xref: /linux/net/packet/af_packet.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		PACKET - implements raw packet sockets.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
12  *
13  * Fixes:
14  *		Alan Cox	:	verify_area() now used correctly
15  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
16  *		Alan Cox	:	tidied skbuff lists.
17  *		Alan Cox	:	Now uses generic datagram routines I
18  *					added. Also fixed the peek/read crash
19  *					from all old Linux datagram code.
20  *		Alan Cox	:	Uses the improved datagram code.
21  *		Alan Cox	:	Added NULL's for socket options.
22  *		Alan Cox	:	Re-commented the code.
23  *		Alan Cox	:	Use new kernel side addressing
24  *		Rob Janssen	:	Correct MTU usage.
25  *		Dave Platt	:	Counter leaks caused by incorrect
26  *					interrupt locking and some slightly
27  *					dubious gcc output. Can you read
28  *					compiler: it said _VOLATILE_
29  *	Richard Kooijman	:	Timestamp fixes.
30  *		Alan Cox	:	New buffers. Use sk->mac.raw.
31  *		Alan Cox	:	sendmsg/recvmsg support.
32  *		Alan Cox	:	Protocol setting support
33  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
34  *	Cyrus Durgin		:	Fixed kerneld for kmod.
35  *	Michal Ostrowski        :       Module initialization cleanup.
36  *         Ulises Alonso        :       Frame number limit removal and
37  *                                      packet_set_ring memory leak.
38  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
39  *					The convention is that longer addresses
40  *					will simply extend the hardware address
41  *					byte arrays at the end of sockaddr_ll
42  *					and packet_mreq.
43  *		Johann Baudy	:	Added TX RING.
44  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
45  *					layer.
46  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #include <linux/ethtool.h>
52 #include <linux/filter.h>
53 #include <linux/types.h>
54 #include <linux/mm.h>
55 #include <linux/capability.h>
56 #include <linux/fcntl.h>
57 #include <linux/socket.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/if_packet.h>
62 #include <linux/wireless.h>
63 #include <linux/kernel.h>
64 #include <linux/kmod.h>
65 #include <linux/slab.h>
66 #include <linux/vmalloc.h>
67 #include <net/net_namespace.h>
68 #include <net/ip.h>
69 #include <net/protocol.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <linux/errno.h>
73 #include <linux/timer.h>
74 #include <linux/uaccess.h>
75 #include <asm/ioctls.h>
76 #include <asm/page.h>
77 #include <asm/cacheflush.h>
78 #include <asm/io.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81 #include <linux/poll.h>
82 #include <linux/module.h>
83 #include <linux/init.h>
84 #include <linux/mutex.h>
85 #include <linux/if_vlan.h>
86 #include <linux/virtio_net.h>
87 #include <linux/errqueue.h>
88 #include <linux/net_tstamp.h>
89 #include <linux/percpu.h>
90 #ifdef CONFIG_INET
91 #include <net/inet_common.h>
92 #endif
93 #include <linux/bpf.h>
94 #include <net/compat.h>
95 #include <linux/netfilter_netdev.h>
96 
97 #include "internal.h"
98 
99 /*
100    Assumptions:
101    - If the device has no dev->header_ops->create, there is no LL header
102      visible above the device. In this case, its hard_header_len should be 0.
103      The device may prepend its own header internally. In this case, its
104      needed_headroom should be set to the space needed for it to add its
105      internal header.
106      For example, a WiFi driver pretending to be an Ethernet driver should
107      set its hard_header_len to be the Ethernet header length, and set its
108      needed_headroom to be (the real WiFi header length - the fake Ethernet
109      header length).
110    - packet socket receives packets with pulled ll header,
111      so that SOCK_RAW should push it back.
112 
113 On receive:
114 -----------
115 
116 Incoming, dev_has_header(dev) == true
117    mac_header -> ll header
118    data       -> data
119 
120 Outgoing, dev_has_header(dev) == true
121    mac_header -> ll header
122    data       -> ll header
123 
124 Incoming, dev_has_header(dev) == false
125    mac_header -> data
126      However drivers often make it point to the ll header.
127      This is incorrect because the ll header should be invisible to us.
128    data       -> data
129 
130 Outgoing, dev_has_header(dev) == false
131    mac_header -> data. ll header is invisible to us.
132    data       -> data
133 
134 Resume
135   If dev_has_header(dev) == false we are unable to restore the ll header,
136     because it is invisible to us.
137 
138 
139 On transmit:
140 ------------
141 
142 dev_has_header(dev) == true
143    mac_header -> ll header
144    data       -> ll header
145 
146 dev_has_header(dev) == false (ll header is invisible to us)
147    mac_header -> data
148    data       -> data
149 
150    We should set network_header on output to the correct position,
151    packet classifier depends on it.
152  */
153 
154 /* Private packet socket structures. */
155 
156 /* identical to struct packet_mreq except it has
157  * a longer address field.
158  */
159 struct packet_mreq_max {
160 	int		mr_ifindex;
161 	unsigned short	mr_type;
162 	unsigned short	mr_alen;
163 	unsigned char	mr_address[MAX_ADDR_LEN];
164 };
165 
166 union tpacket_uhdr {
167 	struct tpacket_hdr  *h1;
168 	struct tpacket2_hdr *h2;
169 	struct tpacket3_hdr *h3;
170 	void *raw;
171 };
172 
173 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
174 		int closing, int tx_ring);
175 
176 #define V3_ALIGNMENT	(8)
177 
178 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
179 
180 #define BLK_PLUS_PRIV(sz_of_priv) \
181 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
182 
183 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
184 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
185 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
186 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
187 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
188 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
189 
190 struct packet_sock;
191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
192 		       struct packet_type *pt, struct net_device *orig_dev);
193 
194 static void *packet_previous_frame(struct packet_sock *po,
195 		struct packet_ring_buffer *rb,
196 		int status);
197 static void packet_increment_head(struct packet_ring_buffer *buff);
198 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 			struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 		struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 		struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(struct timer_list *);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
209 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
210 		struct tpacket3_hdr *);
211 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
212 		struct tpacket3_hdr *);
213 static void packet_flush_mclist(struct sock *sk);
214 static u16 packet_pick_tx_queue(struct sk_buff *skb);
215 
216 struct packet_skb_cb {
217 	union {
218 		struct sockaddr_pkt pkt;
219 		union {
220 			/* Trick: alias skb original length with
221 			 * ll.sll_family and ll.protocol in order
222 			 * to save room.
223 			 */
224 			unsigned int origlen;
225 			struct sockaddr_ll ll;
226 		};
227 	} sa;
228 };
229 
230 #define vio_le() virtio_legacy_is_little_endian()
231 
232 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
233 
234 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
235 #define GET_PBLOCK_DESC(x, bid)	\
236 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
237 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
238 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
239 #define GET_NEXT_PRB_BLK_NUM(x) \
240 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
241 	((x)->kactive_blk_num+1) : 0)
242 
243 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
244 static void __fanout_link(struct sock *sk, struct packet_sock *po);
245 
246 #ifdef CONFIG_NETFILTER_EGRESS
247 static noinline struct sk_buff *nf_hook_direct_egress(struct sk_buff *skb)
248 {
249 	struct sk_buff *next, *head = NULL, *tail;
250 	int rc;
251 
252 	rcu_read_lock();
253 	for (; skb != NULL; skb = next) {
254 		next = skb->next;
255 		skb_mark_not_on_list(skb);
256 
257 		if (!nf_hook_egress(skb, &rc, skb->dev))
258 			continue;
259 
260 		if (!head)
261 			head = skb;
262 		else
263 			tail->next = skb;
264 
265 		tail = skb;
266 	}
267 	rcu_read_unlock();
268 
269 	return head;
270 }
271 #endif
272 
273 static int packet_xmit(const struct packet_sock *po, struct sk_buff *skb)
274 {
275 	if (!packet_sock_flag(po, PACKET_SOCK_QDISC_BYPASS))
276 		return dev_queue_xmit(skb);
277 
278 #ifdef CONFIG_NETFILTER_EGRESS
279 	if (nf_hook_egress_active()) {
280 		skb = nf_hook_direct_egress(skb);
281 		if (!skb)
282 			return NET_XMIT_DROP;
283 	}
284 #endif
285 	return dev_direct_xmit(skb, packet_pick_tx_queue(skb));
286 }
287 
288 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
289 {
290 	struct net_device *dev;
291 
292 	rcu_read_lock();
293 	dev = rcu_dereference(po->cached_dev);
294 	dev_hold(dev);
295 	rcu_read_unlock();
296 
297 	return dev;
298 }
299 
300 static void packet_cached_dev_assign(struct packet_sock *po,
301 				     struct net_device *dev)
302 {
303 	rcu_assign_pointer(po->cached_dev, dev);
304 }
305 
306 static void packet_cached_dev_reset(struct packet_sock *po)
307 {
308 	RCU_INIT_POINTER(po->cached_dev, NULL);
309 }
310 
311 static u16 packet_pick_tx_queue(struct sk_buff *skb)
312 {
313 	struct net_device *dev = skb->dev;
314 	const struct net_device_ops *ops = dev->netdev_ops;
315 	int cpu = raw_smp_processor_id();
316 	u16 queue_index;
317 
318 #ifdef CONFIG_XPS
319 	skb->sender_cpu = cpu + 1;
320 #endif
321 	skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues);
322 	if (ops->ndo_select_queue) {
323 		queue_index = ops->ndo_select_queue(dev, skb, NULL);
324 		queue_index = netdev_cap_txqueue(dev, queue_index);
325 	} else {
326 		queue_index = netdev_pick_tx(dev, skb, NULL);
327 	}
328 
329 	return queue_index;
330 }
331 
332 /* __register_prot_hook must be invoked through register_prot_hook
333  * or from a context in which asynchronous accesses to the packet
334  * socket is not possible (packet_create()).
335  */
336 static void __register_prot_hook(struct sock *sk)
337 {
338 	struct packet_sock *po = pkt_sk(sk);
339 
340 	if (!packet_sock_flag(po, PACKET_SOCK_RUNNING)) {
341 		if (po->fanout)
342 			__fanout_link(sk, po);
343 		else
344 			dev_add_pack(&po->prot_hook);
345 
346 		sock_hold(sk);
347 		packet_sock_flag_set(po, PACKET_SOCK_RUNNING, 1);
348 	}
349 }
350 
351 static void register_prot_hook(struct sock *sk)
352 {
353 	lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
354 	__register_prot_hook(sk);
355 }
356 
357 /* If the sync parameter is true, we will temporarily drop
358  * the po->bind_lock and do a synchronize_net to make sure no
359  * asynchronous packet processing paths still refer to the elements
360  * of po->prot_hook.  If the sync parameter is false, it is the
361  * callers responsibility to take care of this.
362  */
363 static void __unregister_prot_hook(struct sock *sk, bool sync)
364 {
365 	struct packet_sock *po = pkt_sk(sk);
366 
367 	lockdep_assert_held_once(&po->bind_lock);
368 
369 	packet_sock_flag_set(po, PACKET_SOCK_RUNNING, 0);
370 
371 	if (po->fanout)
372 		__fanout_unlink(sk, po);
373 	else
374 		__dev_remove_pack(&po->prot_hook);
375 
376 	__sock_put(sk);
377 
378 	if (sync) {
379 		spin_unlock(&po->bind_lock);
380 		synchronize_net();
381 		spin_lock(&po->bind_lock);
382 	}
383 }
384 
385 static void unregister_prot_hook(struct sock *sk, bool sync)
386 {
387 	struct packet_sock *po = pkt_sk(sk);
388 
389 	if (packet_sock_flag(po, PACKET_SOCK_RUNNING))
390 		__unregister_prot_hook(sk, sync);
391 }
392 
393 static inline struct page * __pure pgv_to_page(void *addr)
394 {
395 	if (is_vmalloc_addr(addr))
396 		return vmalloc_to_page(addr);
397 	return virt_to_page(addr);
398 }
399 
400 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
401 {
402 	union tpacket_uhdr h;
403 
404 	/* WRITE_ONCE() are paired with READ_ONCE() in __packet_get_status */
405 
406 	h.raw = frame;
407 	switch (po->tp_version) {
408 	case TPACKET_V1:
409 		WRITE_ONCE(h.h1->tp_status, status);
410 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
411 		break;
412 	case TPACKET_V2:
413 		WRITE_ONCE(h.h2->tp_status, status);
414 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
415 		break;
416 	case TPACKET_V3:
417 		WRITE_ONCE(h.h3->tp_status, status);
418 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
419 		break;
420 	default:
421 		WARN(1, "TPACKET version not supported.\n");
422 		BUG();
423 	}
424 
425 	smp_wmb();
426 }
427 
428 static int __packet_get_status(const struct packet_sock *po, void *frame)
429 {
430 	union tpacket_uhdr h;
431 
432 	smp_rmb();
433 
434 	/* READ_ONCE() are paired with WRITE_ONCE() in __packet_set_status */
435 
436 	h.raw = frame;
437 	switch (po->tp_version) {
438 	case TPACKET_V1:
439 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
440 		return READ_ONCE(h.h1->tp_status);
441 	case TPACKET_V2:
442 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
443 		return READ_ONCE(h.h2->tp_status);
444 	case TPACKET_V3:
445 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
446 		return READ_ONCE(h.h3->tp_status);
447 	default:
448 		WARN(1, "TPACKET version not supported.\n");
449 		BUG();
450 		return 0;
451 	}
452 }
453 
454 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts,
455 				   unsigned int flags)
456 {
457 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
458 
459 	if (shhwtstamps &&
460 	    (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
461 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts))
462 		return TP_STATUS_TS_RAW_HARDWARE;
463 
464 	if ((flags & SOF_TIMESTAMPING_SOFTWARE) &&
465 	    ktime_to_timespec64_cond(skb_tstamp(skb), ts))
466 		return TP_STATUS_TS_SOFTWARE;
467 
468 	return 0;
469 }
470 
471 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
472 				    struct sk_buff *skb)
473 {
474 	union tpacket_uhdr h;
475 	struct timespec64 ts;
476 	__u32 ts_status;
477 
478 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, READ_ONCE(po->tp_tstamp))))
479 		return 0;
480 
481 	h.raw = frame;
482 	/*
483 	 * versions 1 through 3 overflow the timestamps in y2106, since they
484 	 * all store the seconds in a 32-bit unsigned integer.
485 	 * If we create a version 4, that should have a 64-bit timestamp,
486 	 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit
487 	 * nanoseconds.
488 	 */
489 	switch (po->tp_version) {
490 	case TPACKET_V1:
491 		h.h1->tp_sec = ts.tv_sec;
492 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
493 		break;
494 	case TPACKET_V2:
495 		h.h2->tp_sec = ts.tv_sec;
496 		h.h2->tp_nsec = ts.tv_nsec;
497 		break;
498 	case TPACKET_V3:
499 		h.h3->tp_sec = ts.tv_sec;
500 		h.h3->tp_nsec = ts.tv_nsec;
501 		break;
502 	default:
503 		WARN(1, "TPACKET version not supported.\n");
504 		BUG();
505 	}
506 
507 	/* one flush is safe, as both fields always lie on the same cacheline */
508 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
509 	smp_wmb();
510 
511 	return ts_status;
512 }
513 
514 static void *packet_lookup_frame(const struct packet_sock *po,
515 				 const struct packet_ring_buffer *rb,
516 				 unsigned int position,
517 				 int status)
518 {
519 	unsigned int pg_vec_pos, frame_offset;
520 	union tpacket_uhdr h;
521 
522 	pg_vec_pos = position / rb->frames_per_block;
523 	frame_offset = position % rb->frames_per_block;
524 
525 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
526 		(frame_offset * rb->frame_size);
527 
528 	if (status != __packet_get_status(po, h.raw))
529 		return NULL;
530 
531 	return h.raw;
532 }
533 
534 static void *packet_current_frame(struct packet_sock *po,
535 		struct packet_ring_buffer *rb,
536 		int status)
537 {
538 	return packet_lookup_frame(po, rb, rb->head, status);
539 }
540 
541 static u16 vlan_get_tci(const struct sk_buff *skb, struct net_device *dev)
542 {
543 	struct vlan_hdr vhdr, *vh;
544 	unsigned int header_len;
545 
546 	if (!dev)
547 		return 0;
548 
549 	/* In the SOCK_DGRAM scenario, skb data starts at the network
550 	 * protocol, which is after the VLAN headers. The outer VLAN
551 	 * header is at the hard_header_len offset in non-variable
552 	 * length link layer headers. If it's a VLAN device, the
553 	 * min_header_len should be used to exclude the VLAN header
554 	 * size.
555 	 */
556 	if (dev->min_header_len == dev->hard_header_len)
557 		header_len = dev->hard_header_len;
558 	else if (is_vlan_dev(dev))
559 		header_len = dev->min_header_len;
560 	else
561 		return 0;
562 
563 	vh = skb_header_pointer(skb, skb_mac_offset(skb) + header_len,
564 				sizeof(vhdr), &vhdr);
565 	if (unlikely(!vh))
566 		return 0;
567 
568 	return ntohs(vh->h_vlan_TCI);
569 }
570 
571 static __be16 vlan_get_protocol_dgram(const struct sk_buff *skb)
572 {
573 	__be16 proto = skb->protocol;
574 
575 	if (unlikely(eth_type_vlan(proto)))
576 		proto = __vlan_get_protocol_offset(skb, proto,
577 						   skb_mac_offset(skb), NULL);
578 
579 	return proto;
580 }
581 
582 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
583 {
584 	del_timer_sync(&pkc->retire_blk_timer);
585 }
586 
587 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
588 		struct sk_buff_head *rb_queue)
589 {
590 	struct tpacket_kbdq_core *pkc;
591 
592 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
593 
594 	spin_lock_bh(&rb_queue->lock);
595 	pkc->delete_blk_timer = 1;
596 	spin_unlock_bh(&rb_queue->lock);
597 
598 	prb_del_retire_blk_timer(pkc);
599 }
600 
601 static void prb_setup_retire_blk_timer(struct packet_sock *po)
602 {
603 	struct tpacket_kbdq_core *pkc;
604 
605 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
606 	timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
607 		    0);
608 	pkc->retire_blk_timer.expires = jiffies;
609 }
610 
611 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
612 				int blk_size_in_bytes)
613 {
614 	struct net_device *dev;
615 	unsigned int mbits, div;
616 	struct ethtool_link_ksettings ecmd;
617 	int err;
618 
619 	rtnl_lock();
620 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
621 	if (unlikely(!dev)) {
622 		rtnl_unlock();
623 		return DEFAULT_PRB_RETIRE_TOV;
624 	}
625 	err = __ethtool_get_link_ksettings(dev, &ecmd);
626 	rtnl_unlock();
627 	if (err)
628 		return DEFAULT_PRB_RETIRE_TOV;
629 
630 	/* If the link speed is so slow you don't really
631 	 * need to worry about perf anyways
632 	 */
633 	if (ecmd.base.speed < SPEED_1000 ||
634 	    ecmd.base.speed == SPEED_UNKNOWN)
635 		return DEFAULT_PRB_RETIRE_TOV;
636 
637 	div = ecmd.base.speed / 1000;
638 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
639 
640 	if (div)
641 		mbits /= div;
642 
643 	if (div)
644 		return mbits + 1;
645 	return mbits;
646 }
647 
648 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
649 			union tpacket_req_u *req_u)
650 {
651 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
652 }
653 
654 static void init_prb_bdqc(struct packet_sock *po,
655 			struct packet_ring_buffer *rb,
656 			struct pgv *pg_vec,
657 			union tpacket_req_u *req_u)
658 {
659 	struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
660 	struct tpacket_block_desc *pbd;
661 
662 	memset(p1, 0x0, sizeof(*p1));
663 
664 	p1->knxt_seq_num = 1;
665 	p1->pkbdq = pg_vec;
666 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
667 	p1->pkblk_start	= pg_vec[0].buffer;
668 	p1->kblk_size = req_u->req3.tp_block_size;
669 	p1->knum_blocks	= req_u->req3.tp_block_nr;
670 	p1->hdrlen = po->tp_hdrlen;
671 	p1->version = po->tp_version;
672 	p1->last_kactive_blk_num = 0;
673 	po->stats.stats3.tp_freeze_q_cnt = 0;
674 	if (req_u->req3.tp_retire_blk_tov)
675 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
676 	else
677 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
678 						req_u->req3.tp_block_size);
679 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
680 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
681 	rwlock_init(&p1->blk_fill_in_prog_lock);
682 
683 	p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
684 	prb_init_ft_ops(p1, req_u);
685 	prb_setup_retire_blk_timer(po);
686 	prb_open_block(p1, pbd);
687 }
688 
689 /*  Do NOT update the last_blk_num first.
690  *  Assumes sk_buff_head lock is held.
691  */
692 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
693 {
694 	mod_timer(&pkc->retire_blk_timer,
695 			jiffies + pkc->tov_in_jiffies);
696 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
697 }
698 
699 /*
700  * Timer logic:
701  * 1) We refresh the timer only when we open a block.
702  *    By doing this we don't waste cycles refreshing the timer
703  *	  on packet-by-packet basis.
704  *
705  * With a 1MB block-size, on a 1Gbps line, it will take
706  * i) ~8 ms to fill a block + ii) memcpy etc.
707  * In this cut we are not accounting for the memcpy time.
708  *
709  * So, if the user sets the 'tmo' to 10ms then the timer
710  * will never fire while the block is still getting filled
711  * (which is what we want). However, the user could choose
712  * to close a block early and that's fine.
713  *
714  * But when the timer does fire, we check whether or not to refresh it.
715  * Since the tmo granularity is in msecs, it is not too expensive
716  * to refresh the timer, lets say every '8' msecs.
717  * Either the user can set the 'tmo' or we can derive it based on
718  * a) line-speed and b) block-size.
719  * prb_calc_retire_blk_tmo() calculates the tmo.
720  *
721  */
722 static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
723 {
724 	struct packet_sock *po =
725 		from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
726 	struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
727 	unsigned int frozen;
728 	struct tpacket_block_desc *pbd;
729 
730 	spin_lock(&po->sk.sk_receive_queue.lock);
731 
732 	frozen = prb_queue_frozen(pkc);
733 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
734 
735 	if (unlikely(pkc->delete_blk_timer))
736 		goto out;
737 
738 	/* We only need to plug the race when the block is partially filled.
739 	 * tpacket_rcv:
740 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
741 	 *		copy_bits() is in progress ...
742 	 *		timer fires on other cpu:
743 	 *		we can't retire the current block because copy_bits
744 	 *		is in progress.
745 	 *
746 	 */
747 	if (BLOCK_NUM_PKTS(pbd)) {
748 		/* Waiting for skb_copy_bits to finish... */
749 		write_lock(&pkc->blk_fill_in_prog_lock);
750 		write_unlock(&pkc->blk_fill_in_prog_lock);
751 	}
752 
753 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
754 		if (!frozen) {
755 			if (!BLOCK_NUM_PKTS(pbd)) {
756 				/* An empty block. Just refresh the timer. */
757 				goto refresh_timer;
758 			}
759 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
760 			if (!prb_dispatch_next_block(pkc, po))
761 				goto refresh_timer;
762 			else
763 				goto out;
764 		} else {
765 			/* Case 1. Queue was frozen because user-space was
766 			 *	   lagging behind.
767 			 */
768 			if (prb_curr_blk_in_use(pbd)) {
769 				/*
770 				 * Ok, user-space is still behind.
771 				 * So just refresh the timer.
772 				 */
773 				goto refresh_timer;
774 			} else {
775 			       /* Case 2. queue was frozen,user-space caught up,
776 				* now the link went idle && the timer fired.
777 				* We don't have a block to close.So we open this
778 				* block and restart the timer.
779 				* opening a block thaws the queue,restarts timer
780 				* Thawing/timer-refresh is a side effect.
781 				*/
782 				prb_open_block(pkc, pbd);
783 				goto out;
784 			}
785 		}
786 	}
787 
788 refresh_timer:
789 	_prb_refresh_rx_retire_blk_timer(pkc);
790 
791 out:
792 	spin_unlock(&po->sk.sk_receive_queue.lock);
793 }
794 
795 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
796 		struct tpacket_block_desc *pbd1, __u32 status)
797 {
798 	/* Flush everything minus the block header */
799 
800 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
801 	u8 *start, *end;
802 
803 	start = (u8 *)pbd1;
804 
805 	/* Skip the block header(we know header WILL fit in 4K) */
806 	start += PAGE_SIZE;
807 
808 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
809 	for (; start < end; start += PAGE_SIZE)
810 		flush_dcache_page(pgv_to_page(start));
811 
812 	smp_wmb();
813 #endif
814 
815 	/* Now update the block status. */
816 
817 	BLOCK_STATUS(pbd1) = status;
818 
819 	/* Flush the block header */
820 
821 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
822 	start = (u8 *)pbd1;
823 	flush_dcache_page(pgv_to_page(start));
824 
825 	smp_wmb();
826 #endif
827 }
828 
829 /*
830  * Side effect:
831  *
832  * 1) flush the block
833  * 2) Increment active_blk_num
834  *
835  * Note:We DONT refresh the timer on purpose.
836  *	Because almost always the next block will be opened.
837  */
838 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
839 		struct tpacket_block_desc *pbd1,
840 		struct packet_sock *po, unsigned int stat)
841 {
842 	__u32 status = TP_STATUS_USER | stat;
843 
844 	struct tpacket3_hdr *last_pkt;
845 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
846 	struct sock *sk = &po->sk;
847 
848 	if (atomic_read(&po->tp_drops))
849 		status |= TP_STATUS_LOSING;
850 
851 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
852 	last_pkt->tp_next_offset = 0;
853 
854 	/* Get the ts of the last pkt */
855 	if (BLOCK_NUM_PKTS(pbd1)) {
856 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
857 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
858 	} else {
859 		/* Ok, we tmo'd - so get the current time.
860 		 *
861 		 * It shouldn't really happen as we don't close empty
862 		 * blocks. See prb_retire_rx_blk_timer_expired().
863 		 */
864 		struct timespec64 ts;
865 		ktime_get_real_ts64(&ts);
866 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
867 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
868 	}
869 
870 	smp_wmb();
871 
872 	/* Flush the block */
873 	prb_flush_block(pkc1, pbd1, status);
874 
875 	sk->sk_data_ready(sk);
876 
877 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
878 }
879 
880 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
881 {
882 	pkc->reset_pending_on_curr_blk = 0;
883 }
884 
885 /*
886  * Side effect of opening a block:
887  *
888  * 1) prb_queue is thawed.
889  * 2) retire_blk_timer is refreshed.
890  *
891  */
892 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
893 	struct tpacket_block_desc *pbd1)
894 {
895 	struct timespec64 ts;
896 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
897 
898 	smp_rmb();
899 
900 	/* We could have just memset this but we will lose the
901 	 * flexibility of making the priv area sticky
902 	 */
903 
904 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
905 	BLOCK_NUM_PKTS(pbd1) = 0;
906 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
907 
908 	ktime_get_real_ts64(&ts);
909 
910 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
911 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
912 
913 	pkc1->pkblk_start = (char *)pbd1;
914 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
915 
916 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
917 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
918 
919 	pbd1->version = pkc1->version;
920 	pkc1->prev = pkc1->nxt_offset;
921 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
922 
923 	prb_thaw_queue(pkc1);
924 	_prb_refresh_rx_retire_blk_timer(pkc1);
925 
926 	smp_wmb();
927 }
928 
929 /*
930  * Queue freeze logic:
931  * 1) Assume tp_block_nr = 8 blocks.
932  * 2) At time 't0', user opens Rx ring.
933  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
934  * 4) user-space is either sleeping or processing block '0'.
935  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
936  *    it will close block-7,loop around and try to fill block '0'.
937  *    call-flow:
938  *    __packet_lookup_frame_in_block
939  *      prb_retire_current_block()
940  *      prb_dispatch_next_block()
941  *        |->(BLOCK_STATUS == USER) evaluates to true
942  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
943  * 6) Now there are two cases:
944  *    6.1) Link goes idle right after the queue is frozen.
945  *         But remember, the last open_block() refreshed the timer.
946  *         When this timer expires,it will refresh itself so that we can
947  *         re-open block-0 in near future.
948  *    6.2) Link is busy and keeps on receiving packets. This is a simple
949  *         case and __packet_lookup_frame_in_block will check if block-0
950  *         is free and can now be re-used.
951  */
952 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
953 				  struct packet_sock *po)
954 {
955 	pkc->reset_pending_on_curr_blk = 1;
956 	po->stats.stats3.tp_freeze_q_cnt++;
957 }
958 
959 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
960 
961 /*
962  * If the next block is free then we will dispatch it
963  * and return a good offset.
964  * Else, we will freeze the queue.
965  * So, caller must check the return value.
966  */
967 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
968 		struct packet_sock *po)
969 {
970 	struct tpacket_block_desc *pbd;
971 
972 	smp_rmb();
973 
974 	/* 1. Get current block num */
975 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
976 
977 	/* 2. If this block is currently in_use then freeze the queue */
978 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
979 		prb_freeze_queue(pkc, po);
980 		return NULL;
981 	}
982 
983 	/*
984 	 * 3.
985 	 * open this block and return the offset where the first packet
986 	 * needs to get stored.
987 	 */
988 	prb_open_block(pkc, pbd);
989 	return (void *)pkc->nxt_offset;
990 }
991 
992 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
993 		struct packet_sock *po, unsigned int status)
994 {
995 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
996 
997 	/* retire/close the current block */
998 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
999 		/*
1000 		 * Plug the case where copy_bits() is in progress on
1001 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
1002 		 * have space to copy the pkt in the current block and
1003 		 * called prb_retire_current_block()
1004 		 *
1005 		 * We don't need to worry about the TMO case because
1006 		 * the timer-handler already handled this case.
1007 		 */
1008 		if (!(status & TP_STATUS_BLK_TMO)) {
1009 			/* Waiting for skb_copy_bits to finish... */
1010 			write_lock(&pkc->blk_fill_in_prog_lock);
1011 			write_unlock(&pkc->blk_fill_in_prog_lock);
1012 		}
1013 		prb_close_block(pkc, pbd, po, status);
1014 		return;
1015 	}
1016 }
1017 
1018 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
1019 {
1020 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
1021 }
1022 
1023 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
1024 {
1025 	return pkc->reset_pending_on_curr_blk;
1026 }
1027 
1028 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
1029 	__releases(&pkc->blk_fill_in_prog_lock)
1030 {
1031 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1032 
1033 	read_unlock(&pkc->blk_fill_in_prog_lock);
1034 }
1035 
1036 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
1037 			struct tpacket3_hdr *ppd)
1038 {
1039 	ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
1040 }
1041 
1042 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
1043 			struct tpacket3_hdr *ppd)
1044 {
1045 	ppd->hv1.tp_rxhash = 0;
1046 }
1047 
1048 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
1049 			struct tpacket3_hdr *ppd)
1050 {
1051 	struct packet_sock *po = container_of(pkc, struct packet_sock, rx_ring.prb_bdqc);
1052 
1053 	if (skb_vlan_tag_present(pkc->skb)) {
1054 		ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
1055 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1056 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1057 	} else if (unlikely(po->sk.sk_type == SOCK_DGRAM && eth_type_vlan(pkc->skb->protocol))) {
1058 		ppd->hv1.tp_vlan_tci = vlan_get_tci(pkc->skb, pkc->skb->dev);
1059 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->protocol);
1060 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1061 	} else {
1062 		ppd->hv1.tp_vlan_tci = 0;
1063 		ppd->hv1.tp_vlan_tpid = 0;
1064 		ppd->tp_status = TP_STATUS_AVAILABLE;
1065 	}
1066 }
1067 
1068 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1069 			struct tpacket3_hdr *ppd)
1070 {
1071 	ppd->hv1.tp_padding = 0;
1072 	prb_fill_vlan_info(pkc, ppd);
1073 
1074 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1075 		prb_fill_rxhash(pkc, ppd);
1076 	else
1077 		prb_clear_rxhash(pkc, ppd);
1078 }
1079 
1080 static void prb_fill_curr_block(char *curr,
1081 				struct tpacket_kbdq_core *pkc,
1082 				struct tpacket_block_desc *pbd,
1083 				unsigned int len)
1084 	__acquires(&pkc->blk_fill_in_prog_lock)
1085 {
1086 	struct tpacket3_hdr *ppd;
1087 
1088 	ppd  = (struct tpacket3_hdr *)curr;
1089 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1090 	pkc->prev = curr;
1091 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1092 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1093 	BLOCK_NUM_PKTS(pbd) += 1;
1094 	read_lock(&pkc->blk_fill_in_prog_lock);
1095 	prb_run_all_ft_ops(pkc, ppd);
1096 }
1097 
1098 /* Assumes caller has the sk->rx_queue.lock */
1099 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1100 					    struct sk_buff *skb,
1101 					    unsigned int len
1102 					    )
1103 {
1104 	struct tpacket_kbdq_core *pkc;
1105 	struct tpacket_block_desc *pbd;
1106 	char *curr, *end;
1107 
1108 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1109 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1110 
1111 	/* Queue is frozen when user space is lagging behind */
1112 	if (prb_queue_frozen(pkc)) {
1113 		/*
1114 		 * Check if that last block which caused the queue to freeze,
1115 		 * is still in_use by user-space.
1116 		 */
1117 		if (prb_curr_blk_in_use(pbd)) {
1118 			/* Can't record this packet */
1119 			return NULL;
1120 		} else {
1121 			/*
1122 			 * Ok, the block was released by user-space.
1123 			 * Now let's open that block.
1124 			 * opening a block also thaws the queue.
1125 			 * Thawing is a side effect.
1126 			 */
1127 			prb_open_block(pkc, pbd);
1128 		}
1129 	}
1130 
1131 	smp_mb();
1132 	curr = pkc->nxt_offset;
1133 	pkc->skb = skb;
1134 	end = (char *)pbd + pkc->kblk_size;
1135 
1136 	/* first try the current block */
1137 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1138 		prb_fill_curr_block(curr, pkc, pbd, len);
1139 		return (void *)curr;
1140 	}
1141 
1142 	/* Ok, close the current block */
1143 	prb_retire_current_block(pkc, po, 0);
1144 
1145 	/* Now, try to dispatch the next block */
1146 	curr = (char *)prb_dispatch_next_block(pkc, po);
1147 	if (curr) {
1148 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1149 		prb_fill_curr_block(curr, pkc, pbd, len);
1150 		return (void *)curr;
1151 	}
1152 
1153 	/*
1154 	 * No free blocks are available.user_space hasn't caught up yet.
1155 	 * Queue was just frozen and now this packet will get dropped.
1156 	 */
1157 	return NULL;
1158 }
1159 
1160 static void *packet_current_rx_frame(struct packet_sock *po,
1161 					    struct sk_buff *skb,
1162 					    int status, unsigned int len)
1163 {
1164 	char *curr = NULL;
1165 	switch (po->tp_version) {
1166 	case TPACKET_V1:
1167 	case TPACKET_V2:
1168 		curr = packet_lookup_frame(po, &po->rx_ring,
1169 					po->rx_ring.head, status);
1170 		return curr;
1171 	case TPACKET_V3:
1172 		return __packet_lookup_frame_in_block(po, skb, len);
1173 	default:
1174 		WARN(1, "TPACKET version not supported\n");
1175 		BUG();
1176 		return NULL;
1177 	}
1178 }
1179 
1180 static void *prb_lookup_block(const struct packet_sock *po,
1181 			      const struct packet_ring_buffer *rb,
1182 			      unsigned int idx,
1183 			      int status)
1184 {
1185 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1186 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1187 
1188 	if (status != BLOCK_STATUS(pbd))
1189 		return NULL;
1190 	return pbd;
1191 }
1192 
1193 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1194 {
1195 	unsigned int prev;
1196 	if (rb->prb_bdqc.kactive_blk_num)
1197 		prev = rb->prb_bdqc.kactive_blk_num-1;
1198 	else
1199 		prev = rb->prb_bdqc.knum_blocks-1;
1200 	return prev;
1201 }
1202 
1203 /* Assumes caller has held the rx_queue.lock */
1204 static void *__prb_previous_block(struct packet_sock *po,
1205 					 struct packet_ring_buffer *rb,
1206 					 int status)
1207 {
1208 	unsigned int previous = prb_previous_blk_num(rb);
1209 	return prb_lookup_block(po, rb, previous, status);
1210 }
1211 
1212 static void *packet_previous_rx_frame(struct packet_sock *po,
1213 					     struct packet_ring_buffer *rb,
1214 					     int status)
1215 {
1216 	if (po->tp_version <= TPACKET_V2)
1217 		return packet_previous_frame(po, rb, status);
1218 
1219 	return __prb_previous_block(po, rb, status);
1220 }
1221 
1222 static void packet_increment_rx_head(struct packet_sock *po,
1223 					    struct packet_ring_buffer *rb)
1224 {
1225 	switch (po->tp_version) {
1226 	case TPACKET_V1:
1227 	case TPACKET_V2:
1228 		return packet_increment_head(rb);
1229 	case TPACKET_V3:
1230 	default:
1231 		WARN(1, "TPACKET version not supported.\n");
1232 		BUG();
1233 		return;
1234 	}
1235 }
1236 
1237 static void *packet_previous_frame(struct packet_sock *po,
1238 		struct packet_ring_buffer *rb,
1239 		int status)
1240 {
1241 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1242 	return packet_lookup_frame(po, rb, previous, status);
1243 }
1244 
1245 static void packet_increment_head(struct packet_ring_buffer *buff)
1246 {
1247 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1248 }
1249 
1250 static void packet_inc_pending(struct packet_ring_buffer *rb)
1251 {
1252 	this_cpu_inc(*rb->pending_refcnt);
1253 }
1254 
1255 static void packet_dec_pending(struct packet_ring_buffer *rb)
1256 {
1257 	this_cpu_dec(*rb->pending_refcnt);
1258 }
1259 
1260 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1261 {
1262 	unsigned int refcnt = 0;
1263 	int cpu;
1264 
1265 	/* We don't use pending refcount in rx_ring. */
1266 	if (rb->pending_refcnt == NULL)
1267 		return 0;
1268 
1269 	for_each_possible_cpu(cpu)
1270 		refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1271 
1272 	return refcnt;
1273 }
1274 
1275 static int packet_alloc_pending(struct packet_sock *po)
1276 {
1277 	po->rx_ring.pending_refcnt = NULL;
1278 
1279 	po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1280 	if (unlikely(po->tx_ring.pending_refcnt == NULL))
1281 		return -ENOBUFS;
1282 
1283 	return 0;
1284 }
1285 
1286 static void packet_free_pending(struct packet_sock *po)
1287 {
1288 	free_percpu(po->tx_ring.pending_refcnt);
1289 }
1290 
1291 #define ROOM_POW_OFF	2
1292 #define ROOM_NONE	0x0
1293 #define ROOM_LOW	0x1
1294 #define ROOM_NORMAL	0x2
1295 
1296 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off)
1297 {
1298 	int idx, len;
1299 
1300 	len = READ_ONCE(po->rx_ring.frame_max) + 1;
1301 	idx = READ_ONCE(po->rx_ring.head);
1302 	if (pow_off)
1303 		idx += len >> pow_off;
1304 	if (idx >= len)
1305 		idx -= len;
1306 	return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1307 }
1308 
1309 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off)
1310 {
1311 	int idx, len;
1312 
1313 	len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks);
1314 	idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num);
1315 	if (pow_off)
1316 		idx += len >> pow_off;
1317 	if (idx >= len)
1318 		idx -= len;
1319 	return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1320 }
1321 
1322 static int __packet_rcv_has_room(const struct packet_sock *po,
1323 				 const struct sk_buff *skb)
1324 {
1325 	const struct sock *sk = &po->sk;
1326 	int ret = ROOM_NONE;
1327 
1328 	if (po->prot_hook.func != tpacket_rcv) {
1329 		int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1330 		int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1331 				   - (skb ? skb->truesize : 0);
1332 
1333 		if (avail > (rcvbuf >> ROOM_POW_OFF))
1334 			return ROOM_NORMAL;
1335 		else if (avail > 0)
1336 			return ROOM_LOW;
1337 		else
1338 			return ROOM_NONE;
1339 	}
1340 
1341 	if (po->tp_version == TPACKET_V3) {
1342 		if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1343 			ret = ROOM_NORMAL;
1344 		else if (__tpacket_v3_has_room(po, 0))
1345 			ret = ROOM_LOW;
1346 	} else {
1347 		if (__tpacket_has_room(po, ROOM_POW_OFF))
1348 			ret = ROOM_NORMAL;
1349 		else if (__tpacket_has_room(po, 0))
1350 			ret = ROOM_LOW;
1351 	}
1352 
1353 	return ret;
1354 }
1355 
1356 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1357 {
1358 	bool pressure;
1359 	int ret;
1360 
1361 	ret = __packet_rcv_has_room(po, skb);
1362 	pressure = ret != ROOM_NORMAL;
1363 
1364 	if (packet_sock_flag(po, PACKET_SOCK_PRESSURE) != pressure)
1365 		packet_sock_flag_set(po, PACKET_SOCK_PRESSURE, pressure);
1366 
1367 	return ret;
1368 }
1369 
1370 static void packet_rcv_try_clear_pressure(struct packet_sock *po)
1371 {
1372 	if (packet_sock_flag(po, PACKET_SOCK_PRESSURE) &&
1373 	    __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
1374 		packet_sock_flag_set(po, PACKET_SOCK_PRESSURE, false);
1375 }
1376 
1377 static void packet_sock_destruct(struct sock *sk)
1378 {
1379 	skb_queue_purge(&sk->sk_error_queue);
1380 
1381 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1382 	WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1383 
1384 	if (!sock_flag(sk, SOCK_DEAD)) {
1385 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1386 		return;
1387 	}
1388 }
1389 
1390 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1391 {
1392 	u32 *history = po->rollover->history;
1393 	u32 victim, rxhash;
1394 	int i, count = 0;
1395 
1396 	rxhash = skb_get_hash(skb);
1397 	for (i = 0; i < ROLLOVER_HLEN; i++)
1398 		if (READ_ONCE(history[i]) == rxhash)
1399 			count++;
1400 
1401 	victim = get_random_u32_below(ROLLOVER_HLEN);
1402 
1403 	/* Avoid dirtying the cache line if possible */
1404 	if (READ_ONCE(history[victim]) != rxhash)
1405 		WRITE_ONCE(history[victim], rxhash);
1406 
1407 	return count > (ROLLOVER_HLEN >> 1);
1408 }
1409 
1410 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1411 				      struct sk_buff *skb,
1412 				      unsigned int num)
1413 {
1414 	return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1415 }
1416 
1417 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1418 				    struct sk_buff *skb,
1419 				    unsigned int num)
1420 {
1421 	unsigned int val = atomic_inc_return(&f->rr_cur);
1422 
1423 	return val % num;
1424 }
1425 
1426 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1427 				     struct sk_buff *skb,
1428 				     unsigned int num)
1429 {
1430 	return smp_processor_id() % num;
1431 }
1432 
1433 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1434 				     struct sk_buff *skb,
1435 				     unsigned int num)
1436 {
1437 	return get_random_u32_below(num);
1438 }
1439 
1440 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1441 					  struct sk_buff *skb,
1442 					  unsigned int idx, bool try_self,
1443 					  unsigned int num)
1444 {
1445 	struct packet_sock *po, *po_next, *po_skip = NULL;
1446 	unsigned int i, j, room = ROOM_NONE;
1447 
1448 	po = pkt_sk(rcu_dereference(f->arr[idx]));
1449 
1450 	if (try_self) {
1451 		room = packet_rcv_has_room(po, skb);
1452 		if (room == ROOM_NORMAL ||
1453 		    (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1454 			return idx;
1455 		po_skip = po;
1456 	}
1457 
1458 	i = j = min_t(int, po->rollover->sock, num - 1);
1459 	do {
1460 		po_next = pkt_sk(rcu_dereference(f->arr[i]));
1461 		if (po_next != po_skip &&
1462 		    !packet_sock_flag(po_next, PACKET_SOCK_PRESSURE) &&
1463 		    packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1464 			if (i != j)
1465 				po->rollover->sock = i;
1466 			atomic_long_inc(&po->rollover->num);
1467 			if (room == ROOM_LOW)
1468 				atomic_long_inc(&po->rollover->num_huge);
1469 			return i;
1470 		}
1471 
1472 		if (++i == num)
1473 			i = 0;
1474 	} while (i != j);
1475 
1476 	atomic_long_inc(&po->rollover->num_failed);
1477 	return idx;
1478 }
1479 
1480 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1481 				    struct sk_buff *skb,
1482 				    unsigned int num)
1483 {
1484 	return skb_get_queue_mapping(skb) % num;
1485 }
1486 
1487 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1488 				     struct sk_buff *skb,
1489 				     unsigned int num)
1490 {
1491 	struct bpf_prog *prog;
1492 	unsigned int ret = 0;
1493 
1494 	rcu_read_lock();
1495 	prog = rcu_dereference(f->bpf_prog);
1496 	if (prog)
1497 		ret = bpf_prog_run_clear_cb(prog, skb) % num;
1498 	rcu_read_unlock();
1499 
1500 	return ret;
1501 }
1502 
1503 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1504 {
1505 	return f->flags & (flag >> 8);
1506 }
1507 
1508 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1509 			     struct packet_type *pt, struct net_device *orig_dev)
1510 {
1511 	struct packet_fanout *f = pt->af_packet_priv;
1512 	unsigned int num = READ_ONCE(f->num_members);
1513 	struct net *net = read_pnet(&f->net);
1514 	struct packet_sock *po;
1515 	unsigned int idx;
1516 
1517 	if (!net_eq(dev_net(dev), net) || !num) {
1518 		kfree_skb(skb);
1519 		return 0;
1520 	}
1521 
1522 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1523 		skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1524 		if (!skb)
1525 			return 0;
1526 	}
1527 	switch (f->type) {
1528 	case PACKET_FANOUT_HASH:
1529 	default:
1530 		idx = fanout_demux_hash(f, skb, num);
1531 		break;
1532 	case PACKET_FANOUT_LB:
1533 		idx = fanout_demux_lb(f, skb, num);
1534 		break;
1535 	case PACKET_FANOUT_CPU:
1536 		idx = fanout_demux_cpu(f, skb, num);
1537 		break;
1538 	case PACKET_FANOUT_RND:
1539 		idx = fanout_demux_rnd(f, skb, num);
1540 		break;
1541 	case PACKET_FANOUT_QM:
1542 		idx = fanout_demux_qm(f, skb, num);
1543 		break;
1544 	case PACKET_FANOUT_ROLLOVER:
1545 		idx = fanout_demux_rollover(f, skb, 0, false, num);
1546 		break;
1547 	case PACKET_FANOUT_CBPF:
1548 	case PACKET_FANOUT_EBPF:
1549 		idx = fanout_demux_bpf(f, skb, num);
1550 		break;
1551 	}
1552 
1553 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1554 		idx = fanout_demux_rollover(f, skb, idx, true, num);
1555 
1556 	po = pkt_sk(rcu_dereference(f->arr[idx]));
1557 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1558 }
1559 
1560 DEFINE_MUTEX(fanout_mutex);
1561 EXPORT_SYMBOL_GPL(fanout_mutex);
1562 static LIST_HEAD(fanout_list);
1563 static u16 fanout_next_id;
1564 
1565 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1566 {
1567 	struct packet_fanout *f = po->fanout;
1568 
1569 	spin_lock(&f->lock);
1570 	rcu_assign_pointer(f->arr[f->num_members], sk);
1571 	smp_wmb();
1572 	f->num_members++;
1573 	if (f->num_members == 1)
1574 		dev_add_pack(&f->prot_hook);
1575 	spin_unlock(&f->lock);
1576 }
1577 
1578 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1579 {
1580 	struct packet_fanout *f = po->fanout;
1581 	int i;
1582 
1583 	spin_lock(&f->lock);
1584 	for (i = 0; i < f->num_members; i++) {
1585 		if (rcu_dereference_protected(f->arr[i],
1586 					      lockdep_is_held(&f->lock)) == sk)
1587 			break;
1588 	}
1589 	BUG_ON(i >= f->num_members);
1590 	rcu_assign_pointer(f->arr[i],
1591 			   rcu_dereference_protected(f->arr[f->num_members - 1],
1592 						     lockdep_is_held(&f->lock)));
1593 	f->num_members--;
1594 	if (f->num_members == 0)
1595 		__dev_remove_pack(&f->prot_hook);
1596 	spin_unlock(&f->lock);
1597 }
1598 
1599 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1600 {
1601 	if (sk->sk_family != PF_PACKET)
1602 		return false;
1603 
1604 	return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1605 }
1606 
1607 static void fanout_init_data(struct packet_fanout *f)
1608 {
1609 	switch (f->type) {
1610 	case PACKET_FANOUT_LB:
1611 		atomic_set(&f->rr_cur, 0);
1612 		break;
1613 	case PACKET_FANOUT_CBPF:
1614 	case PACKET_FANOUT_EBPF:
1615 		RCU_INIT_POINTER(f->bpf_prog, NULL);
1616 		break;
1617 	}
1618 }
1619 
1620 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1621 {
1622 	struct bpf_prog *old;
1623 
1624 	spin_lock(&f->lock);
1625 	old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1626 	rcu_assign_pointer(f->bpf_prog, new);
1627 	spin_unlock(&f->lock);
1628 
1629 	if (old) {
1630 		synchronize_net();
1631 		bpf_prog_destroy(old);
1632 	}
1633 }
1634 
1635 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data,
1636 				unsigned int len)
1637 {
1638 	struct bpf_prog *new;
1639 	struct sock_fprog fprog;
1640 	int ret;
1641 
1642 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1643 		return -EPERM;
1644 
1645 	ret = copy_bpf_fprog_from_user(&fprog, data, len);
1646 	if (ret)
1647 		return ret;
1648 
1649 	ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1650 	if (ret)
1651 		return ret;
1652 
1653 	__fanout_set_data_bpf(po->fanout, new);
1654 	return 0;
1655 }
1656 
1657 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data,
1658 				unsigned int len)
1659 {
1660 	struct bpf_prog *new;
1661 	u32 fd;
1662 
1663 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1664 		return -EPERM;
1665 	if (len != sizeof(fd))
1666 		return -EINVAL;
1667 	if (copy_from_sockptr(&fd, data, len))
1668 		return -EFAULT;
1669 
1670 	new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1671 	if (IS_ERR(new))
1672 		return PTR_ERR(new);
1673 
1674 	__fanout_set_data_bpf(po->fanout, new);
1675 	return 0;
1676 }
1677 
1678 static int fanout_set_data(struct packet_sock *po, sockptr_t data,
1679 			   unsigned int len)
1680 {
1681 	switch (po->fanout->type) {
1682 	case PACKET_FANOUT_CBPF:
1683 		return fanout_set_data_cbpf(po, data, len);
1684 	case PACKET_FANOUT_EBPF:
1685 		return fanout_set_data_ebpf(po, data, len);
1686 	default:
1687 		return -EINVAL;
1688 	}
1689 }
1690 
1691 static void fanout_release_data(struct packet_fanout *f)
1692 {
1693 	switch (f->type) {
1694 	case PACKET_FANOUT_CBPF:
1695 	case PACKET_FANOUT_EBPF:
1696 		__fanout_set_data_bpf(f, NULL);
1697 	}
1698 }
1699 
1700 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1701 {
1702 	struct packet_fanout *f;
1703 
1704 	list_for_each_entry(f, &fanout_list, list) {
1705 		if (f->id == candidate_id &&
1706 		    read_pnet(&f->net) == sock_net(sk)) {
1707 			return false;
1708 		}
1709 	}
1710 	return true;
1711 }
1712 
1713 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1714 {
1715 	u16 id = fanout_next_id;
1716 
1717 	do {
1718 		if (__fanout_id_is_free(sk, id)) {
1719 			*new_id = id;
1720 			fanout_next_id = id + 1;
1721 			return true;
1722 		}
1723 
1724 		id++;
1725 	} while (id != fanout_next_id);
1726 
1727 	return false;
1728 }
1729 
1730 static int fanout_add(struct sock *sk, struct fanout_args *args)
1731 {
1732 	struct packet_rollover *rollover = NULL;
1733 	struct packet_sock *po = pkt_sk(sk);
1734 	u16 type_flags = args->type_flags;
1735 	struct packet_fanout *f, *match;
1736 	u8 type = type_flags & 0xff;
1737 	u8 flags = type_flags >> 8;
1738 	u16 id = args->id;
1739 	int err;
1740 
1741 	switch (type) {
1742 	case PACKET_FANOUT_ROLLOVER:
1743 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1744 			return -EINVAL;
1745 		break;
1746 	case PACKET_FANOUT_HASH:
1747 	case PACKET_FANOUT_LB:
1748 	case PACKET_FANOUT_CPU:
1749 	case PACKET_FANOUT_RND:
1750 	case PACKET_FANOUT_QM:
1751 	case PACKET_FANOUT_CBPF:
1752 	case PACKET_FANOUT_EBPF:
1753 		break;
1754 	default:
1755 		return -EINVAL;
1756 	}
1757 
1758 	mutex_lock(&fanout_mutex);
1759 
1760 	err = -EALREADY;
1761 	if (po->fanout)
1762 		goto out;
1763 
1764 	if (type == PACKET_FANOUT_ROLLOVER ||
1765 	    (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1766 		err = -ENOMEM;
1767 		rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1768 		if (!rollover)
1769 			goto out;
1770 		atomic_long_set(&rollover->num, 0);
1771 		atomic_long_set(&rollover->num_huge, 0);
1772 		atomic_long_set(&rollover->num_failed, 0);
1773 	}
1774 
1775 	if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1776 		if (id != 0) {
1777 			err = -EINVAL;
1778 			goto out;
1779 		}
1780 		if (!fanout_find_new_id(sk, &id)) {
1781 			err = -ENOMEM;
1782 			goto out;
1783 		}
1784 		/* ephemeral flag for the first socket in the group: drop it */
1785 		flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1786 	}
1787 
1788 	match = NULL;
1789 	list_for_each_entry(f, &fanout_list, list) {
1790 		if (f->id == id &&
1791 		    read_pnet(&f->net) == sock_net(sk)) {
1792 			match = f;
1793 			break;
1794 		}
1795 	}
1796 	err = -EINVAL;
1797 	if (match) {
1798 		if (match->flags != flags)
1799 			goto out;
1800 		if (args->max_num_members &&
1801 		    args->max_num_members != match->max_num_members)
1802 			goto out;
1803 	} else {
1804 		if (args->max_num_members > PACKET_FANOUT_MAX)
1805 			goto out;
1806 		if (!args->max_num_members)
1807 			/* legacy PACKET_FANOUT_MAX */
1808 			args->max_num_members = 256;
1809 		err = -ENOMEM;
1810 		match = kvzalloc(struct_size(match, arr, args->max_num_members),
1811 				 GFP_KERNEL);
1812 		if (!match)
1813 			goto out;
1814 		write_pnet(&match->net, sock_net(sk));
1815 		match->id = id;
1816 		match->type = type;
1817 		match->flags = flags;
1818 		INIT_LIST_HEAD(&match->list);
1819 		spin_lock_init(&match->lock);
1820 		refcount_set(&match->sk_ref, 0);
1821 		fanout_init_data(match);
1822 		match->prot_hook.type = po->prot_hook.type;
1823 		match->prot_hook.dev = po->prot_hook.dev;
1824 		match->prot_hook.func = packet_rcv_fanout;
1825 		match->prot_hook.af_packet_priv = match;
1826 		match->prot_hook.af_packet_net = read_pnet(&match->net);
1827 		match->prot_hook.id_match = match_fanout_group;
1828 		match->max_num_members = args->max_num_members;
1829 		match->prot_hook.ignore_outgoing = type_flags & PACKET_FANOUT_FLAG_IGNORE_OUTGOING;
1830 		list_add(&match->list, &fanout_list);
1831 	}
1832 	err = -EINVAL;
1833 
1834 	spin_lock(&po->bind_lock);
1835 	if (po->num &&
1836 	    match->type == type &&
1837 	    match->prot_hook.type == po->prot_hook.type &&
1838 	    match->prot_hook.dev == po->prot_hook.dev) {
1839 		err = -ENOSPC;
1840 		if (refcount_read(&match->sk_ref) < match->max_num_members) {
1841 			/* Paired with packet_setsockopt(PACKET_FANOUT_DATA) */
1842 			WRITE_ONCE(po->fanout, match);
1843 
1844 			po->rollover = rollover;
1845 			rollover = NULL;
1846 			refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1847 			if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) {
1848 				__dev_remove_pack(&po->prot_hook);
1849 				__fanout_link(sk, po);
1850 			}
1851 			err = 0;
1852 		}
1853 	}
1854 	spin_unlock(&po->bind_lock);
1855 
1856 	if (err && !refcount_read(&match->sk_ref)) {
1857 		list_del(&match->list);
1858 		kvfree(match);
1859 	}
1860 
1861 out:
1862 	kfree(rollover);
1863 	mutex_unlock(&fanout_mutex);
1864 	return err;
1865 }
1866 
1867 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1868  * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1869  * It is the responsibility of the caller to call fanout_release_data() and
1870  * free the returned packet_fanout (after synchronize_net())
1871  */
1872 static struct packet_fanout *fanout_release(struct sock *sk)
1873 {
1874 	struct packet_sock *po = pkt_sk(sk);
1875 	struct packet_fanout *f;
1876 
1877 	mutex_lock(&fanout_mutex);
1878 	f = po->fanout;
1879 	if (f) {
1880 		po->fanout = NULL;
1881 
1882 		if (refcount_dec_and_test(&f->sk_ref))
1883 			list_del(&f->list);
1884 		else
1885 			f = NULL;
1886 	}
1887 	mutex_unlock(&fanout_mutex);
1888 
1889 	return f;
1890 }
1891 
1892 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1893 					  struct sk_buff *skb)
1894 {
1895 	/* Earlier code assumed this would be a VLAN pkt, double-check
1896 	 * this now that we have the actual packet in hand. We can only
1897 	 * do this check on Ethernet devices.
1898 	 */
1899 	if (unlikely(dev->type != ARPHRD_ETHER))
1900 		return false;
1901 
1902 	skb_reset_mac_header(skb);
1903 	return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1904 }
1905 
1906 static const struct proto_ops packet_ops;
1907 
1908 static const struct proto_ops packet_ops_spkt;
1909 
1910 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1911 			   struct packet_type *pt, struct net_device *orig_dev)
1912 {
1913 	struct sock *sk;
1914 	struct sockaddr_pkt *spkt;
1915 
1916 	/*
1917 	 *	When we registered the protocol we saved the socket in the data
1918 	 *	field for just this event.
1919 	 */
1920 
1921 	sk = pt->af_packet_priv;
1922 
1923 	/*
1924 	 *	Yank back the headers [hope the device set this
1925 	 *	right or kerboom...]
1926 	 *
1927 	 *	Incoming packets have ll header pulled,
1928 	 *	push it back.
1929 	 *
1930 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1931 	 *	so that this procedure is noop.
1932 	 */
1933 
1934 	if (skb->pkt_type == PACKET_LOOPBACK)
1935 		goto out;
1936 
1937 	if (!net_eq(dev_net(dev), sock_net(sk)))
1938 		goto out;
1939 
1940 	skb = skb_share_check(skb, GFP_ATOMIC);
1941 	if (skb == NULL)
1942 		goto oom;
1943 
1944 	/* drop any routing info */
1945 	skb_dst_drop(skb);
1946 
1947 	/* drop conntrack reference */
1948 	nf_reset_ct(skb);
1949 
1950 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1951 
1952 	skb_push(skb, skb->data - skb_mac_header(skb));
1953 
1954 	/*
1955 	 *	The SOCK_PACKET socket receives _all_ frames.
1956 	 */
1957 
1958 	spkt->spkt_family = dev->type;
1959 	strscpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1960 	spkt->spkt_protocol = skb->protocol;
1961 
1962 	/*
1963 	 *	Charge the memory to the socket. This is done specifically
1964 	 *	to prevent sockets using all the memory up.
1965 	 */
1966 
1967 	if (sock_queue_rcv_skb(sk, skb) == 0)
1968 		return 0;
1969 
1970 out:
1971 	kfree_skb(skb);
1972 oom:
1973 	return 0;
1974 }
1975 
1976 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock)
1977 {
1978 	int depth;
1979 
1980 	if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) &&
1981 	    sock->type == SOCK_RAW) {
1982 		skb_reset_mac_header(skb);
1983 		skb->protocol = dev_parse_header_protocol(skb);
1984 	}
1985 
1986 	/* Move network header to the right position for VLAN tagged packets */
1987 	if (likely(skb->dev->type == ARPHRD_ETHER) &&
1988 	    eth_type_vlan(skb->protocol) &&
1989 	    vlan_get_protocol_and_depth(skb, skb->protocol, &depth) != 0)
1990 		skb_set_network_header(skb, depth);
1991 
1992 	skb_probe_transport_header(skb);
1993 }
1994 
1995 /*
1996  *	Output a raw packet to a device layer. This bypasses all the other
1997  *	protocol layers and you must therefore supply it with a complete frame
1998  */
1999 
2000 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
2001 			       size_t len)
2002 {
2003 	struct sock *sk = sock->sk;
2004 	DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
2005 	struct sk_buff *skb = NULL;
2006 	struct net_device *dev;
2007 	struct sockcm_cookie sockc;
2008 	__be16 proto = 0;
2009 	int err;
2010 	int extra_len = 0;
2011 
2012 	/*
2013 	 *	Get and verify the address.
2014 	 */
2015 
2016 	if (saddr) {
2017 		if (msg->msg_namelen < sizeof(struct sockaddr))
2018 			return -EINVAL;
2019 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
2020 			proto = saddr->spkt_protocol;
2021 	} else
2022 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
2023 
2024 	/*
2025 	 *	Find the device first to size check it
2026 	 */
2027 
2028 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
2029 retry:
2030 	rcu_read_lock();
2031 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
2032 	err = -ENODEV;
2033 	if (dev == NULL)
2034 		goto out_unlock;
2035 
2036 	err = -ENETDOWN;
2037 	if (!(dev->flags & IFF_UP))
2038 		goto out_unlock;
2039 
2040 	/*
2041 	 * You may not queue a frame bigger than the mtu. This is the lowest level
2042 	 * raw protocol and you must do your own fragmentation at this level.
2043 	 */
2044 
2045 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2046 		if (!netif_supports_nofcs(dev)) {
2047 			err = -EPROTONOSUPPORT;
2048 			goto out_unlock;
2049 		}
2050 		extra_len = 4; /* We're doing our own CRC */
2051 	}
2052 
2053 	err = -EMSGSIZE;
2054 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
2055 		goto out_unlock;
2056 
2057 	if (!skb) {
2058 		size_t reserved = LL_RESERVED_SPACE(dev);
2059 		int tlen = dev->needed_tailroom;
2060 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
2061 
2062 		rcu_read_unlock();
2063 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
2064 		if (skb == NULL)
2065 			return -ENOBUFS;
2066 		/* FIXME: Save some space for broken drivers that write a hard
2067 		 * header at transmission time by themselves. PPP is the notable
2068 		 * one here. This should really be fixed at the driver level.
2069 		 */
2070 		skb_reserve(skb, reserved);
2071 		skb_reset_network_header(skb);
2072 
2073 		/* Try to align data part correctly */
2074 		if (hhlen) {
2075 			skb->data -= hhlen;
2076 			skb->tail -= hhlen;
2077 			if (len < hhlen)
2078 				skb_reset_network_header(skb);
2079 		}
2080 		err = memcpy_from_msg(skb_put(skb, len), msg, len);
2081 		if (err)
2082 			goto out_free;
2083 		goto retry;
2084 	}
2085 
2086 	if (!dev_validate_header(dev, skb->data, len) || !skb->len) {
2087 		err = -EINVAL;
2088 		goto out_unlock;
2089 	}
2090 	if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
2091 	    !packet_extra_vlan_len_allowed(dev, skb)) {
2092 		err = -EMSGSIZE;
2093 		goto out_unlock;
2094 	}
2095 
2096 	sockcm_init(&sockc, sk);
2097 	if (msg->msg_controllen) {
2098 		err = sock_cmsg_send(sk, msg, &sockc);
2099 		if (unlikely(err))
2100 			goto out_unlock;
2101 	}
2102 
2103 	skb->protocol = proto;
2104 	skb->dev = dev;
2105 	skb->priority = READ_ONCE(sk->sk_priority);
2106 	skb->mark = READ_ONCE(sk->sk_mark);
2107 	skb_set_delivery_type_by_clockid(skb, sockc.transmit_time, sk->sk_clockid);
2108 	skb_setup_tx_timestamp(skb, &sockc);
2109 
2110 	if (unlikely(extra_len == 4))
2111 		skb->no_fcs = 1;
2112 
2113 	packet_parse_headers(skb, sock);
2114 
2115 	dev_queue_xmit(skb);
2116 	rcu_read_unlock();
2117 	return len;
2118 
2119 out_unlock:
2120 	rcu_read_unlock();
2121 out_free:
2122 	kfree_skb(skb);
2123 	return err;
2124 }
2125 
2126 static unsigned int run_filter(struct sk_buff *skb,
2127 			       const struct sock *sk,
2128 			       unsigned int res)
2129 {
2130 	struct sk_filter *filter;
2131 
2132 	rcu_read_lock();
2133 	filter = rcu_dereference(sk->sk_filter);
2134 	if (filter != NULL)
2135 		res = bpf_prog_run_clear_cb(filter->prog, skb);
2136 	rcu_read_unlock();
2137 
2138 	return res;
2139 }
2140 
2141 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2142 			   size_t *len, int vnet_hdr_sz)
2143 {
2144 	struct virtio_net_hdr_mrg_rxbuf vnet_hdr = { .num_buffers = 0 };
2145 
2146 	if (*len < vnet_hdr_sz)
2147 		return -EINVAL;
2148 	*len -= vnet_hdr_sz;
2149 
2150 	if (virtio_net_hdr_from_skb(skb, (struct virtio_net_hdr *)&vnet_hdr, vio_le(), true, 0))
2151 		return -EINVAL;
2152 
2153 	return memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_sz);
2154 }
2155 
2156 /*
2157  * This function makes lazy skb cloning in hope that most of packets
2158  * are discarded by BPF.
2159  *
2160  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2161  * and skb->cb are mangled. It works because (and until) packets
2162  * falling here are owned by current CPU. Output packets are cloned
2163  * by dev_queue_xmit_nit(), input packets are processed by net_bh
2164  * sequentially, so that if we return skb to original state on exit,
2165  * we will not harm anyone.
2166  */
2167 
2168 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2169 		      struct packet_type *pt, struct net_device *orig_dev)
2170 {
2171 	enum skb_drop_reason drop_reason = SKB_CONSUMED;
2172 	struct sock *sk = NULL;
2173 	struct sockaddr_ll *sll;
2174 	struct packet_sock *po;
2175 	u8 *skb_head = skb->data;
2176 	int skb_len = skb->len;
2177 	unsigned int snaplen, res;
2178 
2179 	if (skb->pkt_type == PACKET_LOOPBACK)
2180 		goto drop;
2181 
2182 	sk = pt->af_packet_priv;
2183 	po = pkt_sk(sk);
2184 
2185 	if (!net_eq(dev_net(dev), sock_net(sk)))
2186 		goto drop;
2187 
2188 	skb->dev = dev;
2189 
2190 	if (dev_has_header(dev)) {
2191 		/* The device has an explicit notion of ll header,
2192 		 * exported to higher levels.
2193 		 *
2194 		 * Otherwise, the device hides details of its frame
2195 		 * structure, so that corresponding packet head is
2196 		 * never delivered to user.
2197 		 */
2198 		if (sk->sk_type != SOCK_DGRAM)
2199 			skb_push(skb, skb->data - skb_mac_header(skb));
2200 		else if (skb->pkt_type == PACKET_OUTGOING) {
2201 			/* Special case: outgoing packets have ll header at head */
2202 			skb_pull(skb, skb_network_offset(skb));
2203 		}
2204 	}
2205 
2206 	snaplen = skb_frags_readable(skb) ? skb->len : skb_headlen(skb);
2207 
2208 	res = run_filter(skb, sk, snaplen);
2209 	if (!res)
2210 		goto drop_n_restore;
2211 	if (snaplen > res)
2212 		snaplen = res;
2213 
2214 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2215 		goto drop_n_acct;
2216 
2217 	if (skb_shared(skb)) {
2218 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2219 		if (nskb == NULL)
2220 			goto drop_n_acct;
2221 
2222 		if (skb_head != skb->data) {
2223 			skb->data = skb_head;
2224 			skb->len = skb_len;
2225 		}
2226 		consume_skb(skb);
2227 		skb = nskb;
2228 	}
2229 
2230 	sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2231 
2232 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2233 	sll->sll_hatype = dev->type;
2234 	sll->sll_pkttype = skb->pkt_type;
2235 	if (unlikely(packet_sock_flag(po, PACKET_SOCK_ORIGDEV)))
2236 		sll->sll_ifindex = orig_dev->ifindex;
2237 	else
2238 		sll->sll_ifindex = dev->ifindex;
2239 
2240 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2241 
2242 	/* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2243 	 * Use their space for storing the original skb length.
2244 	 */
2245 	PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2246 
2247 	if (pskb_trim(skb, snaplen))
2248 		goto drop_n_acct;
2249 
2250 	skb_set_owner_r(skb, sk);
2251 	skb->dev = NULL;
2252 	skb_dst_drop(skb);
2253 
2254 	/* drop conntrack reference */
2255 	nf_reset_ct(skb);
2256 
2257 	spin_lock(&sk->sk_receive_queue.lock);
2258 	po->stats.stats1.tp_packets++;
2259 	sock_skb_set_dropcount(sk, skb);
2260 	skb_clear_delivery_time(skb);
2261 	__skb_queue_tail(&sk->sk_receive_queue, skb);
2262 	spin_unlock(&sk->sk_receive_queue.lock);
2263 	sk->sk_data_ready(sk);
2264 	return 0;
2265 
2266 drop_n_acct:
2267 	atomic_inc(&po->tp_drops);
2268 	atomic_inc(&sk->sk_drops);
2269 	drop_reason = SKB_DROP_REASON_PACKET_SOCK_ERROR;
2270 
2271 drop_n_restore:
2272 	if (skb_head != skb->data && skb_shared(skb)) {
2273 		skb->data = skb_head;
2274 		skb->len = skb_len;
2275 	}
2276 drop:
2277 	sk_skb_reason_drop(sk, skb, drop_reason);
2278 	return 0;
2279 }
2280 
2281 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2282 		       struct packet_type *pt, struct net_device *orig_dev)
2283 {
2284 	enum skb_drop_reason drop_reason = SKB_CONSUMED;
2285 	struct sock *sk = NULL;
2286 	struct packet_sock *po;
2287 	struct sockaddr_ll *sll;
2288 	union tpacket_uhdr h;
2289 	u8 *skb_head = skb->data;
2290 	int skb_len = skb->len;
2291 	unsigned int snaplen, res;
2292 	unsigned long status = TP_STATUS_USER;
2293 	unsigned short macoff, hdrlen;
2294 	unsigned int netoff;
2295 	struct sk_buff *copy_skb = NULL;
2296 	struct timespec64 ts;
2297 	__u32 ts_status;
2298 	unsigned int slot_id = 0;
2299 	int vnet_hdr_sz = 0;
2300 
2301 	/* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2302 	 * We may add members to them until current aligned size without forcing
2303 	 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2304 	 */
2305 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2306 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2307 
2308 	if (skb->pkt_type == PACKET_LOOPBACK)
2309 		goto drop;
2310 
2311 	sk = pt->af_packet_priv;
2312 	po = pkt_sk(sk);
2313 
2314 	if (!net_eq(dev_net(dev), sock_net(sk)))
2315 		goto drop;
2316 
2317 	if (dev_has_header(dev)) {
2318 		if (sk->sk_type != SOCK_DGRAM)
2319 			skb_push(skb, skb->data - skb_mac_header(skb));
2320 		else if (skb->pkt_type == PACKET_OUTGOING) {
2321 			/* Special case: outgoing packets have ll header at head */
2322 			skb_pull(skb, skb_network_offset(skb));
2323 		}
2324 	}
2325 
2326 	snaplen = skb_frags_readable(skb) ? skb->len : skb_headlen(skb);
2327 
2328 	res = run_filter(skb, sk, snaplen);
2329 	if (!res)
2330 		goto drop_n_restore;
2331 
2332 	/* If we are flooded, just give up */
2333 	if (__packet_rcv_has_room(po, skb) == ROOM_NONE) {
2334 		atomic_inc(&po->tp_drops);
2335 		goto drop_n_restore;
2336 	}
2337 
2338 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2339 		status |= TP_STATUS_CSUMNOTREADY;
2340 	else if (skb->pkt_type != PACKET_OUTGOING &&
2341 		 skb_csum_unnecessary(skb))
2342 		status |= TP_STATUS_CSUM_VALID;
2343 	if (skb_is_gso(skb) && skb_is_gso_tcp(skb))
2344 		status |= TP_STATUS_GSO_TCP;
2345 
2346 	if (snaplen > res)
2347 		snaplen = res;
2348 
2349 	if (sk->sk_type == SOCK_DGRAM) {
2350 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2351 				  po->tp_reserve;
2352 	} else {
2353 		unsigned int maclen = skb_network_offset(skb);
2354 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
2355 				       (maclen < 16 ? 16 : maclen)) +
2356 				       po->tp_reserve;
2357 		vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz);
2358 		if (vnet_hdr_sz)
2359 			netoff += vnet_hdr_sz;
2360 		macoff = netoff - maclen;
2361 	}
2362 	if (netoff > USHRT_MAX) {
2363 		atomic_inc(&po->tp_drops);
2364 		goto drop_n_restore;
2365 	}
2366 	if (po->tp_version <= TPACKET_V2) {
2367 		if (macoff + snaplen > po->rx_ring.frame_size) {
2368 			if (READ_ONCE(po->copy_thresh) &&
2369 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2370 				if (skb_shared(skb)) {
2371 					copy_skb = skb_clone(skb, GFP_ATOMIC);
2372 				} else {
2373 					copy_skb = skb_get(skb);
2374 					skb_head = skb->data;
2375 				}
2376 				if (copy_skb) {
2377 					memset(&PACKET_SKB_CB(copy_skb)->sa.ll, 0,
2378 					       sizeof(PACKET_SKB_CB(copy_skb)->sa.ll));
2379 					skb_set_owner_r(copy_skb, sk);
2380 				}
2381 			}
2382 			snaplen = po->rx_ring.frame_size - macoff;
2383 			if ((int)snaplen < 0) {
2384 				snaplen = 0;
2385 				vnet_hdr_sz = 0;
2386 			}
2387 		}
2388 	} else if (unlikely(macoff + snaplen >
2389 			    GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2390 		u32 nval;
2391 
2392 		nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2393 		pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2394 			    snaplen, nval, macoff);
2395 		snaplen = nval;
2396 		if (unlikely((int)snaplen < 0)) {
2397 			snaplen = 0;
2398 			macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2399 			vnet_hdr_sz = 0;
2400 		}
2401 	}
2402 	spin_lock(&sk->sk_receive_queue.lock);
2403 	h.raw = packet_current_rx_frame(po, skb,
2404 					TP_STATUS_KERNEL, (macoff+snaplen));
2405 	if (!h.raw)
2406 		goto drop_n_account;
2407 
2408 	if (po->tp_version <= TPACKET_V2) {
2409 		slot_id = po->rx_ring.head;
2410 		if (test_bit(slot_id, po->rx_ring.rx_owner_map))
2411 			goto drop_n_account;
2412 		__set_bit(slot_id, po->rx_ring.rx_owner_map);
2413 	}
2414 
2415 	if (vnet_hdr_sz &&
2416 	    virtio_net_hdr_from_skb(skb, h.raw + macoff -
2417 				    sizeof(struct virtio_net_hdr),
2418 				    vio_le(), true, 0)) {
2419 		if (po->tp_version == TPACKET_V3)
2420 			prb_clear_blk_fill_status(&po->rx_ring);
2421 		goto drop_n_account;
2422 	}
2423 
2424 	if (po->tp_version <= TPACKET_V2) {
2425 		packet_increment_rx_head(po, &po->rx_ring);
2426 	/*
2427 	 * LOSING will be reported till you read the stats,
2428 	 * because it's COR - Clear On Read.
2429 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2430 	 * at packet level.
2431 	 */
2432 		if (atomic_read(&po->tp_drops))
2433 			status |= TP_STATUS_LOSING;
2434 	}
2435 
2436 	po->stats.stats1.tp_packets++;
2437 	if (copy_skb) {
2438 		status |= TP_STATUS_COPY;
2439 		skb_clear_delivery_time(copy_skb);
2440 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2441 	}
2442 	spin_unlock(&sk->sk_receive_queue.lock);
2443 
2444 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2445 
2446 	/* Always timestamp; prefer an existing software timestamp taken
2447 	 * closer to the time of capture.
2448 	 */
2449 	ts_status = tpacket_get_timestamp(skb, &ts,
2450 					  READ_ONCE(po->tp_tstamp) |
2451 					  SOF_TIMESTAMPING_SOFTWARE);
2452 	if (!ts_status)
2453 		ktime_get_real_ts64(&ts);
2454 
2455 	status |= ts_status;
2456 
2457 	switch (po->tp_version) {
2458 	case TPACKET_V1:
2459 		h.h1->tp_len = skb->len;
2460 		h.h1->tp_snaplen = snaplen;
2461 		h.h1->tp_mac = macoff;
2462 		h.h1->tp_net = netoff;
2463 		h.h1->tp_sec = ts.tv_sec;
2464 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2465 		hdrlen = sizeof(*h.h1);
2466 		break;
2467 	case TPACKET_V2:
2468 		h.h2->tp_len = skb->len;
2469 		h.h2->tp_snaplen = snaplen;
2470 		h.h2->tp_mac = macoff;
2471 		h.h2->tp_net = netoff;
2472 		h.h2->tp_sec = ts.tv_sec;
2473 		h.h2->tp_nsec = ts.tv_nsec;
2474 		if (skb_vlan_tag_present(skb)) {
2475 			h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2476 			h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2477 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2478 		} else if (unlikely(sk->sk_type == SOCK_DGRAM && eth_type_vlan(skb->protocol))) {
2479 			h.h2->tp_vlan_tci = vlan_get_tci(skb, skb->dev);
2480 			h.h2->tp_vlan_tpid = ntohs(skb->protocol);
2481 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2482 		} else {
2483 			h.h2->tp_vlan_tci = 0;
2484 			h.h2->tp_vlan_tpid = 0;
2485 		}
2486 		memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2487 		hdrlen = sizeof(*h.h2);
2488 		break;
2489 	case TPACKET_V3:
2490 		/* tp_nxt_offset,vlan are already populated above.
2491 		 * So DONT clear those fields here
2492 		 */
2493 		h.h3->tp_status |= status;
2494 		h.h3->tp_len = skb->len;
2495 		h.h3->tp_snaplen = snaplen;
2496 		h.h3->tp_mac = macoff;
2497 		h.h3->tp_net = netoff;
2498 		h.h3->tp_sec  = ts.tv_sec;
2499 		h.h3->tp_nsec = ts.tv_nsec;
2500 		memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2501 		hdrlen = sizeof(*h.h3);
2502 		break;
2503 	default:
2504 		BUG();
2505 	}
2506 
2507 	sll = h.raw + TPACKET_ALIGN(hdrlen);
2508 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2509 	sll->sll_family = AF_PACKET;
2510 	sll->sll_hatype = dev->type;
2511 	sll->sll_protocol = (sk->sk_type == SOCK_DGRAM) ?
2512 		vlan_get_protocol_dgram(skb) : skb->protocol;
2513 	sll->sll_pkttype = skb->pkt_type;
2514 	if (unlikely(packet_sock_flag(po, PACKET_SOCK_ORIGDEV)))
2515 		sll->sll_ifindex = orig_dev->ifindex;
2516 	else
2517 		sll->sll_ifindex = dev->ifindex;
2518 
2519 	smp_mb();
2520 
2521 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2522 	if (po->tp_version <= TPACKET_V2) {
2523 		u8 *start, *end;
2524 
2525 		end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2526 					macoff + snaplen);
2527 
2528 		for (start = h.raw; start < end; start += PAGE_SIZE)
2529 			flush_dcache_page(pgv_to_page(start));
2530 	}
2531 	smp_wmb();
2532 #endif
2533 
2534 	if (po->tp_version <= TPACKET_V2) {
2535 		spin_lock(&sk->sk_receive_queue.lock);
2536 		__packet_set_status(po, h.raw, status);
2537 		__clear_bit(slot_id, po->rx_ring.rx_owner_map);
2538 		spin_unlock(&sk->sk_receive_queue.lock);
2539 		sk->sk_data_ready(sk);
2540 	} else if (po->tp_version == TPACKET_V3) {
2541 		prb_clear_blk_fill_status(&po->rx_ring);
2542 	}
2543 
2544 drop_n_restore:
2545 	if (skb_head != skb->data && skb_shared(skb)) {
2546 		skb->data = skb_head;
2547 		skb->len = skb_len;
2548 	}
2549 drop:
2550 	sk_skb_reason_drop(sk, skb, drop_reason);
2551 	return 0;
2552 
2553 drop_n_account:
2554 	spin_unlock(&sk->sk_receive_queue.lock);
2555 	atomic_inc(&po->tp_drops);
2556 	drop_reason = SKB_DROP_REASON_PACKET_SOCK_ERROR;
2557 
2558 	sk->sk_data_ready(sk);
2559 	sk_skb_reason_drop(sk, copy_skb, drop_reason);
2560 	goto drop_n_restore;
2561 }
2562 
2563 static void tpacket_destruct_skb(struct sk_buff *skb)
2564 {
2565 	struct packet_sock *po = pkt_sk(skb->sk);
2566 
2567 	if (likely(po->tx_ring.pg_vec)) {
2568 		void *ph;
2569 		__u32 ts;
2570 
2571 		ph = skb_zcopy_get_nouarg(skb);
2572 		packet_dec_pending(&po->tx_ring);
2573 
2574 		ts = __packet_set_timestamp(po, ph, skb);
2575 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2576 
2577 		complete(&po->skb_completion);
2578 	}
2579 
2580 	sock_wfree(skb);
2581 }
2582 
2583 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2584 {
2585 	if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2586 	    (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2587 	     __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2588 	      __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2589 		vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2590 			 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2591 			__virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2592 
2593 	if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2594 		return -EINVAL;
2595 
2596 	return 0;
2597 }
2598 
2599 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2600 				 struct virtio_net_hdr *vnet_hdr, int vnet_hdr_sz)
2601 {
2602 	int ret;
2603 
2604 	if (*len < vnet_hdr_sz)
2605 		return -EINVAL;
2606 	*len -= vnet_hdr_sz;
2607 
2608 	if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2609 		return -EFAULT;
2610 
2611 	ret = __packet_snd_vnet_parse(vnet_hdr, *len);
2612 	if (ret)
2613 		return ret;
2614 
2615 	/* move iter to point to the start of mac header */
2616 	if (vnet_hdr_sz != sizeof(struct virtio_net_hdr))
2617 		iov_iter_advance(&msg->msg_iter, vnet_hdr_sz - sizeof(struct virtio_net_hdr));
2618 
2619 	return 0;
2620 }
2621 
2622 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2623 		void *frame, struct net_device *dev, void *data, int tp_len,
2624 		__be16 proto, unsigned char *addr, int hlen, int copylen,
2625 		const struct sockcm_cookie *sockc)
2626 {
2627 	union tpacket_uhdr ph;
2628 	int to_write, offset, len, nr_frags, len_max;
2629 	struct socket *sock = po->sk.sk_socket;
2630 	struct page *page;
2631 	int err;
2632 
2633 	ph.raw = frame;
2634 
2635 	skb->protocol = proto;
2636 	skb->dev = dev;
2637 	skb->priority = READ_ONCE(po->sk.sk_priority);
2638 	skb->mark = READ_ONCE(po->sk.sk_mark);
2639 	skb_set_delivery_type_by_clockid(skb, sockc->transmit_time, po->sk.sk_clockid);
2640 	skb_setup_tx_timestamp(skb, sockc);
2641 	skb_zcopy_set_nouarg(skb, ph.raw);
2642 
2643 	skb_reserve(skb, hlen);
2644 	skb_reset_network_header(skb);
2645 
2646 	to_write = tp_len;
2647 
2648 	if (sock->type == SOCK_DGRAM) {
2649 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2650 				NULL, tp_len);
2651 		if (unlikely(err < 0))
2652 			return -EINVAL;
2653 	} else if (copylen) {
2654 		int hdrlen = min_t(int, copylen, tp_len);
2655 
2656 		skb_push(skb, dev->hard_header_len);
2657 		skb_put(skb, copylen - dev->hard_header_len);
2658 		err = skb_store_bits(skb, 0, data, hdrlen);
2659 		if (unlikely(err))
2660 			return err;
2661 		if (!dev_validate_header(dev, skb->data, hdrlen))
2662 			return -EINVAL;
2663 
2664 		data += hdrlen;
2665 		to_write -= hdrlen;
2666 	}
2667 
2668 	offset = offset_in_page(data);
2669 	len_max = PAGE_SIZE - offset;
2670 	len = ((to_write > len_max) ? len_max : to_write);
2671 
2672 	skb->data_len = to_write;
2673 	skb->len += to_write;
2674 	skb->truesize += to_write;
2675 	refcount_add(to_write, &po->sk.sk_wmem_alloc);
2676 
2677 	while (likely(to_write)) {
2678 		nr_frags = skb_shinfo(skb)->nr_frags;
2679 
2680 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2681 			pr_err("Packet exceed the number of skb frags(%u)\n",
2682 			       (unsigned int)MAX_SKB_FRAGS);
2683 			return -EFAULT;
2684 		}
2685 
2686 		page = pgv_to_page(data);
2687 		data += len;
2688 		flush_dcache_page(page);
2689 		get_page(page);
2690 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2691 		to_write -= len;
2692 		offset = 0;
2693 		len_max = PAGE_SIZE;
2694 		len = ((to_write > len_max) ? len_max : to_write);
2695 	}
2696 
2697 	packet_parse_headers(skb, sock);
2698 
2699 	return tp_len;
2700 }
2701 
2702 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2703 				int size_max, void **data)
2704 {
2705 	union tpacket_uhdr ph;
2706 	int tp_len, off;
2707 
2708 	ph.raw = frame;
2709 
2710 	switch (po->tp_version) {
2711 	case TPACKET_V3:
2712 		if (ph.h3->tp_next_offset != 0) {
2713 			pr_warn_once("variable sized slot not supported");
2714 			return -EINVAL;
2715 		}
2716 		tp_len = ph.h3->tp_len;
2717 		break;
2718 	case TPACKET_V2:
2719 		tp_len = ph.h2->tp_len;
2720 		break;
2721 	default:
2722 		tp_len = ph.h1->tp_len;
2723 		break;
2724 	}
2725 	if (unlikely(tp_len > size_max)) {
2726 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2727 		return -EMSGSIZE;
2728 	}
2729 
2730 	if (unlikely(packet_sock_flag(po, PACKET_SOCK_TX_HAS_OFF))) {
2731 		int off_min, off_max;
2732 
2733 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2734 		off_max = po->tx_ring.frame_size - tp_len;
2735 		if (po->sk.sk_type == SOCK_DGRAM) {
2736 			switch (po->tp_version) {
2737 			case TPACKET_V3:
2738 				off = ph.h3->tp_net;
2739 				break;
2740 			case TPACKET_V2:
2741 				off = ph.h2->tp_net;
2742 				break;
2743 			default:
2744 				off = ph.h1->tp_net;
2745 				break;
2746 			}
2747 		} else {
2748 			switch (po->tp_version) {
2749 			case TPACKET_V3:
2750 				off = ph.h3->tp_mac;
2751 				break;
2752 			case TPACKET_V2:
2753 				off = ph.h2->tp_mac;
2754 				break;
2755 			default:
2756 				off = ph.h1->tp_mac;
2757 				break;
2758 			}
2759 		}
2760 		if (unlikely((off < off_min) || (off_max < off)))
2761 			return -EINVAL;
2762 	} else {
2763 		off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2764 	}
2765 
2766 	*data = frame + off;
2767 	return tp_len;
2768 }
2769 
2770 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2771 {
2772 	struct sk_buff *skb = NULL;
2773 	struct net_device *dev;
2774 	struct virtio_net_hdr *vnet_hdr = NULL;
2775 	struct sockcm_cookie sockc;
2776 	__be16 proto;
2777 	int err, reserve = 0;
2778 	void *ph;
2779 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2780 	bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2781 	int vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz);
2782 	unsigned char *addr = NULL;
2783 	int tp_len, size_max;
2784 	void *data;
2785 	int len_sum = 0;
2786 	int status = TP_STATUS_AVAILABLE;
2787 	int hlen, tlen, copylen = 0;
2788 	long timeo = 0;
2789 
2790 	mutex_lock(&po->pg_vec_lock);
2791 
2792 	/* packet_sendmsg() check on tx_ring.pg_vec was lockless,
2793 	 * we need to confirm it under protection of pg_vec_lock.
2794 	 */
2795 	if (unlikely(!po->tx_ring.pg_vec)) {
2796 		err = -EBUSY;
2797 		goto out;
2798 	}
2799 	if (likely(saddr == NULL)) {
2800 		dev	= packet_cached_dev_get(po);
2801 		proto	= READ_ONCE(po->num);
2802 	} else {
2803 		err = -EINVAL;
2804 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2805 			goto out;
2806 		if (msg->msg_namelen < (saddr->sll_halen
2807 					+ offsetof(struct sockaddr_ll,
2808 						sll_addr)))
2809 			goto out;
2810 		proto	= saddr->sll_protocol;
2811 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2812 		if (po->sk.sk_socket->type == SOCK_DGRAM) {
2813 			if (dev && msg->msg_namelen < dev->addr_len +
2814 				   offsetof(struct sockaddr_ll, sll_addr))
2815 				goto out_put;
2816 			addr = saddr->sll_addr;
2817 		}
2818 	}
2819 
2820 	err = -ENXIO;
2821 	if (unlikely(dev == NULL))
2822 		goto out;
2823 	err = -ENETDOWN;
2824 	if (unlikely(!(dev->flags & IFF_UP)))
2825 		goto out_put;
2826 
2827 	sockcm_init(&sockc, &po->sk);
2828 	if (msg->msg_controllen) {
2829 		err = sock_cmsg_send(&po->sk, msg, &sockc);
2830 		if (unlikely(err))
2831 			goto out_put;
2832 	}
2833 
2834 	if (po->sk.sk_socket->type == SOCK_RAW)
2835 		reserve = dev->hard_header_len;
2836 	size_max = po->tx_ring.frame_size
2837 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2838 
2839 	if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !vnet_hdr_sz)
2840 		size_max = dev->mtu + reserve + VLAN_HLEN;
2841 
2842 	reinit_completion(&po->skb_completion);
2843 
2844 	do {
2845 		ph = packet_current_frame(po, &po->tx_ring,
2846 					  TP_STATUS_SEND_REQUEST);
2847 		if (unlikely(ph == NULL)) {
2848 			if (need_wait && skb) {
2849 				timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT);
2850 				timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo);
2851 				if (timeo <= 0) {
2852 					err = !timeo ? -ETIMEDOUT : -ERESTARTSYS;
2853 					goto out_put;
2854 				}
2855 			}
2856 			/* check for additional frames */
2857 			continue;
2858 		}
2859 
2860 		skb = NULL;
2861 		tp_len = tpacket_parse_header(po, ph, size_max, &data);
2862 		if (tp_len < 0)
2863 			goto tpacket_error;
2864 
2865 		status = TP_STATUS_SEND_REQUEST;
2866 		hlen = LL_RESERVED_SPACE(dev);
2867 		tlen = dev->needed_tailroom;
2868 		if (vnet_hdr_sz) {
2869 			vnet_hdr = data;
2870 			data += vnet_hdr_sz;
2871 			tp_len -= vnet_hdr_sz;
2872 			if (tp_len < 0 ||
2873 			    __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2874 				tp_len = -EINVAL;
2875 				goto tpacket_error;
2876 			}
2877 			copylen = __virtio16_to_cpu(vio_le(),
2878 						    vnet_hdr->hdr_len);
2879 		}
2880 		copylen = max_t(int, copylen, dev->hard_header_len);
2881 		skb = sock_alloc_send_skb(&po->sk,
2882 				hlen + tlen + sizeof(struct sockaddr_ll) +
2883 				(copylen - dev->hard_header_len),
2884 				!need_wait, &err);
2885 
2886 		if (unlikely(skb == NULL)) {
2887 			/* we assume the socket was initially writeable ... */
2888 			if (likely(len_sum > 0))
2889 				err = len_sum;
2890 			goto out_status;
2891 		}
2892 		tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2893 					  addr, hlen, copylen, &sockc);
2894 		if (likely(tp_len >= 0) &&
2895 		    tp_len > dev->mtu + reserve &&
2896 		    !vnet_hdr_sz &&
2897 		    !packet_extra_vlan_len_allowed(dev, skb))
2898 			tp_len = -EMSGSIZE;
2899 
2900 		if (unlikely(tp_len < 0)) {
2901 tpacket_error:
2902 			if (packet_sock_flag(po, PACKET_SOCK_TP_LOSS)) {
2903 				__packet_set_status(po, ph,
2904 						TP_STATUS_AVAILABLE);
2905 				packet_increment_head(&po->tx_ring);
2906 				kfree_skb(skb);
2907 				continue;
2908 			} else {
2909 				status = TP_STATUS_WRONG_FORMAT;
2910 				err = tp_len;
2911 				goto out_status;
2912 			}
2913 		}
2914 
2915 		if (vnet_hdr_sz) {
2916 			if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) {
2917 				tp_len = -EINVAL;
2918 				goto tpacket_error;
2919 			}
2920 			virtio_net_hdr_set_proto(skb, vnet_hdr);
2921 		}
2922 
2923 		skb->destructor = tpacket_destruct_skb;
2924 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2925 		packet_inc_pending(&po->tx_ring);
2926 
2927 		status = TP_STATUS_SEND_REQUEST;
2928 		err = packet_xmit(po, skb);
2929 		if (unlikely(err != 0)) {
2930 			if (err > 0)
2931 				err = net_xmit_errno(err);
2932 			if (err && __packet_get_status(po, ph) ==
2933 				   TP_STATUS_AVAILABLE) {
2934 				/* skb was destructed already */
2935 				skb = NULL;
2936 				goto out_status;
2937 			}
2938 			/*
2939 			 * skb was dropped but not destructed yet;
2940 			 * let's treat it like congestion or err < 0
2941 			 */
2942 			err = 0;
2943 		}
2944 		packet_increment_head(&po->tx_ring);
2945 		len_sum += tp_len;
2946 	} while (likely((ph != NULL) ||
2947 		/* Note: packet_read_pending() might be slow if we have
2948 		 * to call it as it's per_cpu variable, but in fast-path
2949 		 * we already short-circuit the loop with the first
2950 		 * condition, and luckily don't have to go that path
2951 		 * anyway.
2952 		 */
2953 		 (need_wait && packet_read_pending(&po->tx_ring))));
2954 
2955 	err = len_sum;
2956 	goto out_put;
2957 
2958 out_status:
2959 	__packet_set_status(po, ph, status);
2960 	kfree_skb(skb);
2961 out_put:
2962 	dev_put(dev);
2963 out:
2964 	mutex_unlock(&po->pg_vec_lock);
2965 	return err;
2966 }
2967 
2968 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2969 				        size_t reserve, size_t len,
2970 				        size_t linear, int noblock,
2971 				        int *err)
2972 {
2973 	struct sk_buff *skb;
2974 
2975 	/* Under a page?  Don't bother with paged skb. */
2976 	if (prepad + len < PAGE_SIZE || !linear)
2977 		linear = len;
2978 
2979 	if (len - linear > MAX_SKB_FRAGS * (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER))
2980 		linear = len - MAX_SKB_FRAGS * (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER);
2981 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2982 				   err, PAGE_ALLOC_COSTLY_ORDER);
2983 	if (!skb)
2984 		return NULL;
2985 
2986 	skb_reserve(skb, reserve);
2987 	skb_put(skb, linear);
2988 	skb->data_len = len - linear;
2989 	skb->len += len - linear;
2990 
2991 	return skb;
2992 }
2993 
2994 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2995 {
2996 	struct sock *sk = sock->sk;
2997 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2998 	struct sk_buff *skb;
2999 	struct net_device *dev;
3000 	__be16 proto;
3001 	unsigned char *addr = NULL;
3002 	int err, reserve = 0;
3003 	struct sockcm_cookie sockc;
3004 	struct virtio_net_hdr vnet_hdr = { 0 };
3005 	int offset = 0;
3006 	struct packet_sock *po = pkt_sk(sk);
3007 	int vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz);
3008 	int hlen, tlen, linear;
3009 	int extra_len = 0;
3010 
3011 	/*
3012 	 *	Get and verify the address.
3013 	 */
3014 
3015 	if (likely(saddr == NULL)) {
3016 		dev	= packet_cached_dev_get(po);
3017 		proto	= READ_ONCE(po->num);
3018 	} else {
3019 		err = -EINVAL;
3020 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
3021 			goto out;
3022 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
3023 			goto out;
3024 		proto	= saddr->sll_protocol;
3025 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
3026 		if (sock->type == SOCK_DGRAM) {
3027 			if (dev && msg->msg_namelen < dev->addr_len +
3028 				   offsetof(struct sockaddr_ll, sll_addr))
3029 				goto out_unlock;
3030 			addr = saddr->sll_addr;
3031 		}
3032 	}
3033 
3034 	err = -ENXIO;
3035 	if (unlikely(dev == NULL))
3036 		goto out_unlock;
3037 	err = -ENETDOWN;
3038 	if (unlikely(!(dev->flags & IFF_UP)))
3039 		goto out_unlock;
3040 
3041 	sockcm_init(&sockc, sk);
3042 	sockc.mark = READ_ONCE(sk->sk_mark);
3043 	if (msg->msg_controllen) {
3044 		err = sock_cmsg_send(sk, msg, &sockc);
3045 		if (unlikely(err))
3046 			goto out_unlock;
3047 	}
3048 
3049 	if (sock->type == SOCK_RAW)
3050 		reserve = dev->hard_header_len;
3051 	if (vnet_hdr_sz) {
3052 		err = packet_snd_vnet_parse(msg, &len, &vnet_hdr, vnet_hdr_sz);
3053 		if (err)
3054 			goto out_unlock;
3055 	}
3056 
3057 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
3058 		if (!netif_supports_nofcs(dev)) {
3059 			err = -EPROTONOSUPPORT;
3060 			goto out_unlock;
3061 		}
3062 		extra_len = 4; /* We're doing our own CRC */
3063 	}
3064 
3065 	err = -EMSGSIZE;
3066 	if (!vnet_hdr.gso_type &&
3067 	    (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
3068 		goto out_unlock;
3069 
3070 	err = -ENOBUFS;
3071 	hlen = LL_RESERVED_SPACE(dev);
3072 	tlen = dev->needed_tailroom;
3073 	linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
3074 	linear = max(linear, min_t(int, len, dev->hard_header_len));
3075 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
3076 			       msg->msg_flags & MSG_DONTWAIT, &err);
3077 	if (skb == NULL)
3078 		goto out_unlock;
3079 
3080 	skb_reset_network_header(skb);
3081 
3082 	err = -EINVAL;
3083 	if (sock->type == SOCK_DGRAM) {
3084 		offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
3085 		if (unlikely(offset < 0))
3086 			goto out_free;
3087 	} else if (reserve) {
3088 		skb_reserve(skb, -reserve);
3089 		if (len < reserve + sizeof(struct ipv6hdr) &&
3090 		    dev->min_header_len != dev->hard_header_len)
3091 			skb_reset_network_header(skb);
3092 	}
3093 
3094 	/* Returns -EFAULT on error */
3095 	err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
3096 	if (err)
3097 		goto out_free;
3098 
3099 	if ((sock->type == SOCK_RAW &&
3100 	     !dev_validate_header(dev, skb->data, len)) || !skb->len) {
3101 		err = -EINVAL;
3102 		goto out_free;
3103 	}
3104 
3105 	skb_setup_tx_timestamp(skb, &sockc);
3106 
3107 	if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
3108 	    !packet_extra_vlan_len_allowed(dev, skb)) {
3109 		err = -EMSGSIZE;
3110 		goto out_free;
3111 	}
3112 
3113 	skb->protocol = proto;
3114 	skb->dev = dev;
3115 	skb->priority = READ_ONCE(sk->sk_priority);
3116 	skb->mark = sockc.mark;
3117 	skb_set_delivery_type_by_clockid(skb, sockc.transmit_time, sk->sk_clockid);
3118 
3119 	if (unlikely(extra_len == 4))
3120 		skb->no_fcs = 1;
3121 
3122 	packet_parse_headers(skb, sock);
3123 
3124 	if (vnet_hdr_sz) {
3125 		err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
3126 		if (err)
3127 			goto out_free;
3128 		len += vnet_hdr_sz;
3129 		virtio_net_hdr_set_proto(skb, &vnet_hdr);
3130 	}
3131 
3132 	err = packet_xmit(po, skb);
3133 
3134 	if (unlikely(err != 0)) {
3135 		if (err > 0)
3136 			err = net_xmit_errno(err);
3137 		if (err)
3138 			goto out_unlock;
3139 	}
3140 
3141 	dev_put(dev);
3142 
3143 	return len;
3144 
3145 out_free:
3146 	kfree_skb(skb);
3147 out_unlock:
3148 	dev_put(dev);
3149 out:
3150 	return err;
3151 }
3152 
3153 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
3154 {
3155 	struct sock *sk = sock->sk;
3156 	struct packet_sock *po = pkt_sk(sk);
3157 
3158 	/* Reading tx_ring.pg_vec without holding pg_vec_lock is racy.
3159 	 * tpacket_snd() will redo the check safely.
3160 	 */
3161 	if (data_race(po->tx_ring.pg_vec))
3162 		return tpacket_snd(po, msg);
3163 
3164 	return packet_snd(sock, msg, len);
3165 }
3166 
3167 /*
3168  *	Close a PACKET socket. This is fairly simple. We immediately go
3169  *	to 'closed' state and remove our protocol entry in the device list.
3170  */
3171 
3172 static int packet_release(struct socket *sock)
3173 {
3174 	struct sock *sk = sock->sk;
3175 	struct packet_sock *po;
3176 	struct packet_fanout *f;
3177 	struct net *net;
3178 	union tpacket_req_u req_u;
3179 
3180 	if (!sk)
3181 		return 0;
3182 
3183 	net = sock_net(sk);
3184 	po = pkt_sk(sk);
3185 
3186 	mutex_lock(&net->packet.sklist_lock);
3187 	sk_del_node_init_rcu(sk);
3188 	mutex_unlock(&net->packet.sklist_lock);
3189 
3190 	sock_prot_inuse_add(net, sk->sk_prot, -1);
3191 
3192 	spin_lock(&po->bind_lock);
3193 	unregister_prot_hook(sk, false);
3194 	packet_cached_dev_reset(po);
3195 
3196 	if (po->prot_hook.dev) {
3197 		netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker);
3198 		po->prot_hook.dev = NULL;
3199 	}
3200 	spin_unlock(&po->bind_lock);
3201 
3202 	packet_flush_mclist(sk);
3203 
3204 	lock_sock(sk);
3205 	if (po->rx_ring.pg_vec) {
3206 		memset(&req_u, 0, sizeof(req_u));
3207 		packet_set_ring(sk, &req_u, 1, 0);
3208 	}
3209 
3210 	if (po->tx_ring.pg_vec) {
3211 		memset(&req_u, 0, sizeof(req_u));
3212 		packet_set_ring(sk, &req_u, 1, 1);
3213 	}
3214 	release_sock(sk);
3215 
3216 	f = fanout_release(sk);
3217 
3218 	synchronize_net();
3219 
3220 	kfree(po->rollover);
3221 	if (f) {
3222 		fanout_release_data(f);
3223 		kvfree(f);
3224 	}
3225 	/*
3226 	 *	Now the socket is dead. No more input will appear.
3227 	 */
3228 	sock_orphan(sk);
3229 	sock->sk = NULL;
3230 
3231 	/* Purge queues */
3232 
3233 	skb_queue_purge(&sk->sk_receive_queue);
3234 	packet_free_pending(po);
3235 
3236 	sock_put(sk);
3237 	return 0;
3238 }
3239 
3240 /*
3241  *	Attach a packet hook.
3242  */
3243 
3244 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3245 			  __be16 proto)
3246 {
3247 	struct packet_sock *po = pkt_sk(sk);
3248 	struct net_device *dev = NULL;
3249 	bool unlisted = false;
3250 	bool need_rehook;
3251 	int ret = 0;
3252 
3253 	lock_sock(sk);
3254 	spin_lock(&po->bind_lock);
3255 	if (!proto)
3256 		proto = po->num;
3257 
3258 	rcu_read_lock();
3259 
3260 	if (po->fanout) {
3261 		ret = -EINVAL;
3262 		goto out_unlock;
3263 	}
3264 
3265 	if (name) {
3266 		dev = dev_get_by_name_rcu(sock_net(sk), name);
3267 		if (!dev) {
3268 			ret = -ENODEV;
3269 			goto out_unlock;
3270 		}
3271 	} else if (ifindex) {
3272 		dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3273 		if (!dev) {
3274 			ret = -ENODEV;
3275 			goto out_unlock;
3276 		}
3277 	}
3278 
3279 	need_rehook = po->prot_hook.type != proto || po->prot_hook.dev != dev;
3280 
3281 	if (need_rehook) {
3282 		dev_hold(dev);
3283 		if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) {
3284 			rcu_read_unlock();
3285 			/* prevents packet_notifier() from calling
3286 			 * register_prot_hook()
3287 			 */
3288 			WRITE_ONCE(po->num, 0);
3289 			__unregister_prot_hook(sk, true);
3290 			rcu_read_lock();
3291 			if (dev)
3292 				unlisted = !dev_get_by_index_rcu(sock_net(sk),
3293 								 dev->ifindex);
3294 		}
3295 
3296 		BUG_ON(packet_sock_flag(po, PACKET_SOCK_RUNNING));
3297 		WRITE_ONCE(po->num, proto);
3298 		po->prot_hook.type = proto;
3299 
3300 		netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker);
3301 
3302 		if (unlikely(unlisted)) {
3303 			po->prot_hook.dev = NULL;
3304 			WRITE_ONCE(po->ifindex, -1);
3305 			packet_cached_dev_reset(po);
3306 		} else {
3307 			netdev_hold(dev, &po->prot_hook.dev_tracker,
3308 				    GFP_ATOMIC);
3309 			po->prot_hook.dev = dev;
3310 			WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0);
3311 			packet_cached_dev_assign(po, dev);
3312 		}
3313 		dev_put(dev);
3314 	}
3315 
3316 	if (proto == 0 || !need_rehook)
3317 		goto out_unlock;
3318 
3319 	if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3320 		register_prot_hook(sk);
3321 	} else {
3322 		sk->sk_err = ENETDOWN;
3323 		if (!sock_flag(sk, SOCK_DEAD))
3324 			sk_error_report(sk);
3325 	}
3326 
3327 out_unlock:
3328 	rcu_read_unlock();
3329 	spin_unlock(&po->bind_lock);
3330 	release_sock(sk);
3331 	return ret;
3332 }
3333 
3334 /*
3335  *	Bind a packet socket to a device
3336  */
3337 
3338 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3339 			    int addr_len)
3340 {
3341 	struct sock *sk = sock->sk;
3342 	char name[sizeof(uaddr->sa_data_min) + 1];
3343 
3344 	/*
3345 	 *	Check legality
3346 	 */
3347 
3348 	if (addr_len != sizeof(struct sockaddr))
3349 		return -EINVAL;
3350 	/* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3351 	 * zero-terminated.
3352 	 */
3353 	memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data_min));
3354 	name[sizeof(uaddr->sa_data_min)] = 0;
3355 
3356 	return packet_do_bind(sk, name, 0, 0);
3357 }
3358 
3359 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3360 {
3361 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3362 	struct sock *sk = sock->sk;
3363 
3364 	/*
3365 	 *	Check legality
3366 	 */
3367 
3368 	if (addr_len < sizeof(struct sockaddr_ll))
3369 		return -EINVAL;
3370 	if (sll->sll_family != AF_PACKET)
3371 		return -EINVAL;
3372 
3373 	return packet_do_bind(sk, NULL, sll->sll_ifindex, sll->sll_protocol);
3374 }
3375 
3376 static struct proto packet_proto = {
3377 	.name	  = "PACKET",
3378 	.owner	  = THIS_MODULE,
3379 	.obj_size = sizeof(struct packet_sock),
3380 };
3381 
3382 /*
3383  *	Create a packet of type SOCK_PACKET.
3384  */
3385 
3386 static int packet_create(struct net *net, struct socket *sock, int protocol,
3387 			 int kern)
3388 {
3389 	struct sock *sk;
3390 	struct packet_sock *po;
3391 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
3392 	int err;
3393 
3394 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
3395 		return -EPERM;
3396 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3397 	    sock->type != SOCK_PACKET)
3398 		return -ESOCKTNOSUPPORT;
3399 
3400 	sock->state = SS_UNCONNECTED;
3401 
3402 	err = -ENOBUFS;
3403 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3404 	if (sk == NULL)
3405 		goto out;
3406 
3407 	sock->ops = &packet_ops;
3408 	if (sock->type == SOCK_PACKET)
3409 		sock->ops = &packet_ops_spkt;
3410 
3411 	po = pkt_sk(sk);
3412 	err = packet_alloc_pending(po);
3413 	if (err)
3414 		goto out_sk_free;
3415 
3416 	sock_init_data(sock, sk);
3417 
3418 	init_completion(&po->skb_completion);
3419 	sk->sk_family = PF_PACKET;
3420 	po->num = proto;
3421 
3422 	packet_cached_dev_reset(po);
3423 
3424 	sk->sk_destruct = packet_sock_destruct;
3425 
3426 	/*
3427 	 *	Attach a protocol block
3428 	 */
3429 
3430 	spin_lock_init(&po->bind_lock);
3431 	mutex_init(&po->pg_vec_lock);
3432 	po->rollover = NULL;
3433 	po->prot_hook.func = packet_rcv;
3434 
3435 	if (sock->type == SOCK_PACKET)
3436 		po->prot_hook.func = packet_rcv_spkt;
3437 
3438 	po->prot_hook.af_packet_priv = sk;
3439 	po->prot_hook.af_packet_net = sock_net(sk);
3440 
3441 	if (proto) {
3442 		po->prot_hook.type = proto;
3443 		__register_prot_hook(sk);
3444 	}
3445 
3446 	mutex_lock(&net->packet.sklist_lock);
3447 	sk_add_node_tail_rcu(sk, &net->packet.sklist);
3448 	mutex_unlock(&net->packet.sklist_lock);
3449 
3450 	sock_prot_inuse_add(net, &packet_proto, 1);
3451 
3452 	return 0;
3453 out_sk_free:
3454 	sk_free(sk);
3455 out:
3456 	return err;
3457 }
3458 
3459 /*
3460  *	Pull a packet from our receive queue and hand it to the user.
3461  *	If necessary we block.
3462  */
3463 
3464 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3465 			  int flags)
3466 {
3467 	struct sock *sk = sock->sk;
3468 	struct sk_buff *skb;
3469 	int copied, err;
3470 	int vnet_hdr_len = READ_ONCE(pkt_sk(sk)->vnet_hdr_sz);
3471 	unsigned int origlen = 0;
3472 
3473 	err = -EINVAL;
3474 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3475 		goto out;
3476 
3477 #if 0
3478 	/* What error should we return now? EUNATTACH? */
3479 	if (pkt_sk(sk)->ifindex < 0)
3480 		return -ENODEV;
3481 #endif
3482 
3483 	if (flags & MSG_ERRQUEUE) {
3484 		err = sock_recv_errqueue(sk, msg, len,
3485 					 SOL_PACKET, PACKET_TX_TIMESTAMP);
3486 		goto out;
3487 	}
3488 
3489 	/*
3490 	 *	Call the generic datagram receiver. This handles all sorts
3491 	 *	of horrible races and re-entrancy so we can forget about it
3492 	 *	in the protocol layers.
3493 	 *
3494 	 *	Now it will return ENETDOWN, if device have just gone down,
3495 	 *	but then it will block.
3496 	 */
3497 
3498 	skb = skb_recv_datagram(sk, flags, &err);
3499 
3500 	/*
3501 	 *	An error occurred so return it. Because skb_recv_datagram()
3502 	 *	handles the blocking we don't see and worry about blocking
3503 	 *	retries.
3504 	 */
3505 
3506 	if (skb == NULL)
3507 		goto out;
3508 
3509 	packet_rcv_try_clear_pressure(pkt_sk(sk));
3510 
3511 	if (vnet_hdr_len) {
3512 		err = packet_rcv_vnet(msg, skb, &len, vnet_hdr_len);
3513 		if (err)
3514 			goto out_free;
3515 	}
3516 
3517 	/* You lose any data beyond the buffer you gave. If it worries
3518 	 * a user program they can ask the device for its MTU
3519 	 * anyway.
3520 	 */
3521 	copied = skb->len;
3522 	if (copied > len) {
3523 		copied = len;
3524 		msg->msg_flags |= MSG_TRUNC;
3525 	}
3526 
3527 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3528 	if (err)
3529 		goto out_free;
3530 
3531 	if (sock->type != SOCK_PACKET) {
3532 		struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3533 
3534 		/* Original length was stored in sockaddr_ll fields */
3535 		origlen = PACKET_SKB_CB(skb)->sa.origlen;
3536 		sll->sll_family = AF_PACKET;
3537 		sll->sll_protocol = (sock->type == SOCK_DGRAM) ?
3538 			vlan_get_protocol_dgram(skb) : skb->protocol;
3539 	}
3540 
3541 	sock_recv_cmsgs(msg, sk, skb);
3542 
3543 	if (msg->msg_name) {
3544 		const size_t max_len = min(sizeof(skb->cb),
3545 					   sizeof(struct sockaddr_storage));
3546 		int copy_len;
3547 
3548 		/* If the address length field is there to be filled
3549 		 * in, we fill it in now.
3550 		 */
3551 		if (sock->type == SOCK_PACKET) {
3552 			__sockaddr_check_size(sizeof(struct sockaddr_pkt));
3553 			msg->msg_namelen = sizeof(struct sockaddr_pkt);
3554 			copy_len = msg->msg_namelen;
3555 		} else {
3556 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3557 
3558 			msg->msg_namelen = sll->sll_halen +
3559 				offsetof(struct sockaddr_ll, sll_addr);
3560 			copy_len = msg->msg_namelen;
3561 			if (msg->msg_namelen < sizeof(struct sockaddr_ll)) {
3562 				memset(msg->msg_name +
3563 				       offsetof(struct sockaddr_ll, sll_addr),
3564 				       0, sizeof(sll->sll_addr));
3565 				msg->msg_namelen = sizeof(struct sockaddr_ll);
3566 			}
3567 		}
3568 		if (WARN_ON_ONCE(copy_len > max_len)) {
3569 			copy_len = max_len;
3570 			msg->msg_namelen = copy_len;
3571 		}
3572 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len);
3573 	}
3574 
3575 	if (packet_sock_flag(pkt_sk(sk), PACKET_SOCK_AUXDATA)) {
3576 		struct tpacket_auxdata aux;
3577 
3578 		aux.tp_status = TP_STATUS_USER;
3579 		if (skb->ip_summed == CHECKSUM_PARTIAL)
3580 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3581 		else if (skb->pkt_type != PACKET_OUTGOING &&
3582 			 skb_csum_unnecessary(skb))
3583 			aux.tp_status |= TP_STATUS_CSUM_VALID;
3584 		if (skb_is_gso(skb) && skb_is_gso_tcp(skb))
3585 			aux.tp_status |= TP_STATUS_GSO_TCP;
3586 
3587 		aux.tp_len = origlen;
3588 		aux.tp_snaplen = skb->len;
3589 		aux.tp_mac = 0;
3590 		aux.tp_net = skb_network_offset(skb);
3591 		if (skb_vlan_tag_present(skb)) {
3592 			aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3593 			aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3594 			aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3595 		} else if (unlikely(sock->type == SOCK_DGRAM && eth_type_vlan(skb->protocol))) {
3596 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3597 			struct net_device *dev;
3598 
3599 			rcu_read_lock();
3600 			dev = dev_get_by_index_rcu(sock_net(sk), sll->sll_ifindex);
3601 			if (dev) {
3602 				aux.tp_vlan_tci = vlan_get_tci(skb, dev);
3603 				aux.tp_vlan_tpid = ntohs(skb->protocol);
3604 				aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3605 			} else {
3606 				aux.tp_vlan_tci = 0;
3607 				aux.tp_vlan_tpid = 0;
3608 			}
3609 			rcu_read_unlock();
3610 		} else {
3611 			aux.tp_vlan_tci = 0;
3612 			aux.tp_vlan_tpid = 0;
3613 		}
3614 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3615 	}
3616 
3617 	/*
3618 	 *	Free or return the buffer as appropriate. Again this
3619 	 *	hides all the races and re-entrancy issues from us.
3620 	 */
3621 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3622 
3623 out_free:
3624 	skb_free_datagram(sk, skb);
3625 out:
3626 	return err;
3627 }
3628 
3629 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3630 			       int peer)
3631 {
3632 	struct net_device *dev;
3633 	struct sock *sk	= sock->sk;
3634 
3635 	if (peer)
3636 		return -EOPNOTSUPP;
3637 
3638 	uaddr->sa_family = AF_PACKET;
3639 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data_min));
3640 	rcu_read_lock();
3641 	dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex));
3642 	if (dev)
3643 		strscpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data_min));
3644 	rcu_read_unlock();
3645 
3646 	return sizeof(*uaddr);
3647 }
3648 
3649 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3650 			  int peer)
3651 {
3652 	struct net_device *dev;
3653 	struct sock *sk = sock->sk;
3654 	struct packet_sock *po = pkt_sk(sk);
3655 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3656 	int ifindex;
3657 
3658 	if (peer)
3659 		return -EOPNOTSUPP;
3660 
3661 	ifindex = READ_ONCE(po->ifindex);
3662 	sll->sll_family = AF_PACKET;
3663 	sll->sll_ifindex = ifindex;
3664 	sll->sll_protocol = READ_ONCE(po->num);
3665 	sll->sll_pkttype = 0;
3666 	rcu_read_lock();
3667 	dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3668 	if (dev) {
3669 		sll->sll_hatype = dev->type;
3670 		sll->sll_halen = dev->addr_len;
3671 
3672 		/* Let __fortify_memcpy_chk() know the actual buffer size. */
3673 		memcpy(((struct sockaddr_storage *)sll)->__data +
3674 		       offsetof(struct sockaddr_ll, sll_addr) -
3675 		       offsetofend(struct sockaddr_ll, sll_family),
3676 		       dev->dev_addr, dev->addr_len);
3677 	} else {
3678 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
3679 		sll->sll_halen = 0;
3680 	}
3681 	rcu_read_unlock();
3682 
3683 	return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3684 }
3685 
3686 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3687 			 int what)
3688 {
3689 	switch (i->type) {
3690 	case PACKET_MR_MULTICAST:
3691 		if (i->alen != dev->addr_len)
3692 			return -EINVAL;
3693 		if (what > 0)
3694 			return dev_mc_add(dev, i->addr);
3695 		else
3696 			return dev_mc_del(dev, i->addr);
3697 		break;
3698 	case PACKET_MR_PROMISC:
3699 		return dev_set_promiscuity(dev, what);
3700 	case PACKET_MR_ALLMULTI:
3701 		return dev_set_allmulti(dev, what);
3702 	case PACKET_MR_UNICAST:
3703 		if (i->alen != dev->addr_len)
3704 			return -EINVAL;
3705 		if (what > 0)
3706 			return dev_uc_add(dev, i->addr);
3707 		else
3708 			return dev_uc_del(dev, i->addr);
3709 		break;
3710 	default:
3711 		break;
3712 	}
3713 	return 0;
3714 }
3715 
3716 static void packet_dev_mclist_delete(struct net_device *dev,
3717 				     struct packet_mclist **mlp)
3718 {
3719 	struct packet_mclist *ml;
3720 
3721 	while ((ml = *mlp) != NULL) {
3722 		if (ml->ifindex == dev->ifindex) {
3723 			packet_dev_mc(dev, ml, -1);
3724 			*mlp = ml->next;
3725 			kfree(ml);
3726 		} else
3727 			mlp = &ml->next;
3728 	}
3729 }
3730 
3731 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3732 {
3733 	struct packet_sock *po = pkt_sk(sk);
3734 	struct packet_mclist *ml, *i;
3735 	struct net_device *dev;
3736 	int err;
3737 
3738 	rtnl_lock();
3739 
3740 	err = -ENODEV;
3741 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3742 	if (!dev)
3743 		goto done;
3744 
3745 	err = -EINVAL;
3746 	if (mreq->mr_alen > dev->addr_len)
3747 		goto done;
3748 
3749 	err = -ENOBUFS;
3750 	i = kmalloc(sizeof(*i), GFP_KERNEL);
3751 	if (i == NULL)
3752 		goto done;
3753 
3754 	err = 0;
3755 	for (ml = po->mclist; ml; ml = ml->next) {
3756 		if (ml->ifindex == mreq->mr_ifindex &&
3757 		    ml->type == mreq->mr_type &&
3758 		    ml->alen == mreq->mr_alen &&
3759 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3760 			ml->count++;
3761 			/* Free the new element ... */
3762 			kfree(i);
3763 			goto done;
3764 		}
3765 	}
3766 
3767 	i->type = mreq->mr_type;
3768 	i->ifindex = mreq->mr_ifindex;
3769 	i->alen = mreq->mr_alen;
3770 	memcpy(i->addr, mreq->mr_address, i->alen);
3771 	memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3772 	i->count = 1;
3773 	i->next = po->mclist;
3774 	po->mclist = i;
3775 	err = packet_dev_mc(dev, i, 1);
3776 	if (err) {
3777 		po->mclist = i->next;
3778 		kfree(i);
3779 	}
3780 
3781 done:
3782 	rtnl_unlock();
3783 	return err;
3784 }
3785 
3786 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3787 {
3788 	struct packet_mclist *ml, **mlp;
3789 
3790 	rtnl_lock();
3791 
3792 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3793 		if (ml->ifindex == mreq->mr_ifindex &&
3794 		    ml->type == mreq->mr_type &&
3795 		    ml->alen == mreq->mr_alen &&
3796 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3797 			if (--ml->count == 0) {
3798 				struct net_device *dev;
3799 				*mlp = ml->next;
3800 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3801 				if (dev)
3802 					packet_dev_mc(dev, ml, -1);
3803 				kfree(ml);
3804 			}
3805 			break;
3806 		}
3807 	}
3808 	rtnl_unlock();
3809 	return 0;
3810 }
3811 
3812 static void packet_flush_mclist(struct sock *sk)
3813 {
3814 	struct packet_sock *po = pkt_sk(sk);
3815 	struct packet_mclist *ml;
3816 
3817 	if (!po->mclist)
3818 		return;
3819 
3820 	rtnl_lock();
3821 	while ((ml = po->mclist) != NULL) {
3822 		struct net_device *dev;
3823 
3824 		po->mclist = ml->next;
3825 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3826 		if (dev != NULL)
3827 			packet_dev_mc(dev, ml, -1);
3828 		kfree(ml);
3829 	}
3830 	rtnl_unlock();
3831 }
3832 
3833 static int
3834 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval,
3835 		  unsigned int optlen)
3836 {
3837 	struct sock *sk = sock->sk;
3838 	struct packet_sock *po = pkt_sk(sk);
3839 	int ret;
3840 
3841 	if (level != SOL_PACKET)
3842 		return -ENOPROTOOPT;
3843 
3844 	switch (optname) {
3845 	case PACKET_ADD_MEMBERSHIP:
3846 	case PACKET_DROP_MEMBERSHIP:
3847 	{
3848 		struct packet_mreq_max mreq;
3849 		int len = optlen;
3850 		memset(&mreq, 0, sizeof(mreq));
3851 		if (len < sizeof(struct packet_mreq))
3852 			return -EINVAL;
3853 		if (len > sizeof(mreq))
3854 			len = sizeof(mreq);
3855 		if (copy_from_sockptr(&mreq, optval, len))
3856 			return -EFAULT;
3857 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3858 			return -EINVAL;
3859 		if (optname == PACKET_ADD_MEMBERSHIP)
3860 			ret = packet_mc_add(sk, &mreq);
3861 		else
3862 			ret = packet_mc_drop(sk, &mreq);
3863 		return ret;
3864 	}
3865 
3866 	case PACKET_RX_RING:
3867 	case PACKET_TX_RING:
3868 	{
3869 		union tpacket_req_u req_u;
3870 
3871 		ret = -EINVAL;
3872 		lock_sock(sk);
3873 		switch (po->tp_version) {
3874 		case TPACKET_V1:
3875 		case TPACKET_V2:
3876 			if (optlen < sizeof(req_u.req))
3877 				break;
3878 			ret = copy_from_sockptr(&req_u.req, optval,
3879 						sizeof(req_u.req)) ?
3880 						-EINVAL : 0;
3881 			break;
3882 		case TPACKET_V3:
3883 		default:
3884 			if (optlen < sizeof(req_u.req3))
3885 				break;
3886 			ret = copy_from_sockptr(&req_u.req3, optval,
3887 						sizeof(req_u.req3)) ?
3888 						-EINVAL : 0;
3889 			break;
3890 		}
3891 		if (!ret)
3892 			ret = packet_set_ring(sk, &req_u, 0,
3893 					      optname == PACKET_TX_RING);
3894 		release_sock(sk);
3895 		return ret;
3896 	}
3897 	case PACKET_COPY_THRESH:
3898 	{
3899 		int val;
3900 
3901 		if (optlen != sizeof(val))
3902 			return -EINVAL;
3903 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3904 			return -EFAULT;
3905 
3906 		WRITE_ONCE(pkt_sk(sk)->copy_thresh, val);
3907 		return 0;
3908 	}
3909 	case PACKET_VERSION:
3910 	{
3911 		int val;
3912 
3913 		if (optlen != sizeof(val))
3914 			return -EINVAL;
3915 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3916 			return -EFAULT;
3917 		switch (val) {
3918 		case TPACKET_V1:
3919 		case TPACKET_V2:
3920 		case TPACKET_V3:
3921 			break;
3922 		default:
3923 			return -EINVAL;
3924 		}
3925 		lock_sock(sk);
3926 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3927 			ret = -EBUSY;
3928 		} else {
3929 			po->tp_version = val;
3930 			ret = 0;
3931 		}
3932 		release_sock(sk);
3933 		return ret;
3934 	}
3935 	case PACKET_RESERVE:
3936 	{
3937 		unsigned int val;
3938 
3939 		if (optlen != sizeof(val))
3940 			return -EINVAL;
3941 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3942 			return -EFAULT;
3943 		if (val > INT_MAX)
3944 			return -EINVAL;
3945 		lock_sock(sk);
3946 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3947 			ret = -EBUSY;
3948 		} else {
3949 			po->tp_reserve = val;
3950 			ret = 0;
3951 		}
3952 		release_sock(sk);
3953 		return ret;
3954 	}
3955 	case PACKET_LOSS:
3956 	{
3957 		unsigned int val;
3958 
3959 		if (optlen != sizeof(val))
3960 			return -EINVAL;
3961 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3962 			return -EFAULT;
3963 
3964 		lock_sock(sk);
3965 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3966 			ret = -EBUSY;
3967 		} else {
3968 			packet_sock_flag_set(po, PACKET_SOCK_TP_LOSS, val);
3969 			ret = 0;
3970 		}
3971 		release_sock(sk);
3972 		return ret;
3973 	}
3974 	case PACKET_AUXDATA:
3975 	{
3976 		int val;
3977 
3978 		if (optlen < sizeof(val))
3979 			return -EINVAL;
3980 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3981 			return -EFAULT;
3982 
3983 		packet_sock_flag_set(po, PACKET_SOCK_AUXDATA, val);
3984 		return 0;
3985 	}
3986 	case PACKET_ORIGDEV:
3987 	{
3988 		int val;
3989 
3990 		if (optlen < sizeof(val))
3991 			return -EINVAL;
3992 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3993 			return -EFAULT;
3994 
3995 		packet_sock_flag_set(po, PACKET_SOCK_ORIGDEV, val);
3996 		return 0;
3997 	}
3998 	case PACKET_VNET_HDR:
3999 	case PACKET_VNET_HDR_SZ:
4000 	{
4001 		int val, hdr_len;
4002 
4003 		if (sock->type != SOCK_RAW)
4004 			return -EINVAL;
4005 		if (optlen < sizeof(val))
4006 			return -EINVAL;
4007 		if (copy_from_sockptr(&val, optval, sizeof(val)))
4008 			return -EFAULT;
4009 
4010 		if (optname == PACKET_VNET_HDR_SZ) {
4011 			if (val && val != sizeof(struct virtio_net_hdr) &&
4012 			    val != sizeof(struct virtio_net_hdr_mrg_rxbuf))
4013 				return -EINVAL;
4014 			hdr_len = val;
4015 		} else {
4016 			hdr_len = val ? sizeof(struct virtio_net_hdr) : 0;
4017 		}
4018 		lock_sock(sk);
4019 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
4020 			ret = -EBUSY;
4021 		} else {
4022 			WRITE_ONCE(po->vnet_hdr_sz, hdr_len);
4023 			ret = 0;
4024 		}
4025 		release_sock(sk);
4026 		return ret;
4027 	}
4028 	case PACKET_TIMESTAMP:
4029 	{
4030 		int val;
4031 
4032 		if (optlen != sizeof(val))
4033 			return -EINVAL;
4034 		if (copy_from_sockptr(&val, optval, sizeof(val)))
4035 			return -EFAULT;
4036 
4037 		WRITE_ONCE(po->tp_tstamp, val);
4038 		return 0;
4039 	}
4040 	case PACKET_FANOUT:
4041 	{
4042 		struct fanout_args args = { 0 };
4043 
4044 		if (optlen != sizeof(int) && optlen != sizeof(args))
4045 			return -EINVAL;
4046 		if (copy_from_sockptr(&args, optval, optlen))
4047 			return -EFAULT;
4048 
4049 		return fanout_add(sk, &args);
4050 	}
4051 	case PACKET_FANOUT_DATA:
4052 	{
4053 		/* Paired with the WRITE_ONCE() in fanout_add() */
4054 		if (!READ_ONCE(po->fanout))
4055 			return -EINVAL;
4056 
4057 		return fanout_set_data(po, optval, optlen);
4058 	}
4059 	case PACKET_IGNORE_OUTGOING:
4060 	{
4061 		int val;
4062 
4063 		if (optlen != sizeof(val))
4064 			return -EINVAL;
4065 		if (copy_from_sockptr(&val, optval, sizeof(val)))
4066 			return -EFAULT;
4067 		if (val < 0 || val > 1)
4068 			return -EINVAL;
4069 
4070 		WRITE_ONCE(po->prot_hook.ignore_outgoing, !!val);
4071 		return 0;
4072 	}
4073 	case PACKET_TX_HAS_OFF:
4074 	{
4075 		unsigned int val;
4076 
4077 		if (optlen != sizeof(val))
4078 			return -EINVAL;
4079 		if (copy_from_sockptr(&val, optval, sizeof(val)))
4080 			return -EFAULT;
4081 
4082 		lock_sock(sk);
4083 		if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec)
4084 			packet_sock_flag_set(po, PACKET_SOCK_TX_HAS_OFF, val);
4085 
4086 		release_sock(sk);
4087 		return 0;
4088 	}
4089 	case PACKET_QDISC_BYPASS:
4090 	{
4091 		int val;
4092 
4093 		if (optlen != sizeof(val))
4094 			return -EINVAL;
4095 		if (copy_from_sockptr(&val, optval, sizeof(val)))
4096 			return -EFAULT;
4097 
4098 		packet_sock_flag_set(po, PACKET_SOCK_QDISC_BYPASS, val);
4099 		return 0;
4100 	}
4101 	default:
4102 		return -ENOPROTOOPT;
4103 	}
4104 }
4105 
4106 static int packet_getsockopt(struct socket *sock, int level, int optname,
4107 			     char __user *optval, int __user *optlen)
4108 {
4109 	int len;
4110 	int val, lv = sizeof(val);
4111 	struct sock *sk = sock->sk;
4112 	struct packet_sock *po = pkt_sk(sk);
4113 	void *data = &val;
4114 	union tpacket_stats_u st;
4115 	struct tpacket_rollover_stats rstats;
4116 	int drops;
4117 
4118 	if (level != SOL_PACKET)
4119 		return -ENOPROTOOPT;
4120 
4121 	if (get_user(len, optlen))
4122 		return -EFAULT;
4123 
4124 	if (len < 0)
4125 		return -EINVAL;
4126 
4127 	switch (optname) {
4128 	case PACKET_STATISTICS:
4129 		spin_lock_bh(&sk->sk_receive_queue.lock);
4130 		memcpy(&st, &po->stats, sizeof(st));
4131 		memset(&po->stats, 0, sizeof(po->stats));
4132 		spin_unlock_bh(&sk->sk_receive_queue.lock);
4133 		drops = atomic_xchg(&po->tp_drops, 0);
4134 
4135 		if (po->tp_version == TPACKET_V3) {
4136 			lv = sizeof(struct tpacket_stats_v3);
4137 			st.stats3.tp_drops = drops;
4138 			st.stats3.tp_packets += drops;
4139 			data = &st.stats3;
4140 		} else {
4141 			lv = sizeof(struct tpacket_stats);
4142 			st.stats1.tp_drops = drops;
4143 			st.stats1.tp_packets += drops;
4144 			data = &st.stats1;
4145 		}
4146 
4147 		break;
4148 	case PACKET_AUXDATA:
4149 		val = packet_sock_flag(po, PACKET_SOCK_AUXDATA);
4150 		break;
4151 	case PACKET_ORIGDEV:
4152 		val = packet_sock_flag(po, PACKET_SOCK_ORIGDEV);
4153 		break;
4154 	case PACKET_VNET_HDR:
4155 		val = !!READ_ONCE(po->vnet_hdr_sz);
4156 		break;
4157 	case PACKET_VNET_HDR_SZ:
4158 		val = READ_ONCE(po->vnet_hdr_sz);
4159 		break;
4160 	case PACKET_COPY_THRESH:
4161 		val = READ_ONCE(pkt_sk(sk)->copy_thresh);
4162 		break;
4163 	case PACKET_VERSION:
4164 		val = po->tp_version;
4165 		break;
4166 	case PACKET_HDRLEN:
4167 		if (len > sizeof(int))
4168 			len = sizeof(int);
4169 		if (len < sizeof(int))
4170 			return -EINVAL;
4171 		if (copy_from_user(&val, optval, len))
4172 			return -EFAULT;
4173 		switch (val) {
4174 		case TPACKET_V1:
4175 			val = sizeof(struct tpacket_hdr);
4176 			break;
4177 		case TPACKET_V2:
4178 			val = sizeof(struct tpacket2_hdr);
4179 			break;
4180 		case TPACKET_V3:
4181 			val = sizeof(struct tpacket3_hdr);
4182 			break;
4183 		default:
4184 			return -EINVAL;
4185 		}
4186 		break;
4187 	case PACKET_RESERVE:
4188 		val = po->tp_reserve;
4189 		break;
4190 	case PACKET_LOSS:
4191 		val = packet_sock_flag(po, PACKET_SOCK_TP_LOSS);
4192 		break;
4193 	case PACKET_TIMESTAMP:
4194 		val = READ_ONCE(po->tp_tstamp);
4195 		break;
4196 	case PACKET_FANOUT:
4197 		val = (po->fanout ?
4198 		       ((u32)po->fanout->id |
4199 			((u32)po->fanout->type << 16) |
4200 			((u32)po->fanout->flags << 24)) :
4201 		       0);
4202 		break;
4203 	case PACKET_IGNORE_OUTGOING:
4204 		val = READ_ONCE(po->prot_hook.ignore_outgoing);
4205 		break;
4206 	case PACKET_ROLLOVER_STATS:
4207 		if (!po->rollover)
4208 			return -EINVAL;
4209 		rstats.tp_all = atomic_long_read(&po->rollover->num);
4210 		rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
4211 		rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
4212 		data = &rstats;
4213 		lv = sizeof(rstats);
4214 		break;
4215 	case PACKET_TX_HAS_OFF:
4216 		val = packet_sock_flag(po, PACKET_SOCK_TX_HAS_OFF);
4217 		break;
4218 	case PACKET_QDISC_BYPASS:
4219 		val = packet_sock_flag(po, PACKET_SOCK_QDISC_BYPASS);
4220 		break;
4221 	default:
4222 		return -ENOPROTOOPT;
4223 	}
4224 
4225 	if (len > lv)
4226 		len = lv;
4227 	if (put_user(len, optlen))
4228 		return -EFAULT;
4229 	if (copy_to_user(optval, data, len))
4230 		return -EFAULT;
4231 	return 0;
4232 }
4233 
4234 static int packet_notifier(struct notifier_block *this,
4235 			   unsigned long msg, void *ptr)
4236 {
4237 	struct sock *sk;
4238 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4239 	struct net *net = dev_net(dev);
4240 
4241 	rcu_read_lock();
4242 	sk_for_each_rcu(sk, &net->packet.sklist) {
4243 		struct packet_sock *po = pkt_sk(sk);
4244 
4245 		switch (msg) {
4246 		case NETDEV_UNREGISTER:
4247 			if (po->mclist)
4248 				packet_dev_mclist_delete(dev, &po->mclist);
4249 			fallthrough;
4250 
4251 		case NETDEV_DOWN:
4252 			if (dev->ifindex == po->ifindex) {
4253 				spin_lock(&po->bind_lock);
4254 				if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) {
4255 					__unregister_prot_hook(sk, false);
4256 					sk->sk_err = ENETDOWN;
4257 					if (!sock_flag(sk, SOCK_DEAD))
4258 						sk_error_report(sk);
4259 				}
4260 				if (msg == NETDEV_UNREGISTER) {
4261 					packet_cached_dev_reset(po);
4262 					WRITE_ONCE(po->ifindex, -1);
4263 					netdev_put(po->prot_hook.dev,
4264 						   &po->prot_hook.dev_tracker);
4265 					po->prot_hook.dev = NULL;
4266 				}
4267 				spin_unlock(&po->bind_lock);
4268 			}
4269 			break;
4270 		case NETDEV_UP:
4271 			if (dev->ifindex == po->ifindex) {
4272 				spin_lock(&po->bind_lock);
4273 				if (po->num)
4274 					register_prot_hook(sk);
4275 				spin_unlock(&po->bind_lock);
4276 			}
4277 			break;
4278 		}
4279 	}
4280 	rcu_read_unlock();
4281 	return NOTIFY_DONE;
4282 }
4283 
4284 
4285 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4286 			unsigned long arg)
4287 {
4288 	struct sock *sk = sock->sk;
4289 
4290 	switch (cmd) {
4291 	case SIOCOUTQ:
4292 	{
4293 		int amount = sk_wmem_alloc_get(sk);
4294 
4295 		return put_user(amount, (int __user *)arg);
4296 	}
4297 	case SIOCINQ:
4298 	{
4299 		struct sk_buff *skb;
4300 		int amount = 0;
4301 
4302 		spin_lock_bh(&sk->sk_receive_queue.lock);
4303 		skb = skb_peek(&sk->sk_receive_queue);
4304 		if (skb)
4305 			amount = skb->len;
4306 		spin_unlock_bh(&sk->sk_receive_queue.lock);
4307 		return put_user(amount, (int __user *)arg);
4308 	}
4309 #ifdef CONFIG_INET
4310 	case SIOCADDRT:
4311 	case SIOCDELRT:
4312 	case SIOCDARP:
4313 	case SIOCGARP:
4314 	case SIOCSARP:
4315 	case SIOCGIFADDR:
4316 	case SIOCSIFADDR:
4317 	case SIOCGIFBRDADDR:
4318 	case SIOCSIFBRDADDR:
4319 	case SIOCGIFNETMASK:
4320 	case SIOCSIFNETMASK:
4321 	case SIOCGIFDSTADDR:
4322 	case SIOCSIFDSTADDR:
4323 	case SIOCSIFFLAGS:
4324 		return inet_dgram_ops.ioctl(sock, cmd, arg);
4325 #endif
4326 
4327 	default:
4328 		return -ENOIOCTLCMD;
4329 	}
4330 	return 0;
4331 }
4332 
4333 static __poll_t packet_poll(struct file *file, struct socket *sock,
4334 				poll_table *wait)
4335 {
4336 	struct sock *sk = sock->sk;
4337 	struct packet_sock *po = pkt_sk(sk);
4338 	__poll_t mask = datagram_poll(file, sock, wait);
4339 
4340 	spin_lock_bh(&sk->sk_receive_queue.lock);
4341 	if (po->rx_ring.pg_vec) {
4342 		if (!packet_previous_rx_frame(po, &po->rx_ring,
4343 			TP_STATUS_KERNEL))
4344 			mask |= EPOLLIN | EPOLLRDNORM;
4345 	}
4346 	packet_rcv_try_clear_pressure(po);
4347 	spin_unlock_bh(&sk->sk_receive_queue.lock);
4348 	spin_lock_bh(&sk->sk_write_queue.lock);
4349 	if (po->tx_ring.pg_vec) {
4350 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4351 			mask |= EPOLLOUT | EPOLLWRNORM;
4352 	}
4353 	spin_unlock_bh(&sk->sk_write_queue.lock);
4354 	return mask;
4355 }
4356 
4357 
4358 /* Dirty? Well, I still did not learn better way to account
4359  * for user mmaps.
4360  */
4361 
4362 static void packet_mm_open(struct vm_area_struct *vma)
4363 {
4364 	struct file *file = vma->vm_file;
4365 	struct socket *sock = file->private_data;
4366 	struct sock *sk = sock->sk;
4367 
4368 	if (sk)
4369 		atomic_long_inc(&pkt_sk(sk)->mapped);
4370 }
4371 
4372 static void packet_mm_close(struct vm_area_struct *vma)
4373 {
4374 	struct file *file = vma->vm_file;
4375 	struct socket *sock = file->private_data;
4376 	struct sock *sk = sock->sk;
4377 
4378 	if (sk)
4379 		atomic_long_dec(&pkt_sk(sk)->mapped);
4380 }
4381 
4382 static const struct vm_operations_struct packet_mmap_ops = {
4383 	.open	=	packet_mm_open,
4384 	.close	=	packet_mm_close,
4385 };
4386 
4387 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4388 			unsigned int len)
4389 {
4390 	int i;
4391 
4392 	for (i = 0; i < len; i++) {
4393 		if (likely(pg_vec[i].buffer)) {
4394 			if (is_vmalloc_addr(pg_vec[i].buffer))
4395 				vfree(pg_vec[i].buffer);
4396 			else
4397 				free_pages((unsigned long)pg_vec[i].buffer,
4398 					   order);
4399 			pg_vec[i].buffer = NULL;
4400 		}
4401 	}
4402 	kfree(pg_vec);
4403 }
4404 
4405 static char *alloc_one_pg_vec_page(unsigned long order)
4406 {
4407 	char *buffer;
4408 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4409 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4410 
4411 	buffer = (char *) __get_free_pages(gfp_flags, order);
4412 	if (buffer)
4413 		return buffer;
4414 
4415 	/* __get_free_pages failed, fall back to vmalloc */
4416 	buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4417 	if (buffer)
4418 		return buffer;
4419 
4420 	/* vmalloc failed, lets dig into swap here */
4421 	gfp_flags &= ~__GFP_NORETRY;
4422 	buffer = (char *) __get_free_pages(gfp_flags, order);
4423 	if (buffer)
4424 		return buffer;
4425 
4426 	/* complete and utter failure */
4427 	return NULL;
4428 }
4429 
4430 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4431 {
4432 	unsigned int block_nr = req->tp_block_nr;
4433 	struct pgv *pg_vec;
4434 	int i;
4435 
4436 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN);
4437 	if (unlikely(!pg_vec))
4438 		goto out;
4439 
4440 	for (i = 0; i < block_nr; i++) {
4441 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4442 		if (unlikely(!pg_vec[i].buffer))
4443 			goto out_free_pgvec;
4444 	}
4445 
4446 out:
4447 	return pg_vec;
4448 
4449 out_free_pgvec:
4450 	free_pg_vec(pg_vec, order, block_nr);
4451 	pg_vec = NULL;
4452 	goto out;
4453 }
4454 
4455 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4456 		int closing, int tx_ring)
4457 {
4458 	struct pgv *pg_vec = NULL;
4459 	struct packet_sock *po = pkt_sk(sk);
4460 	unsigned long *rx_owner_map = NULL;
4461 	int was_running, order = 0;
4462 	struct packet_ring_buffer *rb;
4463 	struct sk_buff_head *rb_queue;
4464 	__be16 num;
4465 	int err;
4466 	/* Added to avoid minimal code churn */
4467 	struct tpacket_req *req = &req_u->req;
4468 
4469 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4470 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4471 
4472 	err = -EBUSY;
4473 	if (!closing) {
4474 		if (atomic_long_read(&po->mapped))
4475 			goto out;
4476 		if (packet_read_pending(rb))
4477 			goto out;
4478 	}
4479 
4480 	if (req->tp_block_nr) {
4481 		unsigned int min_frame_size;
4482 
4483 		/* Sanity tests and some calculations */
4484 		err = -EBUSY;
4485 		if (unlikely(rb->pg_vec))
4486 			goto out;
4487 
4488 		switch (po->tp_version) {
4489 		case TPACKET_V1:
4490 			po->tp_hdrlen = TPACKET_HDRLEN;
4491 			break;
4492 		case TPACKET_V2:
4493 			po->tp_hdrlen = TPACKET2_HDRLEN;
4494 			break;
4495 		case TPACKET_V3:
4496 			po->tp_hdrlen = TPACKET3_HDRLEN;
4497 			break;
4498 		}
4499 
4500 		err = -EINVAL;
4501 		if (unlikely((int)req->tp_block_size <= 0))
4502 			goto out;
4503 		if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4504 			goto out;
4505 		min_frame_size = po->tp_hdrlen + po->tp_reserve;
4506 		if (po->tp_version >= TPACKET_V3 &&
4507 		    req->tp_block_size <
4508 		    BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size)
4509 			goto out;
4510 		if (unlikely(req->tp_frame_size < min_frame_size))
4511 			goto out;
4512 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4513 			goto out;
4514 
4515 		rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4516 		if (unlikely(rb->frames_per_block == 0))
4517 			goto out;
4518 		if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr))
4519 			goto out;
4520 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4521 					req->tp_frame_nr))
4522 			goto out;
4523 
4524 		err = -ENOMEM;
4525 		order = get_order(req->tp_block_size);
4526 		pg_vec = alloc_pg_vec(req, order);
4527 		if (unlikely(!pg_vec))
4528 			goto out;
4529 		switch (po->tp_version) {
4530 		case TPACKET_V3:
4531 			/* Block transmit is not supported yet */
4532 			if (!tx_ring) {
4533 				init_prb_bdqc(po, rb, pg_vec, req_u);
4534 			} else {
4535 				struct tpacket_req3 *req3 = &req_u->req3;
4536 
4537 				if (req3->tp_retire_blk_tov ||
4538 				    req3->tp_sizeof_priv ||
4539 				    req3->tp_feature_req_word) {
4540 					err = -EINVAL;
4541 					goto out_free_pg_vec;
4542 				}
4543 			}
4544 			break;
4545 		default:
4546 			if (!tx_ring) {
4547 				rx_owner_map = bitmap_alloc(req->tp_frame_nr,
4548 					GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
4549 				if (!rx_owner_map)
4550 					goto out_free_pg_vec;
4551 			}
4552 			break;
4553 		}
4554 	}
4555 	/* Done */
4556 	else {
4557 		err = -EINVAL;
4558 		if (unlikely(req->tp_frame_nr))
4559 			goto out;
4560 	}
4561 
4562 
4563 	/* Detach socket from network */
4564 	spin_lock(&po->bind_lock);
4565 	was_running = packet_sock_flag(po, PACKET_SOCK_RUNNING);
4566 	num = po->num;
4567 	if (was_running) {
4568 		WRITE_ONCE(po->num, 0);
4569 		__unregister_prot_hook(sk, false);
4570 	}
4571 	spin_unlock(&po->bind_lock);
4572 
4573 	synchronize_net();
4574 
4575 	err = -EBUSY;
4576 	mutex_lock(&po->pg_vec_lock);
4577 	if (closing || atomic_long_read(&po->mapped) == 0) {
4578 		err = 0;
4579 		spin_lock_bh(&rb_queue->lock);
4580 		swap(rb->pg_vec, pg_vec);
4581 		if (po->tp_version <= TPACKET_V2)
4582 			swap(rb->rx_owner_map, rx_owner_map);
4583 		rb->frame_max = (req->tp_frame_nr - 1);
4584 		rb->head = 0;
4585 		rb->frame_size = req->tp_frame_size;
4586 		spin_unlock_bh(&rb_queue->lock);
4587 
4588 		swap(rb->pg_vec_order, order);
4589 		swap(rb->pg_vec_len, req->tp_block_nr);
4590 
4591 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4592 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
4593 						tpacket_rcv : packet_rcv;
4594 		skb_queue_purge(rb_queue);
4595 		if (atomic_long_read(&po->mapped))
4596 			pr_err("packet_mmap: vma is busy: %ld\n",
4597 			       atomic_long_read(&po->mapped));
4598 	}
4599 	mutex_unlock(&po->pg_vec_lock);
4600 
4601 	spin_lock(&po->bind_lock);
4602 	if (was_running) {
4603 		WRITE_ONCE(po->num, num);
4604 		register_prot_hook(sk);
4605 	}
4606 	spin_unlock(&po->bind_lock);
4607 	if (pg_vec && (po->tp_version > TPACKET_V2)) {
4608 		/* Because we don't support block-based V3 on tx-ring */
4609 		if (!tx_ring)
4610 			prb_shutdown_retire_blk_timer(po, rb_queue);
4611 	}
4612 
4613 out_free_pg_vec:
4614 	if (pg_vec) {
4615 		bitmap_free(rx_owner_map);
4616 		free_pg_vec(pg_vec, order, req->tp_block_nr);
4617 	}
4618 out:
4619 	return err;
4620 }
4621 
4622 static int packet_mmap(struct file *file, struct socket *sock,
4623 		struct vm_area_struct *vma)
4624 {
4625 	struct sock *sk = sock->sk;
4626 	struct packet_sock *po = pkt_sk(sk);
4627 	unsigned long size, expected_size;
4628 	struct packet_ring_buffer *rb;
4629 	unsigned long start;
4630 	int err = -EINVAL;
4631 	int i;
4632 
4633 	if (vma->vm_pgoff)
4634 		return -EINVAL;
4635 
4636 	mutex_lock(&po->pg_vec_lock);
4637 
4638 	expected_size = 0;
4639 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4640 		if (rb->pg_vec) {
4641 			expected_size += rb->pg_vec_len
4642 						* rb->pg_vec_pages
4643 						* PAGE_SIZE;
4644 		}
4645 	}
4646 
4647 	if (expected_size == 0)
4648 		goto out;
4649 
4650 	size = vma->vm_end - vma->vm_start;
4651 	if (size != expected_size)
4652 		goto out;
4653 
4654 	start = vma->vm_start;
4655 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4656 		if (rb->pg_vec == NULL)
4657 			continue;
4658 
4659 		for (i = 0; i < rb->pg_vec_len; i++) {
4660 			struct page *page;
4661 			void *kaddr = rb->pg_vec[i].buffer;
4662 			int pg_num;
4663 
4664 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4665 				page = pgv_to_page(kaddr);
4666 				err = vm_insert_page(vma, start, page);
4667 				if (unlikely(err))
4668 					goto out;
4669 				start += PAGE_SIZE;
4670 				kaddr += PAGE_SIZE;
4671 			}
4672 		}
4673 	}
4674 
4675 	atomic_long_inc(&po->mapped);
4676 	vma->vm_ops = &packet_mmap_ops;
4677 	err = 0;
4678 
4679 out:
4680 	mutex_unlock(&po->pg_vec_lock);
4681 	return err;
4682 }
4683 
4684 static const struct proto_ops packet_ops_spkt = {
4685 	.family =	PF_PACKET,
4686 	.owner =	THIS_MODULE,
4687 	.release =	packet_release,
4688 	.bind =		packet_bind_spkt,
4689 	.connect =	sock_no_connect,
4690 	.socketpair =	sock_no_socketpair,
4691 	.accept =	sock_no_accept,
4692 	.getname =	packet_getname_spkt,
4693 	.poll =		datagram_poll,
4694 	.ioctl =	packet_ioctl,
4695 	.gettstamp =	sock_gettstamp,
4696 	.listen =	sock_no_listen,
4697 	.shutdown =	sock_no_shutdown,
4698 	.sendmsg =	packet_sendmsg_spkt,
4699 	.recvmsg =	packet_recvmsg,
4700 	.mmap =		sock_no_mmap,
4701 };
4702 
4703 static const struct proto_ops packet_ops = {
4704 	.family =	PF_PACKET,
4705 	.owner =	THIS_MODULE,
4706 	.release =	packet_release,
4707 	.bind =		packet_bind,
4708 	.connect =	sock_no_connect,
4709 	.socketpair =	sock_no_socketpair,
4710 	.accept =	sock_no_accept,
4711 	.getname =	packet_getname,
4712 	.poll =		packet_poll,
4713 	.ioctl =	packet_ioctl,
4714 	.gettstamp =	sock_gettstamp,
4715 	.listen =	sock_no_listen,
4716 	.shutdown =	sock_no_shutdown,
4717 	.setsockopt =	packet_setsockopt,
4718 	.getsockopt =	packet_getsockopt,
4719 	.sendmsg =	packet_sendmsg,
4720 	.recvmsg =	packet_recvmsg,
4721 	.mmap =		packet_mmap,
4722 };
4723 
4724 static const struct net_proto_family packet_family_ops = {
4725 	.family =	PF_PACKET,
4726 	.create =	packet_create,
4727 	.owner	=	THIS_MODULE,
4728 };
4729 
4730 static struct notifier_block packet_netdev_notifier = {
4731 	.notifier_call =	packet_notifier,
4732 };
4733 
4734 #ifdef CONFIG_PROC_FS
4735 
4736 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4737 	__acquires(RCU)
4738 {
4739 	struct net *net = seq_file_net(seq);
4740 
4741 	rcu_read_lock();
4742 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4743 }
4744 
4745 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4746 {
4747 	struct net *net = seq_file_net(seq);
4748 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4749 }
4750 
4751 static void packet_seq_stop(struct seq_file *seq, void *v)
4752 	__releases(RCU)
4753 {
4754 	rcu_read_unlock();
4755 }
4756 
4757 static int packet_seq_show(struct seq_file *seq, void *v)
4758 {
4759 	if (v == SEQ_START_TOKEN)
4760 		seq_printf(seq,
4761 			   "%*sRefCnt Type Proto  Iface R Rmem   User   Inode\n",
4762 			   IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk");
4763 	else {
4764 		struct sock *s = sk_entry(v);
4765 		const struct packet_sock *po = pkt_sk(s);
4766 
4767 		seq_printf(seq,
4768 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
4769 			   s,
4770 			   refcount_read(&s->sk_refcnt),
4771 			   s->sk_type,
4772 			   ntohs(READ_ONCE(po->num)),
4773 			   READ_ONCE(po->ifindex),
4774 			   packet_sock_flag(po, PACKET_SOCK_RUNNING),
4775 			   atomic_read(&s->sk_rmem_alloc),
4776 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4777 			   sock_i_ino(s));
4778 	}
4779 
4780 	return 0;
4781 }
4782 
4783 static const struct seq_operations packet_seq_ops = {
4784 	.start	= packet_seq_start,
4785 	.next	= packet_seq_next,
4786 	.stop	= packet_seq_stop,
4787 	.show	= packet_seq_show,
4788 };
4789 #endif
4790 
4791 static int __net_init packet_net_init(struct net *net)
4792 {
4793 	mutex_init(&net->packet.sklist_lock);
4794 	INIT_HLIST_HEAD(&net->packet.sklist);
4795 
4796 #ifdef CONFIG_PROC_FS
4797 	if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4798 			sizeof(struct seq_net_private)))
4799 		return -ENOMEM;
4800 #endif /* CONFIG_PROC_FS */
4801 
4802 	return 0;
4803 }
4804 
4805 static void __net_exit packet_net_exit(struct net *net)
4806 {
4807 	remove_proc_entry("packet", net->proc_net);
4808 	WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4809 }
4810 
4811 static struct pernet_operations packet_net_ops = {
4812 	.init = packet_net_init,
4813 	.exit = packet_net_exit,
4814 };
4815 
4816 
4817 static void __exit packet_exit(void)
4818 {
4819 	sock_unregister(PF_PACKET);
4820 	proto_unregister(&packet_proto);
4821 	unregister_netdevice_notifier(&packet_netdev_notifier);
4822 	unregister_pernet_subsys(&packet_net_ops);
4823 }
4824 
4825 static int __init packet_init(void)
4826 {
4827 	int rc;
4828 
4829 	rc = register_pernet_subsys(&packet_net_ops);
4830 	if (rc)
4831 		goto out;
4832 	rc = register_netdevice_notifier(&packet_netdev_notifier);
4833 	if (rc)
4834 		goto out_pernet;
4835 	rc = proto_register(&packet_proto, 0);
4836 	if (rc)
4837 		goto out_notifier;
4838 	rc = sock_register(&packet_family_ops);
4839 	if (rc)
4840 		goto out_proto;
4841 
4842 	return 0;
4843 
4844 out_proto:
4845 	proto_unregister(&packet_proto);
4846 out_notifier:
4847 	unregister_netdevice_notifier(&packet_netdev_notifier);
4848 out_pernet:
4849 	unregister_pernet_subsys(&packet_net_ops);
4850 out:
4851 	return rc;
4852 }
4853 
4854 module_init(packet_init);
4855 module_exit(packet_exit);
4856 MODULE_DESCRIPTION("Packet socket support (AF_PACKET)");
4857 MODULE_LICENSE("GPL");
4858 MODULE_ALIAS_NETPROTO(PF_PACKET);
4859