1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include "flow.h" 22 #include "datapath.h" 23 #include <linux/uaccess.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/if_ether.h> 27 #include <linux/if_vlan.h> 28 #include <net/llc_pdu.h> 29 #include <linux/kernel.h> 30 #include <linux/jhash.h> 31 #include <linux/jiffies.h> 32 #include <linux/llc.h> 33 #include <linux/module.h> 34 #include <linux/in.h> 35 #include <linux/rcupdate.h> 36 #include <linux/if_arp.h> 37 #include <linux/ip.h> 38 #include <linux/ipv6.h> 39 #include <linux/sctp.h> 40 #include <linux/tcp.h> 41 #include <linux/udp.h> 42 #include <linux/icmp.h> 43 #include <linux/icmpv6.h> 44 #include <linux/rculist.h> 45 #include <net/geneve.h> 46 #include <net/ip.h> 47 #include <net/ipv6.h> 48 #include <net/ndisc.h> 49 #include <net/mpls.h> 50 #include <net/vxlan.h> 51 52 #include "flow_netlink.h" 53 54 struct ovs_len_tbl { 55 int len; 56 const struct ovs_len_tbl *next; 57 }; 58 59 #define OVS_ATTR_NESTED -1 60 #define OVS_ATTR_VARIABLE -2 61 62 static void update_range(struct sw_flow_match *match, 63 size_t offset, size_t size, bool is_mask) 64 { 65 struct sw_flow_key_range *range; 66 size_t start = rounddown(offset, sizeof(long)); 67 size_t end = roundup(offset + size, sizeof(long)); 68 69 if (!is_mask) 70 range = &match->range; 71 else 72 range = &match->mask->range; 73 74 if (range->start == range->end) { 75 range->start = start; 76 range->end = end; 77 return; 78 } 79 80 if (range->start > start) 81 range->start = start; 82 83 if (range->end < end) 84 range->end = end; 85 } 86 87 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ 88 do { \ 89 update_range(match, offsetof(struct sw_flow_key, field), \ 90 sizeof((match)->key->field), is_mask); \ 91 if (is_mask) \ 92 (match)->mask->key.field = value; \ 93 else \ 94 (match)->key->field = value; \ 95 } while (0) 96 97 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \ 98 do { \ 99 update_range(match, offset, len, is_mask); \ 100 if (is_mask) \ 101 memcpy((u8 *)&(match)->mask->key + offset, value_p, \ 102 len); \ 103 else \ 104 memcpy((u8 *)(match)->key + offset, value_p, len); \ 105 } while (0) 106 107 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ 108 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \ 109 value_p, len, is_mask) 110 111 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \ 112 do { \ 113 update_range(match, offsetof(struct sw_flow_key, field), \ 114 sizeof((match)->key->field), is_mask); \ 115 if (is_mask) \ 116 memset((u8 *)&(match)->mask->key.field, value, \ 117 sizeof((match)->mask->key.field)); \ 118 else \ 119 memset((u8 *)&(match)->key->field, value, \ 120 sizeof((match)->key->field)); \ 121 } while (0) 122 123 static bool match_validate(const struct sw_flow_match *match, 124 u64 key_attrs, u64 mask_attrs, bool log) 125 { 126 u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET; 127 u64 mask_allowed = key_attrs; /* At most allow all key attributes */ 128 129 /* The following mask attributes allowed only if they 130 * pass the validation tests. */ 131 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) 132 | (1 << OVS_KEY_ATTR_IPV6) 133 | (1 << OVS_KEY_ATTR_TCP) 134 | (1 << OVS_KEY_ATTR_TCP_FLAGS) 135 | (1 << OVS_KEY_ATTR_UDP) 136 | (1 << OVS_KEY_ATTR_SCTP) 137 | (1 << OVS_KEY_ATTR_ICMP) 138 | (1 << OVS_KEY_ATTR_ICMPV6) 139 | (1 << OVS_KEY_ATTR_ARP) 140 | (1 << OVS_KEY_ATTR_ND) 141 | (1 << OVS_KEY_ATTR_MPLS)); 142 143 /* Always allowed mask fields. */ 144 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) 145 | (1 << OVS_KEY_ATTR_IN_PORT) 146 | (1 << OVS_KEY_ATTR_ETHERTYPE)); 147 148 /* Check key attributes. */ 149 if (match->key->eth.type == htons(ETH_P_ARP) 150 || match->key->eth.type == htons(ETH_P_RARP)) { 151 key_expected |= 1 << OVS_KEY_ATTR_ARP; 152 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 153 mask_allowed |= 1 << OVS_KEY_ATTR_ARP; 154 } 155 156 if (eth_p_mpls(match->key->eth.type)) { 157 key_expected |= 1 << OVS_KEY_ATTR_MPLS; 158 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 159 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS; 160 } 161 162 if (match->key->eth.type == htons(ETH_P_IP)) { 163 key_expected |= 1 << OVS_KEY_ATTR_IPV4; 164 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 165 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; 166 167 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 168 if (match->key->ip.proto == IPPROTO_UDP) { 169 key_expected |= 1 << OVS_KEY_ATTR_UDP; 170 if (match->mask && (match->mask->key.ip.proto == 0xff)) 171 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 172 } 173 174 if (match->key->ip.proto == IPPROTO_SCTP) { 175 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 176 if (match->mask && (match->mask->key.ip.proto == 0xff)) 177 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 178 } 179 180 if (match->key->ip.proto == IPPROTO_TCP) { 181 key_expected |= 1 << OVS_KEY_ATTR_TCP; 182 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 183 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 184 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 185 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 186 } 187 } 188 189 if (match->key->ip.proto == IPPROTO_ICMP) { 190 key_expected |= 1 << OVS_KEY_ATTR_ICMP; 191 if (match->mask && (match->mask->key.ip.proto == 0xff)) 192 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; 193 } 194 } 195 } 196 197 if (match->key->eth.type == htons(ETH_P_IPV6)) { 198 key_expected |= 1 << OVS_KEY_ATTR_IPV6; 199 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 200 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; 201 202 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 203 if (match->key->ip.proto == IPPROTO_UDP) { 204 key_expected |= 1 << OVS_KEY_ATTR_UDP; 205 if (match->mask && (match->mask->key.ip.proto == 0xff)) 206 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 207 } 208 209 if (match->key->ip.proto == IPPROTO_SCTP) { 210 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 211 if (match->mask && (match->mask->key.ip.proto == 0xff)) 212 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 213 } 214 215 if (match->key->ip.proto == IPPROTO_TCP) { 216 key_expected |= 1 << OVS_KEY_ATTR_TCP; 217 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 218 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 219 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 220 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 221 } 222 } 223 224 if (match->key->ip.proto == IPPROTO_ICMPV6) { 225 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; 226 if (match->mask && (match->mask->key.ip.proto == 0xff)) 227 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; 228 229 if (match->key->tp.src == 230 htons(NDISC_NEIGHBOUR_SOLICITATION) || 231 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { 232 key_expected |= 1 << OVS_KEY_ATTR_ND; 233 if (match->mask && (match->mask->key.tp.src == htons(0xff))) 234 mask_allowed |= 1 << OVS_KEY_ATTR_ND; 235 } 236 } 237 } 238 } 239 240 if ((key_attrs & key_expected) != key_expected) { 241 /* Key attributes check failed. */ 242 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)", 243 (unsigned long long)key_attrs, 244 (unsigned long long)key_expected); 245 return false; 246 } 247 248 if ((mask_attrs & mask_allowed) != mask_attrs) { 249 /* Mask attributes check failed. */ 250 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)", 251 (unsigned long long)mask_attrs, 252 (unsigned long long)mask_allowed); 253 return false; 254 } 255 256 return true; 257 } 258 259 size_t ovs_tun_key_attr_size(void) 260 { 261 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider 262 * updating this function. 263 */ 264 return nla_total_size(8) /* OVS_TUNNEL_KEY_ATTR_ID */ 265 + nla_total_size(4) /* OVS_TUNNEL_KEY_ATTR_IPV4_SRC */ 266 + nla_total_size(4) /* OVS_TUNNEL_KEY_ATTR_IPV4_DST */ 267 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */ 268 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */ 269 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */ 270 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */ 271 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */ 272 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */ 273 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with 274 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it. 275 */ 276 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */ 277 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */ 278 } 279 280 size_t ovs_key_attr_size(void) 281 { 282 /* Whenever adding new OVS_KEY_ FIELDS, we should consider 283 * updating this function. 284 */ 285 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26); 286 287 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */ 288 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */ 289 + ovs_tun_key_attr_size() 290 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */ 291 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */ 292 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */ 293 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */ 294 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */ 295 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */ 296 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */ 297 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */ 298 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */ 299 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 300 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */ 301 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */ 302 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 303 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */ 304 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */ 305 + nla_total_size(28); /* OVS_KEY_ATTR_ND */ 306 } 307 308 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = { 309 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) }, 310 }; 311 312 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { 313 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) }, 314 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) }, 315 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) }, 316 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 }, 317 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 }, 318 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 }, 319 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 }, 320 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) }, 321 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) }, 322 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 }, 323 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE }, 324 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED, 325 .next = ovs_vxlan_ext_key_lens }, 326 }; 327 328 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ 329 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { 330 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED }, 331 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) }, 332 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) }, 333 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) }, 334 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) }, 335 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) }, 336 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) }, 337 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) }, 338 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) }, 339 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) }, 340 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) }, 341 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) }, 342 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) }, 343 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) }, 344 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) }, 345 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) }, 346 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) }, 347 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) }, 348 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) }, 349 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED, 350 .next = ovs_tunnel_key_lens, }, 351 [OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) }, 352 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) }, 353 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) }, 354 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) }, 355 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) }, 356 }; 357 358 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len) 359 { 360 return expected_len == attr_len || 361 expected_len == OVS_ATTR_NESTED || 362 expected_len == OVS_ATTR_VARIABLE; 363 } 364 365 static bool is_all_zero(const u8 *fp, size_t size) 366 { 367 int i; 368 369 if (!fp) 370 return false; 371 372 for (i = 0; i < size; i++) 373 if (fp[i]) 374 return false; 375 376 return true; 377 } 378 379 static int __parse_flow_nlattrs(const struct nlattr *attr, 380 const struct nlattr *a[], 381 u64 *attrsp, bool log, bool nz) 382 { 383 const struct nlattr *nla; 384 u64 attrs; 385 int rem; 386 387 attrs = *attrsp; 388 nla_for_each_nested(nla, attr, rem) { 389 u16 type = nla_type(nla); 390 int expected_len; 391 392 if (type > OVS_KEY_ATTR_MAX) { 393 OVS_NLERR(log, "Key type %d is out of range max %d", 394 type, OVS_KEY_ATTR_MAX); 395 return -EINVAL; 396 } 397 398 if (attrs & (1 << type)) { 399 OVS_NLERR(log, "Duplicate key (type %d).", type); 400 return -EINVAL; 401 } 402 403 expected_len = ovs_key_lens[type].len; 404 if (!check_attr_len(nla_len(nla), expected_len)) { 405 OVS_NLERR(log, "Key %d has unexpected len %d expected %d", 406 type, nla_len(nla), expected_len); 407 return -EINVAL; 408 } 409 410 if (!nz || !is_all_zero(nla_data(nla), expected_len)) { 411 attrs |= 1 << type; 412 a[type] = nla; 413 } 414 } 415 if (rem) { 416 OVS_NLERR(log, "Message has %d unknown bytes.", rem); 417 return -EINVAL; 418 } 419 420 *attrsp = attrs; 421 return 0; 422 } 423 424 static int parse_flow_mask_nlattrs(const struct nlattr *attr, 425 const struct nlattr *a[], u64 *attrsp, 426 bool log) 427 { 428 return __parse_flow_nlattrs(attr, a, attrsp, log, true); 429 } 430 431 static int parse_flow_nlattrs(const struct nlattr *attr, 432 const struct nlattr *a[], u64 *attrsp, 433 bool log) 434 { 435 return __parse_flow_nlattrs(attr, a, attrsp, log, false); 436 } 437 438 static int genev_tun_opt_from_nlattr(const struct nlattr *a, 439 struct sw_flow_match *match, bool is_mask, 440 bool log) 441 { 442 unsigned long opt_key_offset; 443 444 if (nla_len(a) > sizeof(match->key->tun_opts)) { 445 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).", 446 nla_len(a), sizeof(match->key->tun_opts)); 447 return -EINVAL; 448 } 449 450 if (nla_len(a) % 4 != 0) { 451 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.", 452 nla_len(a)); 453 return -EINVAL; 454 } 455 456 /* We need to record the length of the options passed 457 * down, otherwise packets with the same format but 458 * additional options will be silently matched. 459 */ 460 if (!is_mask) { 461 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a), 462 false); 463 } else { 464 /* This is somewhat unusual because it looks at 465 * both the key and mask while parsing the 466 * attributes (and by extension assumes the key 467 * is parsed first). Normally, we would verify 468 * that each is the correct length and that the 469 * attributes line up in the validate function. 470 * However, that is difficult because this is 471 * variable length and we won't have the 472 * information later. 473 */ 474 if (match->key->tun_opts_len != nla_len(a)) { 475 OVS_NLERR(log, "Geneve option len %d != mask len %d", 476 match->key->tun_opts_len, nla_len(a)); 477 return -EINVAL; 478 } 479 480 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 481 } 482 483 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); 484 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), 485 nla_len(a), is_mask); 486 return 0; 487 } 488 489 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr, 490 struct sw_flow_match *match, bool is_mask, 491 bool log) 492 { 493 struct nlattr *a; 494 int rem; 495 unsigned long opt_key_offset; 496 struct vxlan_metadata opts; 497 498 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts)); 499 500 memset(&opts, 0, sizeof(opts)); 501 nla_for_each_nested(a, attr, rem) { 502 int type = nla_type(a); 503 504 if (type > OVS_VXLAN_EXT_MAX) { 505 OVS_NLERR(log, "VXLAN extension %d out of range max %d", 506 type, OVS_VXLAN_EXT_MAX); 507 return -EINVAL; 508 } 509 510 if (!check_attr_len(nla_len(a), 511 ovs_vxlan_ext_key_lens[type].len)) { 512 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d", 513 type, nla_len(a), 514 ovs_vxlan_ext_key_lens[type].len); 515 return -EINVAL; 516 } 517 518 switch (type) { 519 case OVS_VXLAN_EXT_GBP: 520 opts.gbp = nla_get_u32(a); 521 break; 522 default: 523 OVS_NLERR(log, "Unknown VXLAN extension attribute %d", 524 type); 525 return -EINVAL; 526 } 527 } 528 if (rem) { 529 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.", 530 rem); 531 return -EINVAL; 532 } 533 534 if (!is_mask) 535 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false); 536 else 537 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 538 539 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts)); 540 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts), 541 is_mask); 542 return 0; 543 } 544 545 static int ipv4_tun_from_nlattr(const struct nlattr *attr, 546 struct sw_flow_match *match, bool is_mask, 547 bool log) 548 { 549 struct nlattr *a; 550 int rem; 551 bool ttl = false; 552 __be16 tun_flags = 0; 553 int opts_type = 0; 554 555 nla_for_each_nested(a, attr, rem) { 556 int type = nla_type(a); 557 int err; 558 559 if (type > OVS_TUNNEL_KEY_ATTR_MAX) { 560 OVS_NLERR(log, "Tunnel attr %d out of range max %d", 561 type, OVS_TUNNEL_KEY_ATTR_MAX); 562 return -EINVAL; 563 } 564 565 if (!check_attr_len(nla_len(a), 566 ovs_tunnel_key_lens[type].len)) { 567 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d", 568 type, nla_len(a), ovs_tunnel_key_lens[type].len); 569 return -EINVAL; 570 } 571 572 switch (type) { 573 case OVS_TUNNEL_KEY_ATTR_ID: 574 SW_FLOW_KEY_PUT(match, tun_key.tun_id, 575 nla_get_be64(a), is_mask); 576 tun_flags |= TUNNEL_KEY; 577 break; 578 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: 579 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src, 580 nla_get_in_addr(a), is_mask); 581 break; 582 case OVS_TUNNEL_KEY_ATTR_IPV4_DST: 583 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst, 584 nla_get_in_addr(a), is_mask); 585 break; 586 case OVS_TUNNEL_KEY_ATTR_TOS: 587 SW_FLOW_KEY_PUT(match, tun_key.tos, 588 nla_get_u8(a), is_mask); 589 break; 590 case OVS_TUNNEL_KEY_ATTR_TTL: 591 SW_FLOW_KEY_PUT(match, tun_key.ttl, 592 nla_get_u8(a), is_mask); 593 ttl = true; 594 break; 595 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: 596 tun_flags |= TUNNEL_DONT_FRAGMENT; 597 break; 598 case OVS_TUNNEL_KEY_ATTR_CSUM: 599 tun_flags |= TUNNEL_CSUM; 600 break; 601 case OVS_TUNNEL_KEY_ATTR_TP_SRC: 602 SW_FLOW_KEY_PUT(match, tun_key.tp_src, 603 nla_get_be16(a), is_mask); 604 break; 605 case OVS_TUNNEL_KEY_ATTR_TP_DST: 606 SW_FLOW_KEY_PUT(match, tun_key.tp_dst, 607 nla_get_be16(a), is_mask); 608 break; 609 case OVS_TUNNEL_KEY_ATTR_OAM: 610 tun_flags |= TUNNEL_OAM; 611 break; 612 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 613 if (opts_type) { 614 OVS_NLERR(log, "Multiple metadata blocks provided"); 615 return -EINVAL; 616 } 617 618 err = genev_tun_opt_from_nlattr(a, match, is_mask, log); 619 if (err) 620 return err; 621 622 tun_flags |= TUNNEL_GENEVE_OPT; 623 opts_type = type; 624 break; 625 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 626 if (opts_type) { 627 OVS_NLERR(log, "Multiple metadata blocks provided"); 628 return -EINVAL; 629 } 630 631 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log); 632 if (err) 633 return err; 634 635 tun_flags |= TUNNEL_VXLAN_OPT; 636 opts_type = type; 637 break; 638 default: 639 OVS_NLERR(log, "Unknown IPv4 tunnel attribute %d", 640 type); 641 return -EINVAL; 642 } 643 } 644 645 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); 646 647 if (rem > 0) { 648 OVS_NLERR(log, "IPv4 tunnel attribute has %d unknown bytes.", 649 rem); 650 return -EINVAL; 651 } 652 653 if (!is_mask) { 654 if (!match->key->tun_key.u.ipv4.dst) { 655 OVS_NLERR(log, "IPv4 tunnel dst address is zero"); 656 return -EINVAL; 657 } 658 659 if (!ttl) { 660 OVS_NLERR(log, "IPv4 tunnel TTL not specified."); 661 return -EINVAL; 662 } 663 } 664 665 return opts_type; 666 } 667 668 static int vxlan_opt_to_nlattr(struct sk_buff *skb, 669 const void *tun_opts, int swkey_tun_opts_len) 670 { 671 const struct vxlan_metadata *opts = tun_opts; 672 struct nlattr *nla; 673 674 nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS); 675 if (!nla) 676 return -EMSGSIZE; 677 678 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0) 679 return -EMSGSIZE; 680 681 nla_nest_end(skb, nla); 682 return 0; 683 } 684 685 static int __ipv4_tun_to_nlattr(struct sk_buff *skb, 686 const struct ip_tunnel_key *output, 687 const void *tun_opts, int swkey_tun_opts_len) 688 { 689 if (output->tun_flags & TUNNEL_KEY && 690 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id)) 691 return -EMSGSIZE; 692 if (output->u.ipv4.src && 693 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, 694 output->u.ipv4.src)) 695 return -EMSGSIZE; 696 if (output->u.ipv4.dst && 697 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, 698 output->u.ipv4.dst)) 699 return -EMSGSIZE; 700 if (output->tos && 701 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos)) 702 return -EMSGSIZE; 703 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl)) 704 return -EMSGSIZE; 705 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && 706 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) 707 return -EMSGSIZE; 708 if ((output->tun_flags & TUNNEL_CSUM) && 709 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) 710 return -EMSGSIZE; 711 if (output->tp_src && 712 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src)) 713 return -EMSGSIZE; 714 if (output->tp_dst && 715 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst)) 716 return -EMSGSIZE; 717 if ((output->tun_flags & TUNNEL_OAM) && 718 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM)) 719 return -EMSGSIZE; 720 if (swkey_tun_opts_len) { 721 if (output->tun_flags & TUNNEL_GENEVE_OPT && 722 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS, 723 swkey_tun_opts_len, tun_opts)) 724 return -EMSGSIZE; 725 else if (output->tun_flags & TUNNEL_VXLAN_OPT && 726 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len)) 727 return -EMSGSIZE; 728 } 729 730 return 0; 731 } 732 733 static int ipv4_tun_to_nlattr(struct sk_buff *skb, 734 const struct ip_tunnel_key *output, 735 const void *tun_opts, int swkey_tun_opts_len) 736 { 737 struct nlattr *nla; 738 int err; 739 740 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL); 741 if (!nla) 742 return -EMSGSIZE; 743 744 err = __ipv4_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len); 745 if (err) 746 return err; 747 748 nla_nest_end(skb, nla); 749 return 0; 750 } 751 752 int ovs_nla_put_tunnel_info(struct sk_buff *skb, 753 struct ip_tunnel_info *tun_info) 754 { 755 return __ipv4_tun_to_nlattr(skb, &tun_info->key, 756 ip_tunnel_info_opts(tun_info), 757 tun_info->options_len); 758 } 759 760 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match, 761 u64 *attrs, const struct nlattr **a, 762 bool is_mask, bool log) 763 { 764 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) { 765 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]); 766 767 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask); 768 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH); 769 } 770 771 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) { 772 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]); 773 774 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask); 775 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID); 776 } 777 778 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { 779 SW_FLOW_KEY_PUT(match, phy.priority, 780 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); 781 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); 782 } 783 784 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { 785 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); 786 787 if (is_mask) { 788 in_port = 0xffffffff; /* Always exact match in_port. */ 789 } else if (in_port >= DP_MAX_PORTS) { 790 OVS_NLERR(log, "Port %d exceeds max allowable %d", 791 in_port, DP_MAX_PORTS); 792 return -EINVAL; 793 } 794 795 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); 796 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); 797 } else if (!is_mask) { 798 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); 799 } 800 801 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { 802 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); 803 804 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); 805 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); 806 } 807 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { 808 if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, 809 is_mask, log) < 0) 810 return -EINVAL; 811 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); 812 } 813 814 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) && 815 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) { 816 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]); 817 818 if (ct_state & ~CT_SUPPORTED_MASK) { 819 OVS_NLERR(log, "ct_state flags %08x unsupported", 820 ct_state); 821 return -EINVAL; 822 } 823 824 SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask); 825 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE); 826 } 827 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) && 828 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) { 829 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]); 830 831 SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask); 832 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE); 833 } 834 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) && 835 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) { 836 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]); 837 838 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask); 839 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK); 840 } 841 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) && 842 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) { 843 const struct ovs_key_ct_labels *cl; 844 845 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]); 846 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels, 847 sizeof(*cl), is_mask); 848 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS); 849 } 850 return 0; 851 } 852 853 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match, 854 u64 attrs, const struct nlattr **a, 855 bool is_mask, bool log) 856 { 857 int err; 858 859 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log); 860 if (err) 861 return err; 862 863 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { 864 const struct ovs_key_ethernet *eth_key; 865 866 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); 867 SW_FLOW_KEY_MEMCPY(match, eth.src, 868 eth_key->eth_src, ETH_ALEN, is_mask); 869 SW_FLOW_KEY_MEMCPY(match, eth.dst, 870 eth_key->eth_dst, ETH_ALEN, is_mask); 871 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); 872 } 873 874 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { 875 __be16 tci; 876 877 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 878 if (!(tci & htons(VLAN_TAG_PRESENT))) { 879 if (is_mask) 880 OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit."); 881 else 882 OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set."); 883 884 return -EINVAL; 885 } 886 887 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask); 888 attrs &= ~(1 << OVS_KEY_ATTR_VLAN); 889 } 890 891 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { 892 __be16 eth_type; 893 894 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 895 if (is_mask) { 896 /* Always exact match EtherType. */ 897 eth_type = htons(0xffff); 898 } else if (!eth_proto_is_802_3(eth_type)) { 899 OVS_NLERR(log, "EtherType %x is less than min %x", 900 ntohs(eth_type), ETH_P_802_3_MIN); 901 return -EINVAL; 902 } 903 904 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); 905 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 906 } else if (!is_mask) { 907 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); 908 } 909 910 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { 911 const struct ovs_key_ipv4 *ipv4_key; 912 913 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); 914 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { 915 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d", 916 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); 917 return -EINVAL; 918 } 919 SW_FLOW_KEY_PUT(match, ip.proto, 920 ipv4_key->ipv4_proto, is_mask); 921 SW_FLOW_KEY_PUT(match, ip.tos, 922 ipv4_key->ipv4_tos, is_mask); 923 SW_FLOW_KEY_PUT(match, ip.ttl, 924 ipv4_key->ipv4_ttl, is_mask); 925 SW_FLOW_KEY_PUT(match, ip.frag, 926 ipv4_key->ipv4_frag, is_mask); 927 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 928 ipv4_key->ipv4_src, is_mask); 929 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 930 ipv4_key->ipv4_dst, is_mask); 931 attrs &= ~(1 << OVS_KEY_ATTR_IPV4); 932 } 933 934 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { 935 const struct ovs_key_ipv6 *ipv6_key; 936 937 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); 938 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { 939 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d", 940 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); 941 return -EINVAL; 942 } 943 944 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) { 945 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n", 946 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1); 947 return -EINVAL; 948 } 949 950 SW_FLOW_KEY_PUT(match, ipv6.label, 951 ipv6_key->ipv6_label, is_mask); 952 SW_FLOW_KEY_PUT(match, ip.proto, 953 ipv6_key->ipv6_proto, is_mask); 954 SW_FLOW_KEY_PUT(match, ip.tos, 955 ipv6_key->ipv6_tclass, is_mask); 956 SW_FLOW_KEY_PUT(match, ip.ttl, 957 ipv6_key->ipv6_hlimit, is_mask); 958 SW_FLOW_KEY_PUT(match, ip.frag, 959 ipv6_key->ipv6_frag, is_mask); 960 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, 961 ipv6_key->ipv6_src, 962 sizeof(match->key->ipv6.addr.src), 963 is_mask); 964 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, 965 ipv6_key->ipv6_dst, 966 sizeof(match->key->ipv6.addr.dst), 967 is_mask); 968 969 attrs &= ~(1 << OVS_KEY_ATTR_IPV6); 970 } 971 972 if (attrs & (1 << OVS_KEY_ATTR_ARP)) { 973 const struct ovs_key_arp *arp_key; 974 975 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); 976 if (!is_mask && (arp_key->arp_op & htons(0xff00))) { 977 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).", 978 arp_key->arp_op); 979 return -EINVAL; 980 } 981 982 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 983 arp_key->arp_sip, is_mask); 984 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 985 arp_key->arp_tip, is_mask); 986 SW_FLOW_KEY_PUT(match, ip.proto, 987 ntohs(arp_key->arp_op), is_mask); 988 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, 989 arp_key->arp_sha, ETH_ALEN, is_mask); 990 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, 991 arp_key->arp_tha, ETH_ALEN, is_mask); 992 993 attrs &= ~(1 << OVS_KEY_ATTR_ARP); 994 } 995 996 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) { 997 const struct ovs_key_mpls *mpls_key; 998 999 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]); 1000 SW_FLOW_KEY_PUT(match, mpls.top_lse, 1001 mpls_key->mpls_lse, is_mask); 1002 1003 attrs &= ~(1 << OVS_KEY_ATTR_MPLS); 1004 } 1005 1006 if (attrs & (1 << OVS_KEY_ATTR_TCP)) { 1007 const struct ovs_key_tcp *tcp_key; 1008 1009 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 1010 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask); 1011 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask); 1012 attrs &= ~(1 << OVS_KEY_ATTR_TCP); 1013 } 1014 1015 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) { 1016 SW_FLOW_KEY_PUT(match, tp.flags, 1017 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), 1018 is_mask); 1019 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS); 1020 } 1021 1022 if (attrs & (1 << OVS_KEY_ATTR_UDP)) { 1023 const struct ovs_key_udp *udp_key; 1024 1025 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 1026 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask); 1027 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask); 1028 attrs &= ~(1 << OVS_KEY_ATTR_UDP); 1029 } 1030 1031 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { 1032 const struct ovs_key_sctp *sctp_key; 1033 1034 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); 1035 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask); 1036 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask); 1037 attrs &= ~(1 << OVS_KEY_ATTR_SCTP); 1038 } 1039 1040 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { 1041 const struct ovs_key_icmp *icmp_key; 1042 1043 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); 1044 SW_FLOW_KEY_PUT(match, tp.src, 1045 htons(icmp_key->icmp_type), is_mask); 1046 SW_FLOW_KEY_PUT(match, tp.dst, 1047 htons(icmp_key->icmp_code), is_mask); 1048 attrs &= ~(1 << OVS_KEY_ATTR_ICMP); 1049 } 1050 1051 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { 1052 const struct ovs_key_icmpv6 *icmpv6_key; 1053 1054 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); 1055 SW_FLOW_KEY_PUT(match, tp.src, 1056 htons(icmpv6_key->icmpv6_type), is_mask); 1057 SW_FLOW_KEY_PUT(match, tp.dst, 1058 htons(icmpv6_key->icmpv6_code), is_mask); 1059 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); 1060 } 1061 1062 if (attrs & (1 << OVS_KEY_ATTR_ND)) { 1063 const struct ovs_key_nd *nd_key; 1064 1065 nd_key = nla_data(a[OVS_KEY_ATTR_ND]); 1066 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, 1067 nd_key->nd_target, 1068 sizeof(match->key->ipv6.nd.target), 1069 is_mask); 1070 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, 1071 nd_key->nd_sll, ETH_ALEN, is_mask); 1072 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, 1073 nd_key->nd_tll, ETH_ALEN, is_mask); 1074 attrs &= ~(1 << OVS_KEY_ATTR_ND); 1075 } 1076 1077 if (attrs != 0) { 1078 OVS_NLERR(log, "Unknown key attributes %llx", 1079 (unsigned long long)attrs); 1080 return -EINVAL; 1081 } 1082 1083 return 0; 1084 } 1085 1086 static void nlattr_set(struct nlattr *attr, u8 val, 1087 const struct ovs_len_tbl *tbl) 1088 { 1089 struct nlattr *nla; 1090 int rem; 1091 1092 /* The nlattr stream should already have been validated */ 1093 nla_for_each_nested(nla, attr, rem) { 1094 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) { 1095 if (tbl[nla_type(nla)].next) 1096 tbl = tbl[nla_type(nla)].next; 1097 nlattr_set(nla, val, tbl); 1098 } else { 1099 memset(nla_data(nla), val, nla_len(nla)); 1100 } 1101 1102 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE) 1103 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK; 1104 } 1105 } 1106 1107 static void mask_set_nlattr(struct nlattr *attr, u8 val) 1108 { 1109 nlattr_set(attr, val, ovs_key_lens); 1110 } 1111 1112 /** 1113 * ovs_nla_get_match - parses Netlink attributes into a flow key and 1114 * mask. In case the 'mask' is NULL, the flow is treated as exact match 1115 * flow. Otherwise, it is treated as a wildcarded flow, except the mask 1116 * does not include any don't care bit. 1117 * @net: Used to determine per-namespace field support. 1118 * @match: receives the extracted flow match information. 1119 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1120 * sequence. The fields should of the packet that triggered the creation 1121 * of this flow. 1122 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink 1123 * attribute specifies the mask field of the wildcarded flow. 1124 * @log: Boolean to allow kernel error logging. Normally true, but when 1125 * probing for feature compatibility this should be passed in as false to 1126 * suppress unnecessary error logging. 1127 */ 1128 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match, 1129 const struct nlattr *nla_key, 1130 const struct nlattr *nla_mask, 1131 bool log) 1132 { 1133 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 1134 const struct nlattr *encap; 1135 struct nlattr *newmask = NULL; 1136 u64 key_attrs = 0; 1137 u64 mask_attrs = 0; 1138 bool encap_valid = false; 1139 int err; 1140 1141 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log); 1142 if (err) 1143 return err; 1144 1145 if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && 1146 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && 1147 (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) { 1148 __be16 tci; 1149 1150 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && 1151 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { 1152 OVS_NLERR(log, "Invalid Vlan frame."); 1153 return -EINVAL; 1154 } 1155 1156 key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1157 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1158 encap = a[OVS_KEY_ATTR_ENCAP]; 1159 key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); 1160 encap_valid = true; 1161 1162 if (tci & htons(VLAN_TAG_PRESENT)) { 1163 err = parse_flow_nlattrs(encap, a, &key_attrs, log); 1164 if (err) 1165 return err; 1166 } else if (!tci) { 1167 /* Corner case for truncated 802.1Q header. */ 1168 if (nla_len(encap)) { 1169 OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute."); 1170 return -EINVAL; 1171 } 1172 } else { 1173 OVS_NLERR(log, "Encap attr is set for non-VLAN frame"); 1174 return -EINVAL; 1175 } 1176 } 1177 1178 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log); 1179 if (err) 1180 return err; 1181 1182 if (match->mask) { 1183 if (!nla_mask) { 1184 /* Create an exact match mask. We need to set to 0xff 1185 * all the 'match->mask' fields that have been touched 1186 * in 'match->key'. We cannot simply memset 1187 * 'match->mask', because padding bytes and fields not 1188 * specified in 'match->key' should be left to 0. 1189 * Instead, we use a stream of netlink attributes, 1190 * copied from 'key' and set to 0xff. 1191 * ovs_key_from_nlattrs() will take care of filling 1192 * 'match->mask' appropriately. 1193 */ 1194 newmask = kmemdup(nla_key, 1195 nla_total_size(nla_len(nla_key)), 1196 GFP_KERNEL); 1197 if (!newmask) 1198 return -ENOMEM; 1199 1200 mask_set_nlattr(newmask, 0xff); 1201 1202 /* The userspace does not send tunnel attributes that 1203 * are 0, but we should not wildcard them nonetheless. 1204 */ 1205 if (match->key->tun_key.u.ipv4.dst) 1206 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key, 1207 0xff, true); 1208 1209 nla_mask = newmask; 1210 } 1211 1212 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log); 1213 if (err) 1214 goto free_newmask; 1215 1216 /* Always match on tci. */ 1217 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true); 1218 1219 if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) { 1220 __be16 eth_type = 0; 1221 __be16 tci = 0; 1222 1223 if (!encap_valid) { 1224 OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame."); 1225 err = -EINVAL; 1226 goto free_newmask; 1227 } 1228 1229 mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); 1230 if (a[OVS_KEY_ATTR_ETHERTYPE]) 1231 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1232 1233 if (eth_type == htons(0xffff)) { 1234 mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1235 encap = a[OVS_KEY_ATTR_ENCAP]; 1236 err = parse_flow_mask_nlattrs(encap, a, 1237 &mask_attrs, log); 1238 if (err) 1239 goto free_newmask; 1240 } else { 1241 OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).", 1242 ntohs(eth_type)); 1243 err = -EINVAL; 1244 goto free_newmask; 1245 } 1246 1247 if (a[OVS_KEY_ATTR_VLAN]) 1248 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1249 1250 if (!(tci & htons(VLAN_TAG_PRESENT))) { 1251 OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).", 1252 ntohs(tci)); 1253 err = -EINVAL; 1254 goto free_newmask; 1255 } 1256 } 1257 1258 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true, 1259 log); 1260 if (err) 1261 goto free_newmask; 1262 } 1263 1264 if (!match_validate(match, key_attrs, mask_attrs, log)) 1265 err = -EINVAL; 1266 1267 free_newmask: 1268 kfree(newmask); 1269 return err; 1270 } 1271 1272 static size_t get_ufid_len(const struct nlattr *attr, bool log) 1273 { 1274 size_t len; 1275 1276 if (!attr) 1277 return 0; 1278 1279 len = nla_len(attr); 1280 if (len < 1 || len > MAX_UFID_LENGTH) { 1281 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)", 1282 nla_len(attr), MAX_UFID_LENGTH); 1283 return 0; 1284 } 1285 1286 return len; 1287 } 1288 1289 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID, 1290 * or false otherwise. 1291 */ 1292 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr, 1293 bool log) 1294 { 1295 sfid->ufid_len = get_ufid_len(attr, log); 1296 if (sfid->ufid_len) 1297 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len); 1298 1299 return sfid->ufid_len; 1300 } 1301 1302 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid, 1303 const struct sw_flow_key *key, bool log) 1304 { 1305 struct sw_flow_key *new_key; 1306 1307 if (ovs_nla_get_ufid(sfid, ufid, log)) 1308 return 0; 1309 1310 /* If UFID was not provided, use unmasked key. */ 1311 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL); 1312 if (!new_key) 1313 return -ENOMEM; 1314 memcpy(new_key, key, sizeof(*key)); 1315 sfid->unmasked_key = new_key; 1316 1317 return 0; 1318 } 1319 1320 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr) 1321 { 1322 return attr ? nla_get_u32(attr) : 0; 1323 } 1324 1325 /** 1326 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key. 1327 * @key: Receives extracted in_port, priority, tun_key and skb_mark. 1328 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1329 * sequence. 1330 * @log: Boolean to allow kernel error logging. Normally true, but when 1331 * probing for feature compatibility this should be passed in as false to 1332 * suppress unnecessary error logging. 1333 * 1334 * This parses a series of Netlink attributes that form a flow key, which must 1335 * take the same form accepted by flow_from_nlattrs(), but only enough of it to 1336 * get the metadata, that is, the parts of the flow key that cannot be 1337 * extracted from the packet itself. 1338 */ 1339 1340 int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr, 1341 struct sw_flow_key *key, 1342 bool log) 1343 { 1344 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 1345 struct sw_flow_match match; 1346 u64 attrs = 0; 1347 int err; 1348 1349 err = parse_flow_nlattrs(attr, a, &attrs, log); 1350 if (err) 1351 return -EINVAL; 1352 1353 memset(&match, 0, sizeof(match)); 1354 match.key = key; 1355 1356 memset(&key->ct, 0, sizeof(key->ct)); 1357 key->phy.in_port = DP_MAX_PORTS; 1358 1359 return metadata_from_nlattrs(net, &match, &attrs, a, false, log); 1360 } 1361 1362 static int __ovs_nla_put_key(const struct sw_flow_key *swkey, 1363 const struct sw_flow_key *output, bool is_mask, 1364 struct sk_buff *skb) 1365 { 1366 struct ovs_key_ethernet *eth_key; 1367 struct nlattr *nla, *encap; 1368 1369 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id)) 1370 goto nla_put_failure; 1371 1372 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash)) 1373 goto nla_put_failure; 1374 1375 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) 1376 goto nla_put_failure; 1377 1378 if ((swkey->tun_key.u.ipv4.dst || is_mask)) { 1379 const void *opts = NULL; 1380 1381 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT) 1382 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len); 1383 1384 if (ipv4_tun_to_nlattr(skb, &output->tun_key, opts, 1385 swkey->tun_opts_len)) 1386 goto nla_put_failure; 1387 } 1388 1389 if (swkey->phy.in_port == DP_MAX_PORTS) { 1390 if (is_mask && (output->phy.in_port == 0xffff)) 1391 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) 1392 goto nla_put_failure; 1393 } else { 1394 u16 upper_u16; 1395 upper_u16 = !is_mask ? 0 : 0xffff; 1396 1397 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 1398 (upper_u16 << 16) | output->phy.in_port)) 1399 goto nla_put_failure; 1400 } 1401 1402 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) 1403 goto nla_put_failure; 1404 1405 if (ovs_ct_put_key(output, skb)) 1406 goto nla_put_failure; 1407 1408 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); 1409 if (!nla) 1410 goto nla_put_failure; 1411 1412 eth_key = nla_data(nla); 1413 ether_addr_copy(eth_key->eth_src, output->eth.src); 1414 ether_addr_copy(eth_key->eth_dst, output->eth.dst); 1415 1416 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { 1417 __be16 eth_type; 1418 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff); 1419 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || 1420 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci)) 1421 goto nla_put_failure; 1422 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); 1423 if (!swkey->eth.tci) 1424 goto unencap; 1425 } else 1426 encap = NULL; 1427 1428 if (swkey->eth.type == htons(ETH_P_802_2)) { 1429 /* 1430 * Ethertype 802.2 is represented in the netlink with omitted 1431 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and 1432 * 0xffff in the mask attribute. Ethertype can also 1433 * be wildcarded. 1434 */ 1435 if (is_mask && output->eth.type) 1436 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, 1437 output->eth.type)) 1438 goto nla_put_failure; 1439 goto unencap; 1440 } 1441 1442 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) 1443 goto nla_put_failure; 1444 1445 if (swkey->eth.type == htons(ETH_P_IP)) { 1446 struct ovs_key_ipv4 *ipv4_key; 1447 1448 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); 1449 if (!nla) 1450 goto nla_put_failure; 1451 ipv4_key = nla_data(nla); 1452 ipv4_key->ipv4_src = output->ipv4.addr.src; 1453 ipv4_key->ipv4_dst = output->ipv4.addr.dst; 1454 ipv4_key->ipv4_proto = output->ip.proto; 1455 ipv4_key->ipv4_tos = output->ip.tos; 1456 ipv4_key->ipv4_ttl = output->ip.ttl; 1457 ipv4_key->ipv4_frag = output->ip.frag; 1458 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1459 struct ovs_key_ipv6 *ipv6_key; 1460 1461 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); 1462 if (!nla) 1463 goto nla_put_failure; 1464 ipv6_key = nla_data(nla); 1465 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, 1466 sizeof(ipv6_key->ipv6_src)); 1467 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, 1468 sizeof(ipv6_key->ipv6_dst)); 1469 ipv6_key->ipv6_label = output->ipv6.label; 1470 ipv6_key->ipv6_proto = output->ip.proto; 1471 ipv6_key->ipv6_tclass = output->ip.tos; 1472 ipv6_key->ipv6_hlimit = output->ip.ttl; 1473 ipv6_key->ipv6_frag = output->ip.frag; 1474 } else if (swkey->eth.type == htons(ETH_P_ARP) || 1475 swkey->eth.type == htons(ETH_P_RARP)) { 1476 struct ovs_key_arp *arp_key; 1477 1478 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); 1479 if (!nla) 1480 goto nla_put_failure; 1481 arp_key = nla_data(nla); 1482 memset(arp_key, 0, sizeof(struct ovs_key_arp)); 1483 arp_key->arp_sip = output->ipv4.addr.src; 1484 arp_key->arp_tip = output->ipv4.addr.dst; 1485 arp_key->arp_op = htons(output->ip.proto); 1486 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha); 1487 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha); 1488 } else if (eth_p_mpls(swkey->eth.type)) { 1489 struct ovs_key_mpls *mpls_key; 1490 1491 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key)); 1492 if (!nla) 1493 goto nla_put_failure; 1494 mpls_key = nla_data(nla); 1495 mpls_key->mpls_lse = output->mpls.top_lse; 1496 } 1497 1498 if ((swkey->eth.type == htons(ETH_P_IP) || 1499 swkey->eth.type == htons(ETH_P_IPV6)) && 1500 swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1501 1502 if (swkey->ip.proto == IPPROTO_TCP) { 1503 struct ovs_key_tcp *tcp_key; 1504 1505 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); 1506 if (!nla) 1507 goto nla_put_failure; 1508 tcp_key = nla_data(nla); 1509 tcp_key->tcp_src = output->tp.src; 1510 tcp_key->tcp_dst = output->tp.dst; 1511 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS, 1512 output->tp.flags)) 1513 goto nla_put_failure; 1514 } else if (swkey->ip.proto == IPPROTO_UDP) { 1515 struct ovs_key_udp *udp_key; 1516 1517 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); 1518 if (!nla) 1519 goto nla_put_failure; 1520 udp_key = nla_data(nla); 1521 udp_key->udp_src = output->tp.src; 1522 udp_key->udp_dst = output->tp.dst; 1523 } else if (swkey->ip.proto == IPPROTO_SCTP) { 1524 struct ovs_key_sctp *sctp_key; 1525 1526 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); 1527 if (!nla) 1528 goto nla_put_failure; 1529 sctp_key = nla_data(nla); 1530 sctp_key->sctp_src = output->tp.src; 1531 sctp_key->sctp_dst = output->tp.dst; 1532 } else if (swkey->eth.type == htons(ETH_P_IP) && 1533 swkey->ip.proto == IPPROTO_ICMP) { 1534 struct ovs_key_icmp *icmp_key; 1535 1536 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); 1537 if (!nla) 1538 goto nla_put_failure; 1539 icmp_key = nla_data(nla); 1540 icmp_key->icmp_type = ntohs(output->tp.src); 1541 icmp_key->icmp_code = ntohs(output->tp.dst); 1542 } else if (swkey->eth.type == htons(ETH_P_IPV6) && 1543 swkey->ip.proto == IPPROTO_ICMPV6) { 1544 struct ovs_key_icmpv6 *icmpv6_key; 1545 1546 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, 1547 sizeof(*icmpv6_key)); 1548 if (!nla) 1549 goto nla_put_failure; 1550 icmpv6_key = nla_data(nla); 1551 icmpv6_key->icmpv6_type = ntohs(output->tp.src); 1552 icmpv6_key->icmpv6_code = ntohs(output->tp.dst); 1553 1554 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || 1555 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { 1556 struct ovs_key_nd *nd_key; 1557 1558 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); 1559 if (!nla) 1560 goto nla_put_failure; 1561 nd_key = nla_data(nla); 1562 memcpy(nd_key->nd_target, &output->ipv6.nd.target, 1563 sizeof(nd_key->nd_target)); 1564 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll); 1565 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll); 1566 } 1567 } 1568 } 1569 1570 unencap: 1571 if (encap) 1572 nla_nest_end(skb, encap); 1573 1574 return 0; 1575 1576 nla_put_failure: 1577 return -EMSGSIZE; 1578 } 1579 1580 int ovs_nla_put_key(const struct sw_flow_key *swkey, 1581 const struct sw_flow_key *output, int attr, bool is_mask, 1582 struct sk_buff *skb) 1583 { 1584 int err; 1585 struct nlattr *nla; 1586 1587 nla = nla_nest_start(skb, attr); 1588 if (!nla) 1589 return -EMSGSIZE; 1590 err = __ovs_nla_put_key(swkey, output, is_mask, skb); 1591 if (err) 1592 return err; 1593 nla_nest_end(skb, nla); 1594 1595 return 0; 1596 } 1597 1598 /* Called with ovs_mutex or RCU read lock. */ 1599 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb) 1600 { 1601 if (ovs_identifier_is_ufid(&flow->id)) 1602 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len, 1603 flow->id.ufid); 1604 1605 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key, 1606 OVS_FLOW_ATTR_KEY, false, skb); 1607 } 1608 1609 /* Called with ovs_mutex or RCU read lock. */ 1610 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb) 1611 { 1612 return ovs_nla_put_key(&flow->key, &flow->key, 1613 OVS_FLOW_ATTR_KEY, false, skb); 1614 } 1615 1616 /* Called with ovs_mutex or RCU read lock. */ 1617 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb) 1618 { 1619 return ovs_nla_put_key(&flow->key, &flow->mask->key, 1620 OVS_FLOW_ATTR_MASK, true, skb); 1621 } 1622 1623 #define MAX_ACTIONS_BUFSIZE (32 * 1024) 1624 1625 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log) 1626 { 1627 struct sw_flow_actions *sfa; 1628 1629 if (size > MAX_ACTIONS_BUFSIZE) { 1630 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size); 1631 return ERR_PTR(-EINVAL); 1632 } 1633 1634 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); 1635 if (!sfa) 1636 return ERR_PTR(-ENOMEM); 1637 1638 sfa->actions_len = 0; 1639 return sfa; 1640 } 1641 1642 static void ovs_nla_free_set_action(const struct nlattr *a) 1643 { 1644 const struct nlattr *ovs_key = nla_data(a); 1645 struct ovs_tunnel_info *ovs_tun; 1646 1647 switch (nla_type(ovs_key)) { 1648 case OVS_KEY_ATTR_TUNNEL_INFO: 1649 ovs_tun = nla_data(ovs_key); 1650 dst_release((struct dst_entry *)ovs_tun->tun_dst); 1651 break; 1652 } 1653 } 1654 1655 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts) 1656 { 1657 const struct nlattr *a; 1658 int rem; 1659 1660 if (!sf_acts) 1661 return; 1662 1663 nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) { 1664 switch (nla_type(a)) { 1665 case OVS_ACTION_ATTR_SET: 1666 ovs_nla_free_set_action(a); 1667 break; 1668 case OVS_ACTION_ATTR_CT: 1669 ovs_ct_free_action(a); 1670 break; 1671 } 1672 } 1673 1674 kfree(sf_acts); 1675 } 1676 1677 static void __ovs_nla_free_flow_actions(struct rcu_head *head) 1678 { 1679 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu)); 1680 } 1681 1682 /* Schedules 'sf_acts' to be freed after the next RCU grace period. 1683 * The caller must hold rcu_read_lock for this to be sensible. */ 1684 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts) 1685 { 1686 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions); 1687 } 1688 1689 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa, 1690 int attr_len, bool log) 1691 { 1692 1693 struct sw_flow_actions *acts; 1694 int new_acts_size; 1695 int req_size = NLA_ALIGN(attr_len); 1696 int next_offset = offsetof(struct sw_flow_actions, actions) + 1697 (*sfa)->actions_len; 1698 1699 if (req_size <= (ksize(*sfa) - next_offset)) 1700 goto out; 1701 1702 new_acts_size = ksize(*sfa) * 2; 1703 1704 if (new_acts_size > MAX_ACTIONS_BUFSIZE) { 1705 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) 1706 return ERR_PTR(-EMSGSIZE); 1707 new_acts_size = MAX_ACTIONS_BUFSIZE; 1708 } 1709 1710 acts = nla_alloc_flow_actions(new_acts_size, log); 1711 if (IS_ERR(acts)) 1712 return (void *)acts; 1713 1714 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len); 1715 acts->actions_len = (*sfa)->actions_len; 1716 acts->orig_len = (*sfa)->orig_len; 1717 kfree(*sfa); 1718 *sfa = acts; 1719 1720 out: 1721 (*sfa)->actions_len += req_size; 1722 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset); 1723 } 1724 1725 static struct nlattr *__add_action(struct sw_flow_actions **sfa, 1726 int attrtype, void *data, int len, bool log) 1727 { 1728 struct nlattr *a; 1729 1730 a = reserve_sfa_size(sfa, nla_attr_size(len), log); 1731 if (IS_ERR(a)) 1732 return a; 1733 1734 a->nla_type = attrtype; 1735 a->nla_len = nla_attr_size(len); 1736 1737 if (data) 1738 memcpy(nla_data(a), data, len); 1739 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len)); 1740 1741 return a; 1742 } 1743 1744 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data, 1745 int len, bool log) 1746 { 1747 struct nlattr *a; 1748 1749 a = __add_action(sfa, attrtype, data, len, log); 1750 1751 return PTR_ERR_OR_ZERO(a); 1752 } 1753 1754 static inline int add_nested_action_start(struct sw_flow_actions **sfa, 1755 int attrtype, bool log) 1756 { 1757 int used = (*sfa)->actions_len; 1758 int err; 1759 1760 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log); 1761 if (err) 1762 return err; 1763 1764 return used; 1765 } 1766 1767 static inline void add_nested_action_end(struct sw_flow_actions *sfa, 1768 int st_offset) 1769 { 1770 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions + 1771 st_offset); 1772 1773 a->nla_len = sfa->actions_len - st_offset; 1774 } 1775 1776 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 1777 const struct sw_flow_key *key, 1778 int depth, struct sw_flow_actions **sfa, 1779 __be16 eth_type, __be16 vlan_tci, bool log); 1780 1781 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr, 1782 const struct sw_flow_key *key, int depth, 1783 struct sw_flow_actions **sfa, 1784 __be16 eth_type, __be16 vlan_tci, bool log) 1785 { 1786 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1]; 1787 const struct nlattr *probability, *actions; 1788 const struct nlattr *a; 1789 int rem, start, err, st_acts; 1790 1791 memset(attrs, 0, sizeof(attrs)); 1792 nla_for_each_nested(a, attr, rem) { 1793 int type = nla_type(a); 1794 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type]) 1795 return -EINVAL; 1796 attrs[type] = a; 1797 } 1798 if (rem) 1799 return -EINVAL; 1800 1801 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY]; 1802 if (!probability || nla_len(probability) != sizeof(u32)) 1803 return -EINVAL; 1804 1805 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS]; 1806 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) 1807 return -EINVAL; 1808 1809 /* validation done, copy sample action. */ 1810 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log); 1811 if (start < 0) 1812 return start; 1813 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY, 1814 nla_data(probability), sizeof(u32), log); 1815 if (err) 1816 return err; 1817 st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log); 1818 if (st_acts < 0) 1819 return st_acts; 1820 1821 err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa, 1822 eth_type, vlan_tci, log); 1823 if (err) 1824 return err; 1825 1826 add_nested_action_end(*sfa, st_acts); 1827 add_nested_action_end(*sfa, start); 1828 1829 return 0; 1830 } 1831 1832 void ovs_match_init(struct sw_flow_match *match, 1833 struct sw_flow_key *key, 1834 struct sw_flow_mask *mask) 1835 { 1836 memset(match, 0, sizeof(*match)); 1837 match->key = key; 1838 match->mask = mask; 1839 1840 memset(key, 0, sizeof(*key)); 1841 1842 if (mask) { 1843 memset(&mask->key, 0, sizeof(mask->key)); 1844 mask->range.start = mask->range.end = 0; 1845 } 1846 } 1847 1848 static int validate_geneve_opts(struct sw_flow_key *key) 1849 { 1850 struct geneve_opt *option; 1851 int opts_len = key->tun_opts_len; 1852 bool crit_opt = false; 1853 1854 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len); 1855 while (opts_len > 0) { 1856 int len; 1857 1858 if (opts_len < sizeof(*option)) 1859 return -EINVAL; 1860 1861 len = sizeof(*option) + option->length * 4; 1862 if (len > opts_len) 1863 return -EINVAL; 1864 1865 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE); 1866 1867 option = (struct geneve_opt *)((u8 *)option + len); 1868 opts_len -= len; 1869 }; 1870 1871 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0; 1872 1873 return 0; 1874 } 1875 1876 static int validate_and_copy_set_tun(const struct nlattr *attr, 1877 struct sw_flow_actions **sfa, bool log) 1878 { 1879 struct sw_flow_match match; 1880 struct sw_flow_key key; 1881 struct metadata_dst *tun_dst; 1882 struct ip_tunnel_info *tun_info; 1883 struct ovs_tunnel_info *ovs_tun; 1884 struct nlattr *a; 1885 int err = 0, start, opts_type; 1886 1887 ovs_match_init(&match, &key, NULL); 1888 opts_type = ipv4_tun_from_nlattr(nla_data(attr), &match, false, log); 1889 if (opts_type < 0) 1890 return opts_type; 1891 1892 if (key.tun_opts_len) { 1893 switch (opts_type) { 1894 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 1895 err = validate_geneve_opts(&key); 1896 if (err < 0) 1897 return err; 1898 break; 1899 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 1900 break; 1901 } 1902 }; 1903 1904 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log); 1905 if (start < 0) 1906 return start; 1907 1908 tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL); 1909 if (!tun_dst) 1910 return -ENOMEM; 1911 1912 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL, 1913 sizeof(*ovs_tun), log); 1914 if (IS_ERR(a)) { 1915 dst_release((struct dst_entry *)tun_dst); 1916 return PTR_ERR(a); 1917 } 1918 1919 ovs_tun = nla_data(a); 1920 ovs_tun->tun_dst = tun_dst; 1921 1922 tun_info = &tun_dst->u.tun_info; 1923 tun_info->mode = IP_TUNNEL_INFO_TX; 1924 tun_info->key = key.tun_key; 1925 1926 /* We need to store the options in the action itself since 1927 * everything else will go away after flow setup. We can append 1928 * it to tun_info and then point there. 1929 */ 1930 ip_tunnel_info_opts_set(tun_info, 1931 TUN_METADATA_OPTS(&key, key.tun_opts_len), 1932 key.tun_opts_len); 1933 add_nested_action_end(*sfa, start); 1934 1935 return err; 1936 } 1937 1938 /* Return false if there are any non-masked bits set. 1939 * Mask follows data immediately, before any netlink padding. 1940 */ 1941 static bool validate_masked(u8 *data, int len) 1942 { 1943 u8 *mask = data + len; 1944 1945 while (len--) 1946 if (*data++ & ~*mask++) 1947 return false; 1948 1949 return true; 1950 } 1951 1952 static int validate_set(const struct nlattr *a, 1953 const struct sw_flow_key *flow_key, 1954 struct sw_flow_actions **sfa, 1955 bool *skip_copy, __be16 eth_type, bool masked, bool log) 1956 { 1957 const struct nlattr *ovs_key = nla_data(a); 1958 int key_type = nla_type(ovs_key); 1959 size_t key_len; 1960 1961 /* There can be only one key in a action */ 1962 if (nla_total_size(nla_len(ovs_key)) != nla_len(a)) 1963 return -EINVAL; 1964 1965 key_len = nla_len(ovs_key); 1966 if (masked) 1967 key_len /= 2; 1968 1969 if (key_type > OVS_KEY_ATTR_MAX || 1970 !check_attr_len(key_len, ovs_key_lens[key_type].len)) 1971 return -EINVAL; 1972 1973 if (masked && !validate_masked(nla_data(ovs_key), key_len)) 1974 return -EINVAL; 1975 1976 switch (key_type) { 1977 const struct ovs_key_ipv4 *ipv4_key; 1978 const struct ovs_key_ipv6 *ipv6_key; 1979 int err; 1980 1981 case OVS_KEY_ATTR_PRIORITY: 1982 case OVS_KEY_ATTR_SKB_MARK: 1983 case OVS_KEY_ATTR_CT_MARK: 1984 case OVS_KEY_ATTR_CT_LABELS: 1985 case OVS_KEY_ATTR_ETHERNET: 1986 break; 1987 1988 case OVS_KEY_ATTR_TUNNEL: 1989 if (eth_p_mpls(eth_type)) 1990 return -EINVAL; 1991 1992 if (masked) 1993 return -EINVAL; /* Masked tunnel set not supported. */ 1994 1995 *skip_copy = true; 1996 err = validate_and_copy_set_tun(a, sfa, log); 1997 if (err) 1998 return err; 1999 break; 2000 2001 case OVS_KEY_ATTR_IPV4: 2002 if (eth_type != htons(ETH_P_IP)) 2003 return -EINVAL; 2004 2005 ipv4_key = nla_data(ovs_key); 2006 2007 if (masked) { 2008 const struct ovs_key_ipv4 *mask = ipv4_key + 1; 2009 2010 /* Non-writeable fields. */ 2011 if (mask->ipv4_proto || mask->ipv4_frag) 2012 return -EINVAL; 2013 } else { 2014 if (ipv4_key->ipv4_proto != flow_key->ip.proto) 2015 return -EINVAL; 2016 2017 if (ipv4_key->ipv4_frag != flow_key->ip.frag) 2018 return -EINVAL; 2019 } 2020 break; 2021 2022 case OVS_KEY_ATTR_IPV6: 2023 if (eth_type != htons(ETH_P_IPV6)) 2024 return -EINVAL; 2025 2026 ipv6_key = nla_data(ovs_key); 2027 2028 if (masked) { 2029 const struct ovs_key_ipv6 *mask = ipv6_key + 1; 2030 2031 /* Non-writeable fields. */ 2032 if (mask->ipv6_proto || mask->ipv6_frag) 2033 return -EINVAL; 2034 2035 /* Invalid bits in the flow label mask? */ 2036 if (ntohl(mask->ipv6_label) & 0xFFF00000) 2037 return -EINVAL; 2038 } else { 2039 if (ipv6_key->ipv6_proto != flow_key->ip.proto) 2040 return -EINVAL; 2041 2042 if (ipv6_key->ipv6_frag != flow_key->ip.frag) 2043 return -EINVAL; 2044 } 2045 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000) 2046 return -EINVAL; 2047 2048 break; 2049 2050 case OVS_KEY_ATTR_TCP: 2051 if ((eth_type != htons(ETH_P_IP) && 2052 eth_type != htons(ETH_P_IPV6)) || 2053 flow_key->ip.proto != IPPROTO_TCP) 2054 return -EINVAL; 2055 2056 break; 2057 2058 case OVS_KEY_ATTR_UDP: 2059 if ((eth_type != htons(ETH_P_IP) && 2060 eth_type != htons(ETH_P_IPV6)) || 2061 flow_key->ip.proto != IPPROTO_UDP) 2062 return -EINVAL; 2063 2064 break; 2065 2066 case OVS_KEY_ATTR_MPLS: 2067 if (!eth_p_mpls(eth_type)) 2068 return -EINVAL; 2069 break; 2070 2071 case OVS_KEY_ATTR_SCTP: 2072 if ((eth_type != htons(ETH_P_IP) && 2073 eth_type != htons(ETH_P_IPV6)) || 2074 flow_key->ip.proto != IPPROTO_SCTP) 2075 return -EINVAL; 2076 2077 break; 2078 2079 default: 2080 return -EINVAL; 2081 } 2082 2083 /* Convert non-masked non-tunnel set actions to masked set actions. */ 2084 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) { 2085 int start, len = key_len * 2; 2086 struct nlattr *at; 2087 2088 *skip_copy = true; 2089 2090 start = add_nested_action_start(sfa, 2091 OVS_ACTION_ATTR_SET_TO_MASKED, 2092 log); 2093 if (start < 0) 2094 return start; 2095 2096 at = __add_action(sfa, key_type, NULL, len, log); 2097 if (IS_ERR(at)) 2098 return PTR_ERR(at); 2099 2100 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */ 2101 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */ 2102 /* Clear non-writeable bits from otherwise writeable fields. */ 2103 if (key_type == OVS_KEY_ATTR_IPV6) { 2104 struct ovs_key_ipv6 *mask = nla_data(at) + key_len; 2105 2106 mask->ipv6_label &= htonl(0x000FFFFF); 2107 } 2108 add_nested_action_end(*sfa, start); 2109 } 2110 2111 return 0; 2112 } 2113 2114 static int validate_userspace(const struct nlattr *attr) 2115 { 2116 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = { 2117 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 }, 2118 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC }, 2119 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 }, 2120 }; 2121 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1]; 2122 int error; 2123 2124 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, 2125 attr, userspace_policy); 2126 if (error) 2127 return error; 2128 2129 if (!a[OVS_USERSPACE_ATTR_PID] || 2130 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID])) 2131 return -EINVAL; 2132 2133 return 0; 2134 } 2135 2136 static int copy_action(const struct nlattr *from, 2137 struct sw_flow_actions **sfa, bool log) 2138 { 2139 int totlen = NLA_ALIGN(from->nla_len); 2140 struct nlattr *to; 2141 2142 to = reserve_sfa_size(sfa, from->nla_len, log); 2143 if (IS_ERR(to)) 2144 return PTR_ERR(to); 2145 2146 memcpy(to, from, totlen); 2147 return 0; 2148 } 2149 2150 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2151 const struct sw_flow_key *key, 2152 int depth, struct sw_flow_actions **sfa, 2153 __be16 eth_type, __be16 vlan_tci, bool log) 2154 { 2155 const struct nlattr *a; 2156 int rem, err; 2157 2158 if (depth >= SAMPLE_ACTION_DEPTH) 2159 return -EOVERFLOW; 2160 2161 nla_for_each_nested(a, attr, rem) { 2162 /* Expected argument lengths, (u32)-1 for variable length. */ 2163 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = { 2164 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32), 2165 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32), 2166 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1, 2167 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls), 2168 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16), 2169 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan), 2170 [OVS_ACTION_ATTR_POP_VLAN] = 0, 2171 [OVS_ACTION_ATTR_SET] = (u32)-1, 2172 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1, 2173 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1, 2174 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash), 2175 [OVS_ACTION_ATTR_CT] = (u32)-1, 2176 }; 2177 const struct ovs_action_push_vlan *vlan; 2178 int type = nla_type(a); 2179 bool skip_copy; 2180 2181 if (type > OVS_ACTION_ATTR_MAX || 2182 (action_lens[type] != nla_len(a) && 2183 action_lens[type] != (u32)-1)) 2184 return -EINVAL; 2185 2186 skip_copy = false; 2187 switch (type) { 2188 case OVS_ACTION_ATTR_UNSPEC: 2189 return -EINVAL; 2190 2191 case OVS_ACTION_ATTR_USERSPACE: 2192 err = validate_userspace(a); 2193 if (err) 2194 return err; 2195 break; 2196 2197 case OVS_ACTION_ATTR_OUTPUT: 2198 if (nla_get_u32(a) >= DP_MAX_PORTS) 2199 return -EINVAL; 2200 break; 2201 2202 case OVS_ACTION_ATTR_HASH: { 2203 const struct ovs_action_hash *act_hash = nla_data(a); 2204 2205 switch (act_hash->hash_alg) { 2206 case OVS_HASH_ALG_L4: 2207 break; 2208 default: 2209 return -EINVAL; 2210 } 2211 2212 break; 2213 } 2214 2215 case OVS_ACTION_ATTR_POP_VLAN: 2216 vlan_tci = htons(0); 2217 break; 2218 2219 case OVS_ACTION_ATTR_PUSH_VLAN: 2220 vlan = nla_data(a); 2221 if (vlan->vlan_tpid != htons(ETH_P_8021Q)) 2222 return -EINVAL; 2223 if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT))) 2224 return -EINVAL; 2225 vlan_tci = vlan->vlan_tci; 2226 break; 2227 2228 case OVS_ACTION_ATTR_RECIRC: 2229 break; 2230 2231 case OVS_ACTION_ATTR_PUSH_MPLS: { 2232 const struct ovs_action_push_mpls *mpls = nla_data(a); 2233 2234 if (!eth_p_mpls(mpls->mpls_ethertype)) 2235 return -EINVAL; 2236 /* Prohibit push MPLS other than to a white list 2237 * for packets that have a known tag order. 2238 */ 2239 if (vlan_tci & htons(VLAN_TAG_PRESENT) || 2240 (eth_type != htons(ETH_P_IP) && 2241 eth_type != htons(ETH_P_IPV6) && 2242 eth_type != htons(ETH_P_ARP) && 2243 eth_type != htons(ETH_P_RARP) && 2244 !eth_p_mpls(eth_type))) 2245 return -EINVAL; 2246 eth_type = mpls->mpls_ethertype; 2247 break; 2248 } 2249 2250 case OVS_ACTION_ATTR_POP_MPLS: 2251 if (vlan_tci & htons(VLAN_TAG_PRESENT) || 2252 !eth_p_mpls(eth_type)) 2253 return -EINVAL; 2254 2255 /* Disallow subsequent L2.5+ set and mpls_pop actions 2256 * as there is no check here to ensure that the new 2257 * eth_type is valid and thus set actions could 2258 * write off the end of the packet or otherwise 2259 * corrupt it. 2260 * 2261 * Support for these actions is planned using packet 2262 * recirculation. 2263 */ 2264 eth_type = htons(0); 2265 break; 2266 2267 case OVS_ACTION_ATTR_SET: 2268 err = validate_set(a, key, sfa, 2269 &skip_copy, eth_type, false, log); 2270 if (err) 2271 return err; 2272 break; 2273 2274 case OVS_ACTION_ATTR_SET_MASKED: 2275 err = validate_set(a, key, sfa, 2276 &skip_copy, eth_type, true, log); 2277 if (err) 2278 return err; 2279 break; 2280 2281 case OVS_ACTION_ATTR_SAMPLE: 2282 err = validate_and_copy_sample(net, a, key, depth, sfa, 2283 eth_type, vlan_tci, log); 2284 if (err) 2285 return err; 2286 skip_copy = true; 2287 break; 2288 2289 case OVS_ACTION_ATTR_CT: 2290 err = ovs_ct_copy_action(net, a, key, sfa, log); 2291 if (err) 2292 return err; 2293 skip_copy = true; 2294 break; 2295 2296 default: 2297 OVS_NLERR(log, "Unknown Action type %d", type); 2298 return -EINVAL; 2299 } 2300 if (!skip_copy) { 2301 err = copy_action(a, sfa, log); 2302 if (err) 2303 return err; 2304 } 2305 } 2306 2307 if (rem > 0) 2308 return -EINVAL; 2309 2310 return 0; 2311 } 2312 2313 /* 'key' must be the masked key. */ 2314 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2315 const struct sw_flow_key *key, 2316 struct sw_flow_actions **sfa, bool log) 2317 { 2318 int err; 2319 2320 *sfa = nla_alloc_flow_actions(nla_len(attr), log); 2321 if (IS_ERR(*sfa)) 2322 return PTR_ERR(*sfa); 2323 2324 (*sfa)->orig_len = nla_len(attr); 2325 err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type, 2326 key->eth.tci, log); 2327 if (err) 2328 ovs_nla_free_flow_actions(*sfa); 2329 2330 return err; 2331 } 2332 2333 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb) 2334 { 2335 const struct nlattr *a; 2336 struct nlattr *start; 2337 int err = 0, rem; 2338 2339 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE); 2340 if (!start) 2341 return -EMSGSIZE; 2342 2343 nla_for_each_nested(a, attr, rem) { 2344 int type = nla_type(a); 2345 struct nlattr *st_sample; 2346 2347 switch (type) { 2348 case OVS_SAMPLE_ATTR_PROBABILITY: 2349 if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY, 2350 sizeof(u32), nla_data(a))) 2351 return -EMSGSIZE; 2352 break; 2353 case OVS_SAMPLE_ATTR_ACTIONS: 2354 st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS); 2355 if (!st_sample) 2356 return -EMSGSIZE; 2357 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); 2358 if (err) 2359 return err; 2360 nla_nest_end(skb, st_sample); 2361 break; 2362 } 2363 } 2364 2365 nla_nest_end(skb, start); 2366 return err; 2367 } 2368 2369 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb) 2370 { 2371 const struct nlattr *ovs_key = nla_data(a); 2372 int key_type = nla_type(ovs_key); 2373 struct nlattr *start; 2374 int err; 2375 2376 switch (key_type) { 2377 case OVS_KEY_ATTR_TUNNEL_INFO: { 2378 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key); 2379 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info; 2380 2381 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET); 2382 if (!start) 2383 return -EMSGSIZE; 2384 2385 err = ovs_nla_put_tunnel_info(skb, tun_info); 2386 if (err) 2387 return err; 2388 nla_nest_end(skb, start); 2389 break; 2390 } 2391 default: 2392 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key)) 2393 return -EMSGSIZE; 2394 break; 2395 } 2396 2397 return 0; 2398 } 2399 2400 static int masked_set_action_to_set_action_attr(const struct nlattr *a, 2401 struct sk_buff *skb) 2402 { 2403 const struct nlattr *ovs_key = nla_data(a); 2404 struct nlattr *nla; 2405 size_t key_len = nla_len(ovs_key) / 2; 2406 2407 /* Revert the conversion we did from a non-masked set action to 2408 * masked set action. 2409 */ 2410 nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET); 2411 if (!nla) 2412 return -EMSGSIZE; 2413 2414 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key))) 2415 return -EMSGSIZE; 2416 2417 nla_nest_end(skb, nla); 2418 return 0; 2419 } 2420 2421 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb) 2422 { 2423 const struct nlattr *a; 2424 int rem, err; 2425 2426 nla_for_each_attr(a, attr, len, rem) { 2427 int type = nla_type(a); 2428 2429 switch (type) { 2430 case OVS_ACTION_ATTR_SET: 2431 err = set_action_to_attr(a, skb); 2432 if (err) 2433 return err; 2434 break; 2435 2436 case OVS_ACTION_ATTR_SET_TO_MASKED: 2437 err = masked_set_action_to_set_action_attr(a, skb); 2438 if (err) 2439 return err; 2440 break; 2441 2442 case OVS_ACTION_ATTR_SAMPLE: 2443 err = sample_action_to_attr(a, skb); 2444 if (err) 2445 return err; 2446 break; 2447 2448 case OVS_ACTION_ATTR_CT: 2449 err = ovs_ct_action_to_attr(nla_data(a), skb); 2450 if (err) 2451 return err; 2452 break; 2453 2454 default: 2455 if (nla_put(skb, type, nla_len(a), nla_data(a))) 2456 return -EMSGSIZE; 2457 break; 2458 } 2459 } 2460 2461 return 0; 2462 } 2463