1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PACKET - implements raw packet sockets. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Alan Cox, <gw4pts@gw4pts.ampr.org> 12 * 13 * Fixes: 14 * Alan Cox : verify_area() now used correctly 15 * Alan Cox : new skbuff lists, look ma no backlogs! 16 * Alan Cox : tidied skbuff lists. 17 * Alan Cox : Now uses generic datagram routines I 18 * added. Also fixed the peek/read crash 19 * from all old Linux datagram code. 20 * Alan Cox : Uses the improved datagram code. 21 * Alan Cox : Added NULL's for socket options. 22 * Alan Cox : Re-commented the code. 23 * Alan Cox : Use new kernel side addressing 24 * Rob Janssen : Correct MTU usage. 25 * Dave Platt : Counter leaks caused by incorrect 26 * interrupt locking and some slightly 27 * dubious gcc output. Can you read 28 * compiler: it said _VOLATILE_ 29 * Richard Kooijman : Timestamp fixes. 30 * Alan Cox : New buffers. Use sk->mac.raw. 31 * Alan Cox : sendmsg/recvmsg support. 32 * Alan Cox : Protocol setting support 33 * Alexey Kuznetsov : Untied from IPv4 stack. 34 * Cyrus Durgin : Fixed kerneld for kmod. 35 * Michal Ostrowski : Module initialization cleanup. 36 * Ulises Alonso : Frame number limit removal and 37 * packet_set_ring memory leak. 38 * Eric Biederman : Allow for > 8 byte hardware addresses. 39 * The convention is that longer addresses 40 * will simply extend the hardware address 41 * byte arrays at the end of sockaddr_ll 42 * and packet_mreq. 43 * Johann Baudy : Added TX RING. 44 * Chetan Loke : Implemented TPACKET_V3 block abstraction 45 * layer. 46 * Copyright (C) 2011, <lokec@ccs.neu.edu> 47 */ 48 49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 50 51 #include <linux/ethtool.h> 52 #include <linux/filter.h> 53 #include <linux/types.h> 54 #include <linux/mm.h> 55 #include <linux/capability.h> 56 #include <linux/fcntl.h> 57 #include <linux/socket.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/if_packet.h> 62 #include <linux/wireless.h> 63 #include <linux/kernel.h> 64 #include <linux/kmod.h> 65 #include <linux/slab.h> 66 #include <linux/vmalloc.h> 67 #include <net/net_namespace.h> 68 #include <net/ip.h> 69 #include <net/protocol.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <linux/errno.h> 73 #include <linux/timer.h> 74 #include <linux/uaccess.h> 75 #include <asm/ioctls.h> 76 #include <asm/page.h> 77 #include <asm/cacheflush.h> 78 #include <asm/io.h> 79 #include <linux/proc_fs.h> 80 #include <linux/seq_file.h> 81 #include <linux/poll.h> 82 #include <linux/module.h> 83 #include <linux/init.h> 84 #include <linux/mutex.h> 85 #include <linux/if_vlan.h> 86 #include <linux/virtio_net.h> 87 #include <linux/errqueue.h> 88 #include <linux/net_tstamp.h> 89 #include <linux/percpu.h> 90 #ifdef CONFIG_INET 91 #include <net/inet_common.h> 92 #endif 93 #include <linux/bpf.h> 94 #include <net/compat.h> 95 #include <linux/netfilter_netdev.h> 96 97 #include "internal.h" 98 99 /* 100 Assumptions: 101 - If the device has no dev->header_ops->create, there is no LL header 102 visible above the device. In this case, its hard_header_len should be 0. 103 The device may prepend its own header internally. In this case, its 104 needed_headroom should be set to the space needed for it to add its 105 internal header. 106 For example, a WiFi driver pretending to be an Ethernet driver should 107 set its hard_header_len to be the Ethernet header length, and set its 108 needed_headroom to be (the real WiFi header length - the fake Ethernet 109 header length). 110 - packet socket receives packets with pulled ll header, 111 so that SOCK_RAW should push it back. 112 113 On receive: 114 ----------- 115 116 Incoming, dev_has_header(dev) == true 117 mac_header -> ll header 118 data -> data 119 120 Outgoing, dev_has_header(dev) == true 121 mac_header -> ll header 122 data -> ll header 123 124 Incoming, dev_has_header(dev) == false 125 mac_header -> data 126 However drivers often make it point to the ll header. 127 This is incorrect because the ll header should be invisible to us. 128 data -> data 129 130 Outgoing, dev_has_header(dev) == false 131 mac_header -> data. ll header is invisible to us. 132 data -> data 133 134 Resume 135 If dev_has_header(dev) == false we are unable to restore the ll header, 136 because it is invisible to us. 137 138 139 On transmit: 140 ------------ 141 142 dev_has_header(dev) == true 143 mac_header -> ll header 144 data -> ll header 145 146 dev_has_header(dev) == false (ll header is invisible to us) 147 mac_header -> data 148 data -> data 149 150 We should set network_header on output to the correct position, 151 packet classifier depends on it. 152 */ 153 154 /* Private packet socket structures. */ 155 156 /* identical to struct packet_mreq except it has 157 * a longer address field. 158 */ 159 struct packet_mreq_max { 160 int mr_ifindex; 161 unsigned short mr_type; 162 unsigned short mr_alen; 163 unsigned char mr_address[MAX_ADDR_LEN]; 164 }; 165 166 union tpacket_uhdr { 167 struct tpacket_hdr *h1; 168 struct tpacket2_hdr *h2; 169 struct tpacket3_hdr *h3; 170 void *raw; 171 }; 172 173 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 174 int closing, int tx_ring); 175 176 #define V3_ALIGNMENT (8) 177 178 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 179 180 #define BLK_PLUS_PRIV(sz_of_priv) \ 181 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 182 183 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 184 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 185 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 186 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 187 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 188 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 189 190 struct packet_sock; 191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 192 struct packet_type *pt, struct net_device *orig_dev); 193 194 static void *packet_previous_frame(struct packet_sock *po, 195 struct packet_ring_buffer *rb, 196 int status); 197 static void packet_increment_head(struct packet_ring_buffer *buff); 198 static int prb_curr_blk_in_use(struct tpacket_block_desc *); 199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 200 struct packet_sock *); 201 static void prb_retire_current_block(struct tpacket_kbdq_core *, 202 struct packet_sock *, unsigned int status); 203 static int prb_queue_frozen(struct tpacket_kbdq_core *); 204 static void prb_open_block(struct tpacket_kbdq_core *, 205 struct tpacket_block_desc *); 206 static void prb_retire_rx_blk_timer_expired(struct timer_list *); 207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 208 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 209 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 210 struct tpacket3_hdr *); 211 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 212 struct tpacket3_hdr *); 213 static void packet_flush_mclist(struct sock *sk); 214 static u16 packet_pick_tx_queue(struct sk_buff *skb); 215 216 struct packet_skb_cb { 217 union { 218 struct sockaddr_pkt pkt; 219 union { 220 /* Trick: alias skb original length with 221 * ll.sll_family and ll.protocol in order 222 * to save room. 223 */ 224 unsigned int origlen; 225 struct sockaddr_ll ll; 226 }; 227 } sa; 228 }; 229 230 #define vio_le() virtio_legacy_is_little_endian() 231 232 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 233 234 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 235 #define GET_PBLOCK_DESC(x, bid) \ 236 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 237 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 238 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 239 #define GET_NEXT_PRB_BLK_NUM(x) \ 240 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 241 ((x)->kactive_blk_num+1) : 0) 242 243 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 244 static void __fanout_link(struct sock *sk, struct packet_sock *po); 245 246 #ifdef CONFIG_NETFILTER_EGRESS 247 static noinline struct sk_buff *nf_hook_direct_egress(struct sk_buff *skb) 248 { 249 struct sk_buff *next, *head = NULL, *tail; 250 int rc; 251 252 rcu_read_lock(); 253 for (; skb != NULL; skb = next) { 254 next = skb->next; 255 skb_mark_not_on_list(skb); 256 257 if (!nf_hook_egress(skb, &rc, skb->dev)) 258 continue; 259 260 if (!head) 261 head = skb; 262 else 263 tail->next = skb; 264 265 tail = skb; 266 } 267 rcu_read_unlock(); 268 269 return head; 270 } 271 #endif 272 273 static int packet_direct_xmit(struct sk_buff *skb) 274 { 275 #ifdef CONFIG_NETFILTER_EGRESS 276 if (nf_hook_egress_active()) { 277 skb = nf_hook_direct_egress(skb); 278 if (!skb) 279 return NET_XMIT_DROP; 280 } 281 #endif 282 return dev_direct_xmit(skb, packet_pick_tx_queue(skb)); 283 } 284 285 static struct net_device *packet_cached_dev_get(struct packet_sock *po) 286 { 287 struct net_device *dev; 288 289 rcu_read_lock(); 290 dev = rcu_dereference(po->cached_dev); 291 dev_hold(dev); 292 rcu_read_unlock(); 293 294 return dev; 295 } 296 297 static void packet_cached_dev_assign(struct packet_sock *po, 298 struct net_device *dev) 299 { 300 rcu_assign_pointer(po->cached_dev, dev); 301 } 302 303 static void packet_cached_dev_reset(struct packet_sock *po) 304 { 305 RCU_INIT_POINTER(po->cached_dev, NULL); 306 } 307 308 static bool packet_use_direct_xmit(const struct packet_sock *po) 309 { 310 /* Paired with WRITE_ONCE() in packet_setsockopt() */ 311 return READ_ONCE(po->xmit) == packet_direct_xmit; 312 } 313 314 static u16 packet_pick_tx_queue(struct sk_buff *skb) 315 { 316 struct net_device *dev = skb->dev; 317 const struct net_device_ops *ops = dev->netdev_ops; 318 int cpu = raw_smp_processor_id(); 319 u16 queue_index; 320 321 #ifdef CONFIG_XPS 322 skb->sender_cpu = cpu + 1; 323 #endif 324 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues); 325 if (ops->ndo_select_queue) { 326 queue_index = ops->ndo_select_queue(dev, skb, NULL); 327 queue_index = netdev_cap_txqueue(dev, queue_index); 328 } else { 329 queue_index = netdev_pick_tx(dev, skb, NULL); 330 } 331 332 return queue_index; 333 } 334 335 /* __register_prot_hook must be invoked through register_prot_hook 336 * or from a context in which asynchronous accesses to the packet 337 * socket is not possible (packet_create()). 338 */ 339 static void __register_prot_hook(struct sock *sk) 340 { 341 struct packet_sock *po = pkt_sk(sk); 342 343 if (!packet_sock_flag(po, PACKET_SOCK_RUNNING)) { 344 if (po->fanout) 345 __fanout_link(sk, po); 346 else 347 dev_add_pack(&po->prot_hook); 348 349 sock_hold(sk); 350 packet_sock_flag_set(po, PACKET_SOCK_RUNNING, 1); 351 } 352 } 353 354 static void register_prot_hook(struct sock *sk) 355 { 356 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock); 357 __register_prot_hook(sk); 358 } 359 360 /* If the sync parameter is true, we will temporarily drop 361 * the po->bind_lock and do a synchronize_net to make sure no 362 * asynchronous packet processing paths still refer to the elements 363 * of po->prot_hook. If the sync parameter is false, it is the 364 * callers responsibility to take care of this. 365 */ 366 static void __unregister_prot_hook(struct sock *sk, bool sync) 367 { 368 struct packet_sock *po = pkt_sk(sk); 369 370 lockdep_assert_held_once(&po->bind_lock); 371 372 packet_sock_flag_set(po, PACKET_SOCK_RUNNING, 0); 373 374 if (po->fanout) 375 __fanout_unlink(sk, po); 376 else 377 __dev_remove_pack(&po->prot_hook); 378 379 __sock_put(sk); 380 381 if (sync) { 382 spin_unlock(&po->bind_lock); 383 synchronize_net(); 384 spin_lock(&po->bind_lock); 385 } 386 } 387 388 static void unregister_prot_hook(struct sock *sk, bool sync) 389 { 390 struct packet_sock *po = pkt_sk(sk); 391 392 if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) 393 __unregister_prot_hook(sk, sync); 394 } 395 396 static inline struct page * __pure pgv_to_page(void *addr) 397 { 398 if (is_vmalloc_addr(addr)) 399 return vmalloc_to_page(addr); 400 return virt_to_page(addr); 401 } 402 403 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 404 { 405 union tpacket_uhdr h; 406 407 h.raw = frame; 408 switch (po->tp_version) { 409 case TPACKET_V1: 410 h.h1->tp_status = status; 411 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 412 break; 413 case TPACKET_V2: 414 h.h2->tp_status = status; 415 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 416 break; 417 case TPACKET_V3: 418 h.h3->tp_status = status; 419 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 420 break; 421 default: 422 WARN(1, "TPACKET version not supported.\n"); 423 BUG(); 424 } 425 426 smp_wmb(); 427 } 428 429 static int __packet_get_status(const struct packet_sock *po, void *frame) 430 { 431 union tpacket_uhdr h; 432 433 smp_rmb(); 434 435 h.raw = frame; 436 switch (po->tp_version) { 437 case TPACKET_V1: 438 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 439 return h.h1->tp_status; 440 case TPACKET_V2: 441 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 442 return h.h2->tp_status; 443 case TPACKET_V3: 444 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 445 return h.h3->tp_status; 446 default: 447 WARN(1, "TPACKET version not supported.\n"); 448 BUG(); 449 return 0; 450 } 451 } 452 453 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts, 454 unsigned int flags) 455 { 456 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 457 458 if (shhwtstamps && 459 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && 460 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts)) 461 return TP_STATUS_TS_RAW_HARDWARE; 462 463 if ((flags & SOF_TIMESTAMPING_SOFTWARE) && 464 ktime_to_timespec64_cond(skb_tstamp(skb), ts)) 465 return TP_STATUS_TS_SOFTWARE; 466 467 return 0; 468 } 469 470 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, 471 struct sk_buff *skb) 472 { 473 union tpacket_uhdr h; 474 struct timespec64 ts; 475 __u32 ts_status; 476 477 if (!(ts_status = tpacket_get_timestamp(skb, &ts, READ_ONCE(po->tp_tstamp)))) 478 return 0; 479 480 h.raw = frame; 481 /* 482 * versions 1 through 3 overflow the timestamps in y2106, since they 483 * all store the seconds in a 32-bit unsigned integer. 484 * If we create a version 4, that should have a 64-bit timestamp, 485 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit 486 * nanoseconds. 487 */ 488 switch (po->tp_version) { 489 case TPACKET_V1: 490 h.h1->tp_sec = ts.tv_sec; 491 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 492 break; 493 case TPACKET_V2: 494 h.h2->tp_sec = ts.tv_sec; 495 h.h2->tp_nsec = ts.tv_nsec; 496 break; 497 case TPACKET_V3: 498 h.h3->tp_sec = ts.tv_sec; 499 h.h3->tp_nsec = ts.tv_nsec; 500 break; 501 default: 502 WARN(1, "TPACKET version not supported.\n"); 503 BUG(); 504 } 505 506 /* one flush is safe, as both fields always lie on the same cacheline */ 507 flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); 508 smp_wmb(); 509 510 return ts_status; 511 } 512 513 static void *packet_lookup_frame(const struct packet_sock *po, 514 const struct packet_ring_buffer *rb, 515 unsigned int position, 516 int status) 517 { 518 unsigned int pg_vec_pos, frame_offset; 519 union tpacket_uhdr h; 520 521 pg_vec_pos = position / rb->frames_per_block; 522 frame_offset = position % rb->frames_per_block; 523 524 h.raw = rb->pg_vec[pg_vec_pos].buffer + 525 (frame_offset * rb->frame_size); 526 527 if (status != __packet_get_status(po, h.raw)) 528 return NULL; 529 530 return h.raw; 531 } 532 533 static void *packet_current_frame(struct packet_sock *po, 534 struct packet_ring_buffer *rb, 535 int status) 536 { 537 return packet_lookup_frame(po, rb, rb->head, status); 538 } 539 540 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 541 { 542 del_timer_sync(&pkc->retire_blk_timer); 543 } 544 545 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 546 struct sk_buff_head *rb_queue) 547 { 548 struct tpacket_kbdq_core *pkc; 549 550 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 551 552 spin_lock_bh(&rb_queue->lock); 553 pkc->delete_blk_timer = 1; 554 spin_unlock_bh(&rb_queue->lock); 555 556 prb_del_retire_blk_timer(pkc); 557 } 558 559 static void prb_setup_retire_blk_timer(struct packet_sock *po) 560 { 561 struct tpacket_kbdq_core *pkc; 562 563 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 564 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired, 565 0); 566 pkc->retire_blk_timer.expires = jiffies; 567 } 568 569 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 570 int blk_size_in_bytes) 571 { 572 struct net_device *dev; 573 unsigned int mbits, div; 574 struct ethtool_link_ksettings ecmd; 575 int err; 576 577 rtnl_lock(); 578 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 579 if (unlikely(!dev)) { 580 rtnl_unlock(); 581 return DEFAULT_PRB_RETIRE_TOV; 582 } 583 err = __ethtool_get_link_ksettings(dev, &ecmd); 584 rtnl_unlock(); 585 if (err) 586 return DEFAULT_PRB_RETIRE_TOV; 587 588 /* If the link speed is so slow you don't really 589 * need to worry about perf anyways 590 */ 591 if (ecmd.base.speed < SPEED_1000 || 592 ecmd.base.speed == SPEED_UNKNOWN) 593 return DEFAULT_PRB_RETIRE_TOV; 594 595 div = ecmd.base.speed / 1000; 596 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 597 598 if (div) 599 mbits /= div; 600 601 if (div) 602 return mbits + 1; 603 return mbits; 604 } 605 606 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 607 union tpacket_req_u *req_u) 608 { 609 p1->feature_req_word = req_u->req3.tp_feature_req_word; 610 } 611 612 static void init_prb_bdqc(struct packet_sock *po, 613 struct packet_ring_buffer *rb, 614 struct pgv *pg_vec, 615 union tpacket_req_u *req_u) 616 { 617 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); 618 struct tpacket_block_desc *pbd; 619 620 memset(p1, 0x0, sizeof(*p1)); 621 622 p1->knxt_seq_num = 1; 623 p1->pkbdq = pg_vec; 624 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 625 p1->pkblk_start = pg_vec[0].buffer; 626 p1->kblk_size = req_u->req3.tp_block_size; 627 p1->knum_blocks = req_u->req3.tp_block_nr; 628 p1->hdrlen = po->tp_hdrlen; 629 p1->version = po->tp_version; 630 p1->last_kactive_blk_num = 0; 631 po->stats.stats3.tp_freeze_q_cnt = 0; 632 if (req_u->req3.tp_retire_blk_tov) 633 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 634 else 635 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 636 req_u->req3.tp_block_size); 637 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 638 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 639 rwlock_init(&p1->blk_fill_in_prog_lock); 640 641 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); 642 prb_init_ft_ops(p1, req_u); 643 prb_setup_retire_blk_timer(po); 644 prb_open_block(p1, pbd); 645 } 646 647 /* Do NOT update the last_blk_num first. 648 * Assumes sk_buff_head lock is held. 649 */ 650 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 651 { 652 mod_timer(&pkc->retire_blk_timer, 653 jiffies + pkc->tov_in_jiffies); 654 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 655 } 656 657 /* 658 * Timer logic: 659 * 1) We refresh the timer only when we open a block. 660 * By doing this we don't waste cycles refreshing the timer 661 * on packet-by-packet basis. 662 * 663 * With a 1MB block-size, on a 1Gbps line, it will take 664 * i) ~8 ms to fill a block + ii) memcpy etc. 665 * In this cut we are not accounting for the memcpy time. 666 * 667 * So, if the user sets the 'tmo' to 10ms then the timer 668 * will never fire while the block is still getting filled 669 * (which is what we want). However, the user could choose 670 * to close a block early and that's fine. 671 * 672 * But when the timer does fire, we check whether or not to refresh it. 673 * Since the tmo granularity is in msecs, it is not too expensive 674 * to refresh the timer, lets say every '8' msecs. 675 * Either the user can set the 'tmo' or we can derive it based on 676 * a) line-speed and b) block-size. 677 * prb_calc_retire_blk_tmo() calculates the tmo. 678 * 679 */ 680 static void prb_retire_rx_blk_timer_expired(struct timer_list *t) 681 { 682 struct packet_sock *po = 683 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer); 684 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 685 unsigned int frozen; 686 struct tpacket_block_desc *pbd; 687 688 spin_lock(&po->sk.sk_receive_queue.lock); 689 690 frozen = prb_queue_frozen(pkc); 691 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 692 693 if (unlikely(pkc->delete_blk_timer)) 694 goto out; 695 696 /* We only need to plug the race when the block is partially filled. 697 * tpacket_rcv: 698 * lock(); increment BLOCK_NUM_PKTS; unlock() 699 * copy_bits() is in progress ... 700 * timer fires on other cpu: 701 * we can't retire the current block because copy_bits 702 * is in progress. 703 * 704 */ 705 if (BLOCK_NUM_PKTS(pbd)) { 706 /* Waiting for skb_copy_bits to finish... */ 707 write_lock(&pkc->blk_fill_in_prog_lock); 708 write_unlock(&pkc->blk_fill_in_prog_lock); 709 } 710 711 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 712 if (!frozen) { 713 if (!BLOCK_NUM_PKTS(pbd)) { 714 /* An empty block. Just refresh the timer. */ 715 goto refresh_timer; 716 } 717 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 718 if (!prb_dispatch_next_block(pkc, po)) 719 goto refresh_timer; 720 else 721 goto out; 722 } else { 723 /* Case 1. Queue was frozen because user-space was 724 * lagging behind. 725 */ 726 if (prb_curr_blk_in_use(pbd)) { 727 /* 728 * Ok, user-space is still behind. 729 * So just refresh the timer. 730 */ 731 goto refresh_timer; 732 } else { 733 /* Case 2. queue was frozen,user-space caught up, 734 * now the link went idle && the timer fired. 735 * We don't have a block to close.So we open this 736 * block and restart the timer. 737 * opening a block thaws the queue,restarts timer 738 * Thawing/timer-refresh is a side effect. 739 */ 740 prb_open_block(pkc, pbd); 741 goto out; 742 } 743 } 744 } 745 746 refresh_timer: 747 _prb_refresh_rx_retire_blk_timer(pkc); 748 749 out: 750 spin_unlock(&po->sk.sk_receive_queue.lock); 751 } 752 753 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 754 struct tpacket_block_desc *pbd1, __u32 status) 755 { 756 /* Flush everything minus the block header */ 757 758 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 759 u8 *start, *end; 760 761 start = (u8 *)pbd1; 762 763 /* Skip the block header(we know header WILL fit in 4K) */ 764 start += PAGE_SIZE; 765 766 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 767 for (; start < end; start += PAGE_SIZE) 768 flush_dcache_page(pgv_to_page(start)); 769 770 smp_wmb(); 771 #endif 772 773 /* Now update the block status. */ 774 775 BLOCK_STATUS(pbd1) = status; 776 777 /* Flush the block header */ 778 779 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 780 start = (u8 *)pbd1; 781 flush_dcache_page(pgv_to_page(start)); 782 783 smp_wmb(); 784 #endif 785 } 786 787 /* 788 * Side effect: 789 * 790 * 1) flush the block 791 * 2) Increment active_blk_num 792 * 793 * Note:We DONT refresh the timer on purpose. 794 * Because almost always the next block will be opened. 795 */ 796 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 797 struct tpacket_block_desc *pbd1, 798 struct packet_sock *po, unsigned int stat) 799 { 800 __u32 status = TP_STATUS_USER | stat; 801 802 struct tpacket3_hdr *last_pkt; 803 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 804 struct sock *sk = &po->sk; 805 806 if (atomic_read(&po->tp_drops)) 807 status |= TP_STATUS_LOSING; 808 809 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 810 last_pkt->tp_next_offset = 0; 811 812 /* Get the ts of the last pkt */ 813 if (BLOCK_NUM_PKTS(pbd1)) { 814 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 815 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 816 } else { 817 /* Ok, we tmo'd - so get the current time. 818 * 819 * It shouldn't really happen as we don't close empty 820 * blocks. See prb_retire_rx_blk_timer_expired(). 821 */ 822 struct timespec64 ts; 823 ktime_get_real_ts64(&ts); 824 h1->ts_last_pkt.ts_sec = ts.tv_sec; 825 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 826 } 827 828 smp_wmb(); 829 830 /* Flush the block */ 831 prb_flush_block(pkc1, pbd1, status); 832 833 sk->sk_data_ready(sk); 834 835 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 836 } 837 838 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 839 { 840 pkc->reset_pending_on_curr_blk = 0; 841 } 842 843 /* 844 * Side effect of opening a block: 845 * 846 * 1) prb_queue is thawed. 847 * 2) retire_blk_timer is refreshed. 848 * 849 */ 850 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 851 struct tpacket_block_desc *pbd1) 852 { 853 struct timespec64 ts; 854 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 855 856 smp_rmb(); 857 858 /* We could have just memset this but we will lose the 859 * flexibility of making the priv area sticky 860 */ 861 862 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 863 BLOCK_NUM_PKTS(pbd1) = 0; 864 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 865 866 ktime_get_real_ts64(&ts); 867 868 h1->ts_first_pkt.ts_sec = ts.tv_sec; 869 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 870 871 pkc1->pkblk_start = (char *)pbd1; 872 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 873 874 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 875 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 876 877 pbd1->version = pkc1->version; 878 pkc1->prev = pkc1->nxt_offset; 879 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 880 881 prb_thaw_queue(pkc1); 882 _prb_refresh_rx_retire_blk_timer(pkc1); 883 884 smp_wmb(); 885 } 886 887 /* 888 * Queue freeze logic: 889 * 1) Assume tp_block_nr = 8 blocks. 890 * 2) At time 't0', user opens Rx ring. 891 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 892 * 4) user-space is either sleeping or processing block '0'. 893 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 894 * it will close block-7,loop around and try to fill block '0'. 895 * call-flow: 896 * __packet_lookup_frame_in_block 897 * prb_retire_current_block() 898 * prb_dispatch_next_block() 899 * |->(BLOCK_STATUS == USER) evaluates to true 900 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 901 * 6) Now there are two cases: 902 * 6.1) Link goes idle right after the queue is frozen. 903 * But remember, the last open_block() refreshed the timer. 904 * When this timer expires,it will refresh itself so that we can 905 * re-open block-0 in near future. 906 * 6.2) Link is busy and keeps on receiving packets. This is a simple 907 * case and __packet_lookup_frame_in_block will check if block-0 908 * is free and can now be re-used. 909 */ 910 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 911 struct packet_sock *po) 912 { 913 pkc->reset_pending_on_curr_blk = 1; 914 po->stats.stats3.tp_freeze_q_cnt++; 915 } 916 917 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 918 919 /* 920 * If the next block is free then we will dispatch it 921 * and return a good offset. 922 * Else, we will freeze the queue. 923 * So, caller must check the return value. 924 */ 925 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 926 struct packet_sock *po) 927 { 928 struct tpacket_block_desc *pbd; 929 930 smp_rmb(); 931 932 /* 1. Get current block num */ 933 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 934 935 /* 2. If this block is currently in_use then freeze the queue */ 936 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 937 prb_freeze_queue(pkc, po); 938 return NULL; 939 } 940 941 /* 942 * 3. 943 * open this block and return the offset where the first packet 944 * needs to get stored. 945 */ 946 prb_open_block(pkc, pbd); 947 return (void *)pkc->nxt_offset; 948 } 949 950 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 951 struct packet_sock *po, unsigned int status) 952 { 953 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 954 955 /* retire/close the current block */ 956 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 957 /* 958 * Plug the case where copy_bits() is in progress on 959 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 960 * have space to copy the pkt in the current block and 961 * called prb_retire_current_block() 962 * 963 * We don't need to worry about the TMO case because 964 * the timer-handler already handled this case. 965 */ 966 if (!(status & TP_STATUS_BLK_TMO)) { 967 /* Waiting for skb_copy_bits to finish... */ 968 write_lock(&pkc->blk_fill_in_prog_lock); 969 write_unlock(&pkc->blk_fill_in_prog_lock); 970 } 971 prb_close_block(pkc, pbd, po, status); 972 return; 973 } 974 } 975 976 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd) 977 { 978 return TP_STATUS_USER & BLOCK_STATUS(pbd); 979 } 980 981 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 982 { 983 return pkc->reset_pending_on_curr_blk; 984 } 985 986 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 987 __releases(&pkc->blk_fill_in_prog_lock) 988 { 989 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 990 991 read_unlock(&pkc->blk_fill_in_prog_lock); 992 } 993 994 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 995 struct tpacket3_hdr *ppd) 996 { 997 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); 998 } 999 1000 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 1001 struct tpacket3_hdr *ppd) 1002 { 1003 ppd->hv1.tp_rxhash = 0; 1004 } 1005 1006 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 1007 struct tpacket3_hdr *ppd) 1008 { 1009 if (skb_vlan_tag_present(pkc->skb)) { 1010 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); 1011 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); 1012 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 1013 } else { 1014 ppd->hv1.tp_vlan_tci = 0; 1015 ppd->hv1.tp_vlan_tpid = 0; 1016 ppd->tp_status = TP_STATUS_AVAILABLE; 1017 } 1018 } 1019 1020 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 1021 struct tpacket3_hdr *ppd) 1022 { 1023 ppd->hv1.tp_padding = 0; 1024 prb_fill_vlan_info(pkc, ppd); 1025 1026 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 1027 prb_fill_rxhash(pkc, ppd); 1028 else 1029 prb_clear_rxhash(pkc, ppd); 1030 } 1031 1032 static void prb_fill_curr_block(char *curr, 1033 struct tpacket_kbdq_core *pkc, 1034 struct tpacket_block_desc *pbd, 1035 unsigned int len) 1036 __acquires(&pkc->blk_fill_in_prog_lock) 1037 { 1038 struct tpacket3_hdr *ppd; 1039 1040 ppd = (struct tpacket3_hdr *)curr; 1041 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 1042 pkc->prev = curr; 1043 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 1044 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1045 BLOCK_NUM_PKTS(pbd) += 1; 1046 read_lock(&pkc->blk_fill_in_prog_lock); 1047 prb_run_all_ft_ops(pkc, ppd); 1048 } 1049 1050 /* Assumes caller has the sk->rx_queue.lock */ 1051 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1052 struct sk_buff *skb, 1053 unsigned int len 1054 ) 1055 { 1056 struct tpacket_kbdq_core *pkc; 1057 struct tpacket_block_desc *pbd; 1058 char *curr, *end; 1059 1060 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 1061 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1062 1063 /* Queue is frozen when user space is lagging behind */ 1064 if (prb_queue_frozen(pkc)) { 1065 /* 1066 * Check if that last block which caused the queue to freeze, 1067 * is still in_use by user-space. 1068 */ 1069 if (prb_curr_blk_in_use(pbd)) { 1070 /* Can't record this packet */ 1071 return NULL; 1072 } else { 1073 /* 1074 * Ok, the block was released by user-space. 1075 * Now let's open that block. 1076 * opening a block also thaws the queue. 1077 * Thawing is a side effect. 1078 */ 1079 prb_open_block(pkc, pbd); 1080 } 1081 } 1082 1083 smp_mb(); 1084 curr = pkc->nxt_offset; 1085 pkc->skb = skb; 1086 end = (char *)pbd + pkc->kblk_size; 1087 1088 /* first try the current block */ 1089 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1090 prb_fill_curr_block(curr, pkc, pbd, len); 1091 return (void *)curr; 1092 } 1093 1094 /* Ok, close the current block */ 1095 prb_retire_current_block(pkc, po, 0); 1096 1097 /* Now, try to dispatch the next block */ 1098 curr = (char *)prb_dispatch_next_block(pkc, po); 1099 if (curr) { 1100 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1101 prb_fill_curr_block(curr, pkc, pbd, len); 1102 return (void *)curr; 1103 } 1104 1105 /* 1106 * No free blocks are available.user_space hasn't caught up yet. 1107 * Queue was just frozen and now this packet will get dropped. 1108 */ 1109 return NULL; 1110 } 1111 1112 static void *packet_current_rx_frame(struct packet_sock *po, 1113 struct sk_buff *skb, 1114 int status, unsigned int len) 1115 { 1116 char *curr = NULL; 1117 switch (po->tp_version) { 1118 case TPACKET_V1: 1119 case TPACKET_V2: 1120 curr = packet_lookup_frame(po, &po->rx_ring, 1121 po->rx_ring.head, status); 1122 return curr; 1123 case TPACKET_V3: 1124 return __packet_lookup_frame_in_block(po, skb, len); 1125 default: 1126 WARN(1, "TPACKET version not supported\n"); 1127 BUG(); 1128 return NULL; 1129 } 1130 } 1131 1132 static void *prb_lookup_block(const struct packet_sock *po, 1133 const struct packet_ring_buffer *rb, 1134 unsigned int idx, 1135 int status) 1136 { 1137 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1138 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); 1139 1140 if (status != BLOCK_STATUS(pbd)) 1141 return NULL; 1142 return pbd; 1143 } 1144 1145 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1146 { 1147 unsigned int prev; 1148 if (rb->prb_bdqc.kactive_blk_num) 1149 prev = rb->prb_bdqc.kactive_blk_num-1; 1150 else 1151 prev = rb->prb_bdqc.knum_blocks-1; 1152 return prev; 1153 } 1154 1155 /* Assumes caller has held the rx_queue.lock */ 1156 static void *__prb_previous_block(struct packet_sock *po, 1157 struct packet_ring_buffer *rb, 1158 int status) 1159 { 1160 unsigned int previous = prb_previous_blk_num(rb); 1161 return prb_lookup_block(po, rb, previous, status); 1162 } 1163 1164 static void *packet_previous_rx_frame(struct packet_sock *po, 1165 struct packet_ring_buffer *rb, 1166 int status) 1167 { 1168 if (po->tp_version <= TPACKET_V2) 1169 return packet_previous_frame(po, rb, status); 1170 1171 return __prb_previous_block(po, rb, status); 1172 } 1173 1174 static void packet_increment_rx_head(struct packet_sock *po, 1175 struct packet_ring_buffer *rb) 1176 { 1177 switch (po->tp_version) { 1178 case TPACKET_V1: 1179 case TPACKET_V2: 1180 return packet_increment_head(rb); 1181 case TPACKET_V3: 1182 default: 1183 WARN(1, "TPACKET version not supported.\n"); 1184 BUG(); 1185 return; 1186 } 1187 } 1188 1189 static void *packet_previous_frame(struct packet_sock *po, 1190 struct packet_ring_buffer *rb, 1191 int status) 1192 { 1193 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1194 return packet_lookup_frame(po, rb, previous, status); 1195 } 1196 1197 static void packet_increment_head(struct packet_ring_buffer *buff) 1198 { 1199 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1200 } 1201 1202 static void packet_inc_pending(struct packet_ring_buffer *rb) 1203 { 1204 this_cpu_inc(*rb->pending_refcnt); 1205 } 1206 1207 static void packet_dec_pending(struct packet_ring_buffer *rb) 1208 { 1209 this_cpu_dec(*rb->pending_refcnt); 1210 } 1211 1212 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) 1213 { 1214 unsigned int refcnt = 0; 1215 int cpu; 1216 1217 /* We don't use pending refcount in rx_ring. */ 1218 if (rb->pending_refcnt == NULL) 1219 return 0; 1220 1221 for_each_possible_cpu(cpu) 1222 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); 1223 1224 return refcnt; 1225 } 1226 1227 static int packet_alloc_pending(struct packet_sock *po) 1228 { 1229 po->rx_ring.pending_refcnt = NULL; 1230 1231 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); 1232 if (unlikely(po->tx_ring.pending_refcnt == NULL)) 1233 return -ENOBUFS; 1234 1235 return 0; 1236 } 1237 1238 static void packet_free_pending(struct packet_sock *po) 1239 { 1240 free_percpu(po->tx_ring.pending_refcnt); 1241 } 1242 1243 #define ROOM_POW_OFF 2 1244 #define ROOM_NONE 0x0 1245 #define ROOM_LOW 0x1 1246 #define ROOM_NORMAL 0x2 1247 1248 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off) 1249 { 1250 int idx, len; 1251 1252 len = READ_ONCE(po->rx_ring.frame_max) + 1; 1253 idx = READ_ONCE(po->rx_ring.head); 1254 if (pow_off) 1255 idx += len >> pow_off; 1256 if (idx >= len) 1257 idx -= len; 1258 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1259 } 1260 1261 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off) 1262 { 1263 int idx, len; 1264 1265 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks); 1266 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num); 1267 if (pow_off) 1268 idx += len >> pow_off; 1269 if (idx >= len) 1270 idx -= len; 1271 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1272 } 1273 1274 static int __packet_rcv_has_room(const struct packet_sock *po, 1275 const struct sk_buff *skb) 1276 { 1277 const struct sock *sk = &po->sk; 1278 int ret = ROOM_NONE; 1279 1280 if (po->prot_hook.func != tpacket_rcv) { 1281 int rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1282 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc) 1283 - (skb ? skb->truesize : 0); 1284 1285 if (avail > (rcvbuf >> ROOM_POW_OFF)) 1286 return ROOM_NORMAL; 1287 else if (avail > 0) 1288 return ROOM_LOW; 1289 else 1290 return ROOM_NONE; 1291 } 1292 1293 if (po->tp_version == TPACKET_V3) { 1294 if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) 1295 ret = ROOM_NORMAL; 1296 else if (__tpacket_v3_has_room(po, 0)) 1297 ret = ROOM_LOW; 1298 } else { 1299 if (__tpacket_has_room(po, ROOM_POW_OFF)) 1300 ret = ROOM_NORMAL; 1301 else if (__tpacket_has_room(po, 0)) 1302 ret = ROOM_LOW; 1303 } 1304 1305 return ret; 1306 } 1307 1308 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1309 { 1310 bool pressure; 1311 int ret; 1312 1313 ret = __packet_rcv_has_room(po, skb); 1314 pressure = ret != ROOM_NORMAL; 1315 1316 if (packet_sock_flag(po, PACKET_SOCK_PRESSURE) != pressure) 1317 packet_sock_flag_set(po, PACKET_SOCK_PRESSURE, pressure); 1318 1319 return ret; 1320 } 1321 1322 static void packet_rcv_try_clear_pressure(struct packet_sock *po) 1323 { 1324 if (packet_sock_flag(po, PACKET_SOCK_PRESSURE) && 1325 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) 1326 packet_sock_flag_set(po, PACKET_SOCK_PRESSURE, false); 1327 } 1328 1329 static void packet_sock_destruct(struct sock *sk) 1330 { 1331 skb_queue_purge(&sk->sk_error_queue); 1332 1333 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1334 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 1335 1336 if (!sock_flag(sk, SOCK_DEAD)) { 1337 pr_err("Attempt to release alive packet socket: %p\n", sk); 1338 return; 1339 } 1340 } 1341 1342 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) 1343 { 1344 u32 *history = po->rollover->history; 1345 u32 victim, rxhash; 1346 int i, count = 0; 1347 1348 rxhash = skb_get_hash(skb); 1349 for (i = 0; i < ROLLOVER_HLEN; i++) 1350 if (READ_ONCE(history[i]) == rxhash) 1351 count++; 1352 1353 victim = get_random_u32_below(ROLLOVER_HLEN); 1354 1355 /* Avoid dirtying the cache line if possible */ 1356 if (READ_ONCE(history[victim]) != rxhash) 1357 WRITE_ONCE(history[victim], rxhash); 1358 1359 return count > (ROLLOVER_HLEN >> 1); 1360 } 1361 1362 static unsigned int fanout_demux_hash(struct packet_fanout *f, 1363 struct sk_buff *skb, 1364 unsigned int num) 1365 { 1366 return reciprocal_scale(__skb_get_hash_symmetric(skb), num); 1367 } 1368 1369 static unsigned int fanout_demux_lb(struct packet_fanout *f, 1370 struct sk_buff *skb, 1371 unsigned int num) 1372 { 1373 unsigned int val = atomic_inc_return(&f->rr_cur); 1374 1375 return val % num; 1376 } 1377 1378 static unsigned int fanout_demux_cpu(struct packet_fanout *f, 1379 struct sk_buff *skb, 1380 unsigned int num) 1381 { 1382 return smp_processor_id() % num; 1383 } 1384 1385 static unsigned int fanout_demux_rnd(struct packet_fanout *f, 1386 struct sk_buff *skb, 1387 unsigned int num) 1388 { 1389 return get_random_u32_below(num); 1390 } 1391 1392 static unsigned int fanout_demux_rollover(struct packet_fanout *f, 1393 struct sk_buff *skb, 1394 unsigned int idx, bool try_self, 1395 unsigned int num) 1396 { 1397 struct packet_sock *po, *po_next, *po_skip = NULL; 1398 unsigned int i, j, room = ROOM_NONE; 1399 1400 po = pkt_sk(rcu_dereference(f->arr[idx])); 1401 1402 if (try_self) { 1403 room = packet_rcv_has_room(po, skb); 1404 if (room == ROOM_NORMAL || 1405 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) 1406 return idx; 1407 po_skip = po; 1408 } 1409 1410 i = j = min_t(int, po->rollover->sock, num - 1); 1411 do { 1412 po_next = pkt_sk(rcu_dereference(f->arr[i])); 1413 if (po_next != po_skip && 1414 !packet_sock_flag(po_next, PACKET_SOCK_PRESSURE) && 1415 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { 1416 if (i != j) 1417 po->rollover->sock = i; 1418 atomic_long_inc(&po->rollover->num); 1419 if (room == ROOM_LOW) 1420 atomic_long_inc(&po->rollover->num_huge); 1421 return i; 1422 } 1423 1424 if (++i == num) 1425 i = 0; 1426 } while (i != j); 1427 1428 atomic_long_inc(&po->rollover->num_failed); 1429 return idx; 1430 } 1431 1432 static unsigned int fanout_demux_qm(struct packet_fanout *f, 1433 struct sk_buff *skb, 1434 unsigned int num) 1435 { 1436 return skb_get_queue_mapping(skb) % num; 1437 } 1438 1439 static unsigned int fanout_demux_bpf(struct packet_fanout *f, 1440 struct sk_buff *skb, 1441 unsigned int num) 1442 { 1443 struct bpf_prog *prog; 1444 unsigned int ret = 0; 1445 1446 rcu_read_lock(); 1447 prog = rcu_dereference(f->bpf_prog); 1448 if (prog) 1449 ret = bpf_prog_run_clear_cb(prog, skb) % num; 1450 rcu_read_unlock(); 1451 1452 return ret; 1453 } 1454 1455 static bool fanout_has_flag(struct packet_fanout *f, u16 flag) 1456 { 1457 return f->flags & (flag >> 8); 1458 } 1459 1460 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1461 struct packet_type *pt, struct net_device *orig_dev) 1462 { 1463 struct packet_fanout *f = pt->af_packet_priv; 1464 unsigned int num = READ_ONCE(f->num_members); 1465 struct net *net = read_pnet(&f->net); 1466 struct packet_sock *po; 1467 unsigned int idx; 1468 1469 if (!net_eq(dev_net(dev), net) || !num) { 1470 kfree_skb(skb); 1471 return 0; 1472 } 1473 1474 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { 1475 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET); 1476 if (!skb) 1477 return 0; 1478 } 1479 switch (f->type) { 1480 case PACKET_FANOUT_HASH: 1481 default: 1482 idx = fanout_demux_hash(f, skb, num); 1483 break; 1484 case PACKET_FANOUT_LB: 1485 idx = fanout_demux_lb(f, skb, num); 1486 break; 1487 case PACKET_FANOUT_CPU: 1488 idx = fanout_demux_cpu(f, skb, num); 1489 break; 1490 case PACKET_FANOUT_RND: 1491 idx = fanout_demux_rnd(f, skb, num); 1492 break; 1493 case PACKET_FANOUT_QM: 1494 idx = fanout_demux_qm(f, skb, num); 1495 break; 1496 case PACKET_FANOUT_ROLLOVER: 1497 idx = fanout_demux_rollover(f, skb, 0, false, num); 1498 break; 1499 case PACKET_FANOUT_CBPF: 1500 case PACKET_FANOUT_EBPF: 1501 idx = fanout_demux_bpf(f, skb, num); 1502 break; 1503 } 1504 1505 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) 1506 idx = fanout_demux_rollover(f, skb, idx, true, num); 1507 1508 po = pkt_sk(rcu_dereference(f->arr[idx])); 1509 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1510 } 1511 1512 DEFINE_MUTEX(fanout_mutex); 1513 EXPORT_SYMBOL_GPL(fanout_mutex); 1514 static LIST_HEAD(fanout_list); 1515 static u16 fanout_next_id; 1516 1517 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1518 { 1519 struct packet_fanout *f = po->fanout; 1520 1521 spin_lock(&f->lock); 1522 rcu_assign_pointer(f->arr[f->num_members], sk); 1523 smp_wmb(); 1524 f->num_members++; 1525 if (f->num_members == 1) 1526 dev_add_pack(&f->prot_hook); 1527 spin_unlock(&f->lock); 1528 } 1529 1530 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1531 { 1532 struct packet_fanout *f = po->fanout; 1533 int i; 1534 1535 spin_lock(&f->lock); 1536 for (i = 0; i < f->num_members; i++) { 1537 if (rcu_dereference_protected(f->arr[i], 1538 lockdep_is_held(&f->lock)) == sk) 1539 break; 1540 } 1541 BUG_ON(i >= f->num_members); 1542 rcu_assign_pointer(f->arr[i], 1543 rcu_dereference_protected(f->arr[f->num_members - 1], 1544 lockdep_is_held(&f->lock))); 1545 f->num_members--; 1546 if (f->num_members == 0) 1547 __dev_remove_pack(&f->prot_hook); 1548 spin_unlock(&f->lock); 1549 } 1550 1551 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) 1552 { 1553 if (sk->sk_family != PF_PACKET) 1554 return false; 1555 1556 return ptype->af_packet_priv == pkt_sk(sk)->fanout; 1557 } 1558 1559 static void fanout_init_data(struct packet_fanout *f) 1560 { 1561 switch (f->type) { 1562 case PACKET_FANOUT_LB: 1563 atomic_set(&f->rr_cur, 0); 1564 break; 1565 case PACKET_FANOUT_CBPF: 1566 case PACKET_FANOUT_EBPF: 1567 RCU_INIT_POINTER(f->bpf_prog, NULL); 1568 break; 1569 } 1570 } 1571 1572 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) 1573 { 1574 struct bpf_prog *old; 1575 1576 spin_lock(&f->lock); 1577 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); 1578 rcu_assign_pointer(f->bpf_prog, new); 1579 spin_unlock(&f->lock); 1580 1581 if (old) { 1582 synchronize_net(); 1583 bpf_prog_destroy(old); 1584 } 1585 } 1586 1587 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data, 1588 unsigned int len) 1589 { 1590 struct bpf_prog *new; 1591 struct sock_fprog fprog; 1592 int ret; 1593 1594 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1595 return -EPERM; 1596 1597 ret = copy_bpf_fprog_from_user(&fprog, data, len); 1598 if (ret) 1599 return ret; 1600 1601 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false); 1602 if (ret) 1603 return ret; 1604 1605 __fanout_set_data_bpf(po->fanout, new); 1606 return 0; 1607 } 1608 1609 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data, 1610 unsigned int len) 1611 { 1612 struct bpf_prog *new; 1613 u32 fd; 1614 1615 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1616 return -EPERM; 1617 if (len != sizeof(fd)) 1618 return -EINVAL; 1619 if (copy_from_sockptr(&fd, data, len)) 1620 return -EFAULT; 1621 1622 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); 1623 if (IS_ERR(new)) 1624 return PTR_ERR(new); 1625 1626 __fanout_set_data_bpf(po->fanout, new); 1627 return 0; 1628 } 1629 1630 static int fanout_set_data(struct packet_sock *po, sockptr_t data, 1631 unsigned int len) 1632 { 1633 switch (po->fanout->type) { 1634 case PACKET_FANOUT_CBPF: 1635 return fanout_set_data_cbpf(po, data, len); 1636 case PACKET_FANOUT_EBPF: 1637 return fanout_set_data_ebpf(po, data, len); 1638 default: 1639 return -EINVAL; 1640 } 1641 } 1642 1643 static void fanout_release_data(struct packet_fanout *f) 1644 { 1645 switch (f->type) { 1646 case PACKET_FANOUT_CBPF: 1647 case PACKET_FANOUT_EBPF: 1648 __fanout_set_data_bpf(f, NULL); 1649 } 1650 } 1651 1652 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id) 1653 { 1654 struct packet_fanout *f; 1655 1656 list_for_each_entry(f, &fanout_list, list) { 1657 if (f->id == candidate_id && 1658 read_pnet(&f->net) == sock_net(sk)) { 1659 return false; 1660 } 1661 } 1662 return true; 1663 } 1664 1665 static bool fanout_find_new_id(struct sock *sk, u16 *new_id) 1666 { 1667 u16 id = fanout_next_id; 1668 1669 do { 1670 if (__fanout_id_is_free(sk, id)) { 1671 *new_id = id; 1672 fanout_next_id = id + 1; 1673 return true; 1674 } 1675 1676 id++; 1677 } while (id != fanout_next_id); 1678 1679 return false; 1680 } 1681 1682 static int fanout_add(struct sock *sk, struct fanout_args *args) 1683 { 1684 struct packet_rollover *rollover = NULL; 1685 struct packet_sock *po = pkt_sk(sk); 1686 u16 type_flags = args->type_flags; 1687 struct packet_fanout *f, *match; 1688 u8 type = type_flags & 0xff; 1689 u8 flags = type_flags >> 8; 1690 u16 id = args->id; 1691 int err; 1692 1693 switch (type) { 1694 case PACKET_FANOUT_ROLLOVER: 1695 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) 1696 return -EINVAL; 1697 break; 1698 case PACKET_FANOUT_HASH: 1699 case PACKET_FANOUT_LB: 1700 case PACKET_FANOUT_CPU: 1701 case PACKET_FANOUT_RND: 1702 case PACKET_FANOUT_QM: 1703 case PACKET_FANOUT_CBPF: 1704 case PACKET_FANOUT_EBPF: 1705 break; 1706 default: 1707 return -EINVAL; 1708 } 1709 1710 mutex_lock(&fanout_mutex); 1711 1712 err = -EALREADY; 1713 if (po->fanout) 1714 goto out; 1715 1716 if (type == PACKET_FANOUT_ROLLOVER || 1717 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { 1718 err = -ENOMEM; 1719 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL); 1720 if (!rollover) 1721 goto out; 1722 atomic_long_set(&rollover->num, 0); 1723 atomic_long_set(&rollover->num_huge, 0); 1724 atomic_long_set(&rollover->num_failed, 0); 1725 } 1726 1727 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) { 1728 if (id != 0) { 1729 err = -EINVAL; 1730 goto out; 1731 } 1732 if (!fanout_find_new_id(sk, &id)) { 1733 err = -ENOMEM; 1734 goto out; 1735 } 1736 /* ephemeral flag for the first socket in the group: drop it */ 1737 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8); 1738 } 1739 1740 match = NULL; 1741 list_for_each_entry(f, &fanout_list, list) { 1742 if (f->id == id && 1743 read_pnet(&f->net) == sock_net(sk)) { 1744 match = f; 1745 break; 1746 } 1747 } 1748 err = -EINVAL; 1749 if (match) { 1750 if (match->flags != flags) 1751 goto out; 1752 if (args->max_num_members && 1753 args->max_num_members != match->max_num_members) 1754 goto out; 1755 } else { 1756 if (args->max_num_members > PACKET_FANOUT_MAX) 1757 goto out; 1758 if (!args->max_num_members) 1759 /* legacy PACKET_FANOUT_MAX */ 1760 args->max_num_members = 256; 1761 err = -ENOMEM; 1762 match = kvzalloc(struct_size(match, arr, args->max_num_members), 1763 GFP_KERNEL); 1764 if (!match) 1765 goto out; 1766 write_pnet(&match->net, sock_net(sk)); 1767 match->id = id; 1768 match->type = type; 1769 match->flags = flags; 1770 INIT_LIST_HEAD(&match->list); 1771 spin_lock_init(&match->lock); 1772 refcount_set(&match->sk_ref, 0); 1773 fanout_init_data(match); 1774 match->prot_hook.type = po->prot_hook.type; 1775 match->prot_hook.dev = po->prot_hook.dev; 1776 match->prot_hook.func = packet_rcv_fanout; 1777 match->prot_hook.af_packet_priv = match; 1778 match->prot_hook.af_packet_net = read_pnet(&match->net); 1779 match->prot_hook.id_match = match_fanout_group; 1780 match->max_num_members = args->max_num_members; 1781 match->prot_hook.ignore_outgoing = type_flags & PACKET_FANOUT_FLAG_IGNORE_OUTGOING; 1782 list_add(&match->list, &fanout_list); 1783 } 1784 err = -EINVAL; 1785 1786 spin_lock(&po->bind_lock); 1787 if (packet_sock_flag(po, PACKET_SOCK_RUNNING) && 1788 match->type == type && 1789 match->prot_hook.type == po->prot_hook.type && 1790 match->prot_hook.dev == po->prot_hook.dev) { 1791 err = -ENOSPC; 1792 if (refcount_read(&match->sk_ref) < match->max_num_members) { 1793 __dev_remove_pack(&po->prot_hook); 1794 1795 /* Paired with packet_setsockopt(PACKET_FANOUT_DATA) */ 1796 WRITE_ONCE(po->fanout, match); 1797 1798 po->rollover = rollover; 1799 rollover = NULL; 1800 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1); 1801 __fanout_link(sk, po); 1802 err = 0; 1803 } 1804 } 1805 spin_unlock(&po->bind_lock); 1806 1807 if (err && !refcount_read(&match->sk_ref)) { 1808 list_del(&match->list); 1809 kvfree(match); 1810 } 1811 1812 out: 1813 kfree(rollover); 1814 mutex_unlock(&fanout_mutex); 1815 return err; 1816 } 1817 1818 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes 1819 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout. 1820 * It is the responsibility of the caller to call fanout_release_data() and 1821 * free the returned packet_fanout (after synchronize_net()) 1822 */ 1823 static struct packet_fanout *fanout_release(struct sock *sk) 1824 { 1825 struct packet_sock *po = pkt_sk(sk); 1826 struct packet_fanout *f; 1827 1828 mutex_lock(&fanout_mutex); 1829 f = po->fanout; 1830 if (f) { 1831 po->fanout = NULL; 1832 1833 if (refcount_dec_and_test(&f->sk_ref)) 1834 list_del(&f->list); 1835 else 1836 f = NULL; 1837 } 1838 mutex_unlock(&fanout_mutex); 1839 1840 return f; 1841 } 1842 1843 static bool packet_extra_vlan_len_allowed(const struct net_device *dev, 1844 struct sk_buff *skb) 1845 { 1846 /* Earlier code assumed this would be a VLAN pkt, double-check 1847 * this now that we have the actual packet in hand. We can only 1848 * do this check on Ethernet devices. 1849 */ 1850 if (unlikely(dev->type != ARPHRD_ETHER)) 1851 return false; 1852 1853 skb_reset_mac_header(skb); 1854 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)); 1855 } 1856 1857 static const struct proto_ops packet_ops; 1858 1859 static const struct proto_ops packet_ops_spkt; 1860 1861 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1862 struct packet_type *pt, struct net_device *orig_dev) 1863 { 1864 struct sock *sk; 1865 struct sockaddr_pkt *spkt; 1866 1867 /* 1868 * When we registered the protocol we saved the socket in the data 1869 * field for just this event. 1870 */ 1871 1872 sk = pt->af_packet_priv; 1873 1874 /* 1875 * Yank back the headers [hope the device set this 1876 * right or kerboom...] 1877 * 1878 * Incoming packets have ll header pulled, 1879 * push it back. 1880 * 1881 * For outgoing ones skb->data == skb_mac_header(skb) 1882 * so that this procedure is noop. 1883 */ 1884 1885 if (skb->pkt_type == PACKET_LOOPBACK) 1886 goto out; 1887 1888 if (!net_eq(dev_net(dev), sock_net(sk))) 1889 goto out; 1890 1891 skb = skb_share_check(skb, GFP_ATOMIC); 1892 if (skb == NULL) 1893 goto oom; 1894 1895 /* drop any routing info */ 1896 skb_dst_drop(skb); 1897 1898 /* drop conntrack reference */ 1899 nf_reset_ct(skb); 1900 1901 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1902 1903 skb_push(skb, skb->data - skb_mac_header(skb)); 1904 1905 /* 1906 * The SOCK_PACKET socket receives _all_ frames. 1907 */ 1908 1909 spkt->spkt_family = dev->type; 1910 strscpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1911 spkt->spkt_protocol = skb->protocol; 1912 1913 /* 1914 * Charge the memory to the socket. This is done specifically 1915 * to prevent sockets using all the memory up. 1916 */ 1917 1918 if (sock_queue_rcv_skb(sk, skb) == 0) 1919 return 0; 1920 1921 out: 1922 kfree_skb(skb); 1923 oom: 1924 return 0; 1925 } 1926 1927 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock) 1928 { 1929 int depth; 1930 1931 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) && 1932 sock->type == SOCK_RAW) { 1933 skb_reset_mac_header(skb); 1934 skb->protocol = dev_parse_header_protocol(skb); 1935 } 1936 1937 /* Move network header to the right position for VLAN tagged packets */ 1938 if (likely(skb->dev->type == ARPHRD_ETHER) && 1939 eth_type_vlan(skb->protocol) && 1940 __vlan_get_protocol(skb, skb->protocol, &depth) != 0) { 1941 if (pskb_may_pull(skb, depth)) 1942 skb_set_network_header(skb, depth); 1943 } 1944 1945 skb_probe_transport_header(skb); 1946 } 1947 1948 /* 1949 * Output a raw packet to a device layer. This bypasses all the other 1950 * protocol layers and you must therefore supply it with a complete frame 1951 */ 1952 1953 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, 1954 size_t len) 1955 { 1956 struct sock *sk = sock->sk; 1957 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); 1958 struct sk_buff *skb = NULL; 1959 struct net_device *dev; 1960 struct sockcm_cookie sockc; 1961 __be16 proto = 0; 1962 int err; 1963 int extra_len = 0; 1964 1965 /* 1966 * Get and verify the address. 1967 */ 1968 1969 if (saddr) { 1970 if (msg->msg_namelen < sizeof(struct sockaddr)) 1971 return -EINVAL; 1972 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1973 proto = saddr->spkt_protocol; 1974 } else 1975 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1976 1977 /* 1978 * Find the device first to size check it 1979 */ 1980 1981 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; 1982 retry: 1983 rcu_read_lock(); 1984 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1985 err = -ENODEV; 1986 if (dev == NULL) 1987 goto out_unlock; 1988 1989 err = -ENETDOWN; 1990 if (!(dev->flags & IFF_UP)) 1991 goto out_unlock; 1992 1993 /* 1994 * You may not queue a frame bigger than the mtu. This is the lowest level 1995 * raw protocol and you must do your own fragmentation at this level. 1996 */ 1997 1998 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 1999 if (!netif_supports_nofcs(dev)) { 2000 err = -EPROTONOSUPPORT; 2001 goto out_unlock; 2002 } 2003 extra_len = 4; /* We're doing our own CRC */ 2004 } 2005 2006 err = -EMSGSIZE; 2007 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) 2008 goto out_unlock; 2009 2010 if (!skb) { 2011 size_t reserved = LL_RESERVED_SPACE(dev); 2012 int tlen = dev->needed_tailroom; 2013 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 2014 2015 rcu_read_unlock(); 2016 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 2017 if (skb == NULL) 2018 return -ENOBUFS; 2019 /* FIXME: Save some space for broken drivers that write a hard 2020 * header at transmission time by themselves. PPP is the notable 2021 * one here. This should really be fixed at the driver level. 2022 */ 2023 skb_reserve(skb, reserved); 2024 skb_reset_network_header(skb); 2025 2026 /* Try to align data part correctly */ 2027 if (hhlen) { 2028 skb->data -= hhlen; 2029 skb->tail -= hhlen; 2030 if (len < hhlen) 2031 skb_reset_network_header(skb); 2032 } 2033 err = memcpy_from_msg(skb_put(skb, len), msg, len); 2034 if (err) 2035 goto out_free; 2036 goto retry; 2037 } 2038 2039 if (!dev_validate_header(dev, skb->data, len)) { 2040 err = -EINVAL; 2041 goto out_unlock; 2042 } 2043 if (len > (dev->mtu + dev->hard_header_len + extra_len) && 2044 !packet_extra_vlan_len_allowed(dev, skb)) { 2045 err = -EMSGSIZE; 2046 goto out_unlock; 2047 } 2048 2049 sockcm_init(&sockc, sk); 2050 if (msg->msg_controllen) { 2051 err = sock_cmsg_send(sk, msg, &sockc); 2052 if (unlikely(err)) 2053 goto out_unlock; 2054 } 2055 2056 skb->protocol = proto; 2057 skb->dev = dev; 2058 skb->priority = sk->sk_priority; 2059 skb->mark = sk->sk_mark; 2060 skb->tstamp = sockc.transmit_time; 2061 2062 skb_setup_tx_timestamp(skb, sockc.tsflags); 2063 2064 if (unlikely(extra_len == 4)) 2065 skb->no_fcs = 1; 2066 2067 packet_parse_headers(skb, sock); 2068 2069 dev_queue_xmit(skb); 2070 rcu_read_unlock(); 2071 return len; 2072 2073 out_unlock: 2074 rcu_read_unlock(); 2075 out_free: 2076 kfree_skb(skb); 2077 return err; 2078 } 2079 2080 static unsigned int run_filter(struct sk_buff *skb, 2081 const struct sock *sk, 2082 unsigned int res) 2083 { 2084 struct sk_filter *filter; 2085 2086 rcu_read_lock(); 2087 filter = rcu_dereference(sk->sk_filter); 2088 if (filter != NULL) 2089 res = bpf_prog_run_clear_cb(filter->prog, skb); 2090 rcu_read_unlock(); 2091 2092 return res; 2093 } 2094 2095 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb, 2096 size_t *len) 2097 { 2098 struct virtio_net_hdr vnet_hdr; 2099 2100 if (*len < sizeof(vnet_hdr)) 2101 return -EINVAL; 2102 *len -= sizeof(vnet_hdr); 2103 2104 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0)) 2105 return -EINVAL; 2106 2107 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr)); 2108 } 2109 2110 /* 2111 * This function makes lazy skb cloning in hope that most of packets 2112 * are discarded by BPF. 2113 * 2114 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 2115 * and skb->cb are mangled. It works because (and until) packets 2116 * falling here are owned by current CPU. Output packets are cloned 2117 * by dev_queue_xmit_nit(), input packets are processed by net_bh 2118 * sequentially, so that if we return skb to original state on exit, 2119 * we will not harm anyone. 2120 */ 2121 2122 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 2123 struct packet_type *pt, struct net_device *orig_dev) 2124 { 2125 struct sock *sk; 2126 struct sockaddr_ll *sll; 2127 struct packet_sock *po; 2128 u8 *skb_head = skb->data; 2129 int skb_len = skb->len; 2130 unsigned int snaplen, res; 2131 bool is_drop_n_account = false; 2132 2133 if (skb->pkt_type == PACKET_LOOPBACK) 2134 goto drop; 2135 2136 sk = pt->af_packet_priv; 2137 po = pkt_sk(sk); 2138 2139 if (!net_eq(dev_net(dev), sock_net(sk))) 2140 goto drop; 2141 2142 skb->dev = dev; 2143 2144 if (dev_has_header(dev)) { 2145 /* The device has an explicit notion of ll header, 2146 * exported to higher levels. 2147 * 2148 * Otherwise, the device hides details of its frame 2149 * structure, so that corresponding packet head is 2150 * never delivered to user. 2151 */ 2152 if (sk->sk_type != SOCK_DGRAM) 2153 skb_push(skb, skb->data - skb_mac_header(skb)); 2154 else if (skb->pkt_type == PACKET_OUTGOING) { 2155 /* Special case: outgoing packets have ll header at head */ 2156 skb_pull(skb, skb_network_offset(skb)); 2157 } 2158 } 2159 2160 snaplen = skb->len; 2161 2162 res = run_filter(skb, sk, snaplen); 2163 if (!res) 2164 goto drop_n_restore; 2165 if (snaplen > res) 2166 snaplen = res; 2167 2168 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2169 goto drop_n_acct; 2170 2171 if (skb_shared(skb)) { 2172 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2173 if (nskb == NULL) 2174 goto drop_n_acct; 2175 2176 if (skb_head != skb->data) { 2177 skb->data = skb_head; 2178 skb->len = skb_len; 2179 } 2180 consume_skb(skb); 2181 skb = nskb; 2182 } 2183 2184 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); 2185 2186 sll = &PACKET_SKB_CB(skb)->sa.ll; 2187 sll->sll_hatype = dev->type; 2188 sll->sll_pkttype = skb->pkt_type; 2189 if (unlikely(packet_sock_flag(po, PACKET_SOCK_ORIGDEV))) 2190 sll->sll_ifindex = orig_dev->ifindex; 2191 else 2192 sll->sll_ifindex = dev->ifindex; 2193 2194 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2195 2196 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). 2197 * Use their space for storing the original skb length. 2198 */ 2199 PACKET_SKB_CB(skb)->sa.origlen = skb->len; 2200 2201 if (pskb_trim(skb, snaplen)) 2202 goto drop_n_acct; 2203 2204 skb_set_owner_r(skb, sk); 2205 skb->dev = NULL; 2206 skb_dst_drop(skb); 2207 2208 /* drop conntrack reference */ 2209 nf_reset_ct(skb); 2210 2211 spin_lock(&sk->sk_receive_queue.lock); 2212 po->stats.stats1.tp_packets++; 2213 sock_skb_set_dropcount(sk, skb); 2214 skb_clear_delivery_time(skb); 2215 __skb_queue_tail(&sk->sk_receive_queue, skb); 2216 spin_unlock(&sk->sk_receive_queue.lock); 2217 sk->sk_data_ready(sk); 2218 return 0; 2219 2220 drop_n_acct: 2221 is_drop_n_account = true; 2222 atomic_inc(&po->tp_drops); 2223 atomic_inc(&sk->sk_drops); 2224 2225 drop_n_restore: 2226 if (skb_head != skb->data && skb_shared(skb)) { 2227 skb->data = skb_head; 2228 skb->len = skb_len; 2229 } 2230 drop: 2231 if (!is_drop_n_account) 2232 consume_skb(skb); 2233 else 2234 kfree_skb(skb); 2235 return 0; 2236 } 2237 2238 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 2239 struct packet_type *pt, struct net_device *orig_dev) 2240 { 2241 struct sock *sk; 2242 struct packet_sock *po; 2243 struct sockaddr_ll *sll; 2244 union tpacket_uhdr h; 2245 u8 *skb_head = skb->data; 2246 int skb_len = skb->len; 2247 unsigned int snaplen, res; 2248 unsigned long status = TP_STATUS_USER; 2249 unsigned short macoff, hdrlen; 2250 unsigned int netoff; 2251 struct sk_buff *copy_skb = NULL; 2252 struct timespec64 ts; 2253 __u32 ts_status; 2254 bool is_drop_n_account = false; 2255 unsigned int slot_id = 0; 2256 bool do_vnet = false; 2257 2258 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. 2259 * We may add members to them until current aligned size without forcing 2260 * userspace to call getsockopt(..., PACKET_HDRLEN, ...). 2261 */ 2262 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); 2263 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); 2264 2265 if (skb->pkt_type == PACKET_LOOPBACK) 2266 goto drop; 2267 2268 sk = pt->af_packet_priv; 2269 po = pkt_sk(sk); 2270 2271 if (!net_eq(dev_net(dev), sock_net(sk))) 2272 goto drop; 2273 2274 if (dev_has_header(dev)) { 2275 if (sk->sk_type != SOCK_DGRAM) 2276 skb_push(skb, skb->data - skb_mac_header(skb)); 2277 else if (skb->pkt_type == PACKET_OUTGOING) { 2278 /* Special case: outgoing packets have ll header at head */ 2279 skb_pull(skb, skb_network_offset(skb)); 2280 } 2281 } 2282 2283 snaplen = skb->len; 2284 2285 res = run_filter(skb, sk, snaplen); 2286 if (!res) 2287 goto drop_n_restore; 2288 2289 /* If we are flooded, just give up */ 2290 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) { 2291 atomic_inc(&po->tp_drops); 2292 goto drop_n_restore; 2293 } 2294 2295 if (skb->ip_summed == CHECKSUM_PARTIAL) 2296 status |= TP_STATUS_CSUMNOTREADY; 2297 else if (skb->pkt_type != PACKET_OUTGOING && 2298 skb_csum_unnecessary(skb)) 2299 status |= TP_STATUS_CSUM_VALID; 2300 if (skb_is_gso(skb) && skb_is_gso_tcp(skb)) 2301 status |= TP_STATUS_GSO_TCP; 2302 2303 if (snaplen > res) 2304 snaplen = res; 2305 2306 if (sk->sk_type == SOCK_DGRAM) { 2307 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 2308 po->tp_reserve; 2309 } else { 2310 unsigned int maclen = skb_network_offset(skb); 2311 netoff = TPACKET_ALIGN(po->tp_hdrlen + 2312 (maclen < 16 ? 16 : maclen)) + 2313 po->tp_reserve; 2314 if (packet_sock_flag(po, PACKET_SOCK_HAS_VNET_HDR)) { 2315 netoff += sizeof(struct virtio_net_hdr); 2316 do_vnet = true; 2317 } 2318 macoff = netoff - maclen; 2319 } 2320 if (netoff > USHRT_MAX) { 2321 atomic_inc(&po->tp_drops); 2322 goto drop_n_restore; 2323 } 2324 if (po->tp_version <= TPACKET_V2) { 2325 if (macoff + snaplen > po->rx_ring.frame_size) { 2326 if (po->copy_thresh && 2327 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 2328 if (skb_shared(skb)) { 2329 copy_skb = skb_clone(skb, GFP_ATOMIC); 2330 } else { 2331 copy_skb = skb_get(skb); 2332 skb_head = skb->data; 2333 } 2334 if (copy_skb) { 2335 memset(&PACKET_SKB_CB(copy_skb)->sa.ll, 0, 2336 sizeof(PACKET_SKB_CB(copy_skb)->sa.ll)); 2337 skb_set_owner_r(copy_skb, sk); 2338 } 2339 } 2340 snaplen = po->rx_ring.frame_size - macoff; 2341 if ((int)snaplen < 0) { 2342 snaplen = 0; 2343 do_vnet = false; 2344 } 2345 } 2346 } else if (unlikely(macoff + snaplen > 2347 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { 2348 u32 nval; 2349 2350 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; 2351 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", 2352 snaplen, nval, macoff); 2353 snaplen = nval; 2354 if (unlikely((int)snaplen < 0)) { 2355 snaplen = 0; 2356 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; 2357 do_vnet = false; 2358 } 2359 } 2360 spin_lock(&sk->sk_receive_queue.lock); 2361 h.raw = packet_current_rx_frame(po, skb, 2362 TP_STATUS_KERNEL, (macoff+snaplen)); 2363 if (!h.raw) 2364 goto drop_n_account; 2365 2366 if (po->tp_version <= TPACKET_V2) { 2367 slot_id = po->rx_ring.head; 2368 if (test_bit(slot_id, po->rx_ring.rx_owner_map)) 2369 goto drop_n_account; 2370 __set_bit(slot_id, po->rx_ring.rx_owner_map); 2371 } 2372 2373 if (do_vnet && 2374 virtio_net_hdr_from_skb(skb, h.raw + macoff - 2375 sizeof(struct virtio_net_hdr), 2376 vio_le(), true, 0)) { 2377 if (po->tp_version == TPACKET_V3) 2378 prb_clear_blk_fill_status(&po->rx_ring); 2379 goto drop_n_account; 2380 } 2381 2382 if (po->tp_version <= TPACKET_V2) { 2383 packet_increment_rx_head(po, &po->rx_ring); 2384 /* 2385 * LOSING will be reported till you read the stats, 2386 * because it's COR - Clear On Read. 2387 * Anyways, moving it for V1/V2 only as V3 doesn't need this 2388 * at packet level. 2389 */ 2390 if (atomic_read(&po->tp_drops)) 2391 status |= TP_STATUS_LOSING; 2392 } 2393 2394 po->stats.stats1.tp_packets++; 2395 if (copy_skb) { 2396 status |= TP_STATUS_COPY; 2397 skb_clear_delivery_time(copy_skb); 2398 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 2399 } 2400 spin_unlock(&sk->sk_receive_queue.lock); 2401 2402 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 2403 2404 /* Always timestamp; prefer an existing software timestamp taken 2405 * closer to the time of capture. 2406 */ 2407 ts_status = tpacket_get_timestamp(skb, &ts, 2408 READ_ONCE(po->tp_tstamp) | 2409 SOF_TIMESTAMPING_SOFTWARE); 2410 if (!ts_status) 2411 ktime_get_real_ts64(&ts); 2412 2413 status |= ts_status; 2414 2415 switch (po->tp_version) { 2416 case TPACKET_V1: 2417 h.h1->tp_len = skb->len; 2418 h.h1->tp_snaplen = snaplen; 2419 h.h1->tp_mac = macoff; 2420 h.h1->tp_net = netoff; 2421 h.h1->tp_sec = ts.tv_sec; 2422 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 2423 hdrlen = sizeof(*h.h1); 2424 break; 2425 case TPACKET_V2: 2426 h.h2->tp_len = skb->len; 2427 h.h2->tp_snaplen = snaplen; 2428 h.h2->tp_mac = macoff; 2429 h.h2->tp_net = netoff; 2430 h.h2->tp_sec = ts.tv_sec; 2431 h.h2->tp_nsec = ts.tv_nsec; 2432 if (skb_vlan_tag_present(skb)) { 2433 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); 2434 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); 2435 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 2436 } else { 2437 h.h2->tp_vlan_tci = 0; 2438 h.h2->tp_vlan_tpid = 0; 2439 } 2440 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); 2441 hdrlen = sizeof(*h.h2); 2442 break; 2443 case TPACKET_V3: 2444 /* tp_nxt_offset,vlan are already populated above. 2445 * So DONT clear those fields here 2446 */ 2447 h.h3->tp_status |= status; 2448 h.h3->tp_len = skb->len; 2449 h.h3->tp_snaplen = snaplen; 2450 h.h3->tp_mac = macoff; 2451 h.h3->tp_net = netoff; 2452 h.h3->tp_sec = ts.tv_sec; 2453 h.h3->tp_nsec = ts.tv_nsec; 2454 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); 2455 hdrlen = sizeof(*h.h3); 2456 break; 2457 default: 2458 BUG(); 2459 } 2460 2461 sll = h.raw + TPACKET_ALIGN(hdrlen); 2462 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2463 sll->sll_family = AF_PACKET; 2464 sll->sll_hatype = dev->type; 2465 sll->sll_protocol = skb->protocol; 2466 sll->sll_pkttype = skb->pkt_type; 2467 if (unlikely(packet_sock_flag(po, PACKET_SOCK_ORIGDEV))) 2468 sll->sll_ifindex = orig_dev->ifindex; 2469 else 2470 sll->sll_ifindex = dev->ifindex; 2471 2472 smp_mb(); 2473 2474 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 2475 if (po->tp_version <= TPACKET_V2) { 2476 u8 *start, *end; 2477 2478 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + 2479 macoff + snaplen); 2480 2481 for (start = h.raw; start < end; start += PAGE_SIZE) 2482 flush_dcache_page(pgv_to_page(start)); 2483 } 2484 smp_wmb(); 2485 #endif 2486 2487 if (po->tp_version <= TPACKET_V2) { 2488 spin_lock(&sk->sk_receive_queue.lock); 2489 __packet_set_status(po, h.raw, status); 2490 __clear_bit(slot_id, po->rx_ring.rx_owner_map); 2491 spin_unlock(&sk->sk_receive_queue.lock); 2492 sk->sk_data_ready(sk); 2493 } else if (po->tp_version == TPACKET_V3) { 2494 prb_clear_blk_fill_status(&po->rx_ring); 2495 } 2496 2497 drop_n_restore: 2498 if (skb_head != skb->data && skb_shared(skb)) { 2499 skb->data = skb_head; 2500 skb->len = skb_len; 2501 } 2502 drop: 2503 if (!is_drop_n_account) 2504 consume_skb(skb); 2505 else 2506 kfree_skb(skb); 2507 return 0; 2508 2509 drop_n_account: 2510 spin_unlock(&sk->sk_receive_queue.lock); 2511 atomic_inc(&po->tp_drops); 2512 is_drop_n_account = true; 2513 2514 sk->sk_data_ready(sk); 2515 kfree_skb(copy_skb); 2516 goto drop_n_restore; 2517 } 2518 2519 static void tpacket_destruct_skb(struct sk_buff *skb) 2520 { 2521 struct packet_sock *po = pkt_sk(skb->sk); 2522 2523 if (likely(po->tx_ring.pg_vec)) { 2524 void *ph; 2525 __u32 ts; 2526 2527 ph = skb_zcopy_get_nouarg(skb); 2528 packet_dec_pending(&po->tx_ring); 2529 2530 ts = __packet_set_timestamp(po, ph, skb); 2531 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); 2532 2533 if (!packet_read_pending(&po->tx_ring)) 2534 complete(&po->skb_completion); 2535 } 2536 2537 sock_wfree(skb); 2538 } 2539 2540 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len) 2541 { 2542 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2543 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2544 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 > 2545 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len))) 2546 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(), 2547 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2548 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2); 2549 2550 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len) 2551 return -EINVAL; 2552 2553 return 0; 2554 } 2555 2556 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len, 2557 struct virtio_net_hdr *vnet_hdr) 2558 { 2559 if (*len < sizeof(*vnet_hdr)) 2560 return -EINVAL; 2561 *len -= sizeof(*vnet_hdr); 2562 2563 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter)) 2564 return -EFAULT; 2565 2566 return __packet_snd_vnet_parse(vnet_hdr, *len); 2567 } 2568 2569 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 2570 void *frame, struct net_device *dev, void *data, int tp_len, 2571 __be16 proto, unsigned char *addr, int hlen, int copylen, 2572 const struct sockcm_cookie *sockc) 2573 { 2574 union tpacket_uhdr ph; 2575 int to_write, offset, len, nr_frags, len_max; 2576 struct socket *sock = po->sk.sk_socket; 2577 struct page *page; 2578 int err; 2579 2580 ph.raw = frame; 2581 2582 skb->protocol = proto; 2583 skb->dev = dev; 2584 skb->priority = po->sk.sk_priority; 2585 skb->mark = po->sk.sk_mark; 2586 skb->tstamp = sockc->transmit_time; 2587 skb_setup_tx_timestamp(skb, sockc->tsflags); 2588 skb_zcopy_set_nouarg(skb, ph.raw); 2589 2590 skb_reserve(skb, hlen); 2591 skb_reset_network_header(skb); 2592 2593 to_write = tp_len; 2594 2595 if (sock->type == SOCK_DGRAM) { 2596 err = dev_hard_header(skb, dev, ntohs(proto), addr, 2597 NULL, tp_len); 2598 if (unlikely(err < 0)) 2599 return -EINVAL; 2600 } else if (copylen) { 2601 int hdrlen = min_t(int, copylen, tp_len); 2602 2603 skb_push(skb, dev->hard_header_len); 2604 skb_put(skb, copylen - dev->hard_header_len); 2605 err = skb_store_bits(skb, 0, data, hdrlen); 2606 if (unlikely(err)) 2607 return err; 2608 if (!dev_validate_header(dev, skb->data, hdrlen)) 2609 return -EINVAL; 2610 2611 data += hdrlen; 2612 to_write -= hdrlen; 2613 } 2614 2615 offset = offset_in_page(data); 2616 len_max = PAGE_SIZE - offset; 2617 len = ((to_write > len_max) ? len_max : to_write); 2618 2619 skb->data_len = to_write; 2620 skb->len += to_write; 2621 skb->truesize += to_write; 2622 refcount_add(to_write, &po->sk.sk_wmem_alloc); 2623 2624 while (likely(to_write)) { 2625 nr_frags = skb_shinfo(skb)->nr_frags; 2626 2627 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2628 pr_err("Packet exceed the number of skb frags(%lu)\n", 2629 MAX_SKB_FRAGS); 2630 return -EFAULT; 2631 } 2632 2633 page = pgv_to_page(data); 2634 data += len; 2635 flush_dcache_page(page); 2636 get_page(page); 2637 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2638 to_write -= len; 2639 offset = 0; 2640 len_max = PAGE_SIZE; 2641 len = ((to_write > len_max) ? len_max : to_write); 2642 } 2643 2644 packet_parse_headers(skb, sock); 2645 2646 return tp_len; 2647 } 2648 2649 static int tpacket_parse_header(struct packet_sock *po, void *frame, 2650 int size_max, void **data) 2651 { 2652 union tpacket_uhdr ph; 2653 int tp_len, off; 2654 2655 ph.raw = frame; 2656 2657 switch (po->tp_version) { 2658 case TPACKET_V3: 2659 if (ph.h3->tp_next_offset != 0) { 2660 pr_warn_once("variable sized slot not supported"); 2661 return -EINVAL; 2662 } 2663 tp_len = ph.h3->tp_len; 2664 break; 2665 case TPACKET_V2: 2666 tp_len = ph.h2->tp_len; 2667 break; 2668 default: 2669 tp_len = ph.h1->tp_len; 2670 break; 2671 } 2672 if (unlikely(tp_len > size_max)) { 2673 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 2674 return -EMSGSIZE; 2675 } 2676 2677 if (unlikely(packet_sock_flag(po, PACKET_SOCK_TX_HAS_OFF))) { 2678 int off_min, off_max; 2679 2680 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2681 off_max = po->tx_ring.frame_size - tp_len; 2682 if (po->sk.sk_type == SOCK_DGRAM) { 2683 switch (po->tp_version) { 2684 case TPACKET_V3: 2685 off = ph.h3->tp_net; 2686 break; 2687 case TPACKET_V2: 2688 off = ph.h2->tp_net; 2689 break; 2690 default: 2691 off = ph.h1->tp_net; 2692 break; 2693 } 2694 } else { 2695 switch (po->tp_version) { 2696 case TPACKET_V3: 2697 off = ph.h3->tp_mac; 2698 break; 2699 case TPACKET_V2: 2700 off = ph.h2->tp_mac; 2701 break; 2702 default: 2703 off = ph.h1->tp_mac; 2704 break; 2705 } 2706 } 2707 if (unlikely((off < off_min) || (off_max < off))) 2708 return -EINVAL; 2709 } else { 2710 off = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2711 } 2712 2713 *data = frame + off; 2714 return tp_len; 2715 } 2716 2717 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2718 { 2719 struct sk_buff *skb = NULL; 2720 struct net_device *dev; 2721 struct virtio_net_hdr *vnet_hdr = NULL; 2722 struct sockcm_cookie sockc; 2723 __be16 proto; 2724 int err, reserve = 0; 2725 void *ph; 2726 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2727 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); 2728 unsigned char *addr = NULL; 2729 int tp_len, size_max; 2730 void *data; 2731 int len_sum = 0; 2732 int status = TP_STATUS_AVAILABLE; 2733 int hlen, tlen, copylen = 0; 2734 long timeo = 0; 2735 2736 mutex_lock(&po->pg_vec_lock); 2737 2738 /* packet_sendmsg() check on tx_ring.pg_vec was lockless, 2739 * we need to confirm it under protection of pg_vec_lock. 2740 */ 2741 if (unlikely(!po->tx_ring.pg_vec)) { 2742 err = -EBUSY; 2743 goto out; 2744 } 2745 if (likely(saddr == NULL)) { 2746 dev = packet_cached_dev_get(po); 2747 proto = READ_ONCE(po->num); 2748 } else { 2749 err = -EINVAL; 2750 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2751 goto out; 2752 if (msg->msg_namelen < (saddr->sll_halen 2753 + offsetof(struct sockaddr_ll, 2754 sll_addr))) 2755 goto out; 2756 proto = saddr->sll_protocol; 2757 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2758 if (po->sk.sk_socket->type == SOCK_DGRAM) { 2759 if (dev && msg->msg_namelen < dev->addr_len + 2760 offsetof(struct sockaddr_ll, sll_addr)) 2761 goto out_put; 2762 addr = saddr->sll_addr; 2763 } 2764 } 2765 2766 err = -ENXIO; 2767 if (unlikely(dev == NULL)) 2768 goto out; 2769 err = -ENETDOWN; 2770 if (unlikely(!(dev->flags & IFF_UP))) 2771 goto out_put; 2772 2773 sockcm_init(&sockc, &po->sk); 2774 if (msg->msg_controllen) { 2775 err = sock_cmsg_send(&po->sk, msg, &sockc); 2776 if (unlikely(err)) 2777 goto out_put; 2778 } 2779 2780 if (po->sk.sk_socket->type == SOCK_RAW) 2781 reserve = dev->hard_header_len; 2782 size_max = po->tx_ring.frame_size 2783 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2784 2785 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && 2786 !packet_sock_flag(po, PACKET_SOCK_HAS_VNET_HDR)) 2787 size_max = dev->mtu + reserve + VLAN_HLEN; 2788 2789 reinit_completion(&po->skb_completion); 2790 2791 do { 2792 ph = packet_current_frame(po, &po->tx_ring, 2793 TP_STATUS_SEND_REQUEST); 2794 if (unlikely(ph == NULL)) { 2795 if (need_wait && skb) { 2796 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT); 2797 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo); 2798 if (timeo <= 0) { 2799 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS; 2800 goto out_put; 2801 } 2802 } 2803 /* check for additional frames */ 2804 continue; 2805 } 2806 2807 skb = NULL; 2808 tp_len = tpacket_parse_header(po, ph, size_max, &data); 2809 if (tp_len < 0) 2810 goto tpacket_error; 2811 2812 status = TP_STATUS_SEND_REQUEST; 2813 hlen = LL_RESERVED_SPACE(dev); 2814 tlen = dev->needed_tailroom; 2815 if (packet_sock_flag(po, PACKET_SOCK_HAS_VNET_HDR)) { 2816 vnet_hdr = data; 2817 data += sizeof(*vnet_hdr); 2818 tp_len -= sizeof(*vnet_hdr); 2819 if (tp_len < 0 || 2820 __packet_snd_vnet_parse(vnet_hdr, tp_len)) { 2821 tp_len = -EINVAL; 2822 goto tpacket_error; 2823 } 2824 copylen = __virtio16_to_cpu(vio_le(), 2825 vnet_hdr->hdr_len); 2826 } 2827 copylen = max_t(int, copylen, dev->hard_header_len); 2828 skb = sock_alloc_send_skb(&po->sk, 2829 hlen + tlen + sizeof(struct sockaddr_ll) + 2830 (copylen - dev->hard_header_len), 2831 !need_wait, &err); 2832 2833 if (unlikely(skb == NULL)) { 2834 /* we assume the socket was initially writeable ... */ 2835 if (likely(len_sum > 0)) 2836 err = len_sum; 2837 goto out_status; 2838 } 2839 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto, 2840 addr, hlen, copylen, &sockc); 2841 if (likely(tp_len >= 0) && 2842 tp_len > dev->mtu + reserve && 2843 !packet_sock_flag(po, PACKET_SOCK_HAS_VNET_HDR) && 2844 !packet_extra_vlan_len_allowed(dev, skb)) 2845 tp_len = -EMSGSIZE; 2846 2847 if (unlikely(tp_len < 0)) { 2848 tpacket_error: 2849 if (packet_sock_flag(po, PACKET_SOCK_TP_LOSS)) { 2850 __packet_set_status(po, ph, 2851 TP_STATUS_AVAILABLE); 2852 packet_increment_head(&po->tx_ring); 2853 kfree_skb(skb); 2854 continue; 2855 } else { 2856 status = TP_STATUS_WRONG_FORMAT; 2857 err = tp_len; 2858 goto out_status; 2859 } 2860 } 2861 2862 if (packet_sock_flag(po, PACKET_SOCK_HAS_VNET_HDR)) { 2863 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) { 2864 tp_len = -EINVAL; 2865 goto tpacket_error; 2866 } 2867 virtio_net_hdr_set_proto(skb, vnet_hdr); 2868 } 2869 2870 skb->destructor = tpacket_destruct_skb; 2871 __packet_set_status(po, ph, TP_STATUS_SENDING); 2872 packet_inc_pending(&po->tx_ring); 2873 2874 status = TP_STATUS_SEND_REQUEST; 2875 /* Paired with WRITE_ONCE() in packet_setsockopt() */ 2876 err = READ_ONCE(po->xmit)(skb); 2877 if (unlikely(err != 0)) { 2878 if (err > 0) 2879 err = net_xmit_errno(err); 2880 if (err && __packet_get_status(po, ph) == 2881 TP_STATUS_AVAILABLE) { 2882 /* skb was destructed already */ 2883 skb = NULL; 2884 goto out_status; 2885 } 2886 /* 2887 * skb was dropped but not destructed yet; 2888 * let's treat it like congestion or err < 0 2889 */ 2890 err = 0; 2891 } 2892 packet_increment_head(&po->tx_ring); 2893 len_sum += tp_len; 2894 } while (likely((ph != NULL) || 2895 /* Note: packet_read_pending() might be slow if we have 2896 * to call it as it's per_cpu variable, but in fast-path 2897 * we already short-circuit the loop with the first 2898 * condition, and luckily don't have to go that path 2899 * anyway. 2900 */ 2901 (need_wait && packet_read_pending(&po->tx_ring)))); 2902 2903 err = len_sum; 2904 goto out_put; 2905 2906 out_status: 2907 __packet_set_status(po, ph, status); 2908 kfree_skb(skb); 2909 out_put: 2910 dev_put(dev); 2911 out: 2912 mutex_unlock(&po->pg_vec_lock); 2913 return err; 2914 } 2915 2916 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2917 size_t reserve, size_t len, 2918 size_t linear, int noblock, 2919 int *err) 2920 { 2921 struct sk_buff *skb; 2922 2923 /* Under a page? Don't bother with paged skb. */ 2924 if (prepad + len < PAGE_SIZE || !linear) 2925 linear = len; 2926 2927 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2928 err, 0); 2929 if (!skb) 2930 return NULL; 2931 2932 skb_reserve(skb, reserve); 2933 skb_put(skb, linear); 2934 skb->data_len = len - linear; 2935 skb->len += len - linear; 2936 2937 return skb; 2938 } 2939 2940 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) 2941 { 2942 struct sock *sk = sock->sk; 2943 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2944 struct sk_buff *skb; 2945 struct net_device *dev; 2946 __be16 proto; 2947 unsigned char *addr = NULL; 2948 int err, reserve = 0; 2949 struct sockcm_cookie sockc; 2950 struct virtio_net_hdr vnet_hdr = { 0 }; 2951 int offset = 0; 2952 struct packet_sock *po = pkt_sk(sk); 2953 bool has_vnet_hdr = false; 2954 int hlen, tlen, linear; 2955 int extra_len = 0; 2956 2957 /* 2958 * Get and verify the address. 2959 */ 2960 2961 if (likely(saddr == NULL)) { 2962 dev = packet_cached_dev_get(po); 2963 proto = READ_ONCE(po->num); 2964 } else { 2965 err = -EINVAL; 2966 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2967 goto out; 2968 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2969 goto out; 2970 proto = saddr->sll_protocol; 2971 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2972 if (sock->type == SOCK_DGRAM) { 2973 if (dev && msg->msg_namelen < dev->addr_len + 2974 offsetof(struct sockaddr_ll, sll_addr)) 2975 goto out_unlock; 2976 addr = saddr->sll_addr; 2977 } 2978 } 2979 2980 err = -ENXIO; 2981 if (unlikely(dev == NULL)) 2982 goto out_unlock; 2983 err = -ENETDOWN; 2984 if (unlikely(!(dev->flags & IFF_UP))) 2985 goto out_unlock; 2986 2987 sockcm_init(&sockc, sk); 2988 sockc.mark = sk->sk_mark; 2989 if (msg->msg_controllen) { 2990 err = sock_cmsg_send(sk, msg, &sockc); 2991 if (unlikely(err)) 2992 goto out_unlock; 2993 } 2994 2995 if (sock->type == SOCK_RAW) 2996 reserve = dev->hard_header_len; 2997 if (packet_sock_flag(po, PACKET_SOCK_HAS_VNET_HDR)) { 2998 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr); 2999 if (err) 3000 goto out_unlock; 3001 has_vnet_hdr = true; 3002 } 3003 3004 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 3005 if (!netif_supports_nofcs(dev)) { 3006 err = -EPROTONOSUPPORT; 3007 goto out_unlock; 3008 } 3009 extra_len = 4; /* We're doing our own CRC */ 3010 } 3011 3012 err = -EMSGSIZE; 3013 if (!vnet_hdr.gso_type && 3014 (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) 3015 goto out_unlock; 3016 3017 err = -ENOBUFS; 3018 hlen = LL_RESERVED_SPACE(dev); 3019 tlen = dev->needed_tailroom; 3020 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len); 3021 linear = max(linear, min_t(int, len, dev->hard_header_len)); 3022 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear, 3023 msg->msg_flags & MSG_DONTWAIT, &err); 3024 if (skb == NULL) 3025 goto out_unlock; 3026 3027 skb_reset_network_header(skb); 3028 3029 err = -EINVAL; 3030 if (sock->type == SOCK_DGRAM) { 3031 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); 3032 if (unlikely(offset < 0)) 3033 goto out_free; 3034 } else if (reserve) { 3035 skb_reserve(skb, -reserve); 3036 if (len < reserve + sizeof(struct ipv6hdr) && 3037 dev->min_header_len != dev->hard_header_len) 3038 skb_reset_network_header(skb); 3039 } 3040 3041 /* Returns -EFAULT on error */ 3042 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); 3043 if (err) 3044 goto out_free; 3045 3046 if ((sock->type == SOCK_RAW && 3047 !dev_validate_header(dev, skb->data, len)) || !skb->len) { 3048 err = -EINVAL; 3049 goto out_free; 3050 } 3051 3052 skb_setup_tx_timestamp(skb, sockc.tsflags); 3053 3054 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) && 3055 !packet_extra_vlan_len_allowed(dev, skb)) { 3056 err = -EMSGSIZE; 3057 goto out_free; 3058 } 3059 3060 skb->protocol = proto; 3061 skb->dev = dev; 3062 skb->priority = sk->sk_priority; 3063 skb->mark = sockc.mark; 3064 skb->tstamp = sockc.transmit_time; 3065 3066 if (unlikely(extra_len == 4)) 3067 skb->no_fcs = 1; 3068 3069 packet_parse_headers(skb, sock); 3070 3071 if (has_vnet_hdr) { 3072 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le()); 3073 if (err) 3074 goto out_free; 3075 len += sizeof(vnet_hdr); 3076 virtio_net_hdr_set_proto(skb, &vnet_hdr); 3077 } 3078 3079 /* Paired with WRITE_ONCE() in packet_setsockopt() */ 3080 err = READ_ONCE(po->xmit)(skb); 3081 if (unlikely(err != 0)) { 3082 if (err > 0) 3083 err = net_xmit_errno(err); 3084 if (err) 3085 goto out_unlock; 3086 } 3087 3088 dev_put(dev); 3089 3090 return len; 3091 3092 out_free: 3093 kfree_skb(skb); 3094 out_unlock: 3095 dev_put(dev); 3096 out: 3097 return err; 3098 } 3099 3100 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 3101 { 3102 struct sock *sk = sock->sk; 3103 struct packet_sock *po = pkt_sk(sk); 3104 3105 /* Reading tx_ring.pg_vec without holding pg_vec_lock is racy. 3106 * tpacket_snd() will redo the check safely. 3107 */ 3108 if (data_race(po->tx_ring.pg_vec)) 3109 return tpacket_snd(po, msg); 3110 3111 return packet_snd(sock, msg, len); 3112 } 3113 3114 /* 3115 * Close a PACKET socket. This is fairly simple. We immediately go 3116 * to 'closed' state and remove our protocol entry in the device list. 3117 */ 3118 3119 static int packet_release(struct socket *sock) 3120 { 3121 struct sock *sk = sock->sk; 3122 struct packet_sock *po; 3123 struct packet_fanout *f; 3124 struct net *net; 3125 union tpacket_req_u req_u; 3126 3127 if (!sk) 3128 return 0; 3129 3130 net = sock_net(sk); 3131 po = pkt_sk(sk); 3132 3133 mutex_lock(&net->packet.sklist_lock); 3134 sk_del_node_init_rcu(sk); 3135 mutex_unlock(&net->packet.sklist_lock); 3136 3137 sock_prot_inuse_add(net, sk->sk_prot, -1); 3138 3139 spin_lock(&po->bind_lock); 3140 unregister_prot_hook(sk, false); 3141 packet_cached_dev_reset(po); 3142 3143 if (po->prot_hook.dev) { 3144 netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker); 3145 po->prot_hook.dev = NULL; 3146 } 3147 spin_unlock(&po->bind_lock); 3148 3149 packet_flush_mclist(sk); 3150 3151 lock_sock(sk); 3152 if (po->rx_ring.pg_vec) { 3153 memset(&req_u, 0, sizeof(req_u)); 3154 packet_set_ring(sk, &req_u, 1, 0); 3155 } 3156 3157 if (po->tx_ring.pg_vec) { 3158 memset(&req_u, 0, sizeof(req_u)); 3159 packet_set_ring(sk, &req_u, 1, 1); 3160 } 3161 release_sock(sk); 3162 3163 f = fanout_release(sk); 3164 3165 synchronize_net(); 3166 3167 kfree(po->rollover); 3168 if (f) { 3169 fanout_release_data(f); 3170 kvfree(f); 3171 } 3172 /* 3173 * Now the socket is dead. No more input will appear. 3174 */ 3175 sock_orphan(sk); 3176 sock->sk = NULL; 3177 3178 /* Purge queues */ 3179 3180 skb_queue_purge(&sk->sk_receive_queue); 3181 packet_free_pending(po); 3182 3183 sock_put(sk); 3184 return 0; 3185 } 3186 3187 /* 3188 * Attach a packet hook. 3189 */ 3190 3191 static int packet_do_bind(struct sock *sk, const char *name, int ifindex, 3192 __be16 proto) 3193 { 3194 struct packet_sock *po = pkt_sk(sk); 3195 struct net_device *dev = NULL; 3196 bool unlisted = false; 3197 bool need_rehook; 3198 int ret = 0; 3199 3200 lock_sock(sk); 3201 spin_lock(&po->bind_lock); 3202 rcu_read_lock(); 3203 3204 if (po->fanout) { 3205 ret = -EINVAL; 3206 goto out_unlock; 3207 } 3208 3209 if (name) { 3210 dev = dev_get_by_name_rcu(sock_net(sk), name); 3211 if (!dev) { 3212 ret = -ENODEV; 3213 goto out_unlock; 3214 } 3215 } else if (ifindex) { 3216 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3217 if (!dev) { 3218 ret = -ENODEV; 3219 goto out_unlock; 3220 } 3221 } 3222 3223 need_rehook = po->prot_hook.type != proto || po->prot_hook.dev != dev; 3224 3225 if (need_rehook) { 3226 dev_hold(dev); 3227 if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) { 3228 rcu_read_unlock(); 3229 /* prevents packet_notifier() from calling 3230 * register_prot_hook() 3231 */ 3232 WRITE_ONCE(po->num, 0); 3233 __unregister_prot_hook(sk, true); 3234 rcu_read_lock(); 3235 if (dev) 3236 unlisted = !dev_get_by_index_rcu(sock_net(sk), 3237 dev->ifindex); 3238 } 3239 3240 BUG_ON(packet_sock_flag(po, PACKET_SOCK_RUNNING)); 3241 WRITE_ONCE(po->num, proto); 3242 po->prot_hook.type = proto; 3243 3244 netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker); 3245 3246 if (unlikely(unlisted)) { 3247 po->prot_hook.dev = NULL; 3248 WRITE_ONCE(po->ifindex, -1); 3249 packet_cached_dev_reset(po); 3250 } else { 3251 netdev_hold(dev, &po->prot_hook.dev_tracker, 3252 GFP_ATOMIC); 3253 po->prot_hook.dev = dev; 3254 WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0); 3255 packet_cached_dev_assign(po, dev); 3256 } 3257 dev_put(dev); 3258 } 3259 3260 if (proto == 0 || !need_rehook) 3261 goto out_unlock; 3262 3263 if (!unlisted && (!dev || (dev->flags & IFF_UP))) { 3264 register_prot_hook(sk); 3265 } else { 3266 sk->sk_err = ENETDOWN; 3267 if (!sock_flag(sk, SOCK_DEAD)) 3268 sk_error_report(sk); 3269 } 3270 3271 out_unlock: 3272 rcu_read_unlock(); 3273 spin_unlock(&po->bind_lock); 3274 release_sock(sk); 3275 return ret; 3276 } 3277 3278 /* 3279 * Bind a packet socket to a device 3280 */ 3281 3282 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 3283 int addr_len) 3284 { 3285 struct sock *sk = sock->sk; 3286 char name[sizeof(uaddr->sa_data_min) + 1]; 3287 3288 /* 3289 * Check legality 3290 */ 3291 3292 if (addr_len != sizeof(struct sockaddr)) 3293 return -EINVAL; 3294 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be 3295 * zero-terminated. 3296 */ 3297 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data_min)); 3298 name[sizeof(uaddr->sa_data_min)] = 0; 3299 3300 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num); 3301 } 3302 3303 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3304 { 3305 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 3306 struct sock *sk = sock->sk; 3307 3308 /* 3309 * Check legality 3310 */ 3311 3312 if (addr_len < sizeof(struct sockaddr_ll)) 3313 return -EINVAL; 3314 if (sll->sll_family != AF_PACKET) 3315 return -EINVAL; 3316 3317 return packet_do_bind(sk, NULL, sll->sll_ifindex, 3318 sll->sll_protocol ? : pkt_sk(sk)->num); 3319 } 3320 3321 static struct proto packet_proto = { 3322 .name = "PACKET", 3323 .owner = THIS_MODULE, 3324 .obj_size = sizeof(struct packet_sock), 3325 }; 3326 3327 /* 3328 * Create a packet of type SOCK_PACKET. 3329 */ 3330 3331 static int packet_create(struct net *net, struct socket *sock, int protocol, 3332 int kern) 3333 { 3334 struct sock *sk; 3335 struct packet_sock *po; 3336 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 3337 int err; 3338 3339 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 3340 return -EPERM; 3341 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 3342 sock->type != SOCK_PACKET) 3343 return -ESOCKTNOSUPPORT; 3344 3345 sock->state = SS_UNCONNECTED; 3346 3347 err = -ENOBUFS; 3348 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); 3349 if (sk == NULL) 3350 goto out; 3351 3352 sock->ops = &packet_ops; 3353 if (sock->type == SOCK_PACKET) 3354 sock->ops = &packet_ops_spkt; 3355 3356 sock_init_data(sock, sk); 3357 3358 po = pkt_sk(sk); 3359 init_completion(&po->skb_completion); 3360 sk->sk_family = PF_PACKET; 3361 po->num = proto; 3362 po->xmit = dev_queue_xmit; 3363 3364 err = packet_alloc_pending(po); 3365 if (err) 3366 goto out2; 3367 3368 packet_cached_dev_reset(po); 3369 3370 sk->sk_destruct = packet_sock_destruct; 3371 3372 /* 3373 * Attach a protocol block 3374 */ 3375 3376 spin_lock_init(&po->bind_lock); 3377 mutex_init(&po->pg_vec_lock); 3378 po->rollover = NULL; 3379 po->prot_hook.func = packet_rcv; 3380 3381 if (sock->type == SOCK_PACKET) 3382 po->prot_hook.func = packet_rcv_spkt; 3383 3384 po->prot_hook.af_packet_priv = sk; 3385 po->prot_hook.af_packet_net = sock_net(sk); 3386 3387 if (proto) { 3388 po->prot_hook.type = proto; 3389 __register_prot_hook(sk); 3390 } 3391 3392 mutex_lock(&net->packet.sklist_lock); 3393 sk_add_node_tail_rcu(sk, &net->packet.sklist); 3394 mutex_unlock(&net->packet.sklist_lock); 3395 3396 sock_prot_inuse_add(net, &packet_proto, 1); 3397 3398 return 0; 3399 out2: 3400 sk_free(sk); 3401 out: 3402 return err; 3403 } 3404 3405 /* 3406 * Pull a packet from our receive queue and hand it to the user. 3407 * If necessary we block. 3408 */ 3409 3410 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 3411 int flags) 3412 { 3413 struct sock *sk = sock->sk; 3414 struct sk_buff *skb; 3415 int copied, err; 3416 int vnet_hdr_len = 0; 3417 unsigned int origlen = 0; 3418 3419 err = -EINVAL; 3420 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 3421 goto out; 3422 3423 #if 0 3424 /* What error should we return now? EUNATTACH? */ 3425 if (pkt_sk(sk)->ifindex < 0) 3426 return -ENODEV; 3427 #endif 3428 3429 if (flags & MSG_ERRQUEUE) { 3430 err = sock_recv_errqueue(sk, msg, len, 3431 SOL_PACKET, PACKET_TX_TIMESTAMP); 3432 goto out; 3433 } 3434 3435 /* 3436 * Call the generic datagram receiver. This handles all sorts 3437 * of horrible races and re-entrancy so we can forget about it 3438 * in the protocol layers. 3439 * 3440 * Now it will return ENETDOWN, if device have just gone down, 3441 * but then it will block. 3442 */ 3443 3444 skb = skb_recv_datagram(sk, flags, &err); 3445 3446 /* 3447 * An error occurred so return it. Because skb_recv_datagram() 3448 * handles the blocking we don't see and worry about blocking 3449 * retries. 3450 */ 3451 3452 if (skb == NULL) 3453 goto out; 3454 3455 packet_rcv_try_clear_pressure(pkt_sk(sk)); 3456 3457 if (packet_sock_flag(pkt_sk(sk), PACKET_SOCK_HAS_VNET_HDR)) { 3458 err = packet_rcv_vnet(msg, skb, &len); 3459 if (err) 3460 goto out_free; 3461 vnet_hdr_len = sizeof(struct virtio_net_hdr); 3462 } 3463 3464 /* You lose any data beyond the buffer you gave. If it worries 3465 * a user program they can ask the device for its MTU 3466 * anyway. 3467 */ 3468 copied = skb->len; 3469 if (copied > len) { 3470 copied = len; 3471 msg->msg_flags |= MSG_TRUNC; 3472 } 3473 3474 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3475 if (err) 3476 goto out_free; 3477 3478 if (sock->type != SOCK_PACKET) { 3479 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3480 3481 /* Original length was stored in sockaddr_ll fields */ 3482 origlen = PACKET_SKB_CB(skb)->sa.origlen; 3483 sll->sll_family = AF_PACKET; 3484 sll->sll_protocol = skb->protocol; 3485 } 3486 3487 sock_recv_cmsgs(msg, sk, skb); 3488 3489 if (msg->msg_name) { 3490 const size_t max_len = min(sizeof(skb->cb), 3491 sizeof(struct sockaddr_storage)); 3492 int copy_len; 3493 3494 /* If the address length field is there to be filled 3495 * in, we fill it in now. 3496 */ 3497 if (sock->type == SOCK_PACKET) { 3498 __sockaddr_check_size(sizeof(struct sockaddr_pkt)); 3499 msg->msg_namelen = sizeof(struct sockaddr_pkt); 3500 copy_len = msg->msg_namelen; 3501 } else { 3502 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3503 3504 msg->msg_namelen = sll->sll_halen + 3505 offsetof(struct sockaddr_ll, sll_addr); 3506 copy_len = msg->msg_namelen; 3507 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) { 3508 memset(msg->msg_name + 3509 offsetof(struct sockaddr_ll, sll_addr), 3510 0, sizeof(sll->sll_addr)); 3511 msg->msg_namelen = sizeof(struct sockaddr_ll); 3512 } 3513 } 3514 if (WARN_ON_ONCE(copy_len > max_len)) { 3515 copy_len = max_len; 3516 msg->msg_namelen = copy_len; 3517 } 3518 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len); 3519 } 3520 3521 if (packet_sock_flag(pkt_sk(sk), PACKET_SOCK_AUXDATA)) { 3522 struct tpacket_auxdata aux; 3523 3524 aux.tp_status = TP_STATUS_USER; 3525 if (skb->ip_summed == CHECKSUM_PARTIAL) 3526 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 3527 else if (skb->pkt_type != PACKET_OUTGOING && 3528 skb_csum_unnecessary(skb)) 3529 aux.tp_status |= TP_STATUS_CSUM_VALID; 3530 if (skb_is_gso(skb) && skb_is_gso_tcp(skb)) 3531 aux.tp_status |= TP_STATUS_GSO_TCP; 3532 3533 aux.tp_len = origlen; 3534 aux.tp_snaplen = skb->len; 3535 aux.tp_mac = 0; 3536 aux.tp_net = skb_network_offset(skb); 3537 if (skb_vlan_tag_present(skb)) { 3538 aux.tp_vlan_tci = skb_vlan_tag_get(skb); 3539 aux.tp_vlan_tpid = ntohs(skb->vlan_proto); 3540 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 3541 } else { 3542 aux.tp_vlan_tci = 0; 3543 aux.tp_vlan_tpid = 0; 3544 } 3545 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 3546 } 3547 3548 /* 3549 * Free or return the buffer as appropriate. Again this 3550 * hides all the races and re-entrancy issues from us. 3551 */ 3552 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 3553 3554 out_free: 3555 skb_free_datagram(sk, skb); 3556 out: 3557 return err; 3558 } 3559 3560 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 3561 int peer) 3562 { 3563 struct net_device *dev; 3564 struct sock *sk = sock->sk; 3565 3566 if (peer) 3567 return -EOPNOTSUPP; 3568 3569 uaddr->sa_family = AF_PACKET; 3570 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data_min)); 3571 rcu_read_lock(); 3572 dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex)); 3573 if (dev) 3574 strscpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data_min)); 3575 rcu_read_unlock(); 3576 3577 return sizeof(*uaddr); 3578 } 3579 3580 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 3581 int peer) 3582 { 3583 struct net_device *dev; 3584 struct sock *sk = sock->sk; 3585 struct packet_sock *po = pkt_sk(sk); 3586 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 3587 int ifindex; 3588 3589 if (peer) 3590 return -EOPNOTSUPP; 3591 3592 ifindex = READ_ONCE(po->ifindex); 3593 sll->sll_family = AF_PACKET; 3594 sll->sll_ifindex = ifindex; 3595 sll->sll_protocol = READ_ONCE(po->num); 3596 sll->sll_pkttype = 0; 3597 rcu_read_lock(); 3598 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3599 if (dev) { 3600 sll->sll_hatype = dev->type; 3601 sll->sll_halen = dev->addr_len; 3602 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 3603 } else { 3604 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 3605 sll->sll_halen = 0; 3606 } 3607 rcu_read_unlock(); 3608 3609 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 3610 } 3611 3612 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 3613 int what) 3614 { 3615 switch (i->type) { 3616 case PACKET_MR_MULTICAST: 3617 if (i->alen != dev->addr_len) 3618 return -EINVAL; 3619 if (what > 0) 3620 return dev_mc_add(dev, i->addr); 3621 else 3622 return dev_mc_del(dev, i->addr); 3623 break; 3624 case PACKET_MR_PROMISC: 3625 return dev_set_promiscuity(dev, what); 3626 case PACKET_MR_ALLMULTI: 3627 return dev_set_allmulti(dev, what); 3628 case PACKET_MR_UNICAST: 3629 if (i->alen != dev->addr_len) 3630 return -EINVAL; 3631 if (what > 0) 3632 return dev_uc_add(dev, i->addr); 3633 else 3634 return dev_uc_del(dev, i->addr); 3635 break; 3636 default: 3637 break; 3638 } 3639 return 0; 3640 } 3641 3642 static void packet_dev_mclist_delete(struct net_device *dev, 3643 struct packet_mclist **mlp) 3644 { 3645 struct packet_mclist *ml; 3646 3647 while ((ml = *mlp) != NULL) { 3648 if (ml->ifindex == dev->ifindex) { 3649 packet_dev_mc(dev, ml, -1); 3650 *mlp = ml->next; 3651 kfree(ml); 3652 } else 3653 mlp = &ml->next; 3654 } 3655 } 3656 3657 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 3658 { 3659 struct packet_sock *po = pkt_sk(sk); 3660 struct packet_mclist *ml, *i; 3661 struct net_device *dev; 3662 int err; 3663 3664 rtnl_lock(); 3665 3666 err = -ENODEV; 3667 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 3668 if (!dev) 3669 goto done; 3670 3671 err = -EINVAL; 3672 if (mreq->mr_alen > dev->addr_len) 3673 goto done; 3674 3675 err = -ENOBUFS; 3676 i = kmalloc(sizeof(*i), GFP_KERNEL); 3677 if (i == NULL) 3678 goto done; 3679 3680 err = 0; 3681 for (ml = po->mclist; ml; ml = ml->next) { 3682 if (ml->ifindex == mreq->mr_ifindex && 3683 ml->type == mreq->mr_type && 3684 ml->alen == mreq->mr_alen && 3685 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3686 ml->count++; 3687 /* Free the new element ... */ 3688 kfree(i); 3689 goto done; 3690 } 3691 } 3692 3693 i->type = mreq->mr_type; 3694 i->ifindex = mreq->mr_ifindex; 3695 i->alen = mreq->mr_alen; 3696 memcpy(i->addr, mreq->mr_address, i->alen); 3697 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen); 3698 i->count = 1; 3699 i->next = po->mclist; 3700 po->mclist = i; 3701 err = packet_dev_mc(dev, i, 1); 3702 if (err) { 3703 po->mclist = i->next; 3704 kfree(i); 3705 } 3706 3707 done: 3708 rtnl_unlock(); 3709 return err; 3710 } 3711 3712 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 3713 { 3714 struct packet_mclist *ml, **mlp; 3715 3716 rtnl_lock(); 3717 3718 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 3719 if (ml->ifindex == mreq->mr_ifindex && 3720 ml->type == mreq->mr_type && 3721 ml->alen == mreq->mr_alen && 3722 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3723 if (--ml->count == 0) { 3724 struct net_device *dev; 3725 *mlp = ml->next; 3726 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3727 if (dev) 3728 packet_dev_mc(dev, ml, -1); 3729 kfree(ml); 3730 } 3731 break; 3732 } 3733 } 3734 rtnl_unlock(); 3735 return 0; 3736 } 3737 3738 static void packet_flush_mclist(struct sock *sk) 3739 { 3740 struct packet_sock *po = pkt_sk(sk); 3741 struct packet_mclist *ml; 3742 3743 if (!po->mclist) 3744 return; 3745 3746 rtnl_lock(); 3747 while ((ml = po->mclist) != NULL) { 3748 struct net_device *dev; 3749 3750 po->mclist = ml->next; 3751 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3752 if (dev != NULL) 3753 packet_dev_mc(dev, ml, -1); 3754 kfree(ml); 3755 } 3756 rtnl_unlock(); 3757 } 3758 3759 static int 3760 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, 3761 unsigned int optlen) 3762 { 3763 struct sock *sk = sock->sk; 3764 struct packet_sock *po = pkt_sk(sk); 3765 int ret; 3766 3767 if (level != SOL_PACKET) 3768 return -ENOPROTOOPT; 3769 3770 switch (optname) { 3771 case PACKET_ADD_MEMBERSHIP: 3772 case PACKET_DROP_MEMBERSHIP: 3773 { 3774 struct packet_mreq_max mreq; 3775 int len = optlen; 3776 memset(&mreq, 0, sizeof(mreq)); 3777 if (len < sizeof(struct packet_mreq)) 3778 return -EINVAL; 3779 if (len > sizeof(mreq)) 3780 len = sizeof(mreq); 3781 if (copy_from_sockptr(&mreq, optval, len)) 3782 return -EFAULT; 3783 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3784 return -EINVAL; 3785 if (optname == PACKET_ADD_MEMBERSHIP) 3786 ret = packet_mc_add(sk, &mreq); 3787 else 3788 ret = packet_mc_drop(sk, &mreq); 3789 return ret; 3790 } 3791 3792 case PACKET_RX_RING: 3793 case PACKET_TX_RING: 3794 { 3795 union tpacket_req_u req_u; 3796 int len; 3797 3798 lock_sock(sk); 3799 switch (po->tp_version) { 3800 case TPACKET_V1: 3801 case TPACKET_V2: 3802 len = sizeof(req_u.req); 3803 break; 3804 case TPACKET_V3: 3805 default: 3806 len = sizeof(req_u.req3); 3807 break; 3808 } 3809 if (optlen < len) { 3810 ret = -EINVAL; 3811 } else { 3812 if (copy_from_sockptr(&req_u.req, optval, len)) 3813 ret = -EFAULT; 3814 else 3815 ret = packet_set_ring(sk, &req_u, 0, 3816 optname == PACKET_TX_RING); 3817 } 3818 release_sock(sk); 3819 return ret; 3820 } 3821 case PACKET_COPY_THRESH: 3822 { 3823 int val; 3824 3825 if (optlen != sizeof(val)) 3826 return -EINVAL; 3827 if (copy_from_sockptr(&val, optval, sizeof(val))) 3828 return -EFAULT; 3829 3830 pkt_sk(sk)->copy_thresh = val; 3831 return 0; 3832 } 3833 case PACKET_VERSION: 3834 { 3835 int val; 3836 3837 if (optlen != sizeof(val)) 3838 return -EINVAL; 3839 if (copy_from_sockptr(&val, optval, sizeof(val))) 3840 return -EFAULT; 3841 switch (val) { 3842 case TPACKET_V1: 3843 case TPACKET_V2: 3844 case TPACKET_V3: 3845 break; 3846 default: 3847 return -EINVAL; 3848 } 3849 lock_sock(sk); 3850 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3851 ret = -EBUSY; 3852 } else { 3853 po->tp_version = val; 3854 ret = 0; 3855 } 3856 release_sock(sk); 3857 return ret; 3858 } 3859 case PACKET_RESERVE: 3860 { 3861 unsigned int val; 3862 3863 if (optlen != sizeof(val)) 3864 return -EINVAL; 3865 if (copy_from_sockptr(&val, optval, sizeof(val))) 3866 return -EFAULT; 3867 if (val > INT_MAX) 3868 return -EINVAL; 3869 lock_sock(sk); 3870 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3871 ret = -EBUSY; 3872 } else { 3873 po->tp_reserve = val; 3874 ret = 0; 3875 } 3876 release_sock(sk); 3877 return ret; 3878 } 3879 case PACKET_LOSS: 3880 { 3881 unsigned int val; 3882 3883 if (optlen != sizeof(val)) 3884 return -EINVAL; 3885 if (copy_from_sockptr(&val, optval, sizeof(val))) 3886 return -EFAULT; 3887 3888 lock_sock(sk); 3889 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3890 ret = -EBUSY; 3891 } else { 3892 packet_sock_flag_set(po, PACKET_SOCK_TP_LOSS, val); 3893 ret = 0; 3894 } 3895 release_sock(sk); 3896 return ret; 3897 } 3898 case PACKET_AUXDATA: 3899 { 3900 int val; 3901 3902 if (optlen < sizeof(val)) 3903 return -EINVAL; 3904 if (copy_from_sockptr(&val, optval, sizeof(val))) 3905 return -EFAULT; 3906 3907 packet_sock_flag_set(po, PACKET_SOCK_AUXDATA, val); 3908 return 0; 3909 } 3910 case PACKET_ORIGDEV: 3911 { 3912 int val; 3913 3914 if (optlen < sizeof(val)) 3915 return -EINVAL; 3916 if (copy_from_sockptr(&val, optval, sizeof(val))) 3917 return -EFAULT; 3918 3919 packet_sock_flag_set(po, PACKET_SOCK_ORIGDEV, val); 3920 return 0; 3921 } 3922 case PACKET_VNET_HDR: 3923 { 3924 int val; 3925 3926 if (sock->type != SOCK_RAW) 3927 return -EINVAL; 3928 if (optlen < sizeof(val)) 3929 return -EINVAL; 3930 if (copy_from_sockptr(&val, optval, sizeof(val))) 3931 return -EFAULT; 3932 3933 lock_sock(sk); 3934 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3935 ret = -EBUSY; 3936 } else { 3937 packet_sock_flag_set(po, PACKET_SOCK_HAS_VNET_HDR, val); 3938 ret = 0; 3939 } 3940 release_sock(sk); 3941 return ret; 3942 } 3943 case PACKET_TIMESTAMP: 3944 { 3945 int val; 3946 3947 if (optlen != sizeof(val)) 3948 return -EINVAL; 3949 if (copy_from_sockptr(&val, optval, sizeof(val))) 3950 return -EFAULT; 3951 3952 WRITE_ONCE(po->tp_tstamp, val); 3953 return 0; 3954 } 3955 case PACKET_FANOUT: 3956 { 3957 struct fanout_args args = { 0 }; 3958 3959 if (optlen != sizeof(int) && optlen != sizeof(args)) 3960 return -EINVAL; 3961 if (copy_from_sockptr(&args, optval, optlen)) 3962 return -EFAULT; 3963 3964 return fanout_add(sk, &args); 3965 } 3966 case PACKET_FANOUT_DATA: 3967 { 3968 /* Paired with the WRITE_ONCE() in fanout_add() */ 3969 if (!READ_ONCE(po->fanout)) 3970 return -EINVAL; 3971 3972 return fanout_set_data(po, optval, optlen); 3973 } 3974 case PACKET_IGNORE_OUTGOING: 3975 { 3976 int val; 3977 3978 if (optlen != sizeof(val)) 3979 return -EINVAL; 3980 if (copy_from_sockptr(&val, optval, sizeof(val))) 3981 return -EFAULT; 3982 if (val < 0 || val > 1) 3983 return -EINVAL; 3984 3985 po->prot_hook.ignore_outgoing = !!val; 3986 return 0; 3987 } 3988 case PACKET_TX_HAS_OFF: 3989 { 3990 unsigned int val; 3991 3992 if (optlen != sizeof(val)) 3993 return -EINVAL; 3994 if (copy_from_sockptr(&val, optval, sizeof(val))) 3995 return -EFAULT; 3996 3997 lock_sock(sk); 3998 if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec) 3999 packet_sock_flag_set(po, PACKET_SOCK_TX_HAS_OFF, val); 4000 4001 release_sock(sk); 4002 return 0; 4003 } 4004 case PACKET_QDISC_BYPASS: 4005 { 4006 int val; 4007 4008 if (optlen != sizeof(val)) 4009 return -EINVAL; 4010 if (copy_from_sockptr(&val, optval, sizeof(val))) 4011 return -EFAULT; 4012 4013 /* Paired with all lockless reads of po->xmit */ 4014 WRITE_ONCE(po->xmit, val ? packet_direct_xmit : dev_queue_xmit); 4015 return 0; 4016 } 4017 default: 4018 return -ENOPROTOOPT; 4019 } 4020 } 4021 4022 static int packet_getsockopt(struct socket *sock, int level, int optname, 4023 char __user *optval, int __user *optlen) 4024 { 4025 int len; 4026 int val, lv = sizeof(val); 4027 struct sock *sk = sock->sk; 4028 struct packet_sock *po = pkt_sk(sk); 4029 void *data = &val; 4030 union tpacket_stats_u st; 4031 struct tpacket_rollover_stats rstats; 4032 int drops; 4033 4034 if (level != SOL_PACKET) 4035 return -ENOPROTOOPT; 4036 4037 if (get_user(len, optlen)) 4038 return -EFAULT; 4039 4040 if (len < 0) 4041 return -EINVAL; 4042 4043 switch (optname) { 4044 case PACKET_STATISTICS: 4045 spin_lock_bh(&sk->sk_receive_queue.lock); 4046 memcpy(&st, &po->stats, sizeof(st)); 4047 memset(&po->stats, 0, sizeof(po->stats)); 4048 spin_unlock_bh(&sk->sk_receive_queue.lock); 4049 drops = atomic_xchg(&po->tp_drops, 0); 4050 4051 if (po->tp_version == TPACKET_V3) { 4052 lv = sizeof(struct tpacket_stats_v3); 4053 st.stats3.tp_drops = drops; 4054 st.stats3.tp_packets += drops; 4055 data = &st.stats3; 4056 } else { 4057 lv = sizeof(struct tpacket_stats); 4058 st.stats1.tp_drops = drops; 4059 st.stats1.tp_packets += drops; 4060 data = &st.stats1; 4061 } 4062 4063 break; 4064 case PACKET_AUXDATA: 4065 val = packet_sock_flag(po, PACKET_SOCK_AUXDATA); 4066 break; 4067 case PACKET_ORIGDEV: 4068 val = packet_sock_flag(po, PACKET_SOCK_ORIGDEV); 4069 break; 4070 case PACKET_VNET_HDR: 4071 val = packet_sock_flag(po, PACKET_SOCK_HAS_VNET_HDR); 4072 break; 4073 case PACKET_VERSION: 4074 val = po->tp_version; 4075 break; 4076 case PACKET_HDRLEN: 4077 if (len > sizeof(int)) 4078 len = sizeof(int); 4079 if (len < sizeof(int)) 4080 return -EINVAL; 4081 if (copy_from_user(&val, optval, len)) 4082 return -EFAULT; 4083 switch (val) { 4084 case TPACKET_V1: 4085 val = sizeof(struct tpacket_hdr); 4086 break; 4087 case TPACKET_V2: 4088 val = sizeof(struct tpacket2_hdr); 4089 break; 4090 case TPACKET_V3: 4091 val = sizeof(struct tpacket3_hdr); 4092 break; 4093 default: 4094 return -EINVAL; 4095 } 4096 break; 4097 case PACKET_RESERVE: 4098 val = po->tp_reserve; 4099 break; 4100 case PACKET_LOSS: 4101 val = packet_sock_flag(po, PACKET_SOCK_TP_LOSS); 4102 break; 4103 case PACKET_TIMESTAMP: 4104 val = READ_ONCE(po->tp_tstamp); 4105 break; 4106 case PACKET_FANOUT: 4107 val = (po->fanout ? 4108 ((u32)po->fanout->id | 4109 ((u32)po->fanout->type << 16) | 4110 ((u32)po->fanout->flags << 24)) : 4111 0); 4112 break; 4113 case PACKET_IGNORE_OUTGOING: 4114 val = po->prot_hook.ignore_outgoing; 4115 break; 4116 case PACKET_ROLLOVER_STATS: 4117 if (!po->rollover) 4118 return -EINVAL; 4119 rstats.tp_all = atomic_long_read(&po->rollover->num); 4120 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); 4121 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); 4122 data = &rstats; 4123 lv = sizeof(rstats); 4124 break; 4125 case PACKET_TX_HAS_OFF: 4126 val = packet_sock_flag(po, PACKET_SOCK_TX_HAS_OFF); 4127 break; 4128 case PACKET_QDISC_BYPASS: 4129 val = packet_use_direct_xmit(po); 4130 break; 4131 default: 4132 return -ENOPROTOOPT; 4133 } 4134 4135 if (len > lv) 4136 len = lv; 4137 if (put_user(len, optlen)) 4138 return -EFAULT; 4139 if (copy_to_user(optval, data, len)) 4140 return -EFAULT; 4141 return 0; 4142 } 4143 4144 static int packet_notifier(struct notifier_block *this, 4145 unsigned long msg, void *ptr) 4146 { 4147 struct sock *sk; 4148 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4149 struct net *net = dev_net(dev); 4150 4151 rcu_read_lock(); 4152 sk_for_each_rcu(sk, &net->packet.sklist) { 4153 struct packet_sock *po = pkt_sk(sk); 4154 4155 switch (msg) { 4156 case NETDEV_UNREGISTER: 4157 if (po->mclist) 4158 packet_dev_mclist_delete(dev, &po->mclist); 4159 fallthrough; 4160 4161 case NETDEV_DOWN: 4162 if (dev->ifindex == po->ifindex) { 4163 spin_lock(&po->bind_lock); 4164 if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) { 4165 __unregister_prot_hook(sk, false); 4166 sk->sk_err = ENETDOWN; 4167 if (!sock_flag(sk, SOCK_DEAD)) 4168 sk_error_report(sk); 4169 } 4170 if (msg == NETDEV_UNREGISTER) { 4171 packet_cached_dev_reset(po); 4172 WRITE_ONCE(po->ifindex, -1); 4173 netdev_put(po->prot_hook.dev, 4174 &po->prot_hook.dev_tracker); 4175 po->prot_hook.dev = NULL; 4176 } 4177 spin_unlock(&po->bind_lock); 4178 } 4179 break; 4180 case NETDEV_UP: 4181 if (dev->ifindex == po->ifindex) { 4182 spin_lock(&po->bind_lock); 4183 if (po->num) 4184 register_prot_hook(sk); 4185 spin_unlock(&po->bind_lock); 4186 } 4187 break; 4188 } 4189 } 4190 rcu_read_unlock(); 4191 return NOTIFY_DONE; 4192 } 4193 4194 4195 static int packet_ioctl(struct socket *sock, unsigned int cmd, 4196 unsigned long arg) 4197 { 4198 struct sock *sk = sock->sk; 4199 4200 switch (cmd) { 4201 case SIOCOUTQ: 4202 { 4203 int amount = sk_wmem_alloc_get(sk); 4204 4205 return put_user(amount, (int __user *)arg); 4206 } 4207 case SIOCINQ: 4208 { 4209 struct sk_buff *skb; 4210 int amount = 0; 4211 4212 spin_lock_bh(&sk->sk_receive_queue.lock); 4213 skb = skb_peek(&sk->sk_receive_queue); 4214 if (skb) 4215 amount = skb->len; 4216 spin_unlock_bh(&sk->sk_receive_queue.lock); 4217 return put_user(amount, (int __user *)arg); 4218 } 4219 #ifdef CONFIG_INET 4220 case SIOCADDRT: 4221 case SIOCDELRT: 4222 case SIOCDARP: 4223 case SIOCGARP: 4224 case SIOCSARP: 4225 case SIOCGIFADDR: 4226 case SIOCSIFADDR: 4227 case SIOCGIFBRDADDR: 4228 case SIOCSIFBRDADDR: 4229 case SIOCGIFNETMASK: 4230 case SIOCSIFNETMASK: 4231 case SIOCGIFDSTADDR: 4232 case SIOCSIFDSTADDR: 4233 case SIOCSIFFLAGS: 4234 return inet_dgram_ops.ioctl(sock, cmd, arg); 4235 #endif 4236 4237 default: 4238 return -ENOIOCTLCMD; 4239 } 4240 return 0; 4241 } 4242 4243 static __poll_t packet_poll(struct file *file, struct socket *sock, 4244 poll_table *wait) 4245 { 4246 struct sock *sk = sock->sk; 4247 struct packet_sock *po = pkt_sk(sk); 4248 __poll_t mask = datagram_poll(file, sock, wait); 4249 4250 spin_lock_bh(&sk->sk_receive_queue.lock); 4251 if (po->rx_ring.pg_vec) { 4252 if (!packet_previous_rx_frame(po, &po->rx_ring, 4253 TP_STATUS_KERNEL)) 4254 mask |= EPOLLIN | EPOLLRDNORM; 4255 } 4256 packet_rcv_try_clear_pressure(po); 4257 spin_unlock_bh(&sk->sk_receive_queue.lock); 4258 spin_lock_bh(&sk->sk_write_queue.lock); 4259 if (po->tx_ring.pg_vec) { 4260 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 4261 mask |= EPOLLOUT | EPOLLWRNORM; 4262 } 4263 spin_unlock_bh(&sk->sk_write_queue.lock); 4264 return mask; 4265 } 4266 4267 4268 /* Dirty? Well, I still did not learn better way to account 4269 * for user mmaps. 4270 */ 4271 4272 static void packet_mm_open(struct vm_area_struct *vma) 4273 { 4274 struct file *file = vma->vm_file; 4275 struct socket *sock = file->private_data; 4276 struct sock *sk = sock->sk; 4277 4278 if (sk) 4279 atomic_inc(&pkt_sk(sk)->mapped); 4280 } 4281 4282 static void packet_mm_close(struct vm_area_struct *vma) 4283 { 4284 struct file *file = vma->vm_file; 4285 struct socket *sock = file->private_data; 4286 struct sock *sk = sock->sk; 4287 4288 if (sk) 4289 atomic_dec(&pkt_sk(sk)->mapped); 4290 } 4291 4292 static const struct vm_operations_struct packet_mmap_ops = { 4293 .open = packet_mm_open, 4294 .close = packet_mm_close, 4295 }; 4296 4297 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 4298 unsigned int len) 4299 { 4300 int i; 4301 4302 for (i = 0; i < len; i++) { 4303 if (likely(pg_vec[i].buffer)) { 4304 if (is_vmalloc_addr(pg_vec[i].buffer)) 4305 vfree(pg_vec[i].buffer); 4306 else 4307 free_pages((unsigned long)pg_vec[i].buffer, 4308 order); 4309 pg_vec[i].buffer = NULL; 4310 } 4311 } 4312 kfree(pg_vec); 4313 } 4314 4315 static char *alloc_one_pg_vec_page(unsigned long order) 4316 { 4317 char *buffer; 4318 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 4319 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 4320 4321 buffer = (char *) __get_free_pages(gfp_flags, order); 4322 if (buffer) 4323 return buffer; 4324 4325 /* __get_free_pages failed, fall back to vmalloc */ 4326 buffer = vzalloc(array_size((1 << order), PAGE_SIZE)); 4327 if (buffer) 4328 return buffer; 4329 4330 /* vmalloc failed, lets dig into swap here */ 4331 gfp_flags &= ~__GFP_NORETRY; 4332 buffer = (char *) __get_free_pages(gfp_flags, order); 4333 if (buffer) 4334 return buffer; 4335 4336 /* complete and utter failure */ 4337 return NULL; 4338 } 4339 4340 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 4341 { 4342 unsigned int block_nr = req->tp_block_nr; 4343 struct pgv *pg_vec; 4344 int i; 4345 4346 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN); 4347 if (unlikely(!pg_vec)) 4348 goto out; 4349 4350 for (i = 0; i < block_nr; i++) { 4351 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 4352 if (unlikely(!pg_vec[i].buffer)) 4353 goto out_free_pgvec; 4354 } 4355 4356 out: 4357 return pg_vec; 4358 4359 out_free_pgvec: 4360 free_pg_vec(pg_vec, order, block_nr); 4361 pg_vec = NULL; 4362 goto out; 4363 } 4364 4365 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 4366 int closing, int tx_ring) 4367 { 4368 struct pgv *pg_vec = NULL; 4369 struct packet_sock *po = pkt_sk(sk); 4370 unsigned long *rx_owner_map = NULL; 4371 int was_running, order = 0; 4372 struct packet_ring_buffer *rb; 4373 struct sk_buff_head *rb_queue; 4374 __be16 num; 4375 int err; 4376 /* Added to avoid minimal code churn */ 4377 struct tpacket_req *req = &req_u->req; 4378 4379 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 4380 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 4381 4382 err = -EBUSY; 4383 if (!closing) { 4384 if (atomic_read(&po->mapped)) 4385 goto out; 4386 if (packet_read_pending(rb)) 4387 goto out; 4388 } 4389 4390 if (req->tp_block_nr) { 4391 unsigned int min_frame_size; 4392 4393 /* Sanity tests and some calculations */ 4394 err = -EBUSY; 4395 if (unlikely(rb->pg_vec)) 4396 goto out; 4397 4398 switch (po->tp_version) { 4399 case TPACKET_V1: 4400 po->tp_hdrlen = TPACKET_HDRLEN; 4401 break; 4402 case TPACKET_V2: 4403 po->tp_hdrlen = TPACKET2_HDRLEN; 4404 break; 4405 case TPACKET_V3: 4406 po->tp_hdrlen = TPACKET3_HDRLEN; 4407 break; 4408 } 4409 4410 err = -EINVAL; 4411 if (unlikely((int)req->tp_block_size <= 0)) 4412 goto out; 4413 if (unlikely(!PAGE_ALIGNED(req->tp_block_size))) 4414 goto out; 4415 min_frame_size = po->tp_hdrlen + po->tp_reserve; 4416 if (po->tp_version >= TPACKET_V3 && 4417 req->tp_block_size < 4418 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size) 4419 goto out; 4420 if (unlikely(req->tp_frame_size < min_frame_size)) 4421 goto out; 4422 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 4423 goto out; 4424 4425 rb->frames_per_block = req->tp_block_size / req->tp_frame_size; 4426 if (unlikely(rb->frames_per_block == 0)) 4427 goto out; 4428 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr)) 4429 goto out; 4430 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 4431 req->tp_frame_nr)) 4432 goto out; 4433 4434 err = -ENOMEM; 4435 order = get_order(req->tp_block_size); 4436 pg_vec = alloc_pg_vec(req, order); 4437 if (unlikely(!pg_vec)) 4438 goto out; 4439 switch (po->tp_version) { 4440 case TPACKET_V3: 4441 /* Block transmit is not supported yet */ 4442 if (!tx_ring) { 4443 init_prb_bdqc(po, rb, pg_vec, req_u); 4444 } else { 4445 struct tpacket_req3 *req3 = &req_u->req3; 4446 4447 if (req3->tp_retire_blk_tov || 4448 req3->tp_sizeof_priv || 4449 req3->tp_feature_req_word) { 4450 err = -EINVAL; 4451 goto out_free_pg_vec; 4452 } 4453 } 4454 break; 4455 default: 4456 if (!tx_ring) { 4457 rx_owner_map = bitmap_alloc(req->tp_frame_nr, 4458 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); 4459 if (!rx_owner_map) 4460 goto out_free_pg_vec; 4461 } 4462 break; 4463 } 4464 } 4465 /* Done */ 4466 else { 4467 err = -EINVAL; 4468 if (unlikely(req->tp_frame_nr)) 4469 goto out; 4470 } 4471 4472 4473 /* Detach socket from network */ 4474 spin_lock(&po->bind_lock); 4475 was_running = packet_sock_flag(po, PACKET_SOCK_RUNNING); 4476 num = po->num; 4477 if (was_running) { 4478 WRITE_ONCE(po->num, 0); 4479 __unregister_prot_hook(sk, false); 4480 } 4481 spin_unlock(&po->bind_lock); 4482 4483 synchronize_net(); 4484 4485 err = -EBUSY; 4486 mutex_lock(&po->pg_vec_lock); 4487 if (closing || atomic_read(&po->mapped) == 0) { 4488 err = 0; 4489 spin_lock_bh(&rb_queue->lock); 4490 swap(rb->pg_vec, pg_vec); 4491 if (po->tp_version <= TPACKET_V2) 4492 swap(rb->rx_owner_map, rx_owner_map); 4493 rb->frame_max = (req->tp_frame_nr - 1); 4494 rb->head = 0; 4495 rb->frame_size = req->tp_frame_size; 4496 spin_unlock_bh(&rb_queue->lock); 4497 4498 swap(rb->pg_vec_order, order); 4499 swap(rb->pg_vec_len, req->tp_block_nr); 4500 4501 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 4502 po->prot_hook.func = (po->rx_ring.pg_vec) ? 4503 tpacket_rcv : packet_rcv; 4504 skb_queue_purge(rb_queue); 4505 if (atomic_read(&po->mapped)) 4506 pr_err("packet_mmap: vma is busy: %d\n", 4507 atomic_read(&po->mapped)); 4508 } 4509 mutex_unlock(&po->pg_vec_lock); 4510 4511 spin_lock(&po->bind_lock); 4512 if (was_running) { 4513 WRITE_ONCE(po->num, num); 4514 register_prot_hook(sk); 4515 } 4516 spin_unlock(&po->bind_lock); 4517 if (pg_vec && (po->tp_version > TPACKET_V2)) { 4518 /* Because we don't support block-based V3 on tx-ring */ 4519 if (!tx_ring) 4520 prb_shutdown_retire_blk_timer(po, rb_queue); 4521 } 4522 4523 out_free_pg_vec: 4524 if (pg_vec) { 4525 bitmap_free(rx_owner_map); 4526 free_pg_vec(pg_vec, order, req->tp_block_nr); 4527 } 4528 out: 4529 return err; 4530 } 4531 4532 static int packet_mmap(struct file *file, struct socket *sock, 4533 struct vm_area_struct *vma) 4534 { 4535 struct sock *sk = sock->sk; 4536 struct packet_sock *po = pkt_sk(sk); 4537 unsigned long size, expected_size; 4538 struct packet_ring_buffer *rb; 4539 unsigned long start; 4540 int err = -EINVAL; 4541 int i; 4542 4543 if (vma->vm_pgoff) 4544 return -EINVAL; 4545 4546 mutex_lock(&po->pg_vec_lock); 4547 4548 expected_size = 0; 4549 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4550 if (rb->pg_vec) { 4551 expected_size += rb->pg_vec_len 4552 * rb->pg_vec_pages 4553 * PAGE_SIZE; 4554 } 4555 } 4556 4557 if (expected_size == 0) 4558 goto out; 4559 4560 size = vma->vm_end - vma->vm_start; 4561 if (size != expected_size) 4562 goto out; 4563 4564 start = vma->vm_start; 4565 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4566 if (rb->pg_vec == NULL) 4567 continue; 4568 4569 for (i = 0; i < rb->pg_vec_len; i++) { 4570 struct page *page; 4571 void *kaddr = rb->pg_vec[i].buffer; 4572 int pg_num; 4573 4574 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 4575 page = pgv_to_page(kaddr); 4576 err = vm_insert_page(vma, start, page); 4577 if (unlikely(err)) 4578 goto out; 4579 start += PAGE_SIZE; 4580 kaddr += PAGE_SIZE; 4581 } 4582 } 4583 } 4584 4585 atomic_inc(&po->mapped); 4586 vma->vm_ops = &packet_mmap_ops; 4587 err = 0; 4588 4589 out: 4590 mutex_unlock(&po->pg_vec_lock); 4591 return err; 4592 } 4593 4594 static const struct proto_ops packet_ops_spkt = { 4595 .family = PF_PACKET, 4596 .owner = THIS_MODULE, 4597 .release = packet_release, 4598 .bind = packet_bind_spkt, 4599 .connect = sock_no_connect, 4600 .socketpair = sock_no_socketpair, 4601 .accept = sock_no_accept, 4602 .getname = packet_getname_spkt, 4603 .poll = datagram_poll, 4604 .ioctl = packet_ioctl, 4605 .gettstamp = sock_gettstamp, 4606 .listen = sock_no_listen, 4607 .shutdown = sock_no_shutdown, 4608 .sendmsg = packet_sendmsg_spkt, 4609 .recvmsg = packet_recvmsg, 4610 .mmap = sock_no_mmap, 4611 .sendpage = sock_no_sendpage, 4612 }; 4613 4614 static const struct proto_ops packet_ops = { 4615 .family = PF_PACKET, 4616 .owner = THIS_MODULE, 4617 .release = packet_release, 4618 .bind = packet_bind, 4619 .connect = sock_no_connect, 4620 .socketpair = sock_no_socketpair, 4621 .accept = sock_no_accept, 4622 .getname = packet_getname, 4623 .poll = packet_poll, 4624 .ioctl = packet_ioctl, 4625 .gettstamp = sock_gettstamp, 4626 .listen = sock_no_listen, 4627 .shutdown = sock_no_shutdown, 4628 .setsockopt = packet_setsockopt, 4629 .getsockopt = packet_getsockopt, 4630 .sendmsg = packet_sendmsg, 4631 .recvmsg = packet_recvmsg, 4632 .mmap = packet_mmap, 4633 .sendpage = sock_no_sendpage, 4634 }; 4635 4636 static const struct net_proto_family packet_family_ops = { 4637 .family = PF_PACKET, 4638 .create = packet_create, 4639 .owner = THIS_MODULE, 4640 }; 4641 4642 static struct notifier_block packet_netdev_notifier = { 4643 .notifier_call = packet_notifier, 4644 }; 4645 4646 #ifdef CONFIG_PROC_FS 4647 4648 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 4649 __acquires(RCU) 4650 { 4651 struct net *net = seq_file_net(seq); 4652 4653 rcu_read_lock(); 4654 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 4655 } 4656 4657 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4658 { 4659 struct net *net = seq_file_net(seq); 4660 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 4661 } 4662 4663 static void packet_seq_stop(struct seq_file *seq, void *v) 4664 __releases(RCU) 4665 { 4666 rcu_read_unlock(); 4667 } 4668 4669 static int packet_seq_show(struct seq_file *seq, void *v) 4670 { 4671 if (v == SEQ_START_TOKEN) 4672 seq_printf(seq, 4673 "%*sRefCnt Type Proto Iface R Rmem User Inode\n", 4674 IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk"); 4675 else { 4676 struct sock *s = sk_entry(v); 4677 const struct packet_sock *po = pkt_sk(s); 4678 4679 seq_printf(seq, 4680 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 4681 s, 4682 refcount_read(&s->sk_refcnt), 4683 s->sk_type, 4684 ntohs(READ_ONCE(po->num)), 4685 READ_ONCE(po->ifindex), 4686 packet_sock_flag(po, PACKET_SOCK_RUNNING), 4687 atomic_read(&s->sk_rmem_alloc), 4688 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), 4689 sock_i_ino(s)); 4690 } 4691 4692 return 0; 4693 } 4694 4695 static const struct seq_operations packet_seq_ops = { 4696 .start = packet_seq_start, 4697 .next = packet_seq_next, 4698 .stop = packet_seq_stop, 4699 .show = packet_seq_show, 4700 }; 4701 #endif 4702 4703 static int __net_init packet_net_init(struct net *net) 4704 { 4705 mutex_init(&net->packet.sklist_lock); 4706 INIT_HLIST_HEAD(&net->packet.sklist); 4707 4708 #ifdef CONFIG_PROC_FS 4709 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops, 4710 sizeof(struct seq_net_private))) 4711 return -ENOMEM; 4712 #endif /* CONFIG_PROC_FS */ 4713 4714 return 0; 4715 } 4716 4717 static void __net_exit packet_net_exit(struct net *net) 4718 { 4719 remove_proc_entry("packet", net->proc_net); 4720 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist)); 4721 } 4722 4723 static struct pernet_operations packet_net_ops = { 4724 .init = packet_net_init, 4725 .exit = packet_net_exit, 4726 }; 4727 4728 4729 static void __exit packet_exit(void) 4730 { 4731 sock_unregister(PF_PACKET); 4732 proto_unregister(&packet_proto); 4733 unregister_netdevice_notifier(&packet_netdev_notifier); 4734 unregister_pernet_subsys(&packet_net_ops); 4735 } 4736 4737 static int __init packet_init(void) 4738 { 4739 int rc; 4740 4741 rc = register_pernet_subsys(&packet_net_ops); 4742 if (rc) 4743 goto out; 4744 rc = register_netdevice_notifier(&packet_netdev_notifier); 4745 if (rc) 4746 goto out_pernet; 4747 rc = proto_register(&packet_proto, 0); 4748 if (rc) 4749 goto out_notifier; 4750 rc = sock_register(&packet_family_ops); 4751 if (rc) 4752 goto out_proto; 4753 4754 return 0; 4755 4756 out_proto: 4757 proto_unregister(&packet_proto); 4758 out_notifier: 4759 unregister_netdevice_notifier(&packet_netdev_notifier); 4760 out_pernet: 4761 unregister_pernet_subsys(&packet_net_ops); 4762 out: 4763 return rc; 4764 } 4765 4766 module_init(packet_init); 4767 module_exit(packet_exit); 4768 MODULE_LICENSE("GPL"); 4769 MODULE_ALIAS_NETPROTO(PF_PACKET); 4770