xref: /linux/net/openvswitch/flow_netlink.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 
51 #include "flow_netlink.h"
52 #include "vport-vxlan.h"
53 
54 struct ovs_len_tbl {
55 	int len;
56 	const struct ovs_len_tbl *next;
57 };
58 
59 #define OVS_ATTR_NESTED -1
60 
61 static void update_range(struct sw_flow_match *match,
62 			 size_t offset, size_t size, bool is_mask)
63 {
64 	struct sw_flow_key_range *range;
65 	size_t start = rounddown(offset, sizeof(long));
66 	size_t end = roundup(offset + size, sizeof(long));
67 
68 	if (!is_mask)
69 		range = &match->range;
70 	else
71 		range = &match->mask->range;
72 
73 	if (range->start == range->end) {
74 		range->start = start;
75 		range->end = end;
76 		return;
77 	}
78 
79 	if (range->start > start)
80 		range->start = start;
81 
82 	if (range->end < end)
83 		range->end = end;
84 }
85 
86 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
87 	do { \
88 		update_range(match, offsetof(struct sw_flow_key, field),    \
89 			     sizeof((match)->key->field), is_mask);	    \
90 		if (is_mask)						    \
91 			(match)->mask->key.field = value;		    \
92 		else							    \
93 			(match)->key->field = value;		            \
94 	} while (0)
95 
96 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
97 	do {								    \
98 		update_range(match, offset, len, is_mask);		    \
99 		if (is_mask)						    \
100 			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
101 			       len);					   \
102 		else							    \
103 			memcpy((u8 *)(match)->key + offset, value_p, len);  \
104 	} while (0)
105 
106 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
107 	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
108 				  value_p, len, is_mask)
109 
110 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
111 	do {								    \
112 		update_range(match, offsetof(struct sw_flow_key, field),    \
113 			     sizeof((match)->key->field), is_mask);	    \
114 		if (is_mask)						    \
115 			memset((u8 *)&(match)->mask->key.field, value,      \
116 			       sizeof((match)->mask->key.field));	    \
117 		else							    \
118 			memset((u8 *)&(match)->key->field, value,           \
119 			       sizeof((match)->key->field));                \
120 	} while (0)
121 
122 static bool match_validate(const struct sw_flow_match *match,
123 			   u64 key_attrs, u64 mask_attrs, bool log)
124 {
125 	u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
126 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
127 
128 	/* The following mask attributes allowed only if they
129 	 * pass the validation tests. */
130 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
131 			| (1 << OVS_KEY_ATTR_IPV6)
132 			| (1 << OVS_KEY_ATTR_TCP)
133 			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
134 			| (1 << OVS_KEY_ATTR_UDP)
135 			| (1 << OVS_KEY_ATTR_SCTP)
136 			| (1 << OVS_KEY_ATTR_ICMP)
137 			| (1 << OVS_KEY_ATTR_ICMPV6)
138 			| (1 << OVS_KEY_ATTR_ARP)
139 			| (1 << OVS_KEY_ATTR_ND)
140 			| (1 << OVS_KEY_ATTR_MPLS));
141 
142 	/* Always allowed mask fields. */
143 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
144 		       | (1 << OVS_KEY_ATTR_IN_PORT)
145 		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
146 
147 	/* Check key attributes. */
148 	if (match->key->eth.type == htons(ETH_P_ARP)
149 			|| match->key->eth.type == htons(ETH_P_RARP)) {
150 		key_expected |= 1 << OVS_KEY_ATTR_ARP;
151 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
152 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
153 	}
154 
155 	if (eth_p_mpls(match->key->eth.type)) {
156 		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
157 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
158 			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
159 	}
160 
161 	if (match->key->eth.type == htons(ETH_P_IP)) {
162 		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
163 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
164 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
165 
166 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
167 			if (match->key->ip.proto == IPPROTO_UDP) {
168 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
169 				if (match->mask && (match->mask->key.ip.proto == 0xff))
170 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
171 			}
172 
173 			if (match->key->ip.proto == IPPROTO_SCTP) {
174 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
175 				if (match->mask && (match->mask->key.ip.proto == 0xff))
176 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
177 			}
178 
179 			if (match->key->ip.proto == IPPROTO_TCP) {
180 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
181 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
182 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
183 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
184 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
185 				}
186 			}
187 
188 			if (match->key->ip.proto == IPPROTO_ICMP) {
189 				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
190 				if (match->mask && (match->mask->key.ip.proto == 0xff))
191 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
192 			}
193 		}
194 	}
195 
196 	if (match->key->eth.type == htons(ETH_P_IPV6)) {
197 		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
198 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
199 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
200 
201 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
202 			if (match->key->ip.proto == IPPROTO_UDP) {
203 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
204 				if (match->mask && (match->mask->key.ip.proto == 0xff))
205 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
206 			}
207 
208 			if (match->key->ip.proto == IPPROTO_SCTP) {
209 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
210 				if (match->mask && (match->mask->key.ip.proto == 0xff))
211 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
212 			}
213 
214 			if (match->key->ip.proto == IPPROTO_TCP) {
215 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
216 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
217 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
218 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
219 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
220 				}
221 			}
222 
223 			if (match->key->ip.proto == IPPROTO_ICMPV6) {
224 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
225 				if (match->mask && (match->mask->key.ip.proto == 0xff))
226 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
227 
228 				if (match->key->tp.src ==
229 						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
230 				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
231 					key_expected |= 1 << OVS_KEY_ATTR_ND;
232 					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
233 						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
234 				}
235 			}
236 		}
237 	}
238 
239 	if ((key_attrs & key_expected) != key_expected) {
240 		/* Key attributes check failed. */
241 		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
242 			  (unsigned long long)key_attrs,
243 			  (unsigned long long)key_expected);
244 		return false;
245 	}
246 
247 	if ((mask_attrs & mask_allowed) != mask_attrs) {
248 		/* Mask attributes check failed. */
249 		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
250 			  (unsigned long long)mask_attrs,
251 			  (unsigned long long)mask_allowed);
252 		return false;
253 	}
254 
255 	return true;
256 }
257 
258 size_t ovs_tun_key_attr_size(void)
259 {
260 	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
261 	 * updating this function.
262 	 */
263 	return    nla_total_size(8)    /* OVS_TUNNEL_KEY_ATTR_ID */
264 		+ nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_SRC */
265 		+ nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_DST */
266 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
267 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
268 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
269 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
270 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
271 		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
272 		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
273 		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
274 		 */
275 		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
276 		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
277 }
278 
279 size_t ovs_key_attr_size(void)
280 {
281 	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
282 	 * updating this function.
283 	 */
284 	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 22);
285 
286 	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
287 		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
288 		  + ovs_tun_key_attr_size()
289 		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
290 		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
291 		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
292 		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
293 		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
294 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
295 		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
296 		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
297 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
298 		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
299 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
300 		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
301 }
302 
303 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
304 	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
305 	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
306 	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
307 	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
308 	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
309 	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
310 	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
311 	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
312 	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
313 	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
314 	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_NESTED },
315 	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED },
316 };
317 
318 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
319 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
320 	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
321 	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
322 	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
323 	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
324 	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
325 	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
326 	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
327 	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
328 	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
329 	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
330 	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
331 	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
332 	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
333 	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
334 	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
335 	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
336 	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
337 	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
338 	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
339 	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
340 				     .next = ovs_tunnel_key_lens, },
341 	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
342 };
343 
344 static bool is_all_zero(const u8 *fp, size_t size)
345 {
346 	int i;
347 
348 	if (!fp)
349 		return false;
350 
351 	for (i = 0; i < size; i++)
352 		if (fp[i])
353 			return false;
354 
355 	return true;
356 }
357 
358 static int __parse_flow_nlattrs(const struct nlattr *attr,
359 				const struct nlattr *a[],
360 				u64 *attrsp, bool log, bool nz)
361 {
362 	const struct nlattr *nla;
363 	u64 attrs;
364 	int rem;
365 
366 	attrs = *attrsp;
367 	nla_for_each_nested(nla, attr, rem) {
368 		u16 type = nla_type(nla);
369 		int expected_len;
370 
371 		if (type > OVS_KEY_ATTR_MAX) {
372 			OVS_NLERR(log, "Key type %d is out of range max %d",
373 				  type, OVS_KEY_ATTR_MAX);
374 			return -EINVAL;
375 		}
376 
377 		if (attrs & (1 << type)) {
378 			OVS_NLERR(log, "Duplicate key (type %d).", type);
379 			return -EINVAL;
380 		}
381 
382 		expected_len = ovs_key_lens[type].len;
383 		if (nla_len(nla) != expected_len && expected_len != OVS_ATTR_NESTED) {
384 			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
385 				  type, nla_len(nla), expected_len);
386 			return -EINVAL;
387 		}
388 
389 		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
390 			attrs |= 1 << type;
391 			a[type] = nla;
392 		}
393 	}
394 	if (rem) {
395 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
396 		return -EINVAL;
397 	}
398 
399 	*attrsp = attrs;
400 	return 0;
401 }
402 
403 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
404 				   const struct nlattr *a[], u64 *attrsp,
405 				   bool log)
406 {
407 	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
408 }
409 
410 static int parse_flow_nlattrs(const struct nlattr *attr,
411 			      const struct nlattr *a[], u64 *attrsp,
412 			      bool log)
413 {
414 	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
415 }
416 
417 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
418 				     struct sw_flow_match *match, bool is_mask,
419 				     bool log)
420 {
421 	unsigned long opt_key_offset;
422 
423 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
424 		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
425 			  nla_len(a), sizeof(match->key->tun_opts));
426 		return -EINVAL;
427 	}
428 
429 	if (nla_len(a) % 4 != 0) {
430 		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
431 			  nla_len(a));
432 		return -EINVAL;
433 	}
434 
435 	/* We need to record the length of the options passed
436 	 * down, otherwise packets with the same format but
437 	 * additional options will be silently matched.
438 	 */
439 	if (!is_mask) {
440 		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
441 				false);
442 	} else {
443 		/* This is somewhat unusual because it looks at
444 		 * both the key and mask while parsing the
445 		 * attributes (and by extension assumes the key
446 		 * is parsed first). Normally, we would verify
447 		 * that each is the correct length and that the
448 		 * attributes line up in the validate function.
449 		 * However, that is difficult because this is
450 		 * variable length and we won't have the
451 		 * information later.
452 		 */
453 		if (match->key->tun_opts_len != nla_len(a)) {
454 			OVS_NLERR(log, "Geneve option len %d != mask len %d",
455 				  match->key->tun_opts_len, nla_len(a));
456 			return -EINVAL;
457 		}
458 
459 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
460 	}
461 
462 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
463 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
464 				  nla_len(a), is_mask);
465 	return 0;
466 }
467 
468 static const struct nla_policy vxlan_opt_policy[OVS_VXLAN_EXT_MAX + 1] = {
469 	[OVS_VXLAN_EXT_GBP]	= { .type = NLA_U32 },
470 };
471 
472 static int vxlan_tun_opt_from_nlattr(const struct nlattr *a,
473 				     struct sw_flow_match *match, bool is_mask,
474 				     bool log)
475 {
476 	struct nlattr *tb[OVS_VXLAN_EXT_MAX+1];
477 	unsigned long opt_key_offset;
478 	struct ovs_vxlan_opts opts;
479 	int err;
480 
481 	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
482 
483 	err = nla_parse_nested(tb, OVS_VXLAN_EXT_MAX, a, vxlan_opt_policy);
484 	if (err < 0)
485 		return err;
486 
487 	memset(&opts, 0, sizeof(opts));
488 
489 	if (tb[OVS_VXLAN_EXT_GBP])
490 		opts.gbp = nla_get_u32(tb[OVS_VXLAN_EXT_GBP]);
491 
492 	if (!is_mask)
493 		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
494 	else
495 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
496 
497 	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
498 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
499 				  is_mask);
500 	return 0;
501 }
502 
503 static int ipv4_tun_from_nlattr(const struct nlattr *attr,
504 				struct sw_flow_match *match, bool is_mask,
505 				bool log)
506 {
507 	struct nlattr *a;
508 	int rem;
509 	bool ttl = false;
510 	__be16 tun_flags = 0;
511 	int opts_type = 0;
512 
513 	nla_for_each_nested(a, attr, rem) {
514 		int type = nla_type(a);
515 		int err;
516 
517 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
518 			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
519 				  type, OVS_TUNNEL_KEY_ATTR_MAX);
520 			return -EINVAL;
521 		}
522 
523 		if (ovs_tunnel_key_lens[type].len != nla_len(a) &&
524 		    ovs_tunnel_key_lens[type].len != OVS_ATTR_NESTED) {
525 			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
526 				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
527 			return -EINVAL;
528 		}
529 
530 		switch (type) {
531 		case OVS_TUNNEL_KEY_ATTR_ID:
532 			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
533 					nla_get_be64(a), is_mask);
534 			tun_flags |= TUNNEL_KEY;
535 			break;
536 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
537 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
538 					nla_get_in_addr(a), is_mask);
539 			break;
540 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
541 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
542 					nla_get_in_addr(a), is_mask);
543 			break;
544 		case OVS_TUNNEL_KEY_ATTR_TOS:
545 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
546 					nla_get_u8(a), is_mask);
547 			break;
548 		case OVS_TUNNEL_KEY_ATTR_TTL:
549 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
550 					nla_get_u8(a), is_mask);
551 			ttl = true;
552 			break;
553 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
554 			tun_flags |= TUNNEL_DONT_FRAGMENT;
555 			break;
556 		case OVS_TUNNEL_KEY_ATTR_CSUM:
557 			tun_flags |= TUNNEL_CSUM;
558 			break;
559 		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
560 			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
561 					nla_get_be16(a), is_mask);
562 			break;
563 		case OVS_TUNNEL_KEY_ATTR_TP_DST:
564 			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
565 					nla_get_be16(a), is_mask);
566 			break;
567 		case OVS_TUNNEL_KEY_ATTR_OAM:
568 			tun_flags |= TUNNEL_OAM;
569 			break;
570 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
571 			if (opts_type) {
572 				OVS_NLERR(log, "Multiple metadata blocks provided");
573 				return -EINVAL;
574 			}
575 
576 			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
577 			if (err)
578 				return err;
579 
580 			tun_flags |= TUNNEL_GENEVE_OPT;
581 			opts_type = type;
582 			break;
583 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
584 			if (opts_type) {
585 				OVS_NLERR(log, "Multiple metadata blocks provided");
586 				return -EINVAL;
587 			}
588 
589 			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
590 			if (err)
591 				return err;
592 
593 			tun_flags |= TUNNEL_VXLAN_OPT;
594 			opts_type = type;
595 			break;
596 		default:
597 			OVS_NLERR(log, "Unknown IPv4 tunnel attribute %d",
598 				  type);
599 			return -EINVAL;
600 		}
601 	}
602 
603 	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
604 
605 	if (rem > 0) {
606 		OVS_NLERR(log, "IPv4 tunnel attribute has %d unknown bytes.",
607 			  rem);
608 		return -EINVAL;
609 	}
610 
611 	if (!is_mask) {
612 		if (!match->key->tun_key.ipv4_dst) {
613 			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
614 			return -EINVAL;
615 		}
616 
617 		if (!ttl) {
618 			OVS_NLERR(log, "IPv4 tunnel TTL not specified.");
619 			return -EINVAL;
620 		}
621 	}
622 
623 	return opts_type;
624 }
625 
626 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
627 			       const void *tun_opts, int swkey_tun_opts_len)
628 {
629 	const struct ovs_vxlan_opts *opts = tun_opts;
630 	struct nlattr *nla;
631 
632 	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
633 	if (!nla)
634 		return -EMSGSIZE;
635 
636 	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
637 		return -EMSGSIZE;
638 
639 	nla_nest_end(skb, nla);
640 	return 0;
641 }
642 
643 static int __ipv4_tun_to_nlattr(struct sk_buff *skb,
644 				const struct ovs_key_ipv4_tunnel *output,
645 				const void *tun_opts, int swkey_tun_opts_len)
646 {
647 	if (output->tun_flags & TUNNEL_KEY &&
648 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
649 		return -EMSGSIZE;
650 	if (output->ipv4_src &&
651 	    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
652 			    output->ipv4_src))
653 		return -EMSGSIZE;
654 	if (output->ipv4_dst &&
655 	    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
656 			    output->ipv4_dst))
657 		return -EMSGSIZE;
658 	if (output->ipv4_tos &&
659 	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
660 		return -EMSGSIZE;
661 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
662 		return -EMSGSIZE;
663 	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
664 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
665 		return -EMSGSIZE;
666 	if ((output->tun_flags & TUNNEL_CSUM) &&
667 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
668 		return -EMSGSIZE;
669 	if (output->tp_src &&
670 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
671 		return -EMSGSIZE;
672 	if (output->tp_dst &&
673 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
674 		return -EMSGSIZE;
675 	if ((output->tun_flags & TUNNEL_OAM) &&
676 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
677 		return -EMSGSIZE;
678 	if (tun_opts) {
679 		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
680 		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
681 			    swkey_tun_opts_len, tun_opts))
682 			return -EMSGSIZE;
683 		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
684 			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
685 			return -EMSGSIZE;
686 	}
687 
688 	return 0;
689 }
690 
691 static int ipv4_tun_to_nlattr(struct sk_buff *skb,
692 			      const struct ovs_key_ipv4_tunnel *output,
693 			      const void *tun_opts, int swkey_tun_opts_len)
694 {
695 	struct nlattr *nla;
696 	int err;
697 
698 	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
699 	if (!nla)
700 		return -EMSGSIZE;
701 
702 	err = __ipv4_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len);
703 	if (err)
704 		return err;
705 
706 	nla_nest_end(skb, nla);
707 	return 0;
708 }
709 
710 int ovs_nla_put_egress_tunnel_key(struct sk_buff *skb,
711 				  const struct ovs_tunnel_info *egress_tun_info)
712 {
713 	return __ipv4_tun_to_nlattr(skb, &egress_tun_info->tunnel,
714 				    egress_tun_info->options,
715 				    egress_tun_info->options_len);
716 }
717 
718 static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs,
719 				 const struct nlattr **a, bool is_mask,
720 				 bool log)
721 {
722 	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
723 		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
724 
725 		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
726 		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
727 	}
728 
729 	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
730 		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
731 
732 		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
733 		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
734 	}
735 
736 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
737 		SW_FLOW_KEY_PUT(match, phy.priority,
738 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
739 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
740 	}
741 
742 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
743 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
744 
745 		if (is_mask) {
746 			in_port = 0xffffffff; /* Always exact match in_port. */
747 		} else if (in_port >= DP_MAX_PORTS) {
748 			OVS_NLERR(log, "Port %d exceeds max allowable %d",
749 				  in_port, DP_MAX_PORTS);
750 			return -EINVAL;
751 		}
752 
753 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
754 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
755 	} else if (!is_mask) {
756 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
757 	}
758 
759 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
760 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
761 
762 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
763 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
764 	}
765 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
766 		if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
767 					 is_mask, log) < 0)
768 			return -EINVAL;
769 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
770 	}
771 	return 0;
772 }
773 
774 static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
775 				const struct nlattr **a, bool is_mask,
776 				bool log)
777 {
778 	int err;
779 
780 	err = metadata_from_nlattrs(match, &attrs, a, is_mask, log);
781 	if (err)
782 		return err;
783 
784 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
785 		const struct ovs_key_ethernet *eth_key;
786 
787 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
788 		SW_FLOW_KEY_MEMCPY(match, eth.src,
789 				eth_key->eth_src, ETH_ALEN, is_mask);
790 		SW_FLOW_KEY_MEMCPY(match, eth.dst,
791 				eth_key->eth_dst, ETH_ALEN, is_mask);
792 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
793 	}
794 
795 	if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
796 		__be16 tci;
797 
798 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
799 		if (!(tci & htons(VLAN_TAG_PRESENT))) {
800 			if (is_mask)
801 				OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
802 			else
803 				OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
804 
805 			return -EINVAL;
806 		}
807 
808 		SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
809 		attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
810 	}
811 
812 	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
813 		__be16 eth_type;
814 
815 		eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
816 		if (is_mask) {
817 			/* Always exact match EtherType. */
818 			eth_type = htons(0xffff);
819 		} else if (!eth_proto_is_802_3(eth_type)) {
820 			OVS_NLERR(log, "EtherType %x is less than min %x",
821 				  ntohs(eth_type), ETH_P_802_3_MIN);
822 			return -EINVAL;
823 		}
824 
825 		SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
826 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
827 	} else if (!is_mask) {
828 		SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
829 	}
830 
831 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
832 		const struct ovs_key_ipv4 *ipv4_key;
833 
834 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
835 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
836 			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
837 				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
838 			return -EINVAL;
839 		}
840 		SW_FLOW_KEY_PUT(match, ip.proto,
841 				ipv4_key->ipv4_proto, is_mask);
842 		SW_FLOW_KEY_PUT(match, ip.tos,
843 				ipv4_key->ipv4_tos, is_mask);
844 		SW_FLOW_KEY_PUT(match, ip.ttl,
845 				ipv4_key->ipv4_ttl, is_mask);
846 		SW_FLOW_KEY_PUT(match, ip.frag,
847 				ipv4_key->ipv4_frag, is_mask);
848 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
849 				ipv4_key->ipv4_src, is_mask);
850 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
851 				ipv4_key->ipv4_dst, is_mask);
852 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
853 	}
854 
855 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
856 		const struct ovs_key_ipv6 *ipv6_key;
857 
858 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
859 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
860 			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
861 				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
862 			return -EINVAL;
863 		}
864 
865 		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
866 			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
867 				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
868 			return -EINVAL;
869 		}
870 
871 		SW_FLOW_KEY_PUT(match, ipv6.label,
872 				ipv6_key->ipv6_label, is_mask);
873 		SW_FLOW_KEY_PUT(match, ip.proto,
874 				ipv6_key->ipv6_proto, is_mask);
875 		SW_FLOW_KEY_PUT(match, ip.tos,
876 				ipv6_key->ipv6_tclass, is_mask);
877 		SW_FLOW_KEY_PUT(match, ip.ttl,
878 				ipv6_key->ipv6_hlimit, is_mask);
879 		SW_FLOW_KEY_PUT(match, ip.frag,
880 				ipv6_key->ipv6_frag, is_mask);
881 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
882 				ipv6_key->ipv6_src,
883 				sizeof(match->key->ipv6.addr.src),
884 				is_mask);
885 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
886 				ipv6_key->ipv6_dst,
887 				sizeof(match->key->ipv6.addr.dst),
888 				is_mask);
889 
890 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
891 	}
892 
893 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
894 		const struct ovs_key_arp *arp_key;
895 
896 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
897 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
898 			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
899 				  arp_key->arp_op);
900 			return -EINVAL;
901 		}
902 
903 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
904 				arp_key->arp_sip, is_mask);
905 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
906 			arp_key->arp_tip, is_mask);
907 		SW_FLOW_KEY_PUT(match, ip.proto,
908 				ntohs(arp_key->arp_op), is_mask);
909 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
910 				arp_key->arp_sha, ETH_ALEN, is_mask);
911 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
912 				arp_key->arp_tha, ETH_ALEN, is_mask);
913 
914 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
915 	}
916 
917 	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
918 		const struct ovs_key_mpls *mpls_key;
919 
920 		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
921 		SW_FLOW_KEY_PUT(match, mpls.top_lse,
922 				mpls_key->mpls_lse, is_mask);
923 
924 		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
925 	 }
926 
927 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
928 		const struct ovs_key_tcp *tcp_key;
929 
930 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
931 		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
932 		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
933 		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
934 	}
935 
936 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
937 		SW_FLOW_KEY_PUT(match, tp.flags,
938 				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
939 				is_mask);
940 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
941 	}
942 
943 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
944 		const struct ovs_key_udp *udp_key;
945 
946 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
947 		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
948 		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
949 		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
950 	}
951 
952 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
953 		const struct ovs_key_sctp *sctp_key;
954 
955 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
956 		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
957 		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
958 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
959 	}
960 
961 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
962 		const struct ovs_key_icmp *icmp_key;
963 
964 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
965 		SW_FLOW_KEY_PUT(match, tp.src,
966 				htons(icmp_key->icmp_type), is_mask);
967 		SW_FLOW_KEY_PUT(match, tp.dst,
968 				htons(icmp_key->icmp_code), is_mask);
969 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
970 	}
971 
972 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
973 		const struct ovs_key_icmpv6 *icmpv6_key;
974 
975 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
976 		SW_FLOW_KEY_PUT(match, tp.src,
977 				htons(icmpv6_key->icmpv6_type), is_mask);
978 		SW_FLOW_KEY_PUT(match, tp.dst,
979 				htons(icmpv6_key->icmpv6_code), is_mask);
980 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
981 	}
982 
983 	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
984 		const struct ovs_key_nd *nd_key;
985 
986 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
987 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
988 			nd_key->nd_target,
989 			sizeof(match->key->ipv6.nd.target),
990 			is_mask);
991 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
992 			nd_key->nd_sll, ETH_ALEN, is_mask);
993 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
994 				nd_key->nd_tll, ETH_ALEN, is_mask);
995 		attrs &= ~(1 << OVS_KEY_ATTR_ND);
996 	}
997 
998 	if (attrs != 0) {
999 		OVS_NLERR(log, "Unknown key attributes %llx",
1000 			  (unsigned long long)attrs);
1001 		return -EINVAL;
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 static void nlattr_set(struct nlattr *attr, u8 val,
1008 		       const struct ovs_len_tbl *tbl)
1009 {
1010 	struct nlattr *nla;
1011 	int rem;
1012 
1013 	/* The nlattr stream should already have been validated */
1014 	nla_for_each_nested(nla, attr, rem) {
1015 		if (tbl && tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1016 			nlattr_set(nla, val, tbl[nla_type(nla)].next);
1017 		else
1018 			memset(nla_data(nla), val, nla_len(nla));
1019 	}
1020 }
1021 
1022 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1023 {
1024 	nlattr_set(attr, val, ovs_key_lens);
1025 }
1026 
1027 /**
1028  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1029  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1030  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1031  * does not include any don't care bit.
1032  * @match: receives the extracted flow match information.
1033  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1034  * sequence. The fields should of the packet that triggered the creation
1035  * of this flow.
1036  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1037  * attribute specifies the mask field of the wildcarded flow.
1038  * @log: Boolean to allow kernel error logging.  Normally true, but when
1039  * probing for feature compatibility this should be passed in as false to
1040  * suppress unnecessary error logging.
1041  */
1042 int ovs_nla_get_match(struct sw_flow_match *match,
1043 		      const struct nlattr *nla_key,
1044 		      const struct nlattr *nla_mask,
1045 		      bool log)
1046 {
1047 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1048 	const struct nlattr *encap;
1049 	struct nlattr *newmask = NULL;
1050 	u64 key_attrs = 0;
1051 	u64 mask_attrs = 0;
1052 	bool encap_valid = false;
1053 	int err;
1054 
1055 	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1056 	if (err)
1057 		return err;
1058 
1059 	if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1060 	    (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1061 	    (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1062 		__be16 tci;
1063 
1064 		if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1065 		      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1066 			OVS_NLERR(log, "Invalid Vlan frame.");
1067 			return -EINVAL;
1068 		}
1069 
1070 		key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1071 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1072 		encap = a[OVS_KEY_ATTR_ENCAP];
1073 		key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1074 		encap_valid = true;
1075 
1076 		if (tci & htons(VLAN_TAG_PRESENT)) {
1077 			err = parse_flow_nlattrs(encap, a, &key_attrs, log);
1078 			if (err)
1079 				return err;
1080 		} else if (!tci) {
1081 			/* Corner case for truncated 802.1Q header. */
1082 			if (nla_len(encap)) {
1083 				OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
1084 				return -EINVAL;
1085 			}
1086 		} else {
1087 			OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1088 			return  -EINVAL;
1089 		}
1090 	}
1091 
1092 	err = ovs_key_from_nlattrs(match, key_attrs, a, false, log);
1093 	if (err)
1094 		return err;
1095 
1096 	if (match->mask) {
1097 		if (!nla_mask) {
1098 			/* Create an exact match mask. We need to set to 0xff
1099 			 * all the 'match->mask' fields that have been touched
1100 			 * in 'match->key'. We cannot simply memset
1101 			 * 'match->mask', because padding bytes and fields not
1102 			 * specified in 'match->key' should be left to 0.
1103 			 * Instead, we use a stream of netlink attributes,
1104 			 * copied from 'key' and set to 0xff.
1105 			 * ovs_key_from_nlattrs() will take care of filling
1106 			 * 'match->mask' appropriately.
1107 			 */
1108 			newmask = kmemdup(nla_key,
1109 					  nla_total_size(nla_len(nla_key)),
1110 					  GFP_KERNEL);
1111 			if (!newmask)
1112 				return -ENOMEM;
1113 
1114 			mask_set_nlattr(newmask, 0xff);
1115 
1116 			/* The userspace does not send tunnel attributes that
1117 			 * are 0, but we should not wildcard them nonetheless.
1118 			 */
1119 			if (match->key->tun_key.ipv4_dst)
1120 				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1121 							 0xff, true);
1122 
1123 			nla_mask = newmask;
1124 		}
1125 
1126 		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1127 		if (err)
1128 			goto free_newmask;
1129 
1130 		/* Always match on tci. */
1131 		SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1132 
1133 		if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
1134 			__be16 eth_type = 0;
1135 			__be16 tci = 0;
1136 
1137 			if (!encap_valid) {
1138 				OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1139 				err = -EINVAL;
1140 				goto free_newmask;
1141 			}
1142 
1143 			mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1144 			if (a[OVS_KEY_ATTR_ETHERTYPE])
1145 				eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1146 
1147 			if (eth_type == htons(0xffff)) {
1148 				mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1149 				encap = a[OVS_KEY_ATTR_ENCAP];
1150 				err = parse_flow_mask_nlattrs(encap, a,
1151 							      &mask_attrs, log);
1152 				if (err)
1153 					goto free_newmask;
1154 			} else {
1155 				OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1156 					  ntohs(eth_type));
1157 				err = -EINVAL;
1158 				goto free_newmask;
1159 			}
1160 
1161 			if (a[OVS_KEY_ATTR_VLAN])
1162 				tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1163 
1164 			if (!(tci & htons(VLAN_TAG_PRESENT))) {
1165 				OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1166 					  ntohs(tci));
1167 				err = -EINVAL;
1168 				goto free_newmask;
1169 			}
1170 		}
1171 
1172 		err = ovs_key_from_nlattrs(match, mask_attrs, a, true, log);
1173 		if (err)
1174 			goto free_newmask;
1175 	}
1176 
1177 	if (!match_validate(match, key_attrs, mask_attrs, log))
1178 		err = -EINVAL;
1179 
1180 free_newmask:
1181 	kfree(newmask);
1182 	return err;
1183 }
1184 
1185 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1186 {
1187 	size_t len;
1188 
1189 	if (!attr)
1190 		return 0;
1191 
1192 	len = nla_len(attr);
1193 	if (len < 1 || len > MAX_UFID_LENGTH) {
1194 		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1195 			  nla_len(attr), MAX_UFID_LENGTH);
1196 		return 0;
1197 	}
1198 
1199 	return len;
1200 }
1201 
1202 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1203  * or false otherwise.
1204  */
1205 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1206 		      bool log)
1207 {
1208 	sfid->ufid_len = get_ufid_len(attr, log);
1209 	if (sfid->ufid_len)
1210 		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1211 
1212 	return sfid->ufid_len;
1213 }
1214 
1215 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1216 			   const struct sw_flow_key *key, bool log)
1217 {
1218 	struct sw_flow_key *new_key;
1219 
1220 	if (ovs_nla_get_ufid(sfid, ufid, log))
1221 		return 0;
1222 
1223 	/* If UFID was not provided, use unmasked key. */
1224 	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1225 	if (!new_key)
1226 		return -ENOMEM;
1227 	memcpy(new_key, key, sizeof(*key));
1228 	sfid->unmasked_key = new_key;
1229 
1230 	return 0;
1231 }
1232 
1233 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1234 {
1235 	return attr ? nla_get_u32(attr) : 0;
1236 }
1237 
1238 /**
1239  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1240  * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1241  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1242  * sequence.
1243  * @log: Boolean to allow kernel error logging.  Normally true, but when
1244  * probing for feature compatibility this should be passed in as false to
1245  * suppress unnecessary error logging.
1246  *
1247  * This parses a series of Netlink attributes that form a flow key, which must
1248  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1249  * get the metadata, that is, the parts of the flow key that cannot be
1250  * extracted from the packet itself.
1251  */
1252 
1253 int ovs_nla_get_flow_metadata(const struct nlattr *attr,
1254 			      struct sw_flow_key *key,
1255 			      bool log)
1256 {
1257 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1258 	struct sw_flow_match match;
1259 	u64 attrs = 0;
1260 	int err;
1261 
1262 	err = parse_flow_nlattrs(attr, a, &attrs, log);
1263 	if (err)
1264 		return -EINVAL;
1265 
1266 	memset(&match, 0, sizeof(match));
1267 	match.key = key;
1268 
1269 	key->phy.in_port = DP_MAX_PORTS;
1270 
1271 	return metadata_from_nlattrs(&match, &attrs, a, false, log);
1272 }
1273 
1274 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1275 			     const struct sw_flow_key *output, bool is_mask,
1276 			     struct sk_buff *skb)
1277 {
1278 	struct ovs_key_ethernet *eth_key;
1279 	struct nlattr *nla, *encap;
1280 
1281 	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1282 		goto nla_put_failure;
1283 
1284 	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1285 		goto nla_put_failure;
1286 
1287 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1288 		goto nla_put_failure;
1289 
1290 	if ((swkey->tun_key.ipv4_dst || is_mask)) {
1291 		const void *opts = NULL;
1292 
1293 		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1294 			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1295 
1296 		if (ipv4_tun_to_nlattr(skb, &output->tun_key, opts,
1297 				       swkey->tun_opts_len))
1298 			goto nla_put_failure;
1299 	}
1300 
1301 	if (swkey->phy.in_port == DP_MAX_PORTS) {
1302 		if (is_mask && (output->phy.in_port == 0xffff))
1303 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1304 				goto nla_put_failure;
1305 	} else {
1306 		u16 upper_u16;
1307 		upper_u16 = !is_mask ? 0 : 0xffff;
1308 
1309 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1310 				(upper_u16 << 16) | output->phy.in_port))
1311 			goto nla_put_failure;
1312 	}
1313 
1314 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1315 		goto nla_put_failure;
1316 
1317 	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1318 	if (!nla)
1319 		goto nla_put_failure;
1320 
1321 	eth_key = nla_data(nla);
1322 	ether_addr_copy(eth_key->eth_src, output->eth.src);
1323 	ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1324 
1325 	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1326 		__be16 eth_type;
1327 		eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1328 		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1329 		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1330 			goto nla_put_failure;
1331 		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1332 		if (!swkey->eth.tci)
1333 			goto unencap;
1334 	} else
1335 		encap = NULL;
1336 
1337 	if (swkey->eth.type == htons(ETH_P_802_2)) {
1338 		/*
1339 		 * Ethertype 802.2 is represented in the netlink with omitted
1340 		 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1341 		 * 0xffff in the mask attribute.  Ethertype can also
1342 		 * be wildcarded.
1343 		 */
1344 		if (is_mask && output->eth.type)
1345 			if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1346 						output->eth.type))
1347 				goto nla_put_failure;
1348 		goto unencap;
1349 	}
1350 
1351 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1352 		goto nla_put_failure;
1353 
1354 	if (swkey->eth.type == htons(ETH_P_IP)) {
1355 		struct ovs_key_ipv4 *ipv4_key;
1356 
1357 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1358 		if (!nla)
1359 			goto nla_put_failure;
1360 		ipv4_key = nla_data(nla);
1361 		ipv4_key->ipv4_src = output->ipv4.addr.src;
1362 		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1363 		ipv4_key->ipv4_proto = output->ip.proto;
1364 		ipv4_key->ipv4_tos = output->ip.tos;
1365 		ipv4_key->ipv4_ttl = output->ip.ttl;
1366 		ipv4_key->ipv4_frag = output->ip.frag;
1367 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1368 		struct ovs_key_ipv6 *ipv6_key;
1369 
1370 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1371 		if (!nla)
1372 			goto nla_put_failure;
1373 		ipv6_key = nla_data(nla);
1374 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1375 				sizeof(ipv6_key->ipv6_src));
1376 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1377 				sizeof(ipv6_key->ipv6_dst));
1378 		ipv6_key->ipv6_label = output->ipv6.label;
1379 		ipv6_key->ipv6_proto = output->ip.proto;
1380 		ipv6_key->ipv6_tclass = output->ip.tos;
1381 		ipv6_key->ipv6_hlimit = output->ip.ttl;
1382 		ipv6_key->ipv6_frag = output->ip.frag;
1383 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
1384 		   swkey->eth.type == htons(ETH_P_RARP)) {
1385 		struct ovs_key_arp *arp_key;
1386 
1387 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1388 		if (!nla)
1389 			goto nla_put_failure;
1390 		arp_key = nla_data(nla);
1391 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1392 		arp_key->arp_sip = output->ipv4.addr.src;
1393 		arp_key->arp_tip = output->ipv4.addr.dst;
1394 		arp_key->arp_op = htons(output->ip.proto);
1395 		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1396 		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1397 	} else if (eth_p_mpls(swkey->eth.type)) {
1398 		struct ovs_key_mpls *mpls_key;
1399 
1400 		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1401 		if (!nla)
1402 			goto nla_put_failure;
1403 		mpls_key = nla_data(nla);
1404 		mpls_key->mpls_lse = output->mpls.top_lse;
1405 	}
1406 
1407 	if ((swkey->eth.type == htons(ETH_P_IP) ||
1408 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1409 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1410 
1411 		if (swkey->ip.proto == IPPROTO_TCP) {
1412 			struct ovs_key_tcp *tcp_key;
1413 
1414 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1415 			if (!nla)
1416 				goto nla_put_failure;
1417 			tcp_key = nla_data(nla);
1418 			tcp_key->tcp_src = output->tp.src;
1419 			tcp_key->tcp_dst = output->tp.dst;
1420 			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1421 					 output->tp.flags))
1422 				goto nla_put_failure;
1423 		} else if (swkey->ip.proto == IPPROTO_UDP) {
1424 			struct ovs_key_udp *udp_key;
1425 
1426 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1427 			if (!nla)
1428 				goto nla_put_failure;
1429 			udp_key = nla_data(nla);
1430 			udp_key->udp_src = output->tp.src;
1431 			udp_key->udp_dst = output->tp.dst;
1432 		} else if (swkey->ip.proto == IPPROTO_SCTP) {
1433 			struct ovs_key_sctp *sctp_key;
1434 
1435 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1436 			if (!nla)
1437 				goto nla_put_failure;
1438 			sctp_key = nla_data(nla);
1439 			sctp_key->sctp_src = output->tp.src;
1440 			sctp_key->sctp_dst = output->tp.dst;
1441 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1442 			   swkey->ip.proto == IPPROTO_ICMP) {
1443 			struct ovs_key_icmp *icmp_key;
1444 
1445 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1446 			if (!nla)
1447 				goto nla_put_failure;
1448 			icmp_key = nla_data(nla);
1449 			icmp_key->icmp_type = ntohs(output->tp.src);
1450 			icmp_key->icmp_code = ntohs(output->tp.dst);
1451 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1452 			   swkey->ip.proto == IPPROTO_ICMPV6) {
1453 			struct ovs_key_icmpv6 *icmpv6_key;
1454 
1455 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1456 						sizeof(*icmpv6_key));
1457 			if (!nla)
1458 				goto nla_put_failure;
1459 			icmpv6_key = nla_data(nla);
1460 			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1461 			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1462 
1463 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1464 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1465 				struct ovs_key_nd *nd_key;
1466 
1467 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1468 				if (!nla)
1469 					goto nla_put_failure;
1470 				nd_key = nla_data(nla);
1471 				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1472 							sizeof(nd_key->nd_target));
1473 				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1474 				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1475 			}
1476 		}
1477 	}
1478 
1479 unencap:
1480 	if (encap)
1481 		nla_nest_end(skb, encap);
1482 
1483 	return 0;
1484 
1485 nla_put_failure:
1486 	return -EMSGSIZE;
1487 }
1488 
1489 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1490 		    const struct sw_flow_key *output, int attr, bool is_mask,
1491 		    struct sk_buff *skb)
1492 {
1493 	int err;
1494 	struct nlattr *nla;
1495 
1496 	nla = nla_nest_start(skb, attr);
1497 	if (!nla)
1498 		return -EMSGSIZE;
1499 	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1500 	if (err)
1501 		return err;
1502 	nla_nest_end(skb, nla);
1503 
1504 	return 0;
1505 }
1506 
1507 /* Called with ovs_mutex or RCU read lock. */
1508 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1509 {
1510 	if (ovs_identifier_is_ufid(&flow->id))
1511 		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1512 			       flow->id.ufid);
1513 
1514 	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1515 			       OVS_FLOW_ATTR_KEY, false, skb);
1516 }
1517 
1518 /* Called with ovs_mutex or RCU read lock. */
1519 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1520 {
1521 	return ovs_nla_put_key(&flow->key, &flow->key,
1522 				OVS_FLOW_ATTR_KEY, false, skb);
1523 }
1524 
1525 /* Called with ovs_mutex or RCU read lock. */
1526 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1527 {
1528 	return ovs_nla_put_key(&flow->key, &flow->mask->key,
1529 				OVS_FLOW_ATTR_MASK, true, skb);
1530 }
1531 
1532 #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
1533 
1534 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1535 {
1536 	struct sw_flow_actions *sfa;
1537 
1538 	if (size > MAX_ACTIONS_BUFSIZE) {
1539 		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1540 		return ERR_PTR(-EINVAL);
1541 	}
1542 
1543 	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1544 	if (!sfa)
1545 		return ERR_PTR(-ENOMEM);
1546 
1547 	sfa->actions_len = 0;
1548 	return sfa;
1549 }
1550 
1551 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1552  * The caller must hold rcu_read_lock for this to be sensible. */
1553 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1554 {
1555 	kfree_rcu(sf_acts, rcu);
1556 }
1557 
1558 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1559 				       int attr_len, bool log)
1560 {
1561 
1562 	struct sw_flow_actions *acts;
1563 	int new_acts_size;
1564 	int req_size = NLA_ALIGN(attr_len);
1565 	int next_offset = offsetof(struct sw_flow_actions, actions) +
1566 					(*sfa)->actions_len;
1567 
1568 	if (req_size <= (ksize(*sfa) - next_offset))
1569 		goto out;
1570 
1571 	new_acts_size = ksize(*sfa) * 2;
1572 
1573 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1574 		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1575 			return ERR_PTR(-EMSGSIZE);
1576 		new_acts_size = MAX_ACTIONS_BUFSIZE;
1577 	}
1578 
1579 	acts = nla_alloc_flow_actions(new_acts_size, log);
1580 	if (IS_ERR(acts))
1581 		return (void *)acts;
1582 
1583 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1584 	acts->actions_len = (*sfa)->actions_len;
1585 	kfree(*sfa);
1586 	*sfa = acts;
1587 
1588 out:
1589 	(*sfa)->actions_len += req_size;
1590 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1591 }
1592 
1593 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1594 				   int attrtype, void *data, int len, bool log)
1595 {
1596 	struct nlattr *a;
1597 
1598 	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1599 	if (IS_ERR(a))
1600 		return a;
1601 
1602 	a->nla_type = attrtype;
1603 	a->nla_len = nla_attr_size(len);
1604 
1605 	if (data)
1606 		memcpy(nla_data(a), data, len);
1607 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1608 
1609 	return a;
1610 }
1611 
1612 static int add_action(struct sw_flow_actions **sfa, int attrtype,
1613 		      void *data, int len, bool log)
1614 {
1615 	struct nlattr *a;
1616 
1617 	a = __add_action(sfa, attrtype, data, len, log);
1618 
1619 	return PTR_ERR_OR_ZERO(a);
1620 }
1621 
1622 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1623 					  int attrtype, bool log)
1624 {
1625 	int used = (*sfa)->actions_len;
1626 	int err;
1627 
1628 	err = add_action(sfa, attrtype, NULL, 0, log);
1629 	if (err)
1630 		return err;
1631 
1632 	return used;
1633 }
1634 
1635 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1636 					 int st_offset)
1637 {
1638 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1639 							       st_offset);
1640 
1641 	a->nla_len = sfa->actions_len - st_offset;
1642 }
1643 
1644 static int __ovs_nla_copy_actions(const struct nlattr *attr,
1645 				  const struct sw_flow_key *key,
1646 				  int depth, struct sw_flow_actions **sfa,
1647 				  __be16 eth_type, __be16 vlan_tci, bool log);
1648 
1649 static int validate_and_copy_sample(const struct nlattr *attr,
1650 				    const struct sw_flow_key *key, int depth,
1651 				    struct sw_flow_actions **sfa,
1652 				    __be16 eth_type, __be16 vlan_tci, bool log)
1653 {
1654 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1655 	const struct nlattr *probability, *actions;
1656 	const struct nlattr *a;
1657 	int rem, start, err, st_acts;
1658 
1659 	memset(attrs, 0, sizeof(attrs));
1660 	nla_for_each_nested(a, attr, rem) {
1661 		int type = nla_type(a);
1662 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1663 			return -EINVAL;
1664 		attrs[type] = a;
1665 	}
1666 	if (rem)
1667 		return -EINVAL;
1668 
1669 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1670 	if (!probability || nla_len(probability) != sizeof(u32))
1671 		return -EINVAL;
1672 
1673 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1674 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1675 		return -EINVAL;
1676 
1677 	/* validation done, copy sample action. */
1678 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1679 	if (start < 0)
1680 		return start;
1681 	err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1682 			 nla_data(probability), sizeof(u32), log);
1683 	if (err)
1684 		return err;
1685 	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1686 	if (st_acts < 0)
1687 		return st_acts;
1688 
1689 	err = __ovs_nla_copy_actions(actions, key, depth + 1, sfa,
1690 				     eth_type, vlan_tci, log);
1691 	if (err)
1692 		return err;
1693 
1694 	add_nested_action_end(*sfa, st_acts);
1695 	add_nested_action_end(*sfa, start);
1696 
1697 	return 0;
1698 }
1699 
1700 void ovs_match_init(struct sw_flow_match *match,
1701 		    struct sw_flow_key *key,
1702 		    struct sw_flow_mask *mask)
1703 {
1704 	memset(match, 0, sizeof(*match));
1705 	match->key = key;
1706 	match->mask = mask;
1707 
1708 	memset(key, 0, sizeof(*key));
1709 
1710 	if (mask) {
1711 		memset(&mask->key, 0, sizeof(mask->key));
1712 		mask->range.start = mask->range.end = 0;
1713 	}
1714 }
1715 
1716 static int validate_geneve_opts(struct sw_flow_key *key)
1717 {
1718 	struct geneve_opt *option;
1719 	int opts_len = key->tun_opts_len;
1720 	bool crit_opt = false;
1721 
1722 	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
1723 	while (opts_len > 0) {
1724 		int len;
1725 
1726 		if (opts_len < sizeof(*option))
1727 			return -EINVAL;
1728 
1729 		len = sizeof(*option) + option->length * 4;
1730 		if (len > opts_len)
1731 			return -EINVAL;
1732 
1733 		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1734 
1735 		option = (struct geneve_opt *)((u8 *)option + len);
1736 		opts_len -= len;
1737 	};
1738 
1739 	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1740 
1741 	return 0;
1742 }
1743 
1744 static int validate_and_copy_set_tun(const struct nlattr *attr,
1745 				     struct sw_flow_actions **sfa, bool log)
1746 {
1747 	struct sw_flow_match match;
1748 	struct sw_flow_key key;
1749 	struct ovs_tunnel_info *tun_info;
1750 	struct nlattr *a;
1751 	int err = 0, start, opts_type;
1752 
1753 	ovs_match_init(&match, &key, NULL);
1754 	opts_type = ipv4_tun_from_nlattr(nla_data(attr), &match, false, log);
1755 	if (opts_type < 0)
1756 		return opts_type;
1757 
1758 	if (key.tun_opts_len) {
1759 		switch (opts_type) {
1760 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
1761 			err = validate_geneve_opts(&key);
1762 			if (err < 0)
1763 				return err;
1764 			break;
1765 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
1766 			break;
1767 		}
1768 	};
1769 
1770 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1771 	if (start < 0)
1772 		return start;
1773 
1774 	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1775 			 sizeof(*tun_info) + key.tun_opts_len, log);
1776 	if (IS_ERR(a))
1777 		return PTR_ERR(a);
1778 
1779 	tun_info = nla_data(a);
1780 	tun_info->tunnel = key.tun_key;
1781 	tun_info->options_len = key.tun_opts_len;
1782 
1783 	if (tun_info->options_len) {
1784 		/* We need to store the options in the action itself since
1785 		 * everything else will go away after flow setup. We can append
1786 		 * it to tun_info and then point there.
1787 		 */
1788 		memcpy((tun_info + 1),
1789 		       TUN_METADATA_OPTS(&key, key.tun_opts_len), key.tun_opts_len);
1790 		tun_info->options = (tun_info + 1);
1791 	} else {
1792 		tun_info->options = NULL;
1793 	}
1794 
1795 	add_nested_action_end(*sfa, start);
1796 
1797 	return err;
1798 }
1799 
1800 /* Return false if there are any non-masked bits set.
1801  * Mask follows data immediately, before any netlink padding.
1802  */
1803 static bool validate_masked(u8 *data, int len)
1804 {
1805 	u8 *mask = data + len;
1806 
1807 	while (len--)
1808 		if (*data++ & ~*mask++)
1809 			return false;
1810 
1811 	return true;
1812 }
1813 
1814 static int validate_set(const struct nlattr *a,
1815 			const struct sw_flow_key *flow_key,
1816 			struct sw_flow_actions **sfa,
1817 			bool *skip_copy, __be16 eth_type, bool masked, bool log)
1818 {
1819 	const struct nlattr *ovs_key = nla_data(a);
1820 	int key_type = nla_type(ovs_key);
1821 	size_t key_len;
1822 
1823 	/* There can be only one key in a action */
1824 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
1825 		return -EINVAL;
1826 
1827 	key_len = nla_len(ovs_key);
1828 	if (masked)
1829 		key_len /= 2;
1830 
1831 	if (key_type > OVS_KEY_ATTR_MAX ||
1832 	    (ovs_key_lens[key_type].len != key_len &&
1833 	     ovs_key_lens[key_type].len != OVS_ATTR_NESTED))
1834 		return -EINVAL;
1835 
1836 	if (masked && !validate_masked(nla_data(ovs_key), key_len))
1837 		return -EINVAL;
1838 
1839 	switch (key_type) {
1840 	const struct ovs_key_ipv4 *ipv4_key;
1841 	const struct ovs_key_ipv6 *ipv6_key;
1842 	int err;
1843 
1844 	case OVS_KEY_ATTR_PRIORITY:
1845 	case OVS_KEY_ATTR_SKB_MARK:
1846 	case OVS_KEY_ATTR_ETHERNET:
1847 		break;
1848 
1849 	case OVS_KEY_ATTR_TUNNEL:
1850 		if (eth_p_mpls(eth_type))
1851 			return -EINVAL;
1852 
1853 		if (masked)
1854 			return -EINVAL; /* Masked tunnel set not supported. */
1855 
1856 		*skip_copy = true;
1857 		err = validate_and_copy_set_tun(a, sfa, log);
1858 		if (err)
1859 			return err;
1860 		break;
1861 
1862 	case OVS_KEY_ATTR_IPV4:
1863 		if (eth_type != htons(ETH_P_IP))
1864 			return -EINVAL;
1865 
1866 		ipv4_key = nla_data(ovs_key);
1867 
1868 		if (masked) {
1869 			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
1870 
1871 			/* Non-writeable fields. */
1872 			if (mask->ipv4_proto || mask->ipv4_frag)
1873 				return -EINVAL;
1874 		} else {
1875 			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
1876 				return -EINVAL;
1877 
1878 			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
1879 				return -EINVAL;
1880 		}
1881 		break;
1882 
1883 	case OVS_KEY_ATTR_IPV6:
1884 		if (eth_type != htons(ETH_P_IPV6))
1885 			return -EINVAL;
1886 
1887 		ipv6_key = nla_data(ovs_key);
1888 
1889 		if (masked) {
1890 			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
1891 
1892 			/* Non-writeable fields. */
1893 			if (mask->ipv6_proto || mask->ipv6_frag)
1894 				return -EINVAL;
1895 
1896 			/* Invalid bits in the flow label mask? */
1897 			if (ntohl(mask->ipv6_label) & 0xFFF00000)
1898 				return -EINVAL;
1899 		} else {
1900 			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
1901 				return -EINVAL;
1902 
1903 			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
1904 				return -EINVAL;
1905 		}
1906 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
1907 			return -EINVAL;
1908 
1909 		break;
1910 
1911 	case OVS_KEY_ATTR_TCP:
1912 		if ((eth_type != htons(ETH_P_IP) &&
1913 		     eth_type != htons(ETH_P_IPV6)) ||
1914 		    flow_key->ip.proto != IPPROTO_TCP)
1915 			return -EINVAL;
1916 
1917 		break;
1918 
1919 	case OVS_KEY_ATTR_UDP:
1920 		if ((eth_type != htons(ETH_P_IP) &&
1921 		     eth_type != htons(ETH_P_IPV6)) ||
1922 		    flow_key->ip.proto != IPPROTO_UDP)
1923 			return -EINVAL;
1924 
1925 		break;
1926 
1927 	case OVS_KEY_ATTR_MPLS:
1928 		if (!eth_p_mpls(eth_type))
1929 			return -EINVAL;
1930 		break;
1931 
1932 	case OVS_KEY_ATTR_SCTP:
1933 		if ((eth_type != htons(ETH_P_IP) &&
1934 		     eth_type != htons(ETH_P_IPV6)) ||
1935 		    flow_key->ip.proto != IPPROTO_SCTP)
1936 			return -EINVAL;
1937 
1938 		break;
1939 
1940 	default:
1941 		return -EINVAL;
1942 	}
1943 
1944 	/* Convert non-masked non-tunnel set actions to masked set actions. */
1945 	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
1946 		int start, len = key_len * 2;
1947 		struct nlattr *at;
1948 
1949 		*skip_copy = true;
1950 
1951 		start = add_nested_action_start(sfa,
1952 						OVS_ACTION_ATTR_SET_TO_MASKED,
1953 						log);
1954 		if (start < 0)
1955 			return start;
1956 
1957 		at = __add_action(sfa, key_type, NULL, len, log);
1958 		if (IS_ERR(at))
1959 			return PTR_ERR(at);
1960 
1961 		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
1962 		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
1963 		/* Clear non-writeable bits from otherwise writeable fields. */
1964 		if (key_type == OVS_KEY_ATTR_IPV6) {
1965 			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
1966 
1967 			mask->ipv6_label &= htonl(0x000FFFFF);
1968 		}
1969 		add_nested_action_end(*sfa, start);
1970 	}
1971 
1972 	return 0;
1973 }
1974 
1975 static int validate_userspace(const struct nlattr *attr)
1976 {
1977 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
1978 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
1979 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
1980 		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
1981 	};
1982 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
1983 	int error;
1984 
1985 	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
1986 				 attr, userspace_policy);
1987 	if (error)
1988 		return error;
1989 
1990 	if (!a[OVS_USERSPACE_ATTR_PID] ||
1991 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
1992 		return -EINVAL;
1993 
1994 	return 0;
1995 }
1996 
1997 static int copy_action(const struct nlattr *from,
1998 		       struct sw_flow_actions **sfa, bool log)
1999 {
2000 	int totlen = NLA_ALIGN(from->nla_len);
2001 	struct nlattr *to;
2002 
2003 	to = reserve_sfa_size(sfa, from->nla_len, log);
2004 	if (IS_ERR(to))
2005 		return PTR_ERR(to);
2006 
2007 	memcpy(to, from, totlen);
2008 	return 0;
2009 }
2010 
2011 static int __ovs_nla_copy_actions(const struct nlattr *attr,
2012 				  const struct sw_flow_key *key,
2013 				  int depth, struct sw_flow_actions **sfa,
2014 				  __be16 eth_type, __be16 vlan_tci, bool log)
2015 {
2016 	const struct nlattr *a;
2017 	int rem, err;
2018 
2019 	if (depth >= SAMPLE_ACTION_DEPTH)
2020 		return -EOVERFLOW;
2021 
2022 	nla_for_each_nested(a, attr, rem) {
2023 		/* Expected argument lengths, (u32)-1 for variable length. */
2024 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2025 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2026 			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2027 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2028 			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2029 			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2030 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2031 			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2032 			[OVS_ACTION_ATTR_SET] = (u32)-1,
2033 			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2034 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2035 			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash)
2036 		};
2037 		const struct ovs_action_push_vlan *vlan;
2038 		int type = nla_type(a);
2039 		bool skip_copy;
2040 
2041 		if (type > OVS_ACTION_ATTR_MAX ||
2042 		    (action_lens[type] != nla_len(a) &&
2043 		     action_lens[type] != (u32)-1))
2044 			return -EINVAL;
2045 
2046 		skip_copy = false;
2047 		switch (type) {
2048 		case OVS_ACTION_ATTR_UNSPEC:
2049 			return -EINVAL;
2050 
2051 		case OVS_ACTION_ATTR_USERSPACE:
2052 			err = validate_userspace(a);
2053 			if (err)
2054 				return err;
2055 			break;
2056 
2057 		case OVS_ACTION_ATTR_OUTPUT:
2058 			if (nla_get_u32(a) >= DP_MAX_PORTS)
2059 				return -EINVAL;
2060 			break;
2061 
2062 		case OVS_ACTION_ATTR_HASH: {
2063 			const struct ovs_action_hash *act_hash = nla_data(a);
2064 
2065 			switch (act_hash->hash_alg) {
2066 			case OVS_HASH_ALG_L4:
2067 				break;
2068 			default:
2069 				return  -EINVAL;
2070 			}
2071 
2072 			break;
2073 		}
2074 
2075 		case OVS_ACTION_ATTR_POP_VLAN:
2076 			vlan_tci = htons(0);
2077 			break;
2078 
2079 		case OVS_ACTION_ATTR_PUSH_VLAN:
2080 			vlan = nla_data(a);
2081 			if (vlan->vlan_tpid != htons(ETH_P_8021Q))
2082 				return -EINVAL;
2083 			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2084 				return -EINVAL;
2085 			vlan_tci = vlan->vlan_tci;
2086 			break;
2087 
2088 		case OVS_ACTION_ATTR_RECIRC:
2089 			break;
2090 
2091 		case OVS_ACTION_ATTR_PUSH_MPLS: {
2092 			const struct ovs_action_push_mpls *mpls = nla_data(a);
2093 
2094 			if (!eth_p_mpls(mpls->mpls_ethertype))
2095 				return -EINVAL;
2096 			/* Prohibit push MPLS other than to a white list
2097 			 * for packets that have a known tag order.
2098 			 */
2099 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2100 			    (eth_type != htons(ETH_P_IP) &&
2101 			     eth_type != htons(ETH_P_IPV6) &&
2102 			     eth_type != htons(ETH_P_ARP) &&
2103 			     eth_type != htons(ETH_P_RARP) &&
2104 			     !eth_p_mpls(eth_type)))
2105 				return -EINVAL;
2106 			eth_type = mpls->mpls_ethertype;
2107 			break;
2108 		}
2109 
2110 		case OVS_ACTION_ATTR_POP_MPLS:
2111 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2112 			    !eth_p_mpls(eth_type))
2113 				return -EINVAL;
2114 
2115 			/* Disallow subsequent L2.5+ set and mpls_pop actions
2116 			 * as there is no check here to ensure that the new
2117 			 * eth_type is valid and thus set actions could
2118 			 * write off the end of the packet or otherwise
2119 			 * corrupt it.
2120 			 *
2121 			 * Support for these actions is planned using packet
2122 			 * recirculation.
2123 			 */
2124 			eth_type = htons(0);
2125 			break;
2126 
2127 		case OVS_ACTION_ATTR_SET:
2128 			err = validate_set(a, key, sfa,
2129 					   &skip_copy, eth_type, false, log);
2130 			if (err)
2131 				return err;
2132 			break;
2133 
2134 		case OVS_ACTION_ATTR_SET_MASKED:
2135 			err = validate_set(a, key, sfa,
2136 					   &skip_copy, eth_type, true, log);
2137 			if (err)
2138 				return err;
2139 			break;
2140 
2141 		case OVS_ACTION_ATTR_SAMPLE:
2142 			err = validate_and_copy_sample(a, key, depth, sfa,
2143 						       eth_type, vlan_tci, log);
2144 			if (err)
2145 				return err;
2146 			skip_copy = true;
2147 			break;
2148 
2149 		default:
2150 			OVS_NLERR(log, "Unknown Action type %d", type);
2151 			return -EINVAL;
2152 		}
2153 		if (!skip_copy) {
2154 			err = copy_action(a, sfa, log);
2155 			if (err)
2156 				return err;
2157 		}
2158 	}
2159 
2160 	if (rem > 0)
2161 		return -EINVAL;
2162 
2163 	return 0;
2164 }
2165 
2166 /* 'key' must be the masked key. */
2167 int ovs_nla_copy_actions(const struct nlattr *attr,
2168 			 const struct sw_flow_key *key,
2169 			 struct sw_flow_actions **sfa, bool log)
2170 {
2171 	int err;
2172 
2173 	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
2174 	if (IS_ERR(*sfa))
2175 		return PTR_ERR(*sfa);
2176 
2177 	err = __ovs_nla_copy_actions(attr, key, 0, sfa, key->eth.type,
2178 				     key->eth.tci, log);
2179 	if (err)
2180 		kfree(*sfa);
2181 
2182 	return err;
2183 }
2184 
2185 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2186 {
2187 	const struct nlattr *a;
2188 	struct nlattr *start;
2189 	int err = 0, rem;
2190 
2191 	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2192 	if (!start)
2193 		return -EMSGSIZE;
2194 
2195 	nla_for_each_nested(a, attr, rem) {
2196 		int type = nla_type(a);
2197 		struct nlattr *st_sample;
2198 
2199 		switch (type) {
2200 		case OVS_SAMPLE_ATTR_PROBABILITY:
2201 			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2202 				    sizeof(u32), nla_data(a)))
2203 				return -EMSGSIZE;
2204 			break;
2205 		case OVS_SAMPLE_ATTR_ACTIONS:
2206 			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2207 			if (!st_sample)
2208 				return -EMSGSIZE;
2209 			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2210 			if (err)
2211 				return err;
2212 			nla_nest_end(skb, st_sample);
2213 			break;
2214 		}
2215 	}
2216 
2217 	nla_nest_end(skb, start);
2218 	return err;
2219 }
2220 
2221 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2222 {
2223 	const struct nlattr *ovs_key = nla_data(a);
2224 	int key_type = nla_type(ovs_key);
2225 	struct nlattr *start;
2226 	int err;
2227 
2228 	switch (key_type) {
2229 	case OVS_KEY_ATTR_TUNNEL_INFO: {
2230 		struct ovs_tunnel_info *tun_info = nla_data(ovs_key);
2231 
2232 		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2233 		if (!start)
2234 			return -EMSGSIZE;
2235 
2236 		err = ipv4_tun_to_nlattr(skb, &tun_info->tunnel,
2237 					 tun_info->options_len ?
2238 						tun_info->options : NULL,
2239 					 tun_info->options_len);
2240 		if (err)
2241 			return err;
2242 		nla_nest_end(skb, start);
2243 		break;
2244 	}
2245 	default:
2246 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2247 			return -EMSGSIZE;
2248 		break;
2249 	}
2250 
2251 	return 0;
2252 }
2253 
2254 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2255 						struct sk_buff *skb)
2256 {
2257 	const struct nlattr *ovs_key = nla_data(a);
2258 	struct nlattr *nla;
2259 	size_t key_len = nla_len(ovs_key) / 2;
2260 
2261 	/* Revert the conversion we did from a non-masked set action to
2262 	 * masked set action.
2263 	 */
2264 	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2265 	if (!nla)
2266 		return -EMSGSIZE;
2267 
2268 	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2269 		return -EMSGSIZE;
2270 
2271 	nla_nest_end(skb, nla);
2272 	return 0;
2273 }
2274 
2275 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2276 {
2277 	const struct nlattr *a;
2278 	int rem, err;
2279 
2280 	nla_for_each_attr(a, attr, len, rem) {
2281 		int type = nla_type(a);
2282 
2283 		switch (type) {
2284 		case OVS_ACTION_ATTR_SET:
2285 			err = set_action_to_attr(a, skb);
2286 			if (err)
2287 				return err;
2288 			break;
2289 
2290 		case OVS_ACTION_ATTR_SET_TO_MASKED:
2291 			err = masked_set_action_to_set_action_attr(a, skb);
2292 			if (err)
2293 				return err;
2294 			break;
2295 
2296 		case OVS_ACTION_ATTR_SAMPLE:
2297 			err = sample_action_to_attr(a, skb);
2298 			if (err)
2299 				return err;
2300 			break;
2301 		default:
2302 			if (nla_put(skb, type, nla_len(a), nla_data(a)))
2303 				return -EMSGSIZE;
2304 			break;
2305 		}
2306 	}
2307 
2308 	return 0;
2309 }
2310