
3424 		 * in, we fill it in now.
3425 		 */
3426 		if (sock->type == SOCK_PACKET) {
3427 			__sockaddr_check_size(sizeof(struct sockaddr_pkt));
3428 			msg->msg_namelen = sizeof(struct sockaddr_pkt);
3429 			copy_len = msg->msg_namelen;
3430 		} else {
3431 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3432 
3433 			msg->msg_namelen = sll->sll_halen +
3434 				offsetof(struct sockaddr_ll, sll_addr);
3435 			copy_len = msg->msg_namelen;
3436 			if (msg->msg_namelen < sizeof(struct sockaddr_ll)) {
3437 				memset(msg->msg_name +
3438 				       offsetof(struct sockaddr_ll, sll_addr),
3439 				       0, sizeof(sll->sll_addr));
3440 				msg->msg_namelen = sizeof(struct sockaddr_ll);
3441 			}
3442 		}
3443 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len);
3444 	}
3445 
3446 	if (pkt_sk(sk)->auxdata) {
3447 		struct tpacket_auxdata aux;
3448 
3449 		aux.tp_status = TP_STATUS_USER;
3450 		if (skb->ip_summed == CHECKSUM_PARTIAL)
3451 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3452 		else if (skb->pkt_type != PACKET_OUTGOING &&
3453 			 (skb->ip_summed == CHECKSUM_COMPLETE ||
3454 			  skb_csum_unnecessary(skb)))
3455 			aux.tp_status |= TP_STATUS_CSUM_VALID;
3456 
3457 		aux.tp_len = origlen;
3458 		aux.tp_snaplen = skb->len;
3459 		aux.tp_mac = 0;
3460 		aux.tp_net = skb_network_offset(skb);
3461 		if (skb_vlan_tag_present(skb)) {
3462 			aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3463 			aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3464 			aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3465 		} else {
3466 			aux.tp_vlan_tci = 0;
3467 			aux.tp_vlan_tpid = 0;
3468 		}
3469 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3470 	}
3471 
3472 	/*
3473 	 *	Free or return the buffer as appropriate. Again this
3474 	 *	hides all the races and re-entrancy issues from us.
3475 	 */
3476 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3477 
3478 out_free:
3479 	skb_free_datagram(sk, skb);
3480 out:
3481 	return err;
3482 }
3483 
3484 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3485 			       int peer)
3486 {
3487 	struct net_device *dev;
3488 	struct sock *sk	= sock->sk;
3489 
3490 	if (peer)
3491 		return -EOPNOTSUPP;
3492 
3493 	uaddr->sa_family = AF_PACKET;
3494 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3495 	rcu_read_lock();
3496 	dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3497 	if (dev)
3498 		strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3499 	rcu_read_unlock();
3500 
3501 	return sizeof(*uaddr);
3502 }
3503 
3504 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3505 			  int peer)
3506 {
3507 	struct net_device *dev;
3508 	struct sock *sk = sock->sk;
3509 	struct packet_sock *po = pkt_sk(sk);
3510 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3511 
3512 	if (peer)
3513 		return -EOPNOTSUPP;
3514 
3515 	sll->sll_family = AF_PACKET;
3516 	sll->sll_ifindex = po->ifindex;
3517 	sll->sll_protocol = po->num;
3518 	sll->sll_pkttype = 0;
3519 	rcu_read_lock();
3520 	dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3521 	if (dev) {
3522 		sll->sll_hatype = dev->type;
3523 		sll->sll_halen = dev->addr_len;
3524 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3525 	} else {
3526 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
3527 		sll->sll_halen = 0;
3528 	}
3529 	rcu_read_unlock();
3530 
3531 	return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3532 }
3533 
3534 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3535 			 int what)
3536 {
3537 	switch (i->type) {
3538 	case PACKET_MR_MULTICAST:
3539 		if (i->alen != dev->addr_len)
3540 			return -EINVAL;
3541 		if (what > 0)
3542 			return dev_mc_add(dev, i->addr);
3543 		else
3544 			return dev_mc_del(dev, i->addr);
3545 		break;
3546 	case PACKET_MR_PROMISC:
3547 		return dev_set_promiscuity(dev, what);
3548 	case PACKET_MR_ALLMULTI:
3549 		return dev_set_allmulti(dev, what);
3550 	case PACKET_MR_UNICAST:
3551 		if (i->alen != dev->addr_len)
3552 			return -EINVAL;
3553 		if (what > 0)
3554 			return dev_uc_add(dev, i->addr);
3555 		else
3556 			return dev_uc_del(dev, i->addr);
3557 		break;
3558 	default:
3559 		break;
3560 	}
3561 	return 0;
3562 }
3563 
3564 static void packet_dev_mclist_delete(struct net_device *dev,
3565 				     struct packet_mclist **mlp)
3566 {
3567 	struct packet_mclist *ml;
3568 
3569 	while ((ml = *mlp) != NULL) {
3570 		if (ml->ifindex == dev->ifindex) {
3571 			packet_dev_mc(dev, ml, -1);
3572 			*mlp = ml->next;
3573 			kfree(ml);
3574 		} else
3575 			mlp = &ml->next;
3576 	}
3577 }
3578 
3579 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3580 {
3581 	struct packet_sock *po = pkt_sk(sk);
3582 	struct packet_mclist *ml, *i;
3583 	struct net_device *dev;
3584 	int err;
3585 
3586 	rtnl_lock();
3587 
3588 	err = -ENODEV;
3589 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3590 	if (!dev)
3591 		goto done;
3592 
3593 	err = -EINVAL;
3594 	if (mreq->mr_alen > dev->addr_len)
3595 		goto done;
3596 
3597 	err = -ENOBUFS;
3598 	i = kmalloc(sizeof(*i), GFP_KERNEL);
3599 	if (i == NULL)
3600 		goto done;
3601 
3602 	err = 0;
3603 	for (ml = po->mclist; ml; ml = ml->next) {
3604 		if (ml->ifindex == mreq->mr_ifindex &&
3605 		    ml->type == mreq->mr_type &&
3606 		    ml->alen == mreq->mr_alen &&
3607 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3608 			ml->count++;
3609 			/* Free the new element ... */
3610 			kfree(i);
3611 			goto done;
3612 		}
3613 	}
3614 
3615 	i->type = mreq->mr_type;
3616 	i->ifindex = mreq->mr_ifindex;
3617 	i->alen = mreq->mr_alen;
3618 	memcpy(i->addr, mreq->mr_address, i->alen);
3619 	memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3620 	i->count = 1;
3621 	i->next = po->mclist;
3622 	po->mclist = i;
3623 	err = packet_dev_mc(dev, i, 1);
3624 	if (err) {
3625 		po->mclist = i->next;
3626 		kfree(i);
3627 	}
3628 
3629 done:
3630 	rtnl_unlock();
3631 	return err;
3632 }
3633 
3634 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3635 {
3636 	struct packet_mclist *ml, **mlp;
3637 
3638 	rtnl_lock();
3639 
3640 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3641 		if (ml->ifindex == mreq->mr_ifindex &&
3642 		    ml->type == mreq->mr_type &&
3643 		    ml->alen == mreq->mr_alen &&
3644 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3645 			if (--ml->count == 0) {
3646 				struct net_device *dev;
3647 				*mlp = ml->next;
3648 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3649 				if (dev)
3650 					packet_dev_mc(dev, ml, -1);
3651 				kfree(ml);
3652 			}
3653 			break;
3654 		}
3655 	}
3656 	rtnl_unlock();
3657 	return 0;
3658 }
3659 
3660 static void packet_flush_mclist(struct sock *sk)
3661 {
3662 	struct packet_sock *po = pkt_sk(sk);
3663 	struct packet_mclist *ml;
3664 
3665 	if (!po->mclist)
3666 		return;
3667 
3668 	rtnl_lock();
3669 	while ((ml = po->mclist) != NULL) {
3670 		struct net_device *dev;
3671 
3672 		po->mclist = ml->next;
3673 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3674 		if (dev != NULL)
3675 			packet_dev_mc(dev, ml, -1);
3676 		kfree(ml);
3677 	}
3678 	rtnl_unlock();
3679 }
3680 
3681 static int
3682 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval,
3683 		  unsigned int optlen)
3684 {
3685 	struct sock *sk = sock->sk;
3686 	struct packet_sock *po = pkt_sk(sk);
3687 	int ret;
3688 
3689 	if (level != SOL_PACKET)
3690 		return -ENOPROTOOPT;
3691 
3692 	switch (optname) {
3693 	case PACKET_ADD_MEMBERSHIP:
3694 	case PACKET_DROP_MEMBERSHIP:
3695 	{
3696 		struct packet_mreq_max mreq;
3697 		int len = optlen;
3698 		memset(&mreq, 0, sizeof(mreq));
3699 		if (len < sizeof(struct packet_mreq))
3700 			return -EINVAL;
3701 		if (len > sizeof(mreq))
3702 			len = sizeof(mreq);
3703 		if (copy_from_sockptr(&mreq, optval, len))
3704 			return -EFAULT;
3705 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3706 			return -EINVAL;
3707 		if (optname == PACKET_ADD_MEMBERSHIP)
3708 			ret = packet_mc_add(sk, &mreq);
3709 		else
3710 			ret = packet_mc_drop(sk, &mreq);
3711 		return ret;
3712 	}
3713 
3714 	case PACKET_RX_RING:
3715 	case PACKET_TX_RING:
3716 	{
3717 		union tpacket_req_u req_u;
3718 		int len;
3719 
3720 		lock_sock(sk);
3721 		switch (po->tp_version) {
3722 		case TPACKET_V1:
3723 		case TPACKET_V2:
3724 			len = sizeof(req_u.req);
3725 			break;
3726 		case TPACKET_V3:
3727 		default:
3728 			len = sizeof(req_u.req3);
3729 			break;
3730 		}
3731 		if (optlen < len) {
3732 			ret = -EINVAL;
3733 		} else {
3734 			if (copy_from_sockptr(&req_u.req, optval, len))
3735 				ret = -EFAULT;
3736 			else
3737 				ret = packet_set_ring(sk, &req_u, 0,
3738 						    optname == PACKET_TX_RING);
3739 		}
3740 		release_sock(sk);
3741 		return ret;
3742 	}
3743 	case PACKET_COPY_THRESH:
3744 	{
3745 		int val;
3746 
3747 		if (optlen != sizeof(val))
3748 			return -EINVAL;
3749 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3750 			return -EFAULT;
3751 
3752 		pkt_sk(sk)->copy_thresh = val;
3753 		return 0;
3754 	}
3755 	case PACKET_VERSION:
3756 	{
3757 		int val;
3758 
3759 		if (optlen != sizeof(val))
3760 			return -EINVAL;
3761 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3762 			return -EFAULT;
3763 		switch (val) {
3764 		case TPACKET_V1:
3765 		case TPACKET_V2:
3766 		case TPACKET_V3:
3767 			break;
3768 		default:
3769 			return -EINVAL;
3770 		}
3771 		lock_sock(sk);
3772 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3773 			ret = -EBUSY;
3774 		} else {
3775 			po->tp_version = val;
3776 			ret = 0;
3777 		}
3778 		release_sock(sk);
3779 		return ret;
3780 	}
3781 	case PACKET_RESERVE:
3782 	{
3783 		unsigned int val;
3784 
3785 		if (optlen != sizeof(val))
3786 			return -EINVAL;
3787 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3788 			return -EFAULT;
3789 		if (val > INT_MAX)
3790 			return -EINVAL;
3791 		lock_sock(sk);
3792 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3793 			ret = -EBUSY;
3794 		} else {
3795 			po->tp_reserve = val;
3796 			ret = 0;
3797 		}
3798 		release_sock(sk);
3799 		return ret;
3800 	}
3801 	case PACKET_LOSS:
3802 	{
3803 		unsigned int val;
3804 
3805 		if (optlen != sizeof(val))
3806 			return -EINVAL;
3807 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3808 			return -EFAULT;
3809 
3810 		lock_sock(sk);
3811 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3812 			ret = -EBUSY;
3813 		} else {
3814 			po->tp_loss = !!val;
3815 			ret = 0;
3816 		}
3817 		release_sock(sk);
3818 		return ret;
3819 	}
3820 	case PACKET_AUXDATA:
3821 	{
3822 		int val;
3823 
3824 		if (optlen < sizeof(val))
3825 			return -EINVAL;
3826 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3827 			return -EFAULT;
3828 
3829 		lock_sock(sk);
3830 		po->auxdata = !!val;
3831 		release_sock(sk);
3832 		return 0;
3833 	}
3834 	case PACKET_ORIGDEV:
3835 	{
3836 		int val;
3837 
3838 		if (optlen < sizeof(val))
3839 			return -EINVAL;
3840 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3841 			return -EFAULT;
3842 
3843 		lock_sock(sk);
3844 		po->origdev = !!val;
3845 		release_sock(sk);
3846 		return 0;
3847 	}
3848 	case PACKET_VNET_HDR:
3849 	{
3850 		int val;
3851 
3852 		if (sock->type != SOCK_RAW)
3853 			return -EINVAL;
3854 		if (optlen < sizeof(val))
3855 			return -EINVAL;
3856 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3857 			return -EFAULT;
3858 
3859 		lock_sock(sk);
3860 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3861 			ret = -EBUSY;
3862 		} else {
3863 			po->has_vnet_hdr = !!val;
3864 			ret = 0;
3865 		}
3866 		release_sock(sk);
3867 		return ret;
3868 	}
3869 	case PACKET_TIMESTAMP:
3870 	{
3871 		int val;
3872 
3873 		if (optlen != sizeof(val))
3874 			return -EINVAL;
3875 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3876 			return -EFAULT;
3877 
3878 		po->tp_tstamp = val;
3879 		return 0;
3880 	}
3881 	case PACKET_FANOUT:
3882 	{
3883 		struct fanout_args args = { 0 };
3884 
3885 		if (optlen != sizeof(int) && optlen != sizeof(args))
3886 			return -EINVAL;
3887 		if (copy_from_sockptr(&args, optval, optlen))
3888 			return -EFAULT;
3889 
3890 		return fanout_add(sk, &args);
3891 	}
3892 	case PACKET_FANOUT_DATA:
3893 	{
3894 		if (!po->fanout)
3895 			return -EINVAL;
3896 
3897 		return fanout_set_data(po, optval, optlen);
3898 	}
3899 	case PACKET_IGNORE_OUTGOING:
3900 	{
3901 		int val;
3902 
3903 		if (optlen != sizeof(val))
3904 			return -EINVAL;
3905 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3906 			return -EFAULT;
3907 		if (val < 0 || val > 1)
3908 			return -EINVAL;
3909 
3910 		po->prot_hook.ignore_outgoing = !!val;
3911 		return 0;
3912 	}
3913 	case PACKET_TX_HAS_OFF:
3914 	{
3915 		unsigned int val;
3916 
3917 		if (optlen != sizeof(val))
3918 			return -EINVAL;
3919 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3920 			return -EFAULT;
3921 
3922 		lock_sock(sk);
3923 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3924 			ret = -EBUSY;
3925 		} else {
3926 			po->tp_tx_has_off = !!val;
3927 			ret = 0;
3928 		}
3929 		release_sock(sk);
3930 		return 0;
3931 	}
3932 	case PACKET_QDISC_BYPASS:
3933 	{
3934 		int val;
3935 
3936 		if (optlen != sizeof(val))
3937 			return -EINVAL;
3938 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3939 			return -EFAULT;
3940 
3941 		po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3942 		return 0;
3943 	}
3944 	default:
3945 		return -ENOPROTOOPT;
3946 	}
3947 }
3948 
3949 static int packet_getsockopt(struct socket *sock, int level, int optname,
3950 			     char __user *optval, int __user *optlen)
3951 {
3952 	int len;
3953 	int val, lv = sizeof(val);
3954 	struct sock *sk = sock->sk;
3955 	struct packet_sock *po = pkt_sk(sk);
3956 	void *data = &val;
3957 	union tpacket_stats_u st;
3958 	struct tpacket_rollover_stats rstats;
3959 	int drops;
3960 
3961 	if (level != SOL_PACKET)
3962 		return -ENOPROTOOPT;
3963 
3964 	if (get_user(len, optlen))
3965 		return -EFAULT;
3966 
3967 	if (len < 0)
3968 		return -EINVAL;
3969 
3970 	switch (optname) {
3971 	case PACKET_STATISTICS:
3972 		spin_lock_bh(&sk->sk_receive_queue.lock);
3973 		memcpy(&st, &po->stats, sizeof(st));
3974 		memset(&po->stats, 0, sizeof(po->stats));
3975 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3976 		drops = atomic_xchg(&po->tp_drops, 0);
3977 
3978 		if (po->tp_version == TPACKET_V3) {
3979 			lv = sizeof(struct tpacket_stats_v3);
3980 			st.stats3.tp_drops = drops;
3981 			st.stats3.tp_packets += drops;
3982 			data = &st.stats3;
3983 		} else {
3984 			lv = sizeof(struct tpacket_stats);
3985 			st.stats1.tp_drops = drops;
3986 			st.stats1.tp_packets += drops;
3987 			data = &st.stats1;
3988 		}
3989 
3990 		break;
3991 	case PACKET_AUXDATA:
3992 		val = po->auxdata;
3993 		break;
3994 	case PACKET_ORIGDEV:
3995 		val = po->origdev;
3996 		break;
3997 	case PACKET_VNET_HDR:
3998 		val = po->has_vnet_hdr;
3999 		break;
4000 	case PACKET_VERSION:
4001 		val = po->tp_version;
4002 		break;
4003 	case PACKET_HDRLEN:
4004 		if (len > sizeof(int))
4005 			len = sizeof(int);
4006 		if (len < sizeof(int))
4007 			return -EINVAL;
4008 		if (copy_from_user(&val, optval, len))
4009 			return -EFAULT;
4010 		switch (val) {
4011 		case TPACKET_V1:
4012 			val = sizeof(struct tpacket_hdr);
4013 			break;
4014 		case TPACKET_V2:
4015 			val = sizeof(struct tpacket2_hdr);
4016 			break;
4017 		case TPACKET_V3:
4018 			val = sizeof(struct tpacket3_hdr);
4019 			break;
4020 		default:
4021 			return -EINVAL;
4022 		}
4023 		break;
4024 	case PACKET_RESERVE:
4025 		val = po->tp_reserve;
4026 		break;
4027 	case PACKET_LOSS:
4028 		val = po->tp_loss;
4029 		break;
4030 	case PACKET_TIMESTAMP:
4031 		val = po->tp_tstamp;
4032 		break;
4033 	case PACKET_FANOUT:
4034 		val = (po->fanout ?
4035 		       ((u32)po->fanout->id |
4036 			((u32)po->fanout->type << 16) |
4037 			((u32)po->fanout->flags << 24)) :
4038 		       0);
4039 		break;
4040 	case PACKET_IGNORE_OUTGOING:
4041 		val = po->prot_hook.ignore_outgoing;
4042 		break;
4043 	case PACKET_ROLLOVER_STATS:
4044 		if (!po->rollover)
4045 			return -EINVAL;
4046 		rstats.tp_all = atomic_long_read(&po->rollover->num);
4047 		rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
4048 		rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
4049 		data = &rstats;
4050 		lv = sizeof(rstats);
4051 		break;
4052 	case PACKET_TX_HAS_OFF:
4053 		val = po->tp_tx_has_off;
4054 		break;
4055 	case PACKET_QDISC_BYPASS:
4056 		val = packet_use_direct_xmit(po);
4057 		break;
4058 	default:
4059 		return -ENOPROTOOPT;
4060 	}
4061 
4062 	if (len > lv)
4063 		len = lv;
4064 	if (put_user(len, optlen))
4065 		return -EFAULT;
4066 	if (copy_to_user(optval, data, len))
4067 		return -EFAULT;
4068 	return 0;
4069 }
4070 
4071 static int packet_notifier(struct notifier_block *this,
4072 			   unsigned long msg, void *ptr)
4073 {
4074 	struct sock *sk;
4075 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4076 	struct net *net = dev_net(dev);
4077 
4078 	rcu_read_lock();
4079 	sk_for_each_rcu(sk, &net->packet.sklist) {
4080 		struct packet_sock *po = pkt_sk(sk);
4081 
4082 		switch (msg) {
4083 		case NETDEV_UNREGISTER:
4084 			if (po->mclist)
4085 				packet_dev_mclist_delete(dev, &po->mclist);
4086 			fallthrough;
4087 
4088 		case NETDEV_DOWN:
4089 			if (dev->ifindex == po->ifindex) {
4090 				spin_lock(&po->bind_lock);
4091 				if (po->running) {
4092 					__unregister_prot_hook(sk, false);
4093 					sk->sk_err = ENETDOWN;
4094 					if (!sock_flag(sk, SOCK_DEAD))
4095 						sk->sk_error_report(sk);
4096 				}
4097 				if (msg == NETDEV_UNREGISTER) {
4098 					packet_cached_dev_reset(po);
4099 					po->ifindex = -1;
4100 					if (po->prot_hook.dev)
4101 						dev_put(po->prot_hook.dev);
4102 					po->prot_hook.dev = NULL;
4103 				}
4104 				spin_unlock(&po->bind_lock);
4105 			}
4106 			break;
4107 		case NETDEV_UP:
4108 			if (dev->ifindex == po->ifindex) {
4109 				spin_lock(&po->bind_lock);
4110 				if (po->num)
4111 					register_prot_hook(sk);
4112 				spin_unlock(&po->bind_lock);
4113 			}
4114 			break;
4115 		}
4116 	}
4117 	rcu_read_unlock();
4118 	return NOTIFY_DONE;
4119 }
4120 
4121 
4122 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4123 			unsigned long arg)
4124 {
4125 	struct sock *sk = sock->sk;
4126 
4127 	switch (cmd) {
4128 	case SIOCOUTQ:
4129 	{
4130 		int amount = sk_wmem_alloc_get(sk);
4131 
4132 		return put_user(amount, (int __user *)arg);
4133 	}
4134 	case SIOCINQ:
4135 	{
4136 		struct sk_buff *skb;
4137 		int amount = 0;
4138 
4139 		spin_lock_bh(&sk->sk_receive_queue.lock);
4140 		skb = skb_peek(&sk->sk_receive_queue);
4141 		if (skb)
4142 			amount = skb->len;
4143 		spin_unlock_bh(&sk->sk_receive_queue.lock);
4144 		return put_user(amount, (int __user *)arg);
4145 	}
4146 #ifdef CONFIG_INET
4147 	case SIOCADDRT:
4148 	case SIOCDELRT:
4149 	case SIOCDARP:
4150 	case SIOCGARP:
4151 	case SIOCSARP:
4152 	case SIOCGIFADDR:
4153 	case SIOCSIFADDR:
4154 	case SIOCGIFBRDADDR:
4155 	case SIOCSIFBRDADDR:
4156 	case SIOCGIFNETMASK:
4157 	case SIOCSIFNETMASK:
4158 	case SIOCGIFDSTADDR:
4159 	case SIOCSIFDSTADDR:
4160 	case SIOCSIFFLAGS:
4161 		return inet_dgram_ops.ioctl(sock, cmd, arg);
4162 #endif
4163 
4164 	default:
4165 		return -ENOIOCTLCMD;
4166 	}
4167 	return 0;
4168 }
4169 
4170 static __poll_t packet_poll(struct file *file, struct socket *sock,
4171 				poll_table *wait)
4172 {
4173 	struct sock *sk = sock->sk;
4174 	struct packet_sock *po = pkt_sk(sk);
4175 	__poll_t mask = datagram_poll(file, sock, wait);
4176 
4177 	spin_lock_bh(&sk->sk_receive_queue.lock);
4178 	if (po->rx_ring.pg_vec) {
4179 		if (!packet_previous_rx_frame(po, &po->rx_ring,
4180 			TP_STATUS_KERNEL))
4181 			mask |= EPOLLIN | EPOLLRDNORM;
4182 	}
4183 	packet_rcv_try_clear_pressure(po);
4184 	spin_unlock_bh(&sk->sk_receive_queue.lock);
4185 	spin_lock_bh(&sk->sk_write_queue.lock);
4186 	if (po->tx_ring.pg_vec) {
4187 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4188 			mask |= EPOLLOUT | EPOLLWRNORM;
4189 	}
4190 	spin_unlock_bh(&sk->sk_write_queue.lock);
4191 	return mask;
4192 }
4193 
4194 
4195 /* Dirty? Well, I still did not learn better way to account
4196  * for user mmaps.
4197  */
4198 
4199 static void packet_mm_open(struct vm_area_struct *vma)
4200 {
4201 	struct file *file = vma->vm_file;
4202 	struct socket *sock = file->private_data;
4203 	struct sock *sk = sock->sk;
4204 
4205 	if (sk)
4206 		atomic_inc(&pkt_sk(sk)->mapped);
4207 }
4208 
4209 static void packet_mm_close(struct vm_area_struct *vma)
4210 {
4211 	struct file *file = vma->vm_file;
4212 	struct socket *sock = file->private_data;
4213 	struct sock *sk = sock->sk;
4214 
4215 	if (sk)
4216 		atomic_dec(&pkt_sk(sk)->mapped);
4217 }
4218 
4219 static const struct vm_operations_struct packet_mmap_ops = {
4220 	.open	=	packet_mm_open,
4221 	.close	=	packet_mm_close,
4222 };
4223 
4224 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4225 			unsigned int len)
4226 {
4227 	int i;
4228 
4229 	for (i = 0; i < len; i++) {
4230 		if (likely(pg_vec[i].buffer)) {
4231 			if (is_vmalloc_addr(pg_vec[i].buffer))
4232 				vfree(pg_vec[i].buffer);
4233 			else
4234 				free_pages((unsigned long)pg_vec[i].buffer,
4235 					   order);
4236 			pg_vec[i].buffer = NULL;
4237 		}
4238 	}
4239 	kfree(pg_vec);
4240 }
4241 
4242 static char *alloc_one_pg_vec_page(unsigned long order)
4243 {
4244 	char *buffer;
4245 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4246 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4247 
4248 	buffer = (char *) __get_free_pages(gfp_flags, order);
4249 	if (buffer)
4250 		return buffer;
4251 
4252 	/* __get_free_pages failed, fall back to vmalloc */
4253 	buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4254 	if (buffer)
4255 		return buffer;
4256 
4257 	/* vmalloc failed, lets dig into swap here */
4258 	gfp_flags &= ~__GFP_NORETRY;
4259 	buffer = (char *) __get_free_pages(gfp_flags, order);
4260 	if (buffer)
4261 		return buffer;
4262 
4263 	/* complete and utter failure */
4264 	return NULL;
4265 }
4266 
4267 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4268 {
4269 	unsigned int block_nr = req->tp_block_nr;
4270 	struct pgv *pg_vec;
4271 	int i;
4272 
4273 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN);
4274 	if (unlikely(!pg_vec))
4275 		goto out;
4276 
4277 	for (i = 0; i < block_nr; i++) {
4278 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4279 		if (unlikely(!pg_vec[i].buffer))
4280 			goto out_free_pgvec;
4281 	}
4282 
4283 out:
4284 	return pg_vec;
4285 
4286 out_free_pgvec:
4287 	free_pg_vec(pg_vec, order, block_nr);
4288 	pg_vec = NULL;
4289 	goto out;
4290 }
4291 
4292 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4293 		int closing, int tx_ring)
4294 {
4295 	struct pgv *pg_vec = NULL;
4296 	struct packet_sock *po = pkt_sk(sk);
4297 	unsigned long *rx_owner_map = NULL;
4298 	int was_running, order = 0;
4299 	struct packet_ring_buffer *rb;
4300 	struct sk_buff_head *rb_queue;
4301 	__be16 num;
4302 	int err;
4303 	/* Added to avoid minimal code churn */
4304 	struct tpacket_req *req = &req_u->req;
4305 
4306 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4307 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4308 
4309 	err = -EBUSY;
4310 	if (!closing) {
4311 		if (atomic_read(&po->mapped))
4312 			goto out;
4313 		if (packet_read_pending(rb))
4314 			goto out;
4315 	}
4316 
4317 	if (req->tp_block_nr) {
4318 		unsigned int min_frame_size;
4319 
4320 		/* Sanity tests and some calculations */
4321 		err = -EBUSY;
4322 		if (unlikely(rb->pg_vec))
4323 			goto out;
4324 
4325 		switch (po->tp_version) {
4326 		case TPACKET_V1:
4327 			po->tp_hdrlen = TPACKET_HDRLEN;
4328 			break;
4329 		case TPACKET_V2:
4330 			po->tp_hdrlen = TPACKET2_HDRLEN;
4331 			break;
4332 		case TPACKET_V3:
4333 			po->tp_hdrlen = TPACKET3_HDRLEN;
4334 			break;
4335 		}
4336 
4337 		err = -EINVAL;
4338 		if (unlikely((int)req->tp_block_size <= 0))
4339 			goto out;
4340 		if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4341 			goto out;
4342 		min_frame_size = po->tp_hdrlen + po->tp_reserve;
4343 		if (po->tp_version >= TPACKET_V3 &&
4344 		    req->tp_block_size <
4345 		    BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size)
4346 			goto out;
4347 		if (unlikely(req->tp_frame_size < min_frame_size))
4348 			goto out;
4349 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4350 			goto out;
4351 
4352 		rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4353 		if (unlikely(rb->frames_per_block == 0))
4354 			goto out;
4355 		if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr))
4356 			goto out;
4357 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4358 					req->tp_frame_nr))
4359 			goto out;
4360 
4361 		err = -ENOMEM;
4362 		order = get_order(req->tp_block_size);
4363 		pg_vec = alloc_pg_vec(req, order);
4364 		if (unlikely(!pg_vec))
4365 			goto out;
4366 		switch (po->tp_version) {
4367 		case TPACKET_V3:
4368 			/* Block transmit is not supported yet */
4369 			if (!tx_ring) {
4370 				init_prb_bdqc(po, rb, pg_vec, req_u);
4371 			} else {
4372 				struct tpacket_req3 *req3 = &req_u->req3;
4373 
4374 				if (req3->tp_retire_blk_tov ||
4375 				    req3->tp_sizeof_priv ||
4376 				    req3->tp_feature_req_word) {
4377 					err = -EINVAL;
4378 					goto out_free_pg_vec;
4379 				}
4380 			}
4381 			break;
4382 		default:
4383 			if (!tx_ring) {
4384 				rx_owner_map = bitmap_alloc(req->tp_frame_nr,
4385 					GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
4386 				if (!rx_owner_map)
4387 					goto out_free_pg_vec;
4388 			}
4389 			break;
4390 		}
4391 	}
4392 	/* Done */
4393 	else {
4394 		err = -EINVAL;
4395 		if (unlikely(req->tp_frame_nr))
4396 			goto out;
4397 	}
4398 
4399 
4400 	/* Detach socket from network */
4401 	spin_lock(&po->bind_lock);
4402 	was_running = po->running;
4403 	num = po->num;
4404 	if (was_running) {
4405 		po->num = 0;
4406 		__unregister_prot_hook(sk, false);
4407 	}
4408 	spin_unlock(&po->bind_lock);
4409 
4410 	synchronize_net();
4411 
4412 	err = -EBUSY;
4413 	mutex_lock(&po->pg_vec_lock);
4414 	if (closing || atomic_read(&po->mapped) == 0) {
4415 		err = 0;
4416 		spin_lock_bh(&rb_queue->lock);
4417 		swap(rb->pg_vec, pg_vec);
4418 		if (po->tp_version <= TPACKET_V2)
4419 			swap(rb->rx_owner_map, rx_owner_map);
4420 		rb->frame_max = (req->tp_frame_nr - 1);
4421 		rb->head = 0;
4422 		rb->frame_size = req->tp_frame_size;
4423 		spin_unlock_bh(&rb_queue->lock);
4424 
4425 		swap(rb->pg_vec_order, order);
4426 		swap(rb->pg_vec_len, req->tp_block_nr);
4427 
4428 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4429 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
4430 						tpacket_rcv : packet_rcv;
4431 		skb_queue_purge(rb_queue);
4432 		if (atomic_read(&po->mapped))
4433 			pr_err("packet_mmap: vma is busy: %d\n",
4434 			       atomic_read(&po->mapped));
4435 	}
4436 	mutex_unlock(&po->pg_vec_lock);
4437 
4438 	spin_lock(&po->bind_lock);
4439 	if (was_running) {
4440 		po->num = num;
4441 		register_prot_hook(sk);
4442 	}
4443 	spin_unlock(&po->bind_lock);
4444 	if (pg_vec && (po->tp_version > TPACKET_V2)) {
4445 		/* Because we don't support block-based V3 on tx-ring */
4446 		if (!tx_ring)
4447 			prb_shutdown_retire_blk_timer(po, rb_queue);
4448 	}
4449 
4450 out_free_pg_vec:
4451 	bitmap_free(rx_owner_map);
4452 	if (pg_vec)
4453 		free_pg_vec(pg_vec, order, req->tp_block_nr);
4454 out:
4455 	return err;
4456 }
4457 
4458 static int packet_mmap(struct file *file, struct socket *sock,
4459 		struct vm_area_struct *vma)
4460 {
4461 	struct sock *sk = sock->sk;
4462 	struct packet_sock *po = pkt_sk(sk);
4463 	unsigned long size, expected_size;
4464 	struct packet_ring_buffer *rb;
4465 	unsigned long start;
4466 	int err = -EINVAL;
4467 	int i;
4468 
4469 	if (vma->vm_pgoff)
4470 		return -EINVAL;
4471 
4472 	mutex_lock(&po->pg_vec_lock);
4473 
4474 	expected_size = 0;
4475 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4476 		if (rb->pg_vec) {
4477 			expected_size += rb->pg_vec_len
4478 						* rb->pg_vec_pages
4479 						* PAGE_SIZE;
4480 		}
4481 	}
4482 
4483 	if (expected_size == 0)
4484 		goto out;
4485 
4486 	size = vma->vm_end - vma->vm_start;
4487 	if (size != expected_size)
4488 		goto out;
4489 
4490 	start = vma->vm_start;
4491 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4492 		if (rb->pg_vec == NULL)
4493 			continue;
4494 
4495 		for (i = 0; i < rb->pg_vec_len; i++) {
4496 			struct page *page;
4497 			void *kaddr = rb->pg_vec[i].buffer;
4498 			int pg_num;
4499 
4500 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4501 				page = pgv_to_page(kaddr);
4502 				err = vm_insert_page(vma, start, page);
4503 				if (unlikely(err))
4504 					goto out;
4505 				start += PAGE_SIZE;
4506 				kaddr += PAGE_SIZE;
4507 			}
4508 		}
4509 	}
4510 
4511 	atomic_inc(&po->mapped);
4512 	vma->vm_ops = &packet_mmap_ops;
4513 	err = 0;
4514 
4515 out:
4516 	mutex_unlock(&po->pg_vec_lock);
4517 	return err;
4518 }
4519 
4520 static const struct proto_ops packet_ops_spkt = {
4521 	.family =	PF_PACKET,
4522 	.owner =	THIS_MODULE,
4523 	.release =	packet_release,
4524 	.bind =		packet_bind_spkt,
4525 	.connect =	sock_no_connect,
4526 	.socketpair =	sock_no_socketpair,
4527 	.accept =	sock_no_accept,
4528 	.getname =	packet_getname_spkt,
4529 	.poll =		datagram_poll,
4530 	.ioctl =	packet_ioctl,
4531 	.gettstamp =	sock_gettstamp,
4532 	.listen =	sock_no_listen,
4533 	.shutdown =	sock_no_shutdown,
4534 	.sendmsg =	packet_sendmsg_spkt,
4535 	.recvmsg =	packet_recvmsg,
4536 	.mmap =		sock_no_mmap,
4537 	.sendpage =	sock_no_sendpage,
4538 };
4539 
4540 static const struct proto_ops packet_ops = {
4541 	.family =	PF_PACKET,
4542 	.owner =	THIS_MODULE,
4543 	.release =	packet_release,
4544 	.bind =		packet_bind,
4545 	.connect =	sock_no_connect,
4546 	.socketpair =	sock_no_socketpair,
4547 	.accept =	sock_no_accept,
4548 	.getname =	packet_getname,
4549 	.poll =		packet_poll,
4550 	.ioctl =	packet_ioctl,
4551 	.gettstamp =	sock_gettstamp,
4552 	.listen =	sock_no_listen,
4553 	.shutdown =	sock_no_shutdown,
4554 	.setsockopt =	packet_setsockopt,
4555 	.getsockopt =	packet_getsockopt,
4556 	.sendmsg =	packet_sendmsg,
4557 	.recvmsg =	packet_recvmsg,
4558 	.mmap =		packet_mmap,
4559 	.sendpage =	sock_no_sendpage,
4560 };
4561 
4562 static const struct net_proto_family packet_family_ops = {
4563 	.family =	PF_PACKET,
4564 	.create =	packet_create,
4565 	.owner	=	THIS_MODULE,
4566 };
4567 
4568 static struct notifier_block packet_netdev_notifier = {
4569 	.notifier_call =	packet_notifier,
4570 };
4571 
4572 #ifdef CONFIG_PROC_FS
4573 
4574 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4575 	__acquires(RCU)
4576 {
4577 	struct net *net = seq_file_net(seq);
4578 
4579 	rcu_read_lock();
4580 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4581 }
4582 
4583 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4584 {
4585 	struct net *net = seq_file_net(seq);
4586 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4587 }
4588 
4589 static void packet_seq_stop(struct seq_file *seq, void *v)
4590 	__releases(RCU)
4591 {
4592 	rcu_read_unlock();
4593 }
4594 
4595 static int packet_seq_show(struct seq_file *seq, void *v)
4596 {
4597 	if (v == SEQ_START_TOKEN)
4598 		seq_puts(seq, "sk       RefCnt Type Proto  Iface R Rmem   User   Inode\n");
4599 	else {
4600 		struct sock *s = sk_entry(v);
4601 		const struct packet_sock *po = pkt_sk(s);
4602 
4603 		seq_printf(seq,
4604 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
4605 			   s,
4606 			   refcount_read(&s->sk_refcnt),
4607 			   s->sk_type,
4608 			   ntohs(po->num),
4609 			   po->ifindex,
4610 			   po->running,
4611 			   atomic_read(&s->sk_rmem_alloc),
4612 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4613 			   sock_i_ino(s));
4614 	}
4615 
4616 	return 0;
4617 }
4618 
4619 static const struct seq_operations packet_seq_ops = {
4620 	.start	= packet_seq_start,
4621 	.next	= packet_seq_next,
4622 	.stop	= packet_seq_stop,
4623 	.show	= packet_seq_show,
4624 };
4625 #endif
4626 
4627 static int __net_init packet_net_init(struct net *net)
4628 {
4629 	mutex_init(&net->packet.sklist_lock);
4630 	INIT_HLIST_HEAD(&net->packet.sklist);
4631 
4632 #ifdef CONFIG_PROC_FS
4633 	if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4634 			sizeof(struct seq_net_private)))
4635 		return -ENOMEM;
4636 #endif /* CONFIG_PROC_FS */
4637 
4638 	return 0;
4639 }
4640 
4641 static void __net_exit packet_net_exit(struct net *net)
4642 {
4643 	remove_proc_entry("packet", net->proc_net);
4644 	WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4645 }
4646 
4647 static struct pernet_operations packet_net_ops = {
4648 	.init = packet_net_init,
4649 	.exit = packet_net_exit,
4650 };
4651 
4652 
4653 static void __exit packet_exit(void)
4654 {
4655 	unregister_netdevice_notifier(&packet_netdev_notifier);
4656 	unregister_pernet_subsys(&packet_net_ops);
4657 	sock_unregister(PF_PACKET);
4658 	proto_unregister(&packet_proto);
4659 }
4660 
4661 static int __init packet_init(void)
4662 {
4663 	int rc;
4664 
4665 	rc = proto_register(&packet_proto, 0);
4666 	if (rc)
4667 		goto out;
4668 	rc = sock_register(&packet_family_ops);
4669 	if (rc)
4670 		goto out_proto;
4671 	rc = register_pernet_subsys(&packet_net_ops);
4672 	if (rc)
4673 		goto out_sock;
4674 	rc = register_netdevice_notifier(&packet_netdev_notifier);
4675 	if (rc)
4676 		goto out_pernet;
4677 
4678 	return 0;
4679 
4680 out_pernet:
4681 	unregister_pernet_subsys(&packet_net_ops);
4682 out_sock:
4683 	sock_unregister(PF_PACKET);
4684 out_proto:
4685 	proto_unregister(&packet_proto);
4686 out:
4687 	return rc;
4688 }
4689 
4690 module_init(packet_init);
4691 module_exit(packet_exit);
4692 MODULE_LICENSE("GPL");
4693 MODULE_ALIAS_NETPROTO(PF_PACKET);
4694