1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2007-2017 Nicira, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include "flow.h" 9 #include "datapath.h" 10 #include <linux/uaccess.h> 11 #include <linux/netdevice.h> 12 #include <linux/etherdevice.h> 13 #include <linux/if_ether.h> 14 #include <linux/if_vlan.h> 15 #include <net/llc_pdu.h> 16 #include <linux/kernel.h> 17 #include <linux/jhash.h> 18 #include <linux/jiffies.h> 19 #include <linux/llc.h> 20 #include <linux/module.h> 21 #include <linux/in.h> 22 #include <linux/rcupdate.h> 23 #include <linux/if_arp.h> 24 #include <linux/ip.h> 25 #include <linux/ipv6.h> 26 #include <linux/sctp.h> 27 #include <linux/tcp.h> 28 #include <linux/udp.h> 29 #include <linux/icmp.h> 30 #include <linux/icmpv6.h> 31 #include <linux/rculist.h> 32 #include <net/geneve.h> 33 #include <net/ip.h> 34 #include <net/ipv6.h> 35 #include <net/ndisc.h> 36 #include <net/mpls.h> 37 #include <net/vxlan.h> 38 #include <net/tun_proto.h> 39 #include <net/erspan.h> 40 41 #include "drop.h" 42 #include "flow_netlink.h" 43 44 struct ovs_len_tbl { 45 int len; 46 const struct ovs_len_tbl *next; 47 }; 48 49 #define OVS_ATTR_NESTED -1 50 #define OVS_ATTR_VARIABLE -2 51 #define OVS_COPY_ACTIONS_MAX_DEPTH 16 52 53 static bool actions_may_change_flow(const struct nlattr *actions) 54 { 55 struct nlattr *nla; 56 int rem; 57 58 nla_for_each_nested(nla, actions, rem) { 59 u16 action = nla_type(nla); 60 61 switch (action) { 62 case OVS_ACTION_ATTR_OUTPUT: 63 case OVS_ACTION_ATTR_RECIRC: 64 case OVS_ACTION_ATTR_TRUNC: 65 case OVS_ACTION_ATTR_USERSPACE: 66 case OVS_ACTION_ATTR_DROP: 67 case OVS_ACTION_ATTR_PSAMPLE: 68 break; 69 70 case OVS_ACTION_ATTR_CT: 71 case OVS_ACTION_ATTR_CT_CLEAR: 72 case OVS_ACTION_ATTR_HASH: 73 case OVS_ACTION_ATTR_POP_ETH: 74 case OVS_ACTION_ATTR_POP_MPLS: 75 case OVS_ACTION_ATTR_POP_NSH: 76 case OVS_ACTION_ATTR_POP_VLAN: 77 case OVS_ACTION_ATTR_PUSH_ETH: 78 case OVS_ACTION_ATTR_PUSH_MPLS: 79 case OVS_ACTION_ATTR_PUSH_NSH: 80 case OVS_ACTION_ATTR_PUSH_VLAN: 81 case OVS_ACTION_ATTR_SAMPLE: 82 case OVS_ACTION_ATTR_SET: 83 case OVS_ACTION_ATTR_SET_MASKED: 84 case OVS_ACTION_ATTR_METER: 85 case OVS_ACTION_ATTR_CHECK_PKT_LEN: 86 case OVS_ACTION_ATTR_ADD_MPLS: 87 case OVS_ACTION_ATTR_DEC_TTL: 88 default: 89 return true; 90 } 91 } 92 return false; 93 } 94 95 static void update_range(struct sw_flow_match *match, 96 size_t offset, size_t size, bool is_mask) 97 { 98 struct sw_flow_key_range *range; 99 size_t start = rounddown(offset, sizeof(long)); 100 size_t end = roundup(offset + size, sizeof(long)); 101 102 if (!is_mask) 103 range = &match->range; 104 else 105 range = &match->mask->range; 106 107 if (range->start == range->end) { 108 range->start = start; 109 range->end = end; 110 return; 111 } 112 113 if (range->start > start) 114 range->start = start; 115 116 if (range->end < end) 117 range->end = end; 118 } 119 120 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ 121 do { \ 122 update_range(match, offsetof(struct sw_flow_key, field), \ 123 sizeof((match)->key->field), is_mask); \ 124 if (is_mask) \ 125 (match)->mask->key.field = value; \ 126 else \ 127 (match)->key->field = value; \ 128 } while (0) 129 130 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \ 131 do { \ 132 update_range(match, offset, len, is_mask); \ 133 if (is_mask) \ 134 memcpy((u8 *)&(match)->mask->key + offset, value_p, \ 135 len); \ 136 else \ 137 memcpy((u8 *)(match)->key + offset, value_p, len); \ 138 } while (0) 139 140 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ 141 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \ 142 value_p, len, is_mask) 143 144 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \ 145 do { \ 146 update_range(match, offsetof(struct sw_flow_key, field), \ 147 sizeof((match)->key->field), is_mask); \ 148 if (is_mask) \ 149 memset((u8 *)&(match)->mask->key.field, value, \ 150 sizeof((match)->mask->key.field)); \ 151 else \ 152 memset((u8 *)&(match)->key->field, value, \ 153 sizeof((match)->key->field)); \ 154 } while (0) 155 156 #define SW_FLOW_KEY_BITMAP_COPY(match, field, value_p, nbits, is_mask) ({ \ 157 update_range(match, offsetof(struct sw_flow_key, field), \ 158 bitmap_size(nbits), is_mask); \ 159 bitmap_copy(is_mask ? (match)->mask->key.field : (match)->key->field, \ 160 value_p, nbits); \ 161 }) 162 163 static bool match_validate(const struct sw_flow_match *match, 164 u64 key_attrs, u64 mask_attrs, bool log) 165 { 166 u64 key_expected = 0; 167 u64 mask_allowed = key_attrs; /* At most allow all key attributes */ 168 169 /* The following mask attributes allowed only if they 170 * pass the validation tests. */ 171 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) 172 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) 173 | (1 << OVS_KEY_ATTR_IPV6) 174 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) 175 | (1 << OVS_KEY_ATTR_TCP) 176 | (1 << OVS_KEY_ATTR_TCP_FLAGS) 177 | (1 << OVS_KEY_ATTR_UDP) 178 | (1 << OVS_KEY_ATTR_SCTP) 179 | (1 << OVS_KEY_ATTR_ICMP) 180 | (1 << OVS_KEY_ATTR_ICMPV6) 181 | (1 << OVS_KEY_ATTR_ARP) 182 | (1 << OVS_KEY_ATTR_ND) 183 | (1 << OVS_KEY_ATTR_MPLS) 184 | (1 << OVS_KEY_ATTR_NSH)); 185 186 /* Always allowed mask fields. */ 187 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) 188 | (1 << OVS_KEY_ATTR_IN_PORT) 189 | (1 << OVS_KEY_ATTR_ETHERTYPE)); 190 191 /* Check key attributes. */ 192 if (match->key->eth.type == htons(ETH_P_ARP) 193 || match->key->eth.type == htons(ETH_P_RARP)) { 194 key_expected |= 1 << OVS_KEY_ATTR_ARP; 195 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 196 mask_allowed |= 1 << OVS_KEY_ATTR_ARP; 197 } 198 199 if (eth_p_mpls(match->key->eth.type)) { 200 key_expected |= 1 << OVS_KEY_ATTR_MPLS; 201 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 202 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS; 203 } 204 205 if (match->key->eth.type == htons(ETH_P_IP)) { 206 key_expected |= 1 << OVS_KEY_ATTR_IPV4; 207 if (match->mask && match->mask->key.eth.type == htons(0xffff)) { 208 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; 209 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4; 210 } 211 212 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 213 if (match->key->ip.proto == IPPROTO_UDP) { 214 key_expected |= 1 << OVS_KEY_ATTR_UDP; 215 if (match->mask && (match->mask->key.ip.proto == 0xff)) 216 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 217 } 218 219 if (match->key->ip.proto == IPPROTO_SCTP) { 220 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 221 if (match->mask && (match->mask->key.ip.proto == 0xff)) 222 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 223 } 224 225 if (match->key->ip.proto == IPPROTO_TCP) { 226 key_expected |= 1 << OVS_KEY_ATTR_TCP; 227 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 228 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 229 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 230 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 231 } 232 } 233 234 if (match->key->ip.proto == IPPROTO_ICMP) { 235 key_expected |= 1 << OVS_KEY_ATTR_ICMP; 236 if (match->mask && (match->mask->key.ip.proto == 0xff)) 237 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; 238 } 239 } 240 } 241 242 if (match->key->eth.type == htons(ETH_P_IPV6)) { 243 key_expected |= 1 << OVS_KEY_ATTR_IPV6; 244 if (match->mask && match->mask->key.eth.type == htons(0xffff)) { 245 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; 246 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6; 247 } 248 249 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 250 if (match->key->ip.proto == IPPROTO_UDP) { 251 key_expected |= 1 << OVS_KEY_ATTR_UDP; 252 if (match->mask && (match->mask->key.ip.proto == 0xff)) 253 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 254 } 255 256 if (match->key->ip.proto == IPPROTO_SCTP) { 257 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 258 if (match->mask && (match->mask->key.ip.proto == 0xff)) 259 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 260 } 261 262 if (match->key->ip.proto == IPPROTO_TCP) { 263 key_expected |= 1 << OVS_KEY_ATTR_TCP; 264 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 265 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 266 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 267 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 268 } 269 } 270 271 if (match->key->ip.proto == IPPROTO_ICMPV6) { 272 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; 273 if (match->mask && (match->mask->key.ip.proto == 0xff)) 274 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; 275 276 if (match->key->tp.src == 277 htons(NDISC_NEIGHBOUR_SOLICITATION) || 278 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { 279 key_expected |= 1 << OVS_KEY_ATTR_ND; 280 /* Original direction conntrack tuple 281 * uses the same space as the ND fields 282 * in the key, so both are not allowed 283 * at the same time. 284 */ 285 mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); 286 if (match->mask && (match->mask->key.tp.src == htons(0xff))) 287 mask_allowed |= 1 << OVS_KEY_ATTR_ND; 288 } 289 } 290 } 291 } 292 293 if (match->key->eth.type == htons(ETH_P_NSH)) { 294 key_expected |= 1 << OVS_KEY_ATTR_NSH; 295 if (match->mask && 296 match->mask->key.eth.type == htons(0xffff)) { 297 mask_allowed |= 1 << OVS_KEY_ATTR_NSH; 298 } 299 } 300 301 if ((key_attrs & key_expected) != key_expected) { 302 /* Key attributes check failed. */ 303 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)", 304 (unsigned long long)key_attrs, 305 (unsigned long long)key_expected); 306 return false; 307 } 308 309 if ((mask_attrs & mask_allowed) != mask_attrs) { 310 /* Mask attributes check failed. */ 311 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)", 312 (unsigned long long)mask_attrs, 313 (unsigned long long)mask_allowed); 314 return false; 315 } 316 317 return true; 318 } 319 320 size_t ovs_tun_key_attr_size(void) 321 { 322 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider 323 * updating this function. 324 */ 325 return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */ 326 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */ 327 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */ 328 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */ 329 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */ 330 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */ 331 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */ 332 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */ 333 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */ 334 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and 335 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with 336 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it. 337 */ 338 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */ 339 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */ 340 } 341 342 static size_t ovs_nsh_key_attr_size(void) 343 { 344 /* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider 345 * updating this function. 346 */ 347 return nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */ 348 /* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are 349 * mutually exclusive, so the bigger one can cover 350 * the small one. 351 */ 352 + nla_total_size(NSH_CTX_HDRS_MAX_LEN); 353 } 354 355 size_t ovs_key_attr_size(void) 356 { 357 /* Whenever adding new OVS_KEY_ FIELDS, we should consider 358 * updating this function. 359 */ 360 BUILD_BUG_ON(OVS_KEY_ATTR_MAX != 32); 361 362 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */ 363 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */ 364 + ovs_tun_key_attr_size() 365 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */ 366 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */ 367 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */ 368 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */ 369 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */ 370 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */ 371 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */ 372 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */ 373 + nla_total_size(40) /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */ 374 + nla_total_size(0) /* OVS_KEY_ATTR_NSH */ 375 + ovs_nsh_key_attr_size() 376 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */ 377 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 378 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */ 379 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */ 380 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 381 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */ 382 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */ 383 + nla_total_size(28) /* OVS_KEY_ATTR_ND */ 384 + nla_total_size(2); /* OVS_KEY_ATTR_IPV6_EXTHDRS */ 385 } 386 387 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = { 388 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) }, 389 }; 390 391 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { 392 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) }, 393 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) }, 394 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) }, 395 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 }, 396 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 }, 397 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 }, 398 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 }, 399 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) }, 400 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) }, 401 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 }, 402 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE }, 403 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED, 404 .next = ovs_vxlan_ext_key_lens }, 405 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) }, 406 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) }, 407 [OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS] = { .len = OVS_ATTR_VARIABLE }, 408 [OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE] = { .len = 0 }, 409 }; 410 411 static const struct ovs_len_tbl 412 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = { 413 [OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) }, 414 [OVS_NSH_KEY_ATTR_MD1] = { .len = sizeof(struct ovs_nsh_key_md1) }, 415 [OVS_NSH_KEY_ATTR_MD2] = { .len = OVS_ATTR_VARIABLE }, 416 }; 417 418 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ 419 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { 420 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED }, 421 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) }, 422 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) }, 423 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) }, 424 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) }, 425 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) }, 426 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) }, 427 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) }, 428 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) }, 429 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) }, 430 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) }, 431 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) }, 432 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) }, 433 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) }, 434 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) }, 435 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) }, 436 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) }, 437 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) }, 438 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) }, 439 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED, 440 .next = ovs_tunnel_key_lens, }, 441 [OVS_KEY_ATTR_MPLS] = { .len = OVS_ATTR_VARIABLE }, 442 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) }, 443 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) }, 444 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) }, 445 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) }, 446 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = { 447 .len = sizeof(struct ovs_key_ct_tuple_ipv4) }, 448 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = { 449 .len = sizeof(struct ovs_key_ct_tuple_ipv6) }, 450 [OVS_KEY_ATTR_NSH] = { .len = OVS_ATTR_NESTED, 451 .next = ovs_nsh_key_attr_lens, }, 452 [OVS_KEY_ATTR_IPV6_EXTHDRS] = { 453 .len = sizeof(struct ovs_key_ipv6_exthdrs) }, 454 }; 455 456 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len) 457 { 458 return expected_len == attr_len || 459 expected_len == OVS_ATTR_NESTED || 460 expected_len == OVS_ATTR_VARIABLE; 461 } 462 463 static bool is_all_zero(const u8 *fp, size_t size) 464 { 465 int i; 466 467 if (!fp) 468 return false; 469 470 for (i = 0; i < size; i++) 471 if (fp[i]) 472 return false; 473 474 return true; 475 } 476 477 static int __parse_flow_nlattrs(const struct nlattr *attr, 478 const struct nlattr *a[], 479 u64 *attrsp, bool log, bool nz) 480 { 481 const struct nlattr *nla; 482 u64 attrs; 483 int rem; 484 485 attrs = *attrsp; 486 nla_for_each_nested(nla, attr, rem) { 487 u16 type = nla_type(nla); 488 int expected_len; 489 490 if (type > OVS_KEY_ATTR_MAX) { 491 OVS_NLERR(log, "Key type %d is out of range max %d", 492 type, OVS_KEY_ATTR_MAX); 493 return -EINVAL; 494 } 495 496 if (type == OVS_KEY_ATTR_PACKET_TYPE || 497 type == OVS_KEY_ATTR_ND_EXTENSIONS || 498 type == OVS_KEY_ATTR_TUNNEL_INFO) { 499 OVS_NLERR(log, "Key type %d is not supported", type); 500 return -EINVAL; 501 } 502 503 if (attrs & (1ULL << type)) { 504 OVS_NLERR(log, "Duplicate key (type %d).", type); 505 return -EINVAL; 506 } 507 508 expected_len = ovs_key_lens[type].len; 509 if (!check_attr_len(nla_len(nla), expected_len)) { 510 OVS_NLERR(log, "Key %d has unexpected len %d expected %d", 511 type, nla_len(nla), expected_len); 512 return -EINVAL; 513 } 514 515 if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) { 516 attrs |= 1ULL << type; 517 a[type] = nla; 518 } 519 } 520 if (rem) { 521 OVS_NLERR(log, "Message has %d unknown bytes.", rem); 522 return -EINVAL; 523 } 524 525 *attrsp = attrs; 526 return 0; 527 } 528 529 static int parse_flow_mask_nlattrs(const struct nlattr *attr, 530 const struct nlattr *a[], u64 *attrsp, 531 bool log) 532 { 533 return __parse_flow_nlattrs(attr, a, attrsp, log, true); 534 } 535 536 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[], 537 u64 *attrsp, bool log) 538 { 539 return __parse_flow_nlattrs(attr, a, attrsp, log, false); 540 } 541 542 static int genev_tun_opt_from_nlattr(const struct nlattr *a, 543 struct sw_flow_match *match, bool is_mask, 544 bool log) 545 { 546 unsigned long opt_key_offset; 547 548 if (nla_len(a) > sizeof(match->key->tun_opts)) { 549 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).", 550 nla_len(a), sizeof(match->key->tun_opts)); 551 return -EINVAL; 552 } 553 554 if (nla_len(a) % 4 != 0) { 555 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.", 556 nla_len(a)); 557 return -EINVAL; 558 } 559 560 /* We need to record the length of the options passed 561 * down, otherwise packets with the same format but 562 * additional options will be silently matched. 563 */ 564 if (!is_mask) { 565 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a), 566 false); 567 } else { 568 /* This is somewhat unusual because it looks at 569 * both the key and mask while parsing the 570 * attributes (and by extension assumes the key 571 * is parsed first). Normally, we would verify 572 * that each is the correct length and that the 573 * attributes line up in the validate function. 574 * However, that is difficult because this is 575 * variable length and we won't have the 576 * information later. 577 */ 578 if (match->key->tun_opts_len != nla_len(a)) { 579 OVS_NLERR(log, "Geneve option len %d != mask len %d", 580 match->key->tun_opts_len, nla_len(a)); 581 return -EINVAL; 582 } 583 584 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 585 } 586 587 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); 588 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), 589 nla_len(a), is_mask); 590 return 0; 591 } 592 593 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr, 594 struct sw_flow_match *match, bool is_mask, 595 bool log) 596 { 597 struct nlattr *a; 598 int rem; 599 unsigned long opt_key_offset; 600 struct vxlan_metadata opts; 601 602 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts)); 603 604 memset(&opts, 0, sizeof(opts)); 605 nla_for_each_nested(a, attr, rem) { 606 int type = nla_type(a); 607 608 if (type > OVS_VXLAN_EXT_MAX) { 609 OVS_NLERR(log, "VXLAN extension %d out of range max %d", 610 type, OVS_VXLAN_EXT_MAX); 611 return -EINVAL; 612 } 613 614 if (!check_attr_len(nla_len(a), 615 ovs_vxlan_ext_key_lens[type].len)) { 616 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d", 617 type, nla_len(a), 618 ovs_vxlan_ext_key_lens[type].len); 619 return -EINVAL; 620 } 621 622 switch (type) { 623 case OVS_VXLAN_EXT_GBP: 624 opts.gbp = nla_get_u32(a); 625 break; 626 default: 627 OVS_NLERR(log, "Unknown VXLAN extension attribute %d", 628 type); 629 return -EINVAL; 630 } 631 } 632 if (rem) { 633 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.", 634 rem); 635 return -EINVAL; 636 } 637 638 if (!is_mask) 639 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false); 640 else 641 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 642 643 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts)); 644 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts), 645 is_mask); 646 return 0; 647 } 648 649 static int erspan_tun_opt_from_nlattr(const struct nlattr *a, 650 struct sw_flow_match *match, bool is_mask, 651 bool log) 652 { 653 unsigned long opt_key_offset; 654 655 BUILD_BUG_ON(sizeof(struct erspan_metadata) > 656 sizeof(match->key->tun_opts)); 657 658 if (nla_len(a) > sizeof(match->key->tun_opts)) { 659 OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).", 660 nla_len(a), sizeof(match->key->tun_opts)); 661 return -EINVAL; 662 } 663 664 if (!is_mask) 665 SW_FLOW_KEY_PUT(match, tun_opts_len, 666 sizeof(struct erspan_metadata), false); 667 else 668 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 669 670 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); 671 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), 672 nla_len(a), is_mask); 673 return 0; 674 } 675 676 static int ip_tun_from_nlattr(const struct nlattr *attr, 677 struct sw_flow_match *match, bool is_mask, 678 bool log) 679 { 680 bool ttl = false, ipv4 = false, ipv6 = false; 681 IP_TUNNEL_DECLARE_FLAGS(tun_flags) = { }; 682 bool info_bridge_mode = false; 683 int opts_type = 0; 684 struct nlattr *a; 685 int rem; 686 687 nla_for_each_nested(a, attr, rem) { 688 int type = nla_type(a); 689 int err; 690 691 if (type > OVS_TUNNEL_KEY_ATTR_MAX) { 692 OVS_NLERR(log, "Tunnel attr %d out of range max %d", 693 type, OVS_TUNNEL_KEY_ATTR_MAX); 694 return -EINVAL; 695 } 696 697 if (!check_attr_len(nla_len(a), 698 ovs_tunnel_key_lens[type].len)) { 699 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d", 700 type, nla_len(a), ovs_tunnel_key_lens[type].len); 701 return -EINVAL; 702 } 703 704 switch (type) { 705 case OVS_TUNNEL_KEY_ATTR_ID: 706 SW_FLOW_KEY_PUT(match, tun_key.tun_id, 707 nla_get_be64(a), is_mask); 708 __set_bit(IP_TUNNEL_KEY_BIT, tun_flags); 709 break; 710 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: 711 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src, 712 nla_get_in_addr(a), is_mask); 713 ipv4 = true; 714 break; 715 case OVS_TUNNEL_KEY_ATTR_IPV4_DST: 716 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst, 717 nla_get_in_addr(a), is_mask); 718 ipv4 = true; 719 break; 720 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC: 721 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src, 722 nla_get_in6_addr(a), is_mask); 723 ipv6 = true; 724 break; 725 case OVS_TUNNEL_KEY_ATTR_IPV6_DST: 726 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst, 727 nla_get_in6_addr(a), is_mask); 728 ipv6 = true; 729 break; 730 case OVS_TUNNEL_KEY_ATTR_TOS: 731 SW_FLOW_KEY_PUT(match, tun_key.tos, 732 nla_get_u8(a), is_mask); 733 break; 734 case OVS_TUNNEL_KEY_ATTR_TTL: 735 SW_FLOW_KEY_PUT(match, tun_key.ttl, 736 nla_get_u8(a), is_mask); 737 ttl = true; 738 break; 739 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: 740 __set_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, tun_flags); 741 break; 742 case OVS_TUNNEL_KEY_ATTR_CSUM: 743 __set_bit(IP_TUNNEL_CSUM_BIT, tun_flags); 744 break; 745 case OVS_TUNNEL_KEY_ATTR_TP_SRC: 746 SW_FLOW_KEY_PUT(match, tun_key.tp_src, 747 nla_get_be16(a), is_mask); 748 break; 749 case OVS_TUNNEL_KEY_ATTR_TP_DST: 750 SW_FLOW_KEY_PUT(match, tun_key.tp_dst, 751 nla_get_be16(a), is_mask); 752 break; 753 case OVS_TUNNEL_KEY_ATTR_OAM: 754 __set_bit(IP_TUNNEL_OAM_BIT, tun_flags); 755 break; 756 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 757 if (opts_type) { 758 OVS_NLERR(log, "Multiple metadata blocks provided"); 759 return -EINVAL; 760 } 761 762 err = genev_tun_opt_from_nlattr(a, match, is_mask, log); 763 if (err) 764 return err; 765 766 __set_bit(IP_TUNNEL_GENEVE_OPT_BIT, tun_flags); 767 opts_type = type; 768 break; 769 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 770 if (opts_type) { 771 OVS_NLERR(log, "Multiple metadata blocks provided"); 772 return -EINVAL; 773 } 774 775 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log); 776 if (err) 777 return err; 778 779 __set_bit(IP_TUNNEL_VXLAN_OPT_BIT, tun_flags); 780 opts_type = type; 781 break; 782 case OVS_TUNNEL_KEY_ATTR_PAD: 783 break; 784 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS: 785 if (opts_type) { 786 OVS_NLERR(log, "Multiple metadata blocks provided"); 787 return -EINVAL; 788 } 789 790 err = erspan_tun_opt_from_nlattr(a, match, is_mask, 791 log); 792 if (err) 793 return err; 794 795 __set_bit(IP_TUNNEL_ERSPAN_OPT_BIT, tun_flags); 796 opts_type = type; 797 break; 798 case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE: 799 info_bridge_mode = true; 800 ipv4 = true; 801 break; 802 default: 803 OVS_NLERR(log, "Unknown IP tunnel attribute %d", 804 type); 805 return -EINVAL; 806 } 807 } 808 809 SW_FLOW_KEY_BITMAP_COPY(match, tun_key.tun_flags, tun_flags, 810 __IP_TUNNEL_FLAG_NUM, is_mask); 811 if (is_mask) 812 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true); 813 else 814 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET, 815 false); 816 817 if (rem > 0) { 818 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.", 819 rem); 820 return -EINVAL; 821 } 822 823 if (ipv4 && ipv6) { 824 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes"); 825 return -EINVAL; 826 } 827 828 if (!is_mask) { 829 if (!ipv4 && !ipv6) { 830 OVS_NLERR(log, "IP tunnel dst address not specified"); 831 return -EINVAL; 832 } 833 if (ipv4) { 834 if (info_bridge_mode) { 835 __clear_bit(IP_TUNNEL_KEY_BIT, tun_flags); 836 837 if (match->key->tun_key.u.ipv4.src || 838 match->key->tun_key.u.ipv4.dst || 839 match->key->tun_key.tp_src || 840 match->key->tun_key.tp_dst || 841 match->key->tun_key.ttl || 842 match->key->tun_key.tos || 843 !ip_tunnel_flags_empty(tun_flags)) { 844 OVS_NLERR(log, "IPv4 tun info is not correct"); 845 return -EINVAL; 846 } 847 } else if (!match->key->tun_key.u.ipv4.dst) { 848 OVS_NLERR(log, "IPv4 tunnel dst address is zero"); 849 return -EINVAL; 850 } 851 } 852 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) { 853 OVS_NLERR(log, "IPv6 tunnel dst address is zero"); 854 return -EINVAL; 855 } 856 857 if (!ttl && !info_bridge_mode) { 858 OVS_NLERR(log, "IP tunnel TTL not specified."); 859 return -EINVAL; 860 } 861 } 862 863 return opts_type; 864 } 865 866 static int vxlan_opt_to_nlattr(struct sk_buff *skb, 867 const void *tun_opts, int swkey_tun_opts_len) 868 { 869 const struct vxlan_metadata *opts = tun_opts; 870 struct nlattr *nla; 871 872 nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS); 873 if (!nla) 874 return -EMSGSIZE; 875 876 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0) 877 return -EMSGSIZE; 878 879 nla_nest_end(skb, nla); 880 return 0; 881 } 882 883 static int __ip_tun_to_nlattr(struct sk_buff *skb, 884 const struct ip_tunnel_key *output, 885 const void *tun_opts, int swkey_tun_opts_len, 886 unsigned short tun_proto, u8 mode) 887 { 888 if (test_bit(IP_TUNNEL_KEY_BIT, output->tun_flags) && 889 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id, 890 OVS_TUNNEL_KEY_ATTR_PAD)) 891 return -EMSGSIZE; 892 893 if (mode & IP_TUNNEL_INFO_BRIDGE) 894 return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE) 895 ? -EMSGSIZE : 0; 896 897 switch (tun_proto) { 898 case AF_INET: 899 if (output->u.ipv4.src && 900 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, 901 output->u.ipv4.src)) 902 return -EMSGSIZE; 903 if (output->u.ipv4.dst && 904 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, 905 output->u.ipv4.dst)) 906 return -EMSGSIZE; 907 break; 908 case AF_INET6: 909 if (!ipv6_addr_any(&output->u.ipv6.src) && 910 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC, 911 &output->u.ipv6.src)) 912 return -EMSGSIZE; 913 if (!ipv6_addr_any(&output->u.ipv6.dst) && 914 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST, 915 &output->u.ipv6.dst)) 916 return -EMSGSIZE; 917 break; 918 } 919 if (output->tos && 920 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos)) 921 return -EMSGSIZE; 922 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl)) 923 return -EMSGSIZE; 924 if (test_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, output->tun_flags) && 925 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) 926 return -EMSGSIZE; 927 if (test_bit(IP_TUNNEL_CSUM_BIT, output->tun_flags) && 928 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) 929 return -EMSGSIZE; 930 if (output->tp_src && 931 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src)) 932 return -EMSGSIZE; 933 if (output->tp_dst && 934 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst)) 935 return -EMSGSIZE; 936 if (test_bit(IP_TUNNEL_OAM_BIT, output->tun_flags) && 937 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM)) 938 return -EMSGSIZE; 939 if (swkey_tun_opts_len) { 940 if (test_bit(IP_TUNNEL_GENEVE_OPT_BIT, output->tun_flags) && 941 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS, 942 swkey_tun_opts_len, tun_opts)) 943 return -EMSGSIZE; 944 else if (test_bit(IP_TUNNEL_VXLAN_OPT_BIT, 945 output->tun_flags) && 946 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len)) 947 return -EMSGSIZE; 948 else if (test_bit(IP_TUNNEL_ERSPAN_OPT_BIT, 949 output->tun_flags) && 950 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS, 951 swkey_tun_opts_len, tun_opts)) 952 return -EMSGSIZE; 953 } 954 955 return 0; 956 } 957 958 static int ip_tun_to_nlattr(struct sk_buff *skb, 959 const struct ip_tunnel_key *output, 960 const void *tun_opts, int swkey_tun_opts_len, 961 unsigned short tun_proto, u8 mode) 962 { 963 struct nlattr *nla; 964 int err; 965 966 nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL); 967 if (!nla) 968 return -EMSGSIZE; 969 970 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len, 971 tun_proto, mode); 972 if (err) 973 return err; 974 975 nla_nest_end(skb, nla); 976 return 0; 977 } 978 979 int ovs_nla_put_tunnel_info(struct sk_buff *skb, 980 struct ip_tunnel_info *tun_info) 981 { 982 return __ip_tun_to_nlattr(skb, &tun_info->key, 983 ip_tunnel_info_opts(tun_info), 984 tun_info->options_len, 985 ip_tunnel_info_af(tun_info), tun_info->mode); 986 } 987 988 static int encode_vlan_from_nlattrs(struct sw_flow_match *match, 989 const struct nlattr *a[], 990 bool is_mask, bool inner) 991 { 992 __be16 tci = 0; 993 __be16 tpid = 0; 994 995 if (a[OVS_KEY_ATTR_VLAN]) 996 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 997 998 if (a[OVS_KEY_ATTR_ETHERTYPE]) 999 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1000 1001 if (likely(!inner)) { 1002 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask); 1003 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask); 1004 } else { 1005 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask); 1006 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask); 1007 } 1008 return 0; 1009 } 1010 1011 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match, 1012 u64 key_attrs, bool inner, 1013 const struct nlattr **a, bool log) 1014 { 1015 __be16 tci = 0; 1016 1017 if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && 1018 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && 1019 eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) { 1020 /* Not a VLAN. */ 1021 return 0; 1022 } 1023 1024 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && 1025 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { 1026 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN"); 1027 return -EINVAL; 1028 } 1029 1030 if (a[OVS_KEY_ATTR_VLAN]) 1031 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1032 1033 if (!(tci & htons(VLAN_CFI_MASK))) { 1034 if (tci) { 1035 OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.", 1036 (inner) ? "C-VLAN" : "VLAN"); 1037 return -EINVAL; 1038 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) { 1039 /* Corner case for truncated VLAN header. */ 1040 OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.", 1041 (inner) ? "C-VLAN" : "VLAN"); 1042 return -EINVAL; 1043 } 1044 } 1045 1046 return 1; 1047 } 1048 1049 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match, 1050 u64 key_attrs, bool inner, 1051 const struct nlattr **a, bool log) 1052 { 1053 __be16 tci = 0; 1054 __be16 tpid = 0; 1055 bool encap_valid = !!(match->key->eth.vlan.tci & 1056 htons(VLAN_CFI_MASK)); 1057 bool i_encap_valid = !!(match->key->eth.cvlan.tci & 1058 htons(VLAN_CFI_MASK)); 1059 1060 if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) { 1061 /* Not a VLAN. */ 1062 return 0; 1063 } 1064 1065 if ((!inner && !encap_valid) || (inner && !i_encap_valid)) { 1066 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.", 1067 (inner) ? "C-VLAN" : "VLAN"); 1068 return -EINVAL; 1069 } 1070 1071 if (a[OVS_KEY_ATTR_VLAN]) 1072 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1073 1074 if (a[OVS_KEY_ATTR_ETHERTYPE]) 1075 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1076 1077 if (tpid != htons(0xffff)) { 1078 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).", 1079 (inner) ? "C-VLAN" : "VLAN", ntohs(tpid)); 1080 return -EINVAL; 1081 } 1082 if (!(tci & htons(VLAN_CFI_MASK))) { 1083 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.", 1084 (inner) ? "C-VLAN" : "VLAN"); 1085 return -EINVAL; 1086 } 1087 1088 return 1; 1089 } 1090 1091 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match, 1092 u64 *key_attrs, bool inner, 1093 const struct nlattr **a, bool is_mask, 1094 bool log) 1095 { 1096 int err; 1097 const struct nlattr *encap; 1098 1099 if (!is_mask) 1100 err = validate_vlan_from_nlattrs(match, *key_attrs, inner, 1101 a, log); 1102 else 1103 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner, 1104 a, log); 1105 if (err <= 0) 1106 return err; 1107 1108 err = encode_vlan_from_nlattrs(match, a, is_mask, inner); 1109 if (err) 1110 return err; 1111 1112 *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); 1113 *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN); 1114 *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1115 1116 encap = a[OVS_KEY_ATTR_ENCAP]; 1117 1118 if (!is_mask) 1119 err = parse_flow_nlattrs(encap, a, key_attrs, log); 1120 else 1121 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log); 1122 1123 return err; 1124 } 1125 1126 static int parse_vlan_from_nlattrs(struct sw_flow_match *match, 1127 u64 *key_attrs, const struct nlattr **a, 1128 bool is_mask, bool log) 1129 { 1130 int err; 1131 bool encap_valid = false; 1132 1133 err = __parse_vlan_from_nlattrs(match, key_attrs, false, a, 1134 is_mask, log); 1135 if (err) 1136 return err; 1137 1138 encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK)); 1139 if (encap_valid) { 1140 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a, 1141 is_mask, log); 1142 if (err) 1143 return err; 1144 } 1145 1146 return 0; 1147 } 1148 1149 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match, 1150 u64 *attrs, const struct nlattr **a, 1151 bool is_mask, bool log) 1152 { 1153 __be16 eth_type; 1154 1155 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1156 if (is_mask) { 1157 /* Always exact match EtherType. */ 1158 eth_type = htons(0xffff); 1159 } else if (!eth_proto_is_802_3(eth_type)) { 1160 OVS_NLERR(log, "EtherType %x is less than min %x", 1161 ntohs(eth_type), ETH_P_802_3_MIN); 1162 return -EINVAL; 1163 } 1164 1165 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); 1166 *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1167 return 0; 1168 } 1169 1170 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match, 1171 u64 *attrs, const struct nlattr **a, 1172 bool is_mask, bool log) 1173 { 1174 u8 mac_proto = MAC_PROTO_ETHERNET; 1175 1176 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) { 1177 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]); 1178 1179 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask); 1180 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH); 1181 } 1182 1183 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) { 1184 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]); 1185 1186 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask); 1187 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID); 1188 } 1189 1190 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { 1191 SW_FLOW_KEY_PUT(match, phy.priority, 1192 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); 1193 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); 1194 } 1195 1196 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { 1197 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); 1198 1199 if (is_mask) { 1200 in_port = 0xffffffff; /* Always exact match in_port. */ 1201 } else if (in_port >= DP_MAX_PORTS) { 1202 OVS_NLERR(log, "Port %d exceeds max allowable %d", 1203 in_port, DP_MAX_PORTS); 1204 return -EINVAL; 1205 } 1206 1207 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); 1208 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); 1209 } else if (!is_mask) { 1210 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); 1211 } 1212 1213 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { 1214 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); 1215 1216 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); 1217 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); 1218 } 1219 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { 1220 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, 1221 is_mask, log) < 0) 1222 return -EINVAL; 1223 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); 1224 } 1225 1226 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) && 1227 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) { 1228 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]); 1229 1230 if (ct_state & ~CT_SUPPORTED_MASK) { 1231 OVS_NLERR(log, "ct_state flags %08x unsupported", 1232 ct_state); 1233 return -EINVAL; 1234 } 1235 1236 SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask); 1237 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE); 1238 } 1239 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) && 1240 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) { 1241 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]); 1242 1243 SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask); 1244 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE); 1245 } 1246 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) && 1247 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) { 1248 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]); 1249 1250 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask); 1251 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK); 1252 } 1253 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) && 1254 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) { 1255 const struct ovs_key_ct_labels *cl; 1256 1257 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]); 1258 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels, 1259 sizeof(*cl), is_mask); 1260 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS); 1261 } 1262 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) { 1263 const struct ovs_key_ct_tuple_ipv4 *ct; 1264 1265 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]); 1266 1267 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask); 1268 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask); 1269 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); 1270 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); 1271 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask); 1272 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4); 1273 } 1274 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) { 1275 const struct ovs_key_ct_tuple_ipv6 *ct; 1276 1277 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]); 1278 1279 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src, 1280 sizeof(match->key->ipv6.ct_orig.src), 1281 is_mask); 1282 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst, 1283 sizeof(match->key->ipv6.ct_orig.dst), 1284 is_mask); 1285 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); 1286 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); 1287 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask); 1288 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); 1289 } 1290 1291 /* For layer 3 packets the Ethernet type is provided 1292 * and treated as metadata but no MAC addresses are provided. 1293 */ 1294 if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) && 1295 (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE))) 1296 mac_proto = MAC_PROTO_NONE; 1297 1298 /* Always exact match mac_proto */ 1299 SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask); 1300 1301 if (mac_proto == MAC_PROTO_NONE) 1302 return parse_eth_type_from_nlattrs(match, attrs, a, is_mask, 1303 log); 1304 1305 return 0; 1306 } 1307 1308 /* 1309 * Constructs NSH header 'nh' from attributes of OVS_ACTION_ATTR_PUSH_NSH, 1310 * where 'nh' points to a memory block of 'size' bytes. It's assumed that 1311 * attributes were previously validated with validate_push_nsh(). 1312 */ 1313 int nsh_hdr_from_nlattr(const struct nlattr *attr, 1314 struct nshhdr *nh, size_t size) 1315 { 1316 struct nlattr *a; 1317 int rem; 1318 u8 flags = 0; 1319 u8 ttl = 0; 1320 int mdlen = 0; 1321 1322 if (size < NSH_BASE_HDR_LEN) 1323 return -ENOBUFS; 1324 1325 nla_for_each_nested(a, attr, rem) { 1326 int type = nla_type(a); 1327 1328 switch (type) { 1329 case OVS_NSH_KEY_ATTR_BASE: { 1330 const struct ovs_nsh_key_base *base = nla_data(a); 1331 1332 flags = base->flags; 1333 ttl = base->ttl; 1334 nh->np = base->np; 1335 nh->mdtype = base->mdtype; 1336 nh->path_hdr = base->path_hdr; 1337 break; 1338 } 1339 case OVS_NSH_KEY_ATTR_MD1: 1340 mdlen = nla_len(a); 1341 if (mdlen > size - NSH_BASE_HDR_LEN) 1342 return -ENOBUFS; 1343 memcpy(&nh->md1, nla_data(a), mdlen); 1344 break; 1345 1346 case OVS_NSH_KEY_ATTR_MD2: 1347 mdlen = nla_len(a); 1348 if (mdlen > size - NSH_BASE_HDR_LEN) 1349 return -ENOBUFS; 1350 memcpy(&nh->md2, nla_data(a), mdlen); 1351 break; 1352 1353 default: 1354 return -EINVAL; 1355 } 1356 } 1357 1358 /* nsh header length = NSH_BASE_HDR_LEN + mdlen */ 1359 nh->ver_flags_ttl_len = 0; 1360 nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen); 1361 1362 return 0; 1363 } 1364 1365 static int nsh_key_put_from_nlattr(const struct nlattr *attr, 1366 struct sw_flow_match *match, bool is_mask, 1367 bool is_push_nsh, bool log) 1368 { 1369 struct nlattr *a; 1370 int rem; 1371 bool has_base = false; 1372 bool has_md1 = false; 1373 bool has_md2 = false; 1374 u8 mdtype = 0; 1375 int mdlen = 0; 1376 1377 if (WARN_ON(is_push_nsh && is_mask)) 1378 return -EINVAL; 1379 1380 nla_for_each_nested(a, attr, rem) { 1381 int type = nla_type(a); 1382 int i; 1383 1384 if (type > OVS_NSH_KEY_ATTR_MAX) { 1385 OVS_NLERR(log, "nsh attr %d is out of range max %d", 1386 type, OVS_NSH_KEY_ATTR_MAX); 1387 return -EINVAL; 1388 } 1389 1390 if (!check_attr_len(nla_len(a), 1391 ovs_nsh_key_attr_lens[type].len)) { 1392 OVS_NLERR( 1393 log, 1394 "nsh attr %d has unexpected len %d expected %d", 1395 type, 1396 nla_len(a), 1397 ovs_nsh_key_attr_lens[type].len 1398 ); 1399 return -EINVAL; 1400 } 1401 1402 switch (type) { 1403 case OVS_NSH_KEY_ATTR_BASE: { 1404 const struct ovs_nsh_key_base *base = nla_data(a); 1405 1406 has_base = true; 1407 mdtype = base->mdtype; 1408 SW_FLOW_KEY_PUT(match, nsh.base.flags, 1409 base->flags, is_mask); 1410 SW_FLOW_KEY_PUT(match, nsh.base.ttl, 1411 base->ttl, is_mask); 1412 SW_FLOW_KEY_PUT(match, nsh.base.mdtype, 1413 base->mdtype, is_mask); 1414 SW_FLOW_KEY_PUT(match, nsh.base.np, 1415 base->np, is_mask); 1416 SW_FLOW_KEY_PUT(match, nsh.base.path_hdr, 1417 base->path_hdr, is_mask); 1418 break; 1419 } 1420 case OVS_NSH_KEY_ATTR_MD1: { 1421 const struct ovs_nsh_key_md1 *md1 = nla_data(a); 1422 1423 has_md1 = true; 1424 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) 1425 SW_FLOW_KEY_PUT(match, nsh.context[i], 1426 md1->context[i], is_mask); 1427 break; 1428 } 1429 case OVS_NSH_KEY_ATTR_MD2: 1430 if (!is_push_nsh) /* Not supported MD type 2 yet */ 1431 return -ENOTSUPP; 1432 1433 has_md2 = true; 1434 mdlen = nla_len(a); 1435 if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) { 1436 OVS_NLERR( 1437 log, 1438 "Invalid MD length %d for MD type %d", 1439 mdlen, 1440 mdtype 1441 ); 1442 return -EINVAL; 1443 } 1444 break; 1445 default: 1446 OVS_NLERR(log, "Unknown nsh attribute %d", 1447 type); 1448 return -EINVAL; 1449 } 1450 } 1451 1452 if (rem > 0) { 1453 OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem); 1454 return -EINVAL; 1455 } 1456 1457 if (has_md1 && has_md2) { 1458 OVS_NLERR( 1459 1, 1460 "invalid nsh attribute: md1 and md2 are exclusive." 1461 ); 1462 return -EINVAL; 1463 } 1464 1465 if (!is_mask) { 1466 if ((has_md1 && mdtype != NSH_M_TYPE1) || 1467 (has_md2 && mdtype != NSH_M_TYPE2)) { 1468 OVS_NLERR(1, "nsh attribute has unmatched MD type %d.", 1469 mdtype); 1470 return -EINVAL; 1471 } 1472 1473 if (is_push_nsh && 1474 (!has_base || (!has_md1 && !has_md2))) { 1475 OVS_NLERR( 1476 1, 1477 "push_nsh: missing base or metadata attributes" 1478 ); 1479 return -EINVAL; 1480 } 1481 } 1482 1483 return 0; 1484 } 1485 1486 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match, 1487 u64 attrs, const struct nlattr **a, 1488 bool is_mask, bool log) 1489 { 1490 int err; 1491 1492 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log); 1493 if (err) 1494 return err; 1495 1496 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { 1497 const struct ovs_key_ethernet *eth_key; 1498 1499 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); 1500 SW_FLOW_KEY_MEMCPY(match, eth.src, 1501 eth_key->eth_src, ETH_ALEN, is_mask); 1502 SW_FLOW_KEY_MEMCPY(match, eth.dst, 1503 eth_key->eth_dst, ETH_ALEN, is_mask); 1504 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); 1505 1506 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { 1507 /* VLAN attribute is always parsed before getting here since it 1508 * may occur multiple times. 1509 */ 1510 OVS_NLERR(log, "VLAN attribute unexpected."); 1511 return -EINVAL; 1512 } 1513 1514 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { 1515 err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask, 1516 log); 1517 if (err) 1518 return err; 1519 } else if (!is_mask) { 1520 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); 1521 } 1522 } else if (!match->key->eth.type) { 1523 OVS_NLERR(log, "Either Ethernet header or EtherType is required."); 1524 return -EINVAL; 1525 } 1526 1527 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { 1528 const struct ovs_key_ipv4 *ipv4_key; 1529 1530 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); 1531 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { 1532 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d", 1533 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); 1534 return -EINVAL; 1535 } 1536 SW_FLOW_KEY_PUT(match, ip.proto, 1537 ipv4_key->ipv4_proto, is_mask); 1538 SW_FLOW_KEY_PUT(match, ip.tos, 1539 ipv4_key->ipv4_tos, is_mask); 1540 SW_FLOW_KEY_PUT(match, ip.ttl, 1541 ipv4_key->ipv4_ttl, is_mask); 1542 SW_FLOW_KEY_PUT(match, ip.frag, 1543 ipv4_key->ipv4_frag, is_mask); 1544 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 1545 ipv4_key->ipv4_src, is_mask); 1546 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 1547 ipv4_key->ipv4_dst, is_mask); 1548 attrs &= ~(1 << OVS_KEY_ATTR_IPV4); 1549 } 1550 1551 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { 1552 const struct ovs_key_ipv6 *ipv6_key; 1553 1554 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); 1555 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { 1556 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d", 1557 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); 1558 return -EINVAL; 1559 } 1560 1561 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) { 1562 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)", 1563 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1); 1564 return -EINVAL; 1565 } 1566 1567 SW_FLOW_KEY_PUT(match, ipv6.label, 1568 ipv6_key->ipv6_label, is_mask); 1569 SW_FLOW_KEY_PUT(match, ip.proto, 1570 ipv6_key->ipv6_proto, is_mask); 1571 SW_FLOW_KEY_PUT(match, ip.tos, 1572 ipv6_key->ipv6_tclass, is_mask); 1573 SW_FLOW_KEY_PUT(match, ip.ttl, 1574 ipv6_key->ipv6_hlimit, is_mask); 1575 SW_FLOW_KEY_PUT(match, ip.frag, 1576 ipv6_key->ipv6_frag, is_mask); 1577 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, 1578 ipv6_key->ipv6_src, 1579 sizeof(match->key->ipv6.addr.src), 1580 is_mask); 1581 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, 1582 ipv6_key->ipv6_dst, 1583 sizeof(match->key->ipv6.addr.dst), 1584 is_mask); 1585 1586 attrs &= ~(1 << OVS_KEY_ATTR_IPV6); 1587 } 1588 1589 if (attrs & (1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS)) { 1590 const struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key; 1591 1592 ipv6_exthdrs_key = nla_data(a[OVS_KEY_ATTR_IPV6_EXTHDRS]); 1593 1594 SW_FLOW_KEY_PUT(match, ipv6.exthdrs, 1595 ipv6_exthdrs_key->hdrs, is_mask); 1596 1597 attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS); 1598 } 1599 1600 if (attrs & (1 << OVS_KEY_ATTR_ARP)) { 1601 const struct ovs_key_arp *arp_key; 1602 1603 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); 1604 if (!is_mask && (arp_key->arp_op & htons(0xff00))) { 1605 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).", 1606 arp_key->arp_op); 1607 return -EINVAL; 1608 } 1609 1610 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 1611 arp_key->arp_sip, is_mask); 1612 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 1613 arp_key->arp_tip, is_mask); 1614 SW_FLOW_KEY_PUT(match, ip.proto, 1615 ntohs(arp_key->arp_op), is_mask); 1616 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, 1617 arp_key->arp_sha, ETH_ALEN, is_mask); 1618 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, 1619 arp_key->arp_tha, ETH_ALEN, is_mask); 1620 1621 attrs &= ~(1 << OVS_KEY_ATTR_ARP); 1622 } 1623 1624 if (attrs & (1 << OVS_KEY_ATTR_NSH)) { 1625 if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match, 1626 is_mask, false, log) < 0) 1627 return -EINVAL; 1628 attrs &= ~(1 << OVS_KEY_ATTR_NSH); 1629 } 1630 1631 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) { 1632 const struct ovs_key_mpls *mpls_key; 1633 u32 hdr_len; 1634 u32 label_count, label_count_mask, i; 1635 1636 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]); 1637 hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]); 1638 label_count = hdr_len / sizeof(struct ovs_key_mpls); 1639 1640 if (label_count == 0 || label_count > MPLS_LABEL_DEPTH || 1641 hdr_len % sizeof(struct ovs_key_mpls)) 1642 return -EINVAL; 1643 1644 label_count_mask = GENMASK(label_count - 1, 0); 1645 1646 for (i = 0 ; i < label_count; i++) 1647 SW_FLOW_KEY_PUT(match, mpls.lse[i], 1648 mpls_key[i].mpls_lse, is_mask); 1649 1650 SW_FLOW_KEY_PUT(match, mpls.num_labels_mask, 1651 label_count_mask, is_mask); 1652 1653 attrs &= ~(1 << OVS_KEY_ATTR_MPLS); 1654 } 1655 1656 if (attrs & (1 << OVS_KEY_ATTR_TCP)) { 1657 const struct ovs_key_tcp *tcp_key; 1658 1659 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 1660 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask); 1661 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask); 1662 attrs &= ~(1 << OVS_KEY_ATTR_TCP); 1663 } 1664 1665 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) { 1666 SW_FLOW_KEY_PUT(match, tp.flags, 1667 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), 1668 is_mask); 1669 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS); 1670 } 1671 1672 if (attrs & (1 << OVS_KEY_ATTR_UDP)) { 1673 const struct ovs_key_udp *udp_key; 1674 1675 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 1676 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask); 1677 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask); 1678 attrs &= ~(1 << OVS_KEY_ATTR_UDP); 1679 } 1680 1681 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { 1682 const struct ovs_key_sctp *sctp_key; 1683 1684 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); 1685 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask); 1686 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask); 1687 attrs &= ~(1 << OVS_KEY_ATTR_SCTP); 1688 } 1689 1690 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { 1691 const struct ovs_key_icmp *icmp_key; 1692 1693 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); 1694 SW_FLOW_KEY_PUT(match, tp.src, 1695 htons(icmp_key->icmp_type), is_mask); 1696 SW_FLOW_KEY_PUT(match, tp.dst, 1697 htons(icmp_key->icmp_code), is_mask); 1698 attrs &= ~(1 << OVS_KEY_ATTR_ICMP); 1699 } 1700 1701 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { 1702 const struct ovs_key_icmpv6 *icmpv6_key; 1703 1704 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); 1705 SW_FLOW_KEY_PUT(match, tp.src, 1706 htons(icmpv6_key->icmpv6_type), is_mask); 1707 SW_FLOW_KEY_PUT(match, tp.dst, 1708 htons(icmpv6_key->icmpv6_code), is_mask); 1709 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); 1710 } 1711 1712 if (attrs & (1 << OVS_KEY_ATTR_ND)) { 1713 const struct ovs_key_nd *nd_key; 1714 1715 nd_key = nla_data(a[OVS_KEY_ATTR_ND]); 1716 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, 1717 nd_key->nd_target, 1718 sizeof(match->key->ipv6.nd.target), 1719 is_mask); 1720 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, 1721 nd_key->nd_sll, ETH_ALEN, is_mask); 1722 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, 1723 nd_key->nd_tll, ETH_ALEN, is_mask); 1724 attrs &= ~(1 << OVS_KEY_ATTR_ND); 1725 } 1726 1727 if (attrs != 0) { 1728 OVS_NLERR(log, "Unknown key attributes %llx", 1729 (unsigned long long)attrs); 1730 return -EINVAL; 1731 } 1732 1733 return 0; 1734 } 1735 1736 static void nlattr_set(struct nlattr *attr, u8 val, 1737 const struct ovs_len_tbl *tbl) 1738 { 1739 struct nlattr *nla; 1740 int rem; 1741 1742 /* The nlattr stream should already have been validated */ 1743 nla_for_each_nested(nla, attr, rem) { 1744 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) 1745 nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl); 1746 else 1747 memset(nla_data(nla), val, nla_len(nla)); 1748 1749 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE) 1750 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK; 1751 } 1752 } 1753 1754 static void mask_set_nlattr(struct nlattr *attr, u8 val) 1755 { 1756 nlattr_set(attr, val, ovs_key_lens); 1757 } 1758 1759 /** 1760 * ovs_nla_get_match - parses Netlink attributes into a flow key and 1761 * mask. In case the 'mask' is NULL, the flow is treated as exact match 1762 * flow. Otherwise, it is treated as a wildcarded flow, except the mask 1763 * does not include any don't care bit. 1764 * @net: Used to determine per-namespace field support. 1765 * @match: receives the extracted flow match information. 1766 * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1767 * sequence. The fields should of the packet that triggered the creation 1768 * of this flow. 1769 * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* 1770 * Netlink attribute specifies the mask field of the wildcarded flow. 1771 * @log: Boolean to allow kernel error logging. Normally true, but when 1772 * probing for feature compatibility this should be passed in as false to 1773 * suppress unnecessary error logging. 1774 */ 1775 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match, 1776 const struct nlattr *nla_key, 1777 const struct nlattr *nla_mask, 1778 bool log) 1779 { 1780 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 1781 struct nlattr *newmask = NULL; 1782 u64 key_attrs = 0; 1783 u64 mask_attrs = 0; 1784 int err; 1785 1786 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log); 1787 if (err) 1788 return err; 1789 1790 err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log); 1791 if (err) 1792 return err; 1793 1794 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log); 1795 if (err) 1796 return err; 1797 1798 if (match->mask) { 1799 if (!nla_mask) { 1800 /* Create an exact match mask. We need to set to 0xff 1801 * all the 'match->mask' fields that have been touched 1802 * in 'match->key'. We cannot simply memset 1803 * 'match->mask', because padding bytes and fields not 1804 * specified in 'match->key' should be left to 0. 1805 * Instead, we use a stream of netlink attributes, 1806 * copied from 'key' and set to 0xff. 1807 * ovs_key_from_nlattrs() will take care of filling 1808 * 'match->mask' appropriately. 1809 */ 1810 newmask = kmemdup(nla_key, 1811 nla_total_size(nla_len(nla_key)), 1812 GFP_KERNEL); 1813 if (!newmask) 1814 return -ENOMEM; 1815 1816 mask_set_nlattr(newmask, 0xff); 1817 1818 /* The userspace does not send tunnel attributes that 1819 * are 0, but we should not wildcard them nonetheless. 1820 */ 1821 if (match->key->tun_proto) 1822 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key, 1823 0xff, true); 1824 1825 nla_mask = newmask; 1826 } 1827 1828 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log); 1829 if (err) 1830 goto free_newmask; 1831 1832 /* Always match on tci. */ 1833 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true); 1834 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true); 1835 1836 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log); 1837 if (err) 1838 goto free_newmask; 1839 1840 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true, 1841 log); 1842 if (err) 1843 goto free_newmask; 1844 } 1845 1846 if (!match_validate(match, key_attrs, mask_attrs, log)) 1847 err = -EINVAL; 1848 1849 free_newmask: 1850 kfree(newmask); 1851 return err; 1852 } 1853 1854 static size_t get_ufid_len(const struct nlattr *attr, bool log) 1855 { 1856 size_t len; 1857 1858 if (!attr) 1859 return 0; 1860 1861 len = nla_len(attr); 1862 if (len < 1 || len > MAX_UFID_LENGTH) { 1863 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)", 1864 nla_len(attr), MAX_UFID_LENGTH); 1865 return 0; 1866 } 1867 1868 return len; 1869 } 1870 1871 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID, 1872 * or false otherwise. 1873 */ 1874 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr, 1875 bool log) 1876 { 1877 sfid->ufid_len = get_ufid_len(attr, log); 1878 if (sfid->ufid_len) 1879 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len); 1880 1881 return sfid->ufid_len; 1882 } 1883 1884 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid, 1885 const struct sw_flow_key *key, bool log) 1886 { 1887 struct sw_flow_key *new_key; 1888 1889 if (ovs_nla_get_ufid(sfid, ufid, log)) 1890 return 0; 1891 1892 /* If UFID was not provided, use unmasked key. */ 1893 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL); 1894 if (!new_key) 1895 return -ENOMEM; 1896 memcpy(new_key, key, sizeof(*key)); 1897 sfid->unmasked_key = new_key; 1898 1899 return 0; 1900 } 1901 1902 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr) 1903 { 1904 return nla_get_u32_default(attr, 0); 1905 } 1906 1907 /** 1908 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key. 1909 * @net: Network namespace. 1910 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack 1911 * metadata. 1912 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink 1913 * attributes. 1914 * @attrs: Bit mask for the netlink attributes included in @a. 1915 * @log: Boolean to allow kernel error logging. Normally true, but when 1916 * probing for feature compatibility this should be passed in as false to 1917 * suppress unnecessary error logging. 1918 * 1919 * This parses a series of Netlink attributes that form a flow key, which must 1920 * take the same form accepted by flow_from_nlattrs(), but only enough of it to 1921 * get the metadata, that is, the parts of the flow key that cannot be 1922 * extracted from the packet itself. 1923 * 1924 * This must be called before the packet key fields are filled in 'key'. 1925 */ 1926 1927 int ovs_nla_get_flow_metadata(struct net *net, 1928 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1], 1929 u64 attrs, struct sw_flow_key *key, bool log) 1930 { 1931 struct sw_flow_match match; 1932 1933 memset(&match, 0, sizeof(match)); 1934 match.key = key; 1935 1936 key->ct_state = 0; 1937 key->ct_zone = 0; 1938 key->ct_orig_proto = 0; 1939 memset(&key->ct, 0, sizeof(key->ct)); 1940 memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig)); 1941 memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig)); 1942 1943 key->phy.in_port = DP_MAX_PORTS; 1944 1945 return metadata_from_nlattrs(net, &match, &attrs, a, false, log); 1946 } 1947 1948 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh, 1949 bool is_mask) 1950 { 1951 __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff); 1952 1953 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || 1954 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci)) 1955 return -EMSGSIZE; 1956 return 0; 1957 } 1958 1959 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask, 1960 struct sk_buff *skb) 1961 { 1962 struct nlattr *start; 1963 1964 start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH); 1965 if (!start) 1966 return -EMSGSIZE; 1967 1968 if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base)) 1969 goto nla_put_failure; 1970 1971 if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) { 1972 if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1, 1973 sizeof(nsh->context), nsh->context)) 1974 goto nla_put_failure; 1975 } 1976 1977 /* Don't support MD type 2 yet */ 1978 1979 nla_nest_end(skb, start); 1980 1981 return 0; 1982 1983 nla_put_failure: 1984 return -EMSGSIZE; 1985 } 1986 1987 static int __ovs_nla_put_key(const struct sw_flow_key *swkey, 1988 const struct sw_flow_key *output, bool is_mask, 1989 struct sk_buff *skb) 1990 { 1991 struct ovs_key_ethernet *eth_key; 1992 struct nlattr *nla; 1993 struct nlattr *encap = NULL; 1994 struct nlattr *in_encap = NULL; 1995 1996 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id)) 1997 goto nla_put_failure; 1998 1999 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash)) 2000 goto nla_put_failure; 2001 2002 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) 2003 goto nla_put_failure; 2004 2005 if ((swkey->tun_proto || is_mask)) { 2006 const void *opts = NULL; 2007 2008 if (ip_tunnel_is_options_present(output->tun_key.tun_flags)) 2009 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len); 2010 2011 if (ip_tun_to_nlattr(skb, &output->tun_key, opts, 2012 swkey->tun_opts_len, swkey->tun_proto, 0)) 2013 goto nla_put_failure; 2014 } 2015 2016 if (swkey->phy.in_port == DP_MAX_PORTS) { 2017 if (is_mask && (output->phy.in_port == 0xffff)) 2018 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) 2019 goto nla_put_failure; 2020 } else { 2021 u16 upper_u16; 2022 upper_u16 = !is_mask ? 0 : 0xffff; 2023 2024 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 2025 (upper_u16 << 16) | output->phy.in_port)) 2026 goto nla_put_failure; 2027 } 2028 2029 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) 2030 goto nla_put_failure; 2031 2032 if (ovs_ct_put_key(swkey, output, skb)) 2033 goto nla_put_failure; 2034 2035 if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) { 2036 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); 2037 if (!nla) 2038 goto nla_put_failure; 2039 2040 eth_key = nla_data(nla); 2041 ether_addr_copy(eth_key->eth_src, output->eth.src); 2042 ether_addr_copy(eth_key->eth_dst, output->eth.dst); 2043 2044 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) { 2045 if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask)) 2046 goto nla_put_failure; 2047 encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP); 2048 if (!swkey->eth.vlan.tci) 2049 goto unencap; 2050 2051 if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) { 2052 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask)) 2053 goto nla_put_failure; 2054 in_encap = nla_nest_start_noflag(skb, 2055 OVS_KEY_ATTR_ENCAP); 2056 if (!swkey->eth.cvlan.tci) 2057 goto unencap; 2058 } 2059 } 2060 2061 if (swkey->eth.type == htons(ETH_P_802_2)) { 2062 /* 2063 * Ethertype 802.2 is represented in the netlink with omitted 2064 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and 2065 * 0xffff in the mask attribute. Ethertype can also 2066 * be wildcarded. 2067 */ 2068 if (is_mask && output->eth.type) 2069 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, 2070 output->eth.type)) 2071 goto nla_put_failure; 2072 goto unencap; 2073 } 2074 } 2075 2076 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) 2077 goto nla_put_failure; 2078 2079 if (eth_type_vlan(swkey->eth.type)) { 2080 /* There are 3 VLAN tags, we don't know anything about the rest 2081 * of the packet, so truncate here. 2082 */ 2083 WARN_ON_ONCE(!(encap && in_encap)); 2084 goto unencap; 2085 } 2086 2087 if (swkey->eth.type == htons(ETH_P_IP)) { 2088 struct ovs_key_ipv4 *ipv4_key; 2089 2090 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); 2091 if (!nla) 2092 goto nla_put_failure; 2093 ipv4_key = nla_data(nla); 2094 ipv4_key->ipv4_src = output->ipv4.addr.src; 2095 ipv4_key->ipv4_dst = output->ipv4.addr.dst; 2096 ipv4_key->ipv4_proto = output->ip.proto; 2097 ipv4_key->ipv4_tos = output->ip.tos; 2098 ipv4_key->ipv4_ttl = output->ip.ttl; 2099 ipv4_key->ipv4_frag = output->ip.frag; 2100 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 2101 struct ovs_key_ipv6 *ipv6_key; 2102 struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key; 2103 2104 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); 2105 if (!nla) 2106 goto nla_put_failure; 2107 ipv6_key = nla_data(nla); 2108 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, 2109 sizeof(ipv6_key->ipv6_src)); 2110 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, 2111 sizeof(ipv6_key->ipv6_dst)); 2112 ipv6_key->ipv6_label = output->ipv6.label; 2113 ipv6_key->ipv6_proto = output->ip.proto; 2114 ipv6_key->ipv6_tclass = output->ip.tos; 2115 ipv6_key->ipv6_hlimit = output->ip.ttl; 2116 ipv6_key->ipv6_frag = output->ip.frag; 2117 2118 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6_EXTHDRS, 2119 sizeof(*ipv6_exthdrs_key)); 2120 if (!nla) 2121 goto nla_put_failure; 2122 ipv6_exthdrs_key = nla_data(nla); 2123 ipv6_exthdrs_key->hdrs = output->ipv6.exthdrs; 2124 } else if (swkey->eth.type == htons(ETH_P_NSH)) { 2125 if (nsh_key_to_nlattr(&output->nsh, is_mask, skb)) 2126 goto nla_put_failure; 2127 } else if (swkey->eth.type == htons(ETH_P_ARP) || 2128 swkey->eth.type == htons(ETH_P_RARP)) { 2129 struct ovs_key_arp *arp_key; 2130 2131 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); 2132 if (!nla) 2133 goto nla_put_failure; 2134 arp_key = nla_data(nla); 2135 memset(arp_key, 0, sizeof(struct ovs_key_arp)); 2136 arp_key->arp_sip = output->ipv4.addr.src; 2137 arp_key->arp_tip = output->ipv4.addr.dst; 2138 arp_key->arp_op = htons(output->ip.proto); 2139 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha); 2140 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha); 2141 } else if (eth_p_mpls(swkey->eth.type)) { 2142 u8 i, num_labels; 2143 struct ovs_key_mpls *mpls_key; 2144 2145 num_labels = hweight_long(output->mpls.num_labels_mask); 2146 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, 2147 num_labels * sizeof(*mpls_key)); 2148 if (!nla) 2149 goto nla_put_failure; 2150 2151 mpls_key = nla_data(nla); 2152 for (i = 0; i < num_labels; i++) 2153 mpls_key[i].mpls_lse = output->mpls.lse[i]; 2154 } 2155 2156 if ((swkey->eth.type == htons(ETH_P_IP) || 2157 swkey->eth.type == htons(ETH_P_IPV6)) && 2158 swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 2159 2160 if (swkey->ip.proto == IPPROTO_TCP) { 2161 struct ovs_key_tcp *tcp_key; 2162 2163 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); 2164 if (!nla) 2165 goto nla_put_failure; 2166 tcp_key = nla_data(nla); 2167 tcp_key->tcp_src = output->tp.src; 2168 tcp_key->tcp_dst = output->tp.dst; 2169 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS, 2170 output->tp.flags)) 2171 goto nla_put_failure; 2172 } else if (swkey->ip.proto == IPPROTO_UDP) { 2173 struct ovs_key_udp *udp_key; 2174 2175 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); 2176 if (!nla) 2177 goto nla_put_failure; 2178 udp_key = nla_data(nla); 2179 udp_key->udp_src = output->tp.src; 2180 udp_key->udp_dst = output->tp.dst; 2181 } else if (swkey->ip.proto == IPPROTO_SCTP) { 2182 struct ovs_key_sctp *sctp_key; 2183 2184 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); 2185 if (!nla) 2186 goto nla_put_failure; 2187 sctp_key = nla_data(nla); 2188 sctp_key->sctp_src = output->tp.src; 2189 sctp_key->sctp_dst = output->tp.dst; 2190 } else if (swkey->eth.type == htons(ETH_P_IP) && 2191 swkey->ip.proto == IPPROTO_ICMP) { 2192 struct ovs_key_icmp *icmp_key; 2193 2194 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); 2195 if (!nla) 2196 goto nla_put_failure; 2197 icmp_key = nla_data(nla); 2198 icmp_key->icmp_type = ntohs(output->tp.src); 2199 icmp_key->icmp_code = ntohs(output->tp.dst); 2200 } else if (swkey->eth.type == htons(ETH_P_IPV6) && 2201 swkey->ip.proto == IPPROTO_ICMPV6) { 2202 struct ovs_key_icmpv6 *icmpv6_key; 2203 2204 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, 2205 sizeof(*icmpv6_key)); 2206 if (!nla) 2207 goto nla_put_failure; 2208 icmpv6_key = nla_data(nla); 2209 icmpv6_key->icmpv6_type = ntohs(output->tp.src); 2210 icmpv6_key->icmpv6_code = ntohs(output->tp.dst); 2211 2212 if (swkey->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) || 2213 swkey->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { 2214 struct ovs_key_nd *nd_key; 2215 2216 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); 2217 if (!nla) 2218 goto nla_put_failure; 2219 nd_key = nla_data(nla); 2220 memcpy(nd_key->nd_target, &output->ipv6.nd.target, 2221 sizeof(nd_key->nd_target)); 2222 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll); 2223 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll); 2224 } 2225 } 2226 } 2227 2228 unencap: 2229 if (in_encap) 2230 nla_nest_end(skb, in_encap); 2231 if (encap) 2232 nla_nest_end(skb, encap); 2233 2234 return 0; 2235 2236 nla_put_failure: 2237 return -EMSGSIZE; 2238 } 2239 2240 int ovs_nla_put_key(const struct sw_flow_key *swkey, 2241 const struct sw_flow_key *output, int attr, bool is_mask, 2242 struct sk_buff *skb) 2243 { 2244 int err; 2245 struct nlattr *nla; 2246 2247 nla = nla_nest_start_noflag(skb, attr); 2248 if (!nla) 2249 return -EMSGSIZE; 2250 err = __ovs_nla_put_key(swkey, output, is_mask, skb); 2251 if (err) 2252 return err; 2253 nla_nest_end(skb, nla); 2254 2255 return 0; 2256 } 2257 2258 /* Called with ovs_mutex or RCU read lock. */ 2259 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb) 2260 { 2261 if (ovs_identifier_is_ufid(&flow->id)) 2262 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len, 2263 flow->id.ufid); 2264 2265 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key, 2266 OVS_FLOW_ATTR_KEY, false, skb); 2267 } 2268 2269 /* Called with ovs_mutex or RCU read lock. */ 2270 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb) 2271 { 2272 return ovs_nla_put_key(&flow->key, &flow->key, 2273 OVS_FLOW_ATTR_KEY, false, skb); 2274 } 2275 2276 /* Called with ovs_mutex or RCU read lock. */ 2277 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb) 2278 { 2279 return ovs_nla_put_key(&flow->key, &flow->mask->key, 2280 OVS_FLOW_ATTR_MASK, true, skb); 2281 } 2282 2283 static struct sw_flow_actions *nla_alloc_flow_actions(int size) 2284 { 2285 struct sw_flow_actions *sfa; 2286 2287 sfa = kmalloc(kmalloc_size_roundup(sizeof(*sfa) + size), GFP_KERNEL); 2288 if (!sfa) 2289 return ERR_PTR(-ENOMEM); 2290 2291 sfa->actions_len = 0; 2292 return sfa; 2293 } 2294 2295 static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len); 2296 2297 static void ovs_nla_free_check_pkt_len_action(const struct nlattr *action) 2298 { 2299 const struct nlattr *a; 2300 int rem; 2301 2302 nla_for_each_nested(a, action, rem) { 2303 switch (nla_type(a)) { 2304 case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL: 2305 case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER: 2306 ovs_nla_free_nested_actions(nla_data(a), nla_len(a)); 2307 break; 2308 } 2309 } 2310 } 2311 2312 static void ovs_nla_free_clone_action(const struct nlattr *action) 2313 { 2314 const struct nlattr *a = nla_data(action); 2315 int rem = nla_len(action); 2316 2317 switch (nla_type(a)) { 2318 case OVS_CLONE_ATTR_EXEC: 2319 /* The real list of actions follows this attribute. */ 2320 a = nla_next(a, &rem); 2321 ovs_nla_free_nested_actions(a, rem); 2322 break; 2323 } 2324 } 2325 2326 static void ovs_nla_free_dec_ttl_action(const struct nlattr *action) 2327 { 2328 const struct nlattr *a = nla_data(action); 2329 2330 switch (nla_type(a)) { 2331 case OVS_DEC_TTL_ATTR_ACTION: 2332 ovs_nla_free_nested_actions(nla_data(a), nla_len(a)); 2333 break; 2334 } 2335 } 2336 2337 static void ovs_nla_free_sample_action(const struct nlattr *action) 2338 { 2339 const struct nlattr *a = nla_data(action); 2340 int rem = nla_len(action); 2341 2342 switch (nla_type(a)) { 2343 case OVS_SAMPLE_ATTR_ARG: 2344 /* The real list of actions follows this attribute. */ 2345 a = nla_next(a, &rem); 2346 ovs_nla_free_nested_actions(a, rem); 2347 break; 2348 } 2349 } 2350 2351 static void ovs_nla_free_set_action(const struct nlattr *a) 2352 { 2353 const struct nlattr *ovs_key = nla_data(a); 2354 struct ovs_tunnel_info *ovs_tun; 2355 2356 switch (nla_type(ovs_key)) { 2357 case OVS_KEY_ATTR_TUNNEL_INFO: 2358 ovs_tun = nla_data(ovs_key); 2359 dst_release((struct dst_entry *)ovs_tun->tun_dst); 2360 break; 2361 } 2362 } 2363 2364 static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len) 2365 { 2366 const struct nlattr *a; 2367 int rem; 2368 2369 /* Whenever new actions are added, the need to update this 2370 * function should be considered. 2371 */ 2372 BUILD_BUG_ON(OVS_ACTION_ATTR_MAX != 25); 2373 2374 if (!actions) 2375 return; 2376 2377 nla_for_each_attr(a, actions, len, rem) { 2378 switch (nla_type(a)) { 2379 case OVS_ACTION_ATTR_CHECK_PKT_LEN: 2380 ovs_nla_free_check_pkt_len_action(a); 2381 break; 2382 2383 case OVS_ACTION_ATTR_CLONE: 2384 ovs_nla_free_clone_action(a); 2385 break; 2386 2387 case OVS_ACTION_ATTR_CT: 2388 ovs_ct_free_action(a); 2389 break; 2390 2391 case OVS_ACTION_ATTR_DEC_TTL: 2392 ovs_nla_free_dec_ttl_action(a); 2393 break; 2394 2395 case OVS_ACTION_ATTR_SAMPLE: 2396 ovs_nla_free_sample_action(a); 2397 break; 2398 2399 case OVS_ACTION_ATTR_SET: 2400 ovs_nla_free_set_action(a); 2401 break; 2402 } 2403 } 2404 } 2405 2406 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts) 2407 { 2408 if (!sf_acts) 2409 return; 2410 2411 ovs_nla_free_nested_actions(sf_acts->actions, sf_acts->actions_len); 2412 kfree(sf_acts); 2413 } 2414 2415 static void __ovs_nla_free_flow_actions(struct rcu_head *head) 2416 { 2417 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu)); 2418 } 2419 2420 /* Schedules 'sf_acts' to be freed after the next RCU grace period. 2421 * The caller must hold rcu_read_lock for this to be sensible. */ 2422 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts) 2423 { 2424 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions); 2425 } 2426 2427 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa, 2428 int attr_len, bool log) 2429 { 2430 2431 struct sw_flow_actions *acts; 2432 int new_acts_size; 2433 size_t req_size = NLA_ALIGN(attr_len); 2434 int next_offset = offsetof(struct sw_flow_actions, actions) + 2435 (*sfa)->actions_len; 2436 2437 if (req_size <= (ksize(*sfa) - next_offset)) 2438 goto out; 2439 2440 new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2); 2441 2442 acts = nla_alloc_flow_actions(new_acts_size); 2443 if (IS_ERR(acts)) 2444 return ERR_CAST(acts); 2445 2446 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len); 2447 acts->actions_len = (*sfa)->actions_len; 2448 acts->orig_len = (*sfa)->orig_len; 2449 kfree(*sfa); 2450 *sfa = acts; 2451 2452 out: 2453 (*sfa)->actions_len += req_size; 2454 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset); 2455 } 2456 2457 static struct nlattr *__add_action(struct sw_flow_actions **sfa, 2458 int attrtype, void *data, int len, bool log) 2459 { 2460 struct nlattr *a; 2461 2462 a = reserve_sfa_size(sfa, nla_attr_size(len), log); 2463 if (IS_ERR(a)) 2464 return a; 2465 2466 a->nla_type = attrtype; 2467 a->nla_len = nla_attr_size(len); 2468 2469 if (data) 2470 memcpy(nla_data(a), data, len); 2471 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len)); 2472 2473 return a; 2474 } 2475 2476 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data, 2477 int len, bool log) 2478 { 2479 struct nlattr *a; 2480 2481 a = __add_action(sfa, attrtype, data, len, log); 2482 2483 return PTR_ERR_OR_ZERO(a); 2484 } 2485 2486 static inline int add_nested_action_start(struct sw_flow_actions **sfa, 2487 int attrtype, bool log) 2488 { 2489 int used = (*sfa)->actions_len; 2490 int err; 2491 2492 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log); 2493 if (err) 2494 return err; 2495 2496 return used; 2497 } 2498 2499 static inline void add_nested_action_end(struct sw_flow_actions *sfa, 2500 int st_offset) 2501 { 2502 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions + 2503 st_offset); 2504 2505 a->nla_len = sfa->actions_len - st_offset; 2506 } 2507 2508 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2509 const struct sw_flow_key *key, 2510 struct sw_flow_actions **sfa, 2511 __be16 eth_type, __be16 vlan_tci, 2512 u32 mpls_label_count, bool log, 2513 u32 depth); 2514 2515 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr, 2516 const struct sw_flow_key *key, 2517 struct sw_flow_actions **sfa, 2518 __be16 eth_type, __be16 vlan_tci, 2519 u32 mpls_label_count, bool log, bool last, 2520 u32 depth) 2521 { 2522 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1]; 2523 const struct nlattr *probability, *actions; 2524 const struct nlattr *a; 2525 int rem, start, err; 2526 struct sample_arg arg; 2527 2528 memset(attrs, 0, sizeof(attrs)); 2529 nla_for_each_nested(a, attr, rem) { 2530 int type = nla_type(a); 2531 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type]) 2532 return -EINVAL; 2533 attrs[type] = a; 2534 } 2535 if (rem) 2536 return -EINVAL; 2537 2538 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY]; 2539 if (!probability || nla_len(probability) != sizeof(u32)) 2540 return -EINVAL; 2541 2542 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS]; 2543 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) 2544 return -EINVAL; 2545 2546 /* validation done, copy sample action. */ 2547 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log); 2548 if (start < 0) 2549 return start; 2550 2551 /* When both skb and flow may be changed, put the sample 2552 * into a deferred fifo. On the other hand, if only skb 2553 * may be modified, the actions can be executed in place. 2554 * 2555 * Do this analysis at the flow installation time. 2556 * Set 'clone_action->exec' to true if the actions can be 2557 * executed without being deferred. 2558 * 2559 * If the sample is the last action, it can always be excuted 2560 * rather than deferred. 2561 */ 2562 arg.exec = last || !actions_may_change_flow(actions); 2563 arg.probability = nla_get_u32(probability); 2564 2565 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg), 2566 log); 2567 if (err) 2568 return err; 2569 2570 err = __ovs_nla_copy_actions(net, actions, key, sfa, 2571 eth_type, vlan_tci, mpls_label_count, log, 2572 depth + 1); 2573 2574 if (err) 2575 return err; 2576 2577 add_nested_action_end(*sfa, start); 2578 2579 return 0; 2580 } 2581 2582 static int validate_and_copy_dec_ttl(struct net *net, 2583 const struct nlattr *attr, 2584 const struct sw_flow_key *key, 2585 struct sw_flow_actions **sfa, 2586 __be16 eth_type, __be16 vlan_tci, 2587 u32 mpls_label_count, bool log, 2588 u32 depth) 2589 { 2590 const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1]; 2591 int start, action_start, err, rem; 2592 const struct nlattr *a, *actions; 2593 2594 memset(attrs, 0, sizeof(attrs)); 2595 nla_for_each_nested(a, attr, rem) { 2596 int type = nla_type(a); 2597 2598 /* Ignore unknown attributes to be future proof. */ 2599 if (type > OVS_DEC_TTL_ATTR_MAX) 2600 continue; 2601 2602 if (!type || attrs[type]) { 2603 OVS_NLERR(log, "Duplicate or invalid key (type %d).", 2604 type); 2605 return -EINVAL; 2606 } 2607 2608 attrs[type] = a; 2609 } 2610 2611 if (rem) { 2612 OVS_NLERR(log, "Message has %d unknown bytes.", rem); 2613 return -EINVAL; 2614 } 2615 2616 actions = attrs[OVS_DEC_TTL_ATTR_ACTION]; 2617 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) { 2618 OVS_NLERR(log, "Missing valid actions attribute."); 2619 return -EINVAL; 2620 } 2621 2622 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log); 2623 if (start < 0) 2624 return start; 2625 2626 action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log); 2627 if (action_start < 0) 2628 return action_start; 2629 2630 err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type, 2631 vlan_tci, mpls_label_count, log, 2632 depth + 1); 2633 if (err) 2634 return err; 2635 2636 add_nested_action_end(*sfa, action_start); 2637 add_nested_action_end(*sfa, start); 2638 return 0; 2639 } 2640 2641 static int validate_and_copy_clone(struct net *net, 2642 const struct nlattr *attr, 2643 const struct sw_flow_key *key, 2644 struct sw_flow_actions **sfa, 2645 __be16 eth_type, __be16 vlan_tci, 2646 u32 mpls_label_count, bool log, bool last, 2647 u32 depth) 2648 { 2649 int start, err; 2650 u32 exec; 2651 2652 if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN) 2653 return -EINVAL; 2654 2655 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log); 2656 if (start < 0) 2657 return start; 2658 2659 exec = last || !actions_may_change_flow(attr); 2660 2661 err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec, 2662 sizeof(exec), log); 2663 if (err) 2664 return err; 2665 2666 err = __ovs_nla_copy_actions(net, attr, key, sfa, 2667 eth_type, vlan_tci, mpls_label_count, log, 2668 depth + 1); 2669 if (err) 2670 return err; 2671 2672 add_nested_action_end(*sfa, start); 2673 2674 return 0; 2675 } 2676 2677 void ovs_match_init(struct sw_flow_match *match, 2678 struct sw_flow_key *key, 2679 bool reset_key, 2680 struct sw_flow_mask *mask) 2681 { 2682 memset(match, 0, sizeof(*match)); 2683 match->key = key; 2684 match->mask = mask; 2685 2686 if (reset_key) 2687 memset(key, 0, sizeof(*key)); 2688 2689 if (mask) { 2690 memset(&mask->key, 0, sizeof(mask->key)); 2691 mask->range.start = mask->range.end = 0; 2692 } 2693 } 2694 2695 static int validate_geneve_opts(struct sw_flow_key *key) 2696 { 2697 struct geneve_opt *option; 2698 int opts_len = key->tun_opts_len; 2699 bool crit_opt = false; 2700 2701 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len); 2702 while (opts_len > 0) { 2703 int len; 2704 2705 if (opts_len < sizeof(*option)) 2706 return -EINVAL; 2707 2708 len = sizeof(*option) + option->length * 4; 2709 if (len > opts_len) 2710 return -EINVAL; 2711 2712 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE); 2713 2714 option = (struct geneve_opt *)((u8 *)option + len); 2715 opts_len -= len; 2716 } 2717 2718 if (crit_opt) 2719 __set_bit(IP_TUNNEL_CRIT_OPT_BIT, key->tun_key.tun_flags); 2720 2721 return 0; 2722 } 2723 2724 static int validate_and_copy_set_tun(const struct nlattr *attr, 2725 struct sw_flow_actions **sfa, bool log) 2726 { 2727 IP_TUNNEL_DECLARE_FLAGS(dst_opt_type) = { }; 2728 struct sw_flow_match match; 2729 struct sw_flow_key key; 2730 struct metadata_dst *tun_dst; 2731 struct ip_tunnel_info *tun_info; 2732 struct ovs_tunnel_info *ovs_tun; 2733 struct nlattr *a; 2734 int err = 0, start, opts_type; 2735 2736 ovs_match_init(&match, &key, true, NULL); 2737 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log); 2738 if (opts_type < 0) 2739 return opts_type; 2740 2741 if (key.tun_opts_len) { 2742 switch (opts_type) { 2743 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 2744 err = validate_geneve_opts(&key); 2745 if (err < 0) 2746 return err; 2747 2748 __set_bit(IP_TUNNEL_GENEVE_OPT_BIT, dst_opt_type); 2749 break; 2750 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 2751 __set_bit(IP_TUNNEL_VXLAN_OPT_BIT, dst_opt_type); 2752 break; 2753 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS: 2754 __set_bit(IP_TUNNEL_ERSPAN_OPT_BIT, dst_opt_type); 2755 break; 2756 } 2757 } 2758 2759 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log); 2760 if (start < 0) 2761 return start; 2762 2763 tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL, 2764 GFP_KERNEL); 2765 2766 if (!tun_dst) 2767 return -ENOMEM; 2768 2769 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL); 2770 if (err) { 2771 dst_release((struct dst_entry *)tun_dst); 2772 return err; 2773 } 2774 2775 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL, 2776 sizeof(*ovs_tun), log); 2777 if (IS_ERR(a)) { 2778 dst_release((struct dst_entry *)tun_dst); 2779 return PTR_ERR(a); 2780 } 2781 2782 ovs_tun = nla_data(a); 2783 ovs_tun->tun_dst = tun_dst; 2784 2785 tun_info = &tun_dst->u.tun_info; 2786 tun_info->mode = IP_TUNNEL_INFO_TX; 2787 if (key.tun_proto == AF_INET6) 2788 tun_info->mode |= IP_TUNNEL_INFO_IPV6; 2789 else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0) 2790 tun_info->mode |= IP_TUNNEL_INFO_BRIDGE; 2791 tun_info->key = key.tun_key; 2792 2793 /* We need to store the options in the action itself since 2794 * everything else will go away after flow setup. We can append 2795 * it to tun_info and then point there. 2796 */ 2797 ip_tunnel_info_opts_set(tun_info, 2798 TUN_METADATA_OPTS(&key, key.tun_opts_len), 2799 key.tun_opts_len, dst_opt_type); 2800 add_nested_action_end(*sfa, start); 2801 2802 return err; 2803 } 2804 2805 static bool validate_push_nsh(const struct nlattr *attr, bool log) 2806 { 2807 struct sw_flow_match match; 2808 struct sw_flow_key key; 2809 2810 ovs_match_init(&match, &key, true, NULL); 2811 return !nsh_key_put_from_nlattr(attr, &match, false, true, log); 2812 } 2813 2814 /* Return false if there are any non-masked bits set. 2815 * Mask follows data immediately, before any netlink padding. 2816 */ 2817 static bool validate_masked(u8 *data, int len) 2818 { 2819 u8 *mask = data + len; 2820 2821 while (len--) 2822 if (*data++ & ~*mask++) 2823 return false; 2824 2825 return true; 2826 } 2827 2828 static int validate_set(const struct nlattr *a, 2829 const struct sw_flow_key *flow_key, 2830 struct sw_flow_actions **sfa, bool *skip_copy, 2831 u8 mac_proto, __be16 eth_type, bool masked, bool log) 2832 { 2833 const struct nlattr *ovs_key = nla_data(a); 2834 int key_type = nla_type(ovs_key); 2835 size_t key_len; 2836 2837 /* There can be only one key in a action */ 2838 if (!nla_ok(ovs_key, nla_len(a)) || 2839 nla_total_size(nla_len(ovs_key)) != nla_len(a)) 2840 return -EINVAL; 2841 2842 key_len = nla_len(ovs_key); 2843 if (masked) 2844 key_len /= 2; 2845 2846 if (key_type > OVS_KEY_ATTR_MAX || 2847 !check_attr_len(key_len, ovs_key_lens[key_type].len)) 2848 return -EINVAL; 2849 2850 if (masked && !validate_masked(nla_data(ovs_key), key_len)) 2851 return -EINVAL; 2852 2853 switch (key_type) { 2854 case OVS_KEY_ATTR_PRIORITY: 2855 case OVS_KEY_ATTR_SKB_MARK: 2856 case OVS_KEY_ATTR_CT_MARK: 2857 case OVS_KEY_ATTR_CT_LABELS: 2858 break; 2859 2860 case OVS_KEY_ATTR_ETHERNET: 2861 if (mac_proto != MAC_PROTO_ETHERNET) 2862 return -EINVAL; 2863 break; 2864 2865 case OVS_KEY_ATTR_TUNNEL: { 2866 int err; 2867 2868 if (masked) 2869 return -EINVAL; /* Masked tunnel set not supported. */ 2870 2871 *skip_copy = true; 2872 err = validate_and_copy_set_tun(a, sfa, log); 2873 if (err) 2874 return err; 2875 break; 2876 } 2877 case OVS_KEY_ATTR_IPV4: { 2878 const struct ovs_key_ipv4 *ipv4_key; 2879 2880 if (eth_type != htons(ETH_P_IP)) 2881 return -EINVAL; 2882 2883 ipv4_key = nla_data(ovs_key); 2884 2885 if (masked) { 2886 const struct ovs_key_ipv4 *mask = ipv4_key + 1; 2887 2888 /* Non-writeable fields. */ 2889 if (mask->ipv4_proto || mask->ipv4_frag) 2890 return -EINVAL; 2891 } else { 2892 if (ipv4_key->ipv4_proto != flow_key->ip.proto) 2893 return -EINVAL; 2894 2895 if (ipv4_key->ipv4_frag != flow_key->ip.frag) 2896 return -EINVAL; 2897 } 2898 break; 2899 } 2900 case OVS_KEY_ATTR_IPV6: { 2901 const struct ovs_key_ipv6 *ipv6_key; 2902 2903 if (eth_type != htons(ETH_P_IPV6)) 2904 return -EINVAL; 2905 2906 ipv6_key = nla_data(ovs_key); 2907 2908 if (masked) { 2909 const struct ovs_key_ipv6 *mask = ipv6_key + 1; 2910 2911 /* Non-writeable fields. */ 2912 if (mask->ipv6_proto || mask->ipv6_frag) 2913 return -EINVAL; 2914 2915 /* Invalid bits in the flow label mask? */ 2916 if (ntohl(mask->ipv6_label) & 0xFFF00000) 2917 return -EINVAL; 2918 } else { 2919 if (ipv6_key->ipv6_proto != flow_key->ip.proto) 2920 return -EINVAL; 2921 2922 if (ipv6_key->ipv6_frag != flow_key->ip.frag) 2923 return -EINVAL; 2924 } 2925 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000) 2926 return -EINVAL; 2927 2928 break; 2929 } 2930 case OVS_KEY_ATTR_TCP: 2931 if ((eth_type != htons(ETH_P_IP) && 2932 eth_type != htons(ETH_P_IPV6)) || 2933 flow_key->ip.proto != IPPROTO_TCP) 2934 return -EINVAL; 2935 2936 break; 2937 2938 case OVS_KEY_ATTR_UDP: 2939 if ((eth_type != htons(ETH_P_IP) && 2940 eth_type != htons(ETH_P_IPV6)) || 2941 flow_key->ip.proto != IPPROTO_UDP) 2942 return -EINVAL; 2943 2944 break; 2945 2946 case OVS_KEY_ATTR_MPLS: 2947 if (!eth_p_mpls(eth_type)) 2948 return -EINVAL; 2949 break; 2950 2951 case OVS_KEY_ATTR_SCTP: 2952 if ((eth_type != htons(ETH_P_IP) && 2953 eth_type != htons(ETH_P_IPV6)) || 2954 flow_key->ip.proto != IPPROTO_SCTP) 2955 return -EINVAL; 2956 2957 break; 2958 2959 default: 2960 return -EINVAL; 2961 } 2962 2963 /* Convert non-masked non-tunnel set actions to masked set actions. */ 2964 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) { 2965 int start, len = key_len * 2; 2966 struct nlattr *at; 2967 2968 *skip_copy = true; 2969 2970 start = add_nested_action_start(sfa, 2971 OVS_ACTION_ATTR_SET_TO_MASKED, 2972 log); 2973 if (start < 0) 2974 return start; 2975 2976 at = __add_action(sfa, key_type, NULL, len, log); 2977 if (IS_ERR(at)) 2978 return PTR_ERR(at); 2979 2980 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */ 2981 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */ 2982 /* Clear non-writeable bits from otherwise writeable fields. */ 2983 if (key_type == OVS_KEY_ATTR_IPV6) { 2984 struct ovs_key_ipv6 *mask = nla_data(at) + key_len; 2985 2986 mask->ipv6_label &= htonl(0x000FFFFF); 2987 } 2988 add_nested_action_end(*sfa, start); 2989 } 2990 2991 return 0; 2992 } 2993 2994 static int validate_userspace(const struct nlattr *attr) 2995 { 2996 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = { 2997 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 }, 2998 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC }, 2999 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 }, 3000 }; 3001 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1]; 3002 int error; 3003 3004 error = nla_parse_deprecated_strict(a, OVS_USERSPACE_ATTR_MAX, 3005 nla_data(attr), nla_len(attr), 3006 userspace_policy, NULL); 3007 if (error) 3008 return error; 3009 3010 if (!a[OVS_USERSPACE_ATTR_PID] || 3011 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID])) 3012 return -EINVAL; 3013 3014 return 0; 3015 } 3016 3017 static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = { 3018 [OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 }, 3019 [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED }, 3020 [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED }, 3021 }; 3022 3023 static int validate_and_copy_check_pkt_len(struct net *net, 3024 const struct nlattr *attr, 3025 const struct sw_flow_key *key, 3026 struct sw_flow_actions **sfa, 3027 __be16 eth_type, __be16 vlan_tci, 3028 u32 mpls_label_count, 3029 bool log, bool last, u32 depth) 3030 { 3031 const struct nlattr *acts_if_greater, *acts_if_lesser_eq; 3032 struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1]; 3033 struct check_pkt_len_arg arg; 3034 int nested_acts_start; 3035 int start, err; 3036 3037 err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX, 3038 nla_data(attr), nla_len(attr), 3039 cpl_policy, NULL); 3040 if (err) 3041 return err; 3042 3043 if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] || 3044 !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN])) 3045 return -EINVAL; 3046 3047 acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL]; 3048 acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER]; 3049 3050 /* Both the nested action should be present. */ 3051 if (!acts_if_greater || !acts_if_lesser_eq) 3052 return -EINVAL; 3053 3054 /* validation done, copy the nested actions. */ 3055 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN, 3056 log); 3057 if (start < 0) 3058 return start; 3059 3060 arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]); 3061 arg.exec_for_lesser_equal = 3062 last || !actions_may_change_flow(acts_if_lesser_eq); 3063 arg.exec_for_greater = 3064 last || !actions_may_change_flow(acts_if_greater); 3065 3066 err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg, 3067 sizeof(arg), log); 3068 if (err) 3069 return err; 3070 3071 nested_acts_start = add_nested_action_start(sfa, 3072 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log); 3073 if (nested_acts_start < 0) 3074 return nested_acts_start; 3075 3076 err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa, 3077 eth_type, vlan_tci, mpls_label_count, log, 3078 depth + 1); 3079 3080 if (err) 3081 return err; 3082 3083 add_nested_action_end(*sfa, nested_acts_start); 3084 3085 nested_acts_start = add_nested_action_start(sfa, 3086 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log); 3087 if (nested_acts_start < 0) 3088 return nested_acts_start; 3089 3090 err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa, 3091 eth_type, vlan_tci, mpls_label_count, log, 3092 depth + 1); 3093 3094 if (err) 3095 return err; 3096 3097 add_nested_action_end(*sfa, nested_acts_start); 3098 add_nested_action_end(*sfa, start); 3099 return 0; 3100 } 3101 3102 static int validate_psample(const struct nlattr *attr) 3103 { 3104 static const struct nla_policy policy[OVS_PSAMPLE_ATTR_MAX + 1] = { 3105 [OVS_PSAMPLE_ATTR_GROUP] = { .type = NLA_U32 }, 3106 [OVS_PSAMPLE_ATTR_COOKIE] = { 3107 .type = NLA_BINARY, 3108 .len = OVS_PSAMPLE_COOKIE_MAX_SIZE, 3109 }, 3110 }; 3111 struct nlattr *a[OVS_PSAMPLE_ATTR_MAX + 1]; 3112 int err; 3113 3114 if (!IS_ENABLED(CONFIG_PSAMPLE)) 3115 return -EOPNOTSUPP; 3116 3117 err = nla_parse_nested(a, OVS_PSAMPLE_ATTR_MAX, attr, policy, NULL); 3118 if (err) 3119 return err; 3120 3121 return a[OVS_PSAMPLE_ATTR_GROUP] ? 0 : -EINVAL; 3122 } 3123 3124 static int copy_action(const struct nlattr *from, 3125 struct sw_flow_actions **sfa, bool log) 3126 { 3127 int totlen = NLA_ALIGN(from->nla_len); 3128 struct nlattr *to; 3129 3130 to = reserve_sfa_size(sfa, from->nla_len, log); 3131 if (IS_ERR(to)) 3132 return PTR_ERR(to); 3133 3134 memcpy(to, from, totlen); 3135 return 0; 3136 } 3137 3138 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 3139 const struct sw_flow_key *key, 3140 struct sw_flow_actions **sfa, 3141 __be16 eth_type, __be16 vlan_tci, 3142 u32 mpls_label_count, bool log, 3143 u32 depth) 3144 { 3145 u8 mac_proto = ovs_key_mac_proto(key); 3146 const struct nlattr *a; 3147 int rem, err; 3148 3149 if (depth > OVS_COPY_ACTIONS_MAX_DEPTH) 3150 return -EOVERFLOW; 3151 3152 nla_for_each_nested(a, attr, rem) { 3153 /* Expected argument lengths, (u32)-1 for variable length. */ 3154 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = { 3155 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32), 3156 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32), 3157 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1, 3158 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls), 3159 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16), 3160 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan), 3161 [OVS_ACTION_ATTR_POP_VLAN] = 0, 3162 [OVS_ACTION_ATTR_SET] = (u32)-1, 3163 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1, 3164 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1, 3165 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash), 3166 [OVS_ACTION_ATTR_CT] = (u32)-1, 3167 [OVS_ACTION_ATTR_CT_CLEAR] = 0, 3168 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc), 3169 [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth), 3170 [OVS_ACTION_ATTR_POP_ETH] = 0, 3171 [OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1, 3172 [OVS_ACTION_ATTR_POP_NSH] = 0, 3173 [OVS_ACTION_ATTR_METER] = sizeof(u32), 3174 [OVS_ACTION_ATTR_CLONE] = (u32)-1, 3175 [OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1, 3176 [OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls), 3177 [OVS_ACTION_ATTR_DEC_TTL] = (u32)-1, 3178 [OVS_ACTION_ATTR_DROP] = sizeof(u32), 3179 [OVS_ACTION_ATTR_PSAMPLE] = (u32)-1, 3180 }; 3181 const struct ovs_action_push_vlan *vlan; 3182 int type = nla_type(a); 3183 bool skip_copy; 3184 3185 if (type > OVS_ACTION_ATTR_MAX || 3186 (action_lens[type] != nla_len(a) && 3187 action_lens[type] != (u32)-1)) 3188 return -EINVAL; 3189 3190 skip_copy = false; 3191 switch (type) { 3192 case OVS_ACTION_ATTR_UNSPEC: 3193 return -EINVAL; 3194 3195 case OVS_ACTION_ATTR_USERSPACE: 3196 err = validate_userspace(a); 3197 if (err) 3198 return err; 3199 break; 3200 3201 case OVS_ACTION_ATTR_OUTPUT: 3202 if (nla_get_u32(a) >= DP_MAX_PORTS) 3203 return -EINVAL; 3204 break; 3205 3206 case OVS_ACTION_ATTR_TRUNC: { 3207 const struct ovs_action_trunc *trunc = nla_data(a); 3208 3209 if (trunc->max_len < ETH_HLEN) 3210 return -EINVAL; 3211 break; 3212 } 3213 3214 case OVS_ACTION_ATTR_HASH: { 3215 const struct ovs_action_hash *act_hash = nla_data(a); 3216 3217 switch (act_hash->hash_alg) { 3218 case OVS_HASH_ALG_L4: 3219 fallthrough; 3220 case OVS_HASH_ALG_SYM_L4: 3221 break; 3222 default: 3223 return -EINVAL; 3224 } 3225 3226 break; 3227 } 3228 3229 case OVS_ACTION_ATTR_POP_VLAN: 3230 if (mac_proto != MAC_PROTO_ETHERNET) 3231 return -EINVAL; 3232 vlan_tci = htons(0); 3233 break; 3234 3235 case OVS_ACTION_ATTR_PUSH_VLAN: 3236 if (mac_proto != MAC_PROTO_ETHERNET) 3237 return -EINVAL; 3238 vlan = nla_data(a); 3239 if (!eth_type_vlan(vlan->vlan_tpid)) 3240 return -EINVAL; 3241 if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK))) 3242 return -EINVAL; 3243 vlan_tci = vlan->vlan_tci; 3244 break; 3245 3246 case OVS_ACTION_ATTR_RECIRC: 3247 break; 3248 3249 case OVS_ACTION_ATTR_ADD_MPLS: { 3250 const struct ovs_action_add_mpls *mpls = nla_data(a); 3251 3252 if (!eth_p_mpls(mpls->mpls_ethertype)) 3253 return -EINVAL; 3254 3255 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) { 3256 if (vlan_tci & htons(VLAN_CFI_MASK) || 3257 (eth_type != htons(ETH_P_IP) && 3258 eth_type != htons(ETH_P_IPV6) && 3259 eth_type != htons(ETH_P_ARP) && 3260 eth_type != htons(ETH_P_RARP) && 3261 !eth_p_mpls(eth_type))) 3262 return -EINVAL; 3263 mpls_label_count++; 3264 } else { 3265 if (mac_proto == MAC_PROTO_ETHERNET) { 3266 mpls_label_count = 1; 3267 mac_proto = MAC_PROTO_NONE; 3268 } else { 3269 mpls_label_count++; 3270 } 3271 } 3272 eth_type = mpls->mpls_ethertype; 3273 break; 3274 } 3275 3276 case OVS_ACTION_ATTR_PUSH_MPLS: { 3277 const struct ovs_action_push_mpls *mpls = nla_data(a); 3278 3279 if (!eth_p_mpls(mpls->mpls_ethertype)) 3280 return -EINVAL; 3281 /* Prohibit push MPLS other than to a white list 3282 * for packets that have a known tag order. 3283 */ 3284 if (vlan_tci & htons(VLAN_CFI_MASK) || 3285 (eth_type != htons(ETH_P_IP) && 3286 eth_type != htons(ETH_P_IPV6) && 3287 eth_type != htons(ETH_P_ARP) && 3288 eth_type != htons(ETH_P_RARP) && 3289 !eth_p_mpls(eth_type))) 3290 return -EINVAL; 3291 eth_type = mpls->mpls_ethertype; 3292 mpls_label_count++; 3293 break; 3294 } 3295 3296 case OVS_ACTION_ATTR_POP_MPLS: { 3297 __be16 proto; 3298 if (vlan_tci & htons(VLAN_CFI_MASK) || 3299 !eth_p_mpls(eth_type)) 3300 return -EINVAL; 3301 3302 /* Disallow subsequent L2.5+ set actions and mpls_pop 3303 * actions once the last MPLS label in the packet is 3304 * popped as there is no check here to ensure that 3305 * the new eth type is valid and thus set actions could 3306 * write off the end of the packet or otherwise corrupt 3307 * it. 3308 * 3309 * Support for these actions is planned using packet 3310 * recirculation. 3311 */ 3312 proto = nla_get_be16(a); 3313 3314 if (proto == htons(ETH_P_TEB) && 3315 mac_proto != MAC_PROTO_NONE) 3316 return -EINVAL; 3317 3318 mpls_label_count--; 3319 3320 if (!eth_p_mpls(proto) || !mpls_label_count) 3321 eth_type = htons(0); 3322 else 3323 eth_type = proto; 3324 3325 break; 3326 } 3327 3328 case OVS_ACTION_ATTR_SET: 3329 err = validate_set(a, key, sfa, 3330 &skip_copy, mac_proto, eth_type, 3331 false, log); 3332 if (err) 3333 return err; 3334 break; 3335 3336 case OVS_ACTION_ATTR_SET_MASKED: 3337 err = validate_set(a, key, sfa, 3338 &skip_copy, mac_proto, eth_type, 3339 true, log); 3340 if (err) 3341 return err; 3342 break; 3343 3344 case OVS_ACTION_ATTR_SAMPLE: { 3345 bool last = nla_is_last(a, rem); 3346 3347 err = validate_and_copy_sample(net, a, key, sfa, 3348 eth_type, vlan_tci, 3349 mpls_label_count, 3350 log, last, depth); 3351 if (err) 3352 return err; 3353 skip_copy = true; 3354 break; 3355 } 3356 3357 case OVS_ACTION_ATTR_CT: 3358 err = ovs_ct_copy_action(net, a, key, sfa, log); 3359 if (err) 3360 return err; 3361 skip_copy = true; 3362 break; 3363 3364 case OVS_ACTION_ATTR_CT_CLEAR: 3365 break; 3366 3367 case OVS_ACTION_ATTR_PUSH_ETH: 3368 /* Disallow pushing an Ethernet header if one 3369 * is already present */ 3370 if (mac_proto != MAC_PROTO_NONE) 3371 return -EINVAL; 3372 mac_proto = MAC_PROTO_ETHERNET; 3373 break; 3374 3375 case OVS_ACTION_ATTR_POP_ETH: 3376 if (mac_proto != MAC_PROTO_ETHERNET) 3377 return -EINVAL; 3378 if (vlan_tci & htons(VLAN_CFI_MASK)) 3379 return -EINVAL; 3380 mac_proto = MAC_PROTO_NONE; 3381 break; 3382 3383 case OVS_ACTION_ATTR_PUSH_NSH: 3384 if (mac_proto != MAC_PROTO_ETHERNET) { 3385 u8 next_proto; 3386 3387 next_proto = tun_p_from_eth_p(eth_type); 3388 if (!next_proto) 3389 return -EINVAL; 3390 } 3391 mac_proto = MAC_PROTO_NONE; 3392 if (!validate_push_nsh(nla_data(a), log)) 3393 return -EINVAL; 3394 break; 3395 3396 case OVS_ACTION_ATTR_POP_NSH: { 3397 __be16 inner_proto; 3398 3399 if (eth_type != htons(ETH_P_NSH)) 3400 return -EINVAL; 3401 inner_proto = tun_p_to_eth_p(key->nsh.base.np); 3402 if (!inner_proto) 3403 return -EINVAL; 3404 if (key->nsh.base.np == TUN_P_ETHERNET) 3405 mac_proto = MAC_PROTO_ETHERNET; 3406 else 3407 mac_proto = MAC_PROTO_NONE; 3408 break; 3409 } 3410 3411 case OVS_ACTION_ATTR_METER: 3412 /* Non-existent meters are simply ignored. */ 3413 break; 3414 3415 case OVS_ACTION_ATTR_CLONE: { 3416 bool last = nla_is_last(a, rem); 3417 3418 err = validate_and_copy_clone(net, a, key, sfa, 3419 eth_type, vlan_tci, 3420 mpls_label_count, 3421 log, last, depth); 3422 if (err) 3423 return err; 3424 skip_copy = true; 3425 break; 3426 } 3427 3428 case OVS_ACTION_ATTR_CHECK_PKT_LEN: { 3429 bool last = nla_is_last(a, rem); 3430 3431 err = validate_and_copy_check_pkt_len(net, a, key, sfa, 3432 eth_type, 3433 vlan_tci, 3434 mpls_label_count, 3435 log, last, 3436 depth); 3437 if (err) 3438 return err; 3439 skip_copy = true; 3440 break; 3441 } 3442 3443 case OVS_ACTION_ATTR_DEC_TTL: 3444 err = validate_and_copy_dec_ttl(net, a, key, sfa, 3445 eth_type, vlan_tci, 3446 mpls_label_count, log, 3447 depth); 3448 if (err) 3449 return err; 3450 skip_copy = true; 3451 break; 3452 3453 case OVS_ACTION_ATTR_DROP: 3454 if (!nla_is_last(a, rem)) 3455 return -EINVAL; 3456 break; 3457 3458 case OVS_ACTION_ATTR_PSAMPLE: 3459 err = validate_psample(a); 3460 if (err) 3461 return err; 3462 break; 3463 3464 default: 3465 OVS_NLERR(log, "Unknown Action type %d", type); 3466 return -EINVAL; 3467 } 3468 if (!skip_copy) { 3469 err = copy_action(a, sfa, log); 3470 if (err) 3471 return err; 3472 } 3473 } 3474 3475 if (rem > 0) 3476 return -EINVAL; 3477 3478 return 0; 3479 } 3480 3481 /* 'key' must be the masked key. */ 3482 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 3483 const struct sw_flow_key *key, 3484 struct sw_flow_actions **sfa, bool log) 3485 { 3486 int err; 3487 u32 mpls_label_count = 0; 3488 3489 *sfa = nla_alloc_flow_actions(nla_len(attr)); 3490 if (IS_ERR(*sfa)) 3491 return PTR_ERR(*sfa); 3492 3493 if (eth_p_mpls(key->eth.type)) 3494 mpls_label_count = hweight_long(key->mpls.num_labels_mask); 3495 3496 (*sfa)->orig_len = nla_len(attr); 3497 err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type, 3498 key->eth.vlan.tci, mpls_label_count, log, 3499 0); 3500 if (err) 3501 ovs_nla_free_flow_actions(*sfa); 3502 3503 return err; 3504 } 3505 3506 static int sample_action_to_attr(const struct nlattr *attr, 3507 struct sk_buff *skb) 3508 { 3509 struct nlattr *start, *ac_start = NULL, *sample_arg; 3510 int err = 0, rem = nla_len(attr); 3511 const struct sample_arg *arg; 3512 struct nlattr *actions; 3513 3514 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE); 3515 if (!start) 3516 return -EMSGSIZE; 3517 3518 sample_arg = nla_data(attr); 3519 arg = nla_data(sample_arg); 3520 actions = nla_next(sample_arg, &rem); 3521 3522 if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) { 3523 err = -EMSGSIZE; 3524 goto out; 3525 } 3526 3527 ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS); 3528 if (!ac_start) { 3529 err = -EMSGSIZE; 3530 goto out; 3531 } 3532 3533 err = ovs_nla_put_actions(actions, rem, skb); 3534 3535 out: 3536 if (err) { 3537 nla_nest_cancel(skb, ac_start); 3538 nla_nest_cancel(skb, start); 3539 } else { 3540 nla_nest_end(skb, ac_start); 3541 nla_nest_end(skb, start); 3542 } 3543 3544 return err; 3545 } 3546 3547 static int clone_action_to_attr(const struct nlattr *attr, 3548 struct sk_buff *skb) 3549 { 3550 struct nlattr *start; 3551 int err = 0, rem = nla_len(attr); 3552 3553 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE); 3554 if (!start) 3555 return -EMSGSIZE; 3556 3557 /* Skipping the OVS_CLONE_ATTR_EXEC that is always the first attribute. */ 3558 attr = nla_next(nla_data(attr), &rem); 3559 err = ovs_nla_put_actions(attr, rem, skb); 3560 3561 if (err) 3562 nla_nest_cancel(skb, start); 3563 else 3564 nla_nest_end(skb, start); 3565 3566 return err; 3567 } 3568 3569 static int check_pkt_len_action_to_attr(const struct nlattr *attr, 3570 struct sk_buff *skb) 3571 { 3572 struct nlattr *start, *ac_start = NULL; 3573 const struct check_pkt_len_arg *arg; 3574 const struct nlattr *a, *cpl_arg; 3575 int err = 0, rem = nla_len(attr); 3576 3577 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN); 3578 if (!start) 3579 return -EMSGSIZE; 3580 3581 /* The first nested attribute in 'attr' is always 3582 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'. 3583 */ 3584 cpl_arg = nla_data(attr); 3585 arg = nla_data(cpl_arg); 3586 3587 if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) { 3588 err = -EMSGSIZE; 3589 goto out; 3590 } 3591 3592 /* Second nested attribute in 'attr' is always 3593 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'. 3594 */ 3595 a = nla_next(cpl_arg, &rem); 3596 ac_start = nla_nest_start_noflag(skb, 3597 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL); 3598 if (!ac_start) { 3599 err = -EMSGSIZE; 3600 goto out; 3601 } 3602 3603 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); 3604 if (err) { 3605 nla_nest_cancel(skb, ac_start); 3606 goto out; 3607 } else { 3608 nla_nest_end(skb, ac_start); 3609 } 3610 3611 /* Third nested attribute in 'attr' is always 3612 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER. 3613 */ 3614 a = nla_next(a, &rem); 3615 ac_start = nla_nest_start_noflag(skb, 3616 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER); 3617 if (!ac_start) { 3618 err = -EMSGSIZE; 3619 goto out; 3620 } 3621 3622 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); 3623 if (err) { 3624 nla_nest_cancel(skb, ac_start); 3625 goto out; 3626 } else { 3627 nla_nest_end(skb, ac_start); 3628 } 3629 3630 nla_nest_end(skb, start); 3631 return 0; 3632 3633 out: 3634 nla_nest_cancel(skb, start); 3635 return err; 3636 } 3637 3638 static int dec_ttl_action_to_attr(const struct nlattr *attr, 3639 struct sk_buff *skb) 3640 { 3641 struct nlattr *start, *action_start; 3642 const struct nlattr *a; 3643 int err = 0, rem; 3644 3645 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL); 3646 if (!start) 3647 return -EMSGSIZE; 3648 3649 nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) { 3650 switch (nla_type(a)) { 3651 case OVS_DEC_TTL_ATTR_ACTION: 3652 3653 action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION); 3654 if (!action_start) { 3655 err = -EMSGSIZE; 3656 goto out; 3657 } 3658 3659 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); 3660 if (err) 3661 goto out; 3662 3663 nla_nest_end(skb, action_start); 3664 break; 3665 3666 default: 3667 /* Ignore all other option to be future compatible */ 3668 break; 3669 } 3670 } 3671 3672 nla_nest_end(skb, start); 3673 return 0; 3674 3675 out: 3676 nla_nest_cancel(skb, start); 3677 return err; 3678 } 3679 3680 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb) 3681 { 3682 const struct nlattr *ovs_key = nla_data(a); 3683 int key_type = nla_type(ovs_key); 3684 struct nlattr *start; 3685 int err; 3686 3687 switch (key_type) { 3688 case OVS_KEY_ATTR_TUNNEL_INFO: { 3689 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key); 3690 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info; 3691 3692 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET); 3693 if (!start) 3694 return -EMSGSIZE; 3695 3696 err = ip_tun_to_nlattr(skb, &tun_info->key, 3697 ip_tunnel_info_opts(tun_info), 3698 tun_info->options_len, 3699 ip_tunnel_info_af(tun_info), tun_info->mode); 3700 if (err) 3701 return err; 3702 nla_nest_end(skb, start); 3703 break; 3704 } 3705 default: 3706 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key)) 3707 return -EMSGSIZE; 3708 break; 3709 } 3710 3711 return 0; 3712 } 3713 3714 static int masked_set_action_to_set_action_attr(const struct nlattr *a, 3715 struct sk_buff *skb) 3716 { 3717 const struct nlattr *ovs_key = nla_data(a); 3718 struct nlattr *nla; 3719 size_t key_len = nla_len(ovs_key) / 2; 3720 3721 /* Revert the conversion we did from a non-masked set action to 3722 * masked set action. 3723 */ 3724 nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET); 3725 if (!nla) 3726 return -EMSGSIZE; 3727 3728 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key))) 3729 return -EMSGSIZE; 3730 3731 nla_nest_end(skb, nla); 3732 return 0; 3733 } 3734 3735 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb) 3736 { 3737 const struct nlattr *a; 3738 int rem, err; 3739 3740 nla_for_each_attr(a, attr, len, rem) { 3741 int type = nla_type(a); 3742 3743 switch (type) { 3744 case OVS_ACTION_ATTR_SET: 3745 err = set_action_to_attr(a, skb); 3746 if (err) 3747 return err; 3748 break; 3749 3750 case OVS_ACTION_ATTR_SET_TO_MASKED: 3751 err = masked_set_action_to_set_action_attr(a, skb); 3752 if (err) 3753 return err; 3754 break; 3755 3756 case OVS_ACTION_ATTR_SAMPLE: 3757 err = sample_action_to_attr(a, skb); 3758 if (err) 3759 return err; 3760 break; 3761 3762 case OVS_ACTION_ATTR_CT: 3763 err = ovs_ct_action_to_attr(nla_data(a), skb); 3764 if (err) 3765 return err; 3766 break; 3767 3768 case OVS_ACTION_ATTR_CLONE: 3769 err = clone_action_to_attr(a, skb); 3770 if (err) 3771 return err; 3772 break; 3773 3774 case OVS_ACTION_ATTR_CHECK_PKT_LEN: 3775 err = check_pkt_len_action_to_attr(a, skb); 3776 if (err) 3777 return err; 3778 break; 3779 3780 case OVS_ACTION_ATTR_DEC_TTL: 3781 err = dec_ttl_action_to_attr(a, skb); 3782 if (err) 3783 return err; 3784 break; 3785 3786 default: 3787 if (nla_put(skb, type, nla_len(a), nla_data(a))) 3788 return -EMSGSIZE; 3789 break; 3790 } 3791 } 3792 3793 return 0; 3794 } 3795