xref: /linux/net/openvswitch/flow_netlink.c (revision 9a95c5bfbf02a0a7f5983280fe284a0ff0836c34)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include "flow.h"
9 #include "datapath.h"
10 #include <linux/uaccess.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_ether.h>
14 #include <linux/if_vlan.h>
15 #include <net/llc_pdu.h>
16 #include <linux/kernel.h>
17 #include <linux/jhash.h>
18 #include <linux/jiffies.h>
19 #include <linux/llc.h>
20 #include <linux/module.h>
21 #include <linux/in.h>
22 #include <linux/rcupdate.h>
23 #include <linux/if_arp.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/icmp.h>
30 #include <linux/icmpv6.h>
31 #include <linux/rculist.h>
32 #include <net/geneve.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/mpls.h>
37 #include <net/vxlan.h>
38 #include <net/tun_proto.h>
39 #include <net/erspan.h>
40 
41 #include "drop.h"
42 #include "flow_netlink.h"
43 
44 struct ovs_len_tbl {
45 	int len;
46 	const struct ovs_len_tbl *next;
47 };
48 
49 #define OVS_ATTR_NESTED -1
50 #define OVS_ATTR_VARIABLE -2
51 #define OVS_COPY_ACTIONS_MAX_DEPTH 16
52 
53 static bool actions_may_change_flow(const struct nlattr *actions)
54 {
55 	struct nlattr *nla;
56 	int rem;
57 
58 	nla_for_each_nested(nla, actions, rem) {
59 		u16 action = nla_type(nla);
60 
61 		switch (action) {
62 		case OVS_ACTION_ATTR_OUTPUT:
63 		case OVS_ACTION_ATTR_RECIRC:
64 		case OVS_ACTION_ATTR_TRUNC:
65 		case OVS_ACTION_ATTR_USERSPACE:
66 		case OVS_ACTION_ATTR_DROP:
67 			break;
68 
69 		case OVS_ACTION_ATTR_CT:
70 		case OVS_ACTION_ATTR_CT_CLEAR:
71 		case OVS_ACTION_ATTR_HASH:
72 		case OVS_ACTION_ATTR_POP_ETH:
73 		case OVS_ACTION_ATTR_POP_MPLS:
74 		case OVS_ACTION_ATTR_POP_NSH:
75 		case OVS_ACTION_ATTR_POP_VLAN:
76 		case OVS_ACTION_ATTR_PUSH_ETH:
77 		case OVS_ACTION_ATTR_PUSH_MPLS:
78 		case OVS_ACTION_ATTR_PUSH_NSH:
79 		case OVS_ACTION_ATTR_PUSH_VLAN:
80 		case OVS_ACTION_ATTR_SAMPLE:
81 		case OVS_ACTION_ATTR_SET:
82 		case OVS_ACTION_ATTR_SET_MASKED:
83 		case OVS_ACTION_ATTR_METER:
84 		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
85 		case OVS_ACTION_ATTR_ADD_MPLS:
86 		case OVS_ACTION_ATTR_DEC_TTL:
87 		default:
88 			return true;
89 		}
90 	}
91 	return false;
92 }
93 
94 static void update_range(struct sw_flow_match *match,
95 			 size_t offset, size_t size, bool is_mask)
96 {
97 	struct sw_flow_key_range *range;
98 	size_t start = rounddown(offset, sizeof(long));
99 	size_t end = roundup(offset + size, sizeof(long));
100 
101 	if (!is_mask)
102 		range = &match->range;
103 	else
104 		range = &match->mask->range;
105 
106 	if (range->start == range->end) {
107 		range->start = start;
108 		range->end = end;
109 		return;
110 	}
111 
112 	if (range->start > start)
113 		range->start = start;
114 
115 	if (range->end < end)
116 		range->end = end;
117 }
118 
119 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
120 	do { \
121 		update_range(match, offsetof(struct sw_flow_key, field),    \
122 			     sizeof((match)->key->field), is_mask);	    \
123 		if (is_mask)						    \
124 			(match)->mask->key.field = value;		    \
125 		else							    \
126 			(match)->key->field = value;		            \
127 	} while (0)
128 
129 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
130 	do {								    \
131 		update_range(match, offset, len, is_mask);		    \
132 		if (is_mask)						    \
133 			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
134 			       len);					   \
135 		else							    \
136 			memcpy((u8 *)(match)->key + offset, value_p, len);  \
137 	} while (0)
138 
139 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
140 	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
141 				  value_p, len, is_mask)
142 
143 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
144 	do {								    \
145 		update_range(match, offsetof(struct sw_flow_key, field),    \
146 			     sizeof((match)->key->field), is_mask);	    \
147 		if (is_mask)						    \
148 			memset((u8 *)&(match)->mask->key.field, value,      \
149 			       sizeof((match)->mask->key.field));	    \
150 		else							    \
151 			memset((u8 *)&(match)->key->field, value,           \
152 			       sizeof((match)->key->field));                \
153 	} while (0)
154 
155 #define SW_FLOW_KEY_BITMAP_COPY(match, field, value_p, nbits, is_mask) ({     \
156 	update_range(match, offsetof(struct sw_flow_key, field),	      \
157 		     bitmap_size(nbits), is_mask);			      \
158 	bitmap_copy(is_mask ? (match)->mask->key.field : (match)->key->field, \
159 		    value_p, nbits);					      \
160 })
161 
162 static bool match_validate(const struct sw_flow_match *match,
163 			   u64 key_attrs, u64 mask_attrs, bool log)
164 {
165 	u64 key_expected = 0;
166 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
167 
168 	/* The following mask attributes allowed only if they
169 	 * pass the validation tests. */
170 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
171 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
172 			| (1 << OVS_KEY_ATTR_IPV6)
173 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
174 			| (1 << OVS_KEY_ATTR_TCP)
175 			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
176 			| (1 << OVS_KEY_ATTR_UDP)
177 			| (1 << OVS_KEY_ATTR_SCTP)
178 			| (1 << OVS_KEY_ATTR_ICMP)
179 			| (1 << OVS_KEY_ATTR_ICMPV6)
180 			| (1 << OVS_KEY_ATTR_ARP)
181 			| (1 << OVS_KEY_ATTR_ND)
182 			| (1 << OVS_KEY_ATTR_MPLS)
183 			| (1 << OVS_KEY_ATTR_NSH));
184 
185 	/* Always allowed mask fields. */
186 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
187 		       | (1 << OVS_KEY_ATTR_IN_PORT)
188 		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
189 
190 	/* Check key attributes. */
191 	if (match->key->eth.type == htons(ETH_P_ARP)
192 			|| match->key->eth.type == htons(ETH_P_RARP)) {
193 		key_expected |= 1 << OVS_KEY_ATTR_ARP;
194 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
195 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
196 	}
197 
198 	if (eth_p_mpls(match->key->eth.type)) {
199 		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
200 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
201 			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
202 	}
203 
204 	if (match->key->eth.type == htons(ETH_P_IP)) {
205 		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
206 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
207 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
208 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
209 		}
210 
211 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
212 			if (match->key->ip.proto == IPPROTO_UDP) {
213 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
214 				if (match->mask && (match->mask->key.ip.proto == 0xff))
215 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
216 			}
217 
218 			if (match->key->ip.proto == IPPROTO_SCTP) {
219 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
220 				if (match->mask && (match->mask->key.ip.proto == 0xff))
221 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
222 			}
223 
224 			if (match->key->ip.proto == IPPROTO_TCP) {
225 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
226 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
227 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
228 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
229 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
230 				}
231 			}
232 
233 			if (match->key->ip.proto == IPPROTO_ICMP) {
234 				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
235 				if (match->mask && (match->mask->key.ip.proto == 0xff))
236 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
237 			}
238 		}
239 	}
240 
241 	if (match->key->eth.type == htons(ETH_P_IPV6)) {
242 		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
243 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
244 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
245 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
246 		}
247 
248 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
249 			if (match->key->ip.proto == IPPROTO_UDP) {
250 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
251 				if (match->mask && (match->mask->key.ip.proto == 0xff))
252 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
253 			}
254 
255 			if (match->key->ip.proto == IPPROTO_SCTP) {
256 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
257 				if (match->mask && (match->mask->key.ip.proto == 0xff))
258 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
259 			}
260 
261 			if (match->key->ip.proto == IPPROTO_TCP) {
262 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
263 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
264 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
265 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
266 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
267 				}
268 			}
269 
270 			if (match->key->ip.proto == IPPROTO_ICMPV6) {
271 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
272 				if (match->mask && (match->mask->key.ip.proto == 0xff))
273 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
274 
275 				if (match->key->tp.src ==
276 						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
277 				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
278 					key_expected |= 1 << OVS_KEY_ATTR_ND;
279 					/* Original direction conntrack tuple
280 					 * uses the same space as the ND fields
281 					 * in the key, so both are not allowed
282 					 * at the same time.
283 					 */
284 					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
285 					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
286 						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
287 				}
288 			}
289 		}
290 	}
291 
292 	if (match->key->eth.type == htons(ETH_P_NSH)) {
293 		key_expected |= 1 << OVS_KEY_ATTR_NSH;
294 		if (match->mask &&
295 		    match->mask->key.eth.type == htons(0xffff)) {
296 			mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
297 		}
298 	}
299 
300 	if ((key_attrs & key_expected) != key_expected) {
301 		/* Key attributes check failed. */
302 		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
303 			  (unsigned long long)key_attrs,
304 			  (unsigned long long)key_expected);
305 		return false;
306 	}
307 
308 	if ((mask_attrs & mask_allowed) != mask_attrs) {
309 		/* Mask attributes check failed. */
310 		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
311 			  (unsigned long long)mask_attrs,
312 			  (unsigned long long)mask_allowed);
313 		return false;
314 	}
315 
316 	return true;
317 }
318 
319 size_t ovs_tun_key_attr_size(void)
320 {
321 	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
322 	 * updating this function.
323 	 */
324 	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
325 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
326 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
327 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
328 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
329 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
330 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
331 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
332 		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
333 		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
334 		 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
335 		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
336 		 */
337 		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
338 		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
339 }
340 
341 static size_t ovs_nsh_key_attr_size(void)
342 {
343 	/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
344 	 * updating this function.
345 	 */
346 	return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
347 		/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
348 		 * mutually exclusive, so the bigger one can cover
349 		 * the small one.
350 		 */
351 		+ nla_total_size(NSH_CTX_HDRS_MAX_LEN);
352 }
353 
354 size_t ovs_key_attr_size(void)
355 {
356 	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
357 	 * updating this function.
358 	 */
359 	BUILD_BUG_ON(OVS_KEY_ATTR_MAX != 32);
360 
361 	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
362 		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
363 		  + ovs_tun_key_attr_size()
364 		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
365 		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
366 		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
367 		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
368 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
369 		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
370 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
371 		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
372 		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
373 		+ nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
374 		  + ovs_nsh_key_attr_size()
375 		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
376 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
377 		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
378 		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
379 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
380 		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
381 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
382 		+ nla_total_size(28)  /* OVS_KEY_ATTR_ND */
383 		+ nla_total_size(2);  /* OVS_KEY_ATTR_IPV6_EXTHDRS */
384 }
385 
386 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
387 	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
388 };
389 
390 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
391 	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
392 	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
393 	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
394 	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
395 	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
396 	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
397 	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
398 	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
399 	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
400 	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
401 	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
402 	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
403 						.next = ovs_vxlan_ext_key_lens },
404 	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
405 	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
406 	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE },
407 	[OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE]   = { .len = 0 },
408 };
409 
410 static const struct ovs_len_tbl
411 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
412 	[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
413 	[OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
414 	[OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
415 };
416 
417 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
418 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
419 	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
420 	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
421 	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
422 	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
423 	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
424 	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
425 	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
426 	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
427 	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
428 	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
429 	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
430 	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
431 	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
432 	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
433 	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
434 	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
435 	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
436 	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
437 	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
438 	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
439 				     .next = ovs_tunnel_key_lens, },
440 	[OVS_KEY_ATTR_MPLS]	 = { .len = OVS_ATTR_VARIABLE },
441 	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
442 	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
443 	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
444 	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
445 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
446 		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
447 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
448 		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
449 	[OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
450 				     .next = ovs_nsh_key_attr_lens, },
451 	[OVS_KEY_ATTR_IPV6_EXTHDRS] = {
452 		.len = sizeof(struct ovs_key_ipv6_exthdrs) },
453 };
454 
455 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
456 {
457 	return expected_len == attr_len ||
458 	       expected_len == OVS_ATTR_NESTED ||
459 	       expected_len == OVS_ATTR_VARIABLE;
460 }
461 
462 static bool is_all_zero(const u8 *fp, size_t size)
463 {
464 	int i;
465 
466 	if (!fp)
467 		return false;
468 
469 	for (i = 0; i < size; i++)
470 		if (fp[i])
471 			return false;
472 
473 	return true;
474 }
475 
476 static int __parse_flow_nlattrs(const struct nlattr *attr,
477 				const struct nlattr *a[],
478 				u64 *attrsp, bool log, bool nz)
479 {
480 	const struct nlattr *nla;
481 	u64 attrs;
482 	int rem;
483 
484 	attrs = *attrsp;
485 	nla_for_each_nested(nla, attr, rem) {
486 		u16 type = nla_type(nla);
487 		int expected_len;
488 
489 		if (type > OVS_KEY_ATTR_MAX) {
490 			OVS_NLERR(log, "Key type %d is out of range max %d",
491 				  type, OVS_KEY_ATTR_MAX);
492 			return -EINVAL;
493 		}
494 
495 		if (type == OVS_KEY_ATTR_PACKET_TYPE ||
496 		    type == OVS_KEY_ATTR_ND_EXTENSIONS ||
497 		    type == OVS_KEY_ATTR_TUNNEL_INFO) {
498 			OVS_NLERR(log, "Key type %d is not supported", type);
499 			return -EINVAL;
500 		}
501 
502 		if (attrs & (1ULL << type)) {
503 			OVS_NLERR(log, "Duplicate key (type %d).", type);
504 			return -EINVAL;
505 		}
506 
507 		expected_len = ovs_key_lens[type].len;
508 		if (!check_attr_len(nla_len(nla), expected_len)) {
509 			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
510 				  type, nla_len(nla), expected_len);
511 			return -EINVAL;
512 		}
513 
514 		if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
515 			attrs |= 1ULL << type;
516 			a[type] = nla;
517 		}
518 	}
519 	if (rem) {
520 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
521 		return -EINVAL;
522 	}
523 
524 	*attrsp = attrs;
525 	return 0;
526 }
527 
528 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
529 				   const struct nlattr *a[], u64 *attrsp,
530 				   bool log)
531 {
532 	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
533 }
534 
535 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
536 		       u64 *attrsp, bool log)
537 {
538 	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
539 }
540 
541 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
542 				     struct sw_flow_match *match, bool is_mask,
543 				     bool log)
544 {
545 	unsigned long opt_key_offset;
546 
547 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
548 		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
549 			  nla_len(a), sizeof(match->key->tun_opts));
550 		return -EINVAL;
551 	}
552 
553 	if (nla_len(a) % 4 != 0) {
554 		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
555 			  nla_len(a));
556 		return -EINVAL;
557 	}
558 
559 	/* We need to record the length of the options passed
560 	 * down, otherwise packets with the same format but
561 	 * additional options will be silently matched.
562 	 */
563 	if (!is_mask) {
564 		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
565 				false);
566 	} else {
567 		/* This is somewhat unusual because it looks at
568 		 * both the key and mask while parsing the
569 		 * attributes (and by extension assumes the key
570 		 * is parsed first). Normally, we would verify
571 		 * that each is the correct length and that the
572 		 * attributes line up in the validate function.
573 		 * However, that is difficult because this is
574 		 * variable length and we won't have the
575 		 * information later.
576 		 */
577 		if (match->key->tun_opts_len != nla_len(a)) {
578 			OVS_NLERR(log, "Geneve option len %d != mask len %d",
579 				  match->key->tun_opts_len, nla_len(a));
580 			return -EINVAL;
581 		}
582 
583 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
584 	}
585 
586 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
587 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
588 				  nla_len(a), is_mask);
589 	return 0;
590 }
591 
592 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
593 				     struct sw_flow_match *match, bool is_mask,
594 				     bool log)
595 {
596 	struct nlattr *a;
597 	int rem;
598 	unsigned long opt_key_offset;
599 	struct vxlan_metadata opts;
600 
601 	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
602 
603 	memset(&opts, 0, sizeof(opts));
604 	nla_for_each_nested(a, attr, rem) {
605 		int type = nla_type(a);
606 
607 		if (type > OVS_VXLAN_EXT_MAX) {
608 			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
609 				  type, OVS_VXLAN_EXT_MAX);
610 			return -EINVAL;
611 		}
612 
613 		if (!check_attr_len(nla_len(a),
614 				    ovs_vxlan_ext_key_lens[type].len)) {
615 			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
616 				  type, nla_len(a),
617 				  ovs_vxlan_ext_key_lens[type].len);
618 			return -EINVAL;
619 		}
620 
621 		switch (type) {
622 		case OVS_VXLAN_EXT_GBP:
623 			opts.gbp = nla_get_u32(a);
624 			break;
625 		default:
626 			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
627 				  type);
628 			return -EINVAL;
629 		}
630 	}
631 	if (rem) {
632 		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
633 			  rem);
634 		return -EINVAL;
635 	}
636 
637 	if (!is_mask)
638 		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
639 	else
640 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
641 
642 	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
643 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
644 				  is_mask);
645 	return 0;
646 }
647 
648 static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
649 				      struct sw_flow_match *match, bool is_mask,
650 				      bool log)
651 {
652 	unsigned long opt_key_offset;
653 
654 	BUILD_BUG_ON(sizeof(struct erspan_metadata) >
655 		     sizeof(match->key->tun_opts));
656 
657 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
658 		OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
659 			  nla_len(a), sizeof(match->key->tun_opts));
660 		return -EINVAL;
661 	}
662 
663 	if (!is_mask)
664 		SW_FLOW_KEY_PUT(match, tun_opts_len,
665 				sizeof(struct erspan_metadata), false);
666 	else
667 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
668 
669 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
670 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
671 				  nla_len(a), is_mask);
672 	return 0;
673 }
674 
675 static int ip_tun_from_nlattr(const struct nlattr *attr,
676 			      struct sw_flow_match *match, bool is_mask,
677 			      bool log)
678 {
679 	bool ttl = false, ipv4 = false, ipv6 = false;
680 	IP_TUNNEL_DECLARE_FLAGS(tun_flags) = { };
681 	bool info_bridge_mode = false;
682 	int opts_type = 0;
683 	struct nlattr *a;
684 	int rem;
685 
686 	nla_for_each_nested(a, attr, rem) {
687 		int type = nla_type(a);
688 		int err;
689 
690 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
691 			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
692 				  type, OVS_TUNNEL_KEY_ATTR_MAX);
693 			return -EINVAL;
694 		}
695 
696 		if (!check_attr_len(nla_len(a),
697 				    ovs_tunnel_key_lens[type].len)) {
698 			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
699 				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
700 			return -EINVAL;
701 		}
702 
703 		switch (type) {
704 		case OVS_TUNNEL_KEY_ATTR_ID:
705 			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
706 					nla_get_be64(a), is_mask);
707 			__set_bit(IP_TUNNEL_KEY_BIT, tun_flags);
708 			break;
709 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
710 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
711 					nla_get_in_addr(a), is_mask);
712 			ipv4 = true;
713 			break;
714 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
715 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
716 					nla_get_in_addr(a), is_mask);
717 			ipv4 = true;
718 			break;
719 		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
720 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
721 					nla_get_in6_addr(a), is_mask);
722 			ipv6 = true;
723 			break;
724 		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
725 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
726 					nla_get_in6_addr(a), is_mask);
727 			ipv6 = true;
728 			break;
729 		case OVS_TUNNEL_KEY_ATTR_TOS:
730 			SW_FLOW_KEY_PUT(match, tun_key.tos,
731 					nla_get_u8(a), is_mask);
732 			break;
733 		case OVS_TUNNEL_KEY_ATTR_TTL:
734 			SW_FLOW_KEY_PUT(match, tun_key.ttl,
735 					nla_get_u8(a), is_mask);
736 			ttl = true;
737 			break;
738 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
739 			__set_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, tun_flags);
740 			break;
741 		case OVS_TUNNEL_KEY_ATTR_CSUM:
742 			__set_bit(IP_TUNNEL_CSUM_BIT, tun_flags);
743 			break;
744 		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
745 			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
746 					nla_get_be16(a), is_mask);
747 			break;
748 		case OVS_TUNNEL_KEY_ATTR_TP_DST:
749 			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
750 					nla_get_be16(a), is_mask);
751 			break;
752 		case OVS_TUNNEL_KEY_ATTR_OAM:
753 			__set_bit(IP_TUNNEL_OAM_BIT, tun_flags);
754 			break;
755 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
756 			if (opts_type) {
757 				OVS_NLERR(log, "Multiple metadata blocks provided");
758 				return -EINVAL;
759 			}
760 
761 			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
762 			if (err)
763 				return err;
764 
765 			__set_bit(IP_TUNNEL_GENEVE_OPT_BIT, tun_flags);
766 			opts_type = type;
767 			break;
768 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
769 			if (opts_type) {
770 				OVS_NLERR(log, "Multiple metadata blocks provided");
771 				return -EINVAL;
772 			}
773 
774 			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
775 			if (err)
776 				return err;
777 
778 			__set_bit(IP_TUNNEL_VXLAN_OPT_BIT, tun_flags);
779 			opts_type = type;
780 			break;
781 		case OVS_TUNNEL_KEY_ATTR_PAD:
782 			break;
783 		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
784 			if (opts_type) {
785 				OVS_NLERR(log, "Multiple metadata blocks provided");
786 				return -EINVAL;
787 			}
788 
789 			err = erspan_tun_opt_from_nlattr(a, match, is_mask,
790 							 log);
791 			if (err)
792 				return err;
793 
794 			__set_bit(IP_TUNNEL_ERSPAN_OPT_BIT, tun_flags);
795 			opts_type = type;
796 			break;
797 		case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
798 			info_bridge_mode = true;
799 			ipv4 = true;
800 			break;
801 		default:
802 			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
803 				  type);
804 			return -EINVAL;
805 		}
806 	}
807 
808 	SW_FLOW_KEY_BITMAP_COPY(match, tun_key.tun_flags, tun_flags,
809 				__IP_TUNNEL_FLAG_NUM, is_mask);
810 	if (is_mask)
811 		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
812 	else
813 		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
814 				false);
815 
816 	if (rem > 0) {
817 		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
818 			  rem);
819 		return -EINVAL;
820 	}
821 
822 	if (ipv4 && ipv6) {
823 		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
824 		return -EINVAL;
825 	}
826 
827 	if (!is_mask) {
828 		if (!ipv4 && !ipv6) {
829 			OVS_NLERR(log, "IP tunnel dst address not specified");
830 			return -EINVAL;
831 		}
832 		if (ipv4) {
833 			if (info_bridge_mode) {
834 				__clear_bit(IP_TUNNEL_KEY_BIT, tun_flags);
835 
836 				if (match->key->tun_key.u.ipv4.src ||
837 				    match->key->tun_key.u.ipv4.dst ||
838 				    match->key->tun_key.tp_src ||
839 				    match->key->tun_key.tp_dst ||
840 				    match->key->tun_key.ttl ||
841 				    match->key->tun_key.tos ||
842 				    !ip_tunnel_flags_empty(tun_flags)) {
843 					OVS_NLERR(log, "IPv4 tun info is not correct");
844 					return -EINVAL;
845 				}
846 			} else if (!match->key->tun_key.u.ipv4.dst) {
847 				OVS_NLERR(log, "IPv4 tunnel dst address is zero");
848 				return -EINVAL;
849 			}
850 		}
851 		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
852 			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
853 			return -EINVAL;
854 		}
855 
856 		if (!ttl && !info_bridge_mode) {
857 			OVS_NLERR(log, "IP tunnel TTL not specified.");
858 			return -EINVAL;
859 		}
860 	}
861 
862 	return opts_type;
863 }
864 
865 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
866 			       const void *tun_opts, int swkey_tun_opts_len)
867 {
868 	const struct vxlan_metadata *opts = tun_opts;
869 	struct nlattr *nla;
870 
871 	nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
872 	if (!nla)
873 		return -EMSGSIZE;
874 
875 	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
876 		return -EMSGSIZE;
877 
878 	nla_nest_end(skb, nla);
879 	return 0;
880 }
881 
882 static int __ip_tun_to_nlattr(struct sk_buff *skb,
883 			      const struct ip_tunnel_key *output,
884 			      const void *tun_opts, int swkey_tun_opts_len,
885 			      unsigned short tun_proto, u8 mode)
886 {
887 	if (test_bit(IP_TUNNEL_KEY_BIT, output->tun_flags) &&
888 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
889 			 OVS_TUNNEL_KEY_ATTR_PAD))
890 		return -EMSGSIZE;
891 
892 	if (mode & IP_TUNNEL_INFO_BRIDGE)
893 		return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
894 		       ? -EMSGSIZE : 0;
895 
896 	switch (tun_proto) {
897 	case AF_INET:
898 		if (output->u.ipv4.src &&
899 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
900 				    output->u.ipv4.src))
901 			return -EMSGSIZE;
902 		if (output->u.ipv4.dst &&
903 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
904 				    output->u.ipv4.dst))
905 			return -EMSGSIZE;
906 		break;
907 	case AF_INET6:
908 		if (!ipv6_addr_any(&output->u.ipv6.src) &&
909 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
910 				     &output->u.ipv6.src))
911 			return -EMSGSIZE;
912 		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
913 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
914 				     &output->u.ipv6.dst))
915 			return -EMSGSIZE;
916 		break;
917 	}
918 	if (output->tos &&
919 	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
920 		return -EMSGSIZE;
921 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
922 		return -EMSGSIZE;
923 	if (test_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, output->tun_flags) &&
924 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
925 		return -EMSGSIZE;
926 	if (test_bit(IP_TUNNEL_CSUM_BIT, output->tun_flags) &&
927 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
928 		return -EMSGSIZE;
929 	if (output->tp_src &&
930 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
931 		return -EMSGSIZE;
932 	if (output->tp_dst &&
933 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
934 		return -EMSGSIZE;
935 	if (test_bit(IP_TUNNEL_OAM_BIT, output->tun_flags) &&
936 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
937 		return -EMSGSIZE;
938 	if (swkey_tun_opts_len) {
939 		if (test_bit(IP_TUNNEL_GENEVE_OPT_BIT, output->tun_flags) &&
940 		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
941 			    swkey_tun_opts_len, tun_opts))
942 			return -EMSGSIZE;
943 		else if (test_bit(IP_TUNNEL_VXLAN_OPT_BIT,
944 				  output->tun_flags) &&
945 			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
946 			return -EMSGSIZE;
947 		else if (test_bit(IP_TUNNEL_ERSPAN_OPT_BIT,
948 				  output->tun_flags) &&
949 			 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
950 				 swkey_tun_opts_len, tun_opts))
951 			return -EMSGSIZE;
952 	}
953 
954 	return 0;
955 }
956 
957 static int ip_tun_to_nlattr(struct sk_buff *skb,
958 			    const struct ip_tunnel_key *output,
959 			    const void *tun_opts, int swkey_tun_opts_len,
960 			    unsigned short tun_proto, u8 mode)
961 {
962 	struct nlattr *nla;
963 	int err;
964 
965 	nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
966 	if (!nla)
967 		return -EMSGSIZE;
968 
969 	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
970 				 tun_proto, mode);
971 	if (err)
972 		return err;
973 
974 	nla_nest_end(skb, nla);
975 	return 0;
976 }
977 
978 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
979 			    struct ip_tunnel_info *tun_info)
980 {
981 	return __ip_tun_to_nlattr(skb, &tun_info->key,
982 				  ip_tunnel_info_opts(tun_info),
983 				  tun_info->options_len,
984 				  ip_tunnel_info_af(tun_info), tun_info->mode);
985 }
986 
987 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
988 				    const struct nlattr *a[],
989 				    bool is_mask, bool inner)
990 {
991 	__be16 tci = 0;
992 	__be16 tpid = 0;
993 
994 	if (a[OVS_KEY_ATTR_VLAN])
995 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
996 
997 	if (a[OVS_KEY_ATTR_ETHERTYPE])
998 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
999 
1000 	if (likely(!inner)) {
1001 		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
1002 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
1003 	} else {
1004 		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
1005 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
1006 	}
1007 	return 0;
1008 }
1009 
1010 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
1011 				      u64 key_attrs, bool inner,
1012 				      const struct nlattr **a, bool log)
1013 {
1014 	__be16 tci = 0;
1015 
1016 	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1017 	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1018 	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
1019 		/* Not a VLAN. */
1020 		return 0;
1021 	}
1022 
1023 	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1024 	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1025 		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1026 		return -EINVAL;
1027 	}
1028 
1029 	if (a[OVS_KEY_ATTR_VLAN])
1030 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1031 
1032 	if (!(tci & htons(VLAN_CFI_MASK))) {
1033 		if (tci) {
1034 			OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1035 				  (inner) ? "C-VLAN" : "VLAN");
1036 			return -EINVAL;
1037 		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1038 			/* Corner case for truncated VLAN header. */
1039 			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1040 				  (inner) ? "C-VLAN" : "VLAN");
1041 			return -EINVAL;
1042 		}
1043 	}
1044 
1045 	return 1;
1046 }
1047 
1048 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1049 					   u64 key_attrs, bool inner,
1050 					   const struct nlattr **a, bool log)
1051 {
1052 	__be16 tci = 0;
1053 	__be16 tpid = 0;
1054 	bool encap_valid = !!(match->key->eth.vlan.tci &
1055 			      htons(VLAN_CFI_MASK));
1056 	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1057 				htons(VLAN_CFI_MASK));
1058 
1059 	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1060 		/* Not a VLAN. */
1061 		return 0;
1062 	}
1063 
1064 	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1065 		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1066 			  (inner) ? "C-VLAN" : "VLAN");
1067 		return -EINVAL;
1068 	}
1069 
1070 	if (a[OVS_KEY_ATTR_VLAN])
1071 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1072 
1073 	if (a[OVS_KEY_ATTR_ETHERTYPE])
1074 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1075 
1076 	if (tpid != htons(0xffff)) {
1077 		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1078 			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1079 		return -EINVAL;
1080 	}
1081 	if (!(tci & htons(VLAN_CFI_MASK))) {
1082 		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1083 			  (inner) ? "C-VLAN" : "VLAN");
1084 		return -EINVAL;
1085 	}
1086 
1087 	return 1;
1088 }
1089 
1090 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1091 				     u64 *key_attrs, bool inner,
1092 				     const struct nlattr **a, bool is_mask,
1093 				     bool log)
1094 {
1095 	int err;
1096 	const struct nlattr *encap;
1097 
1098 	if (!is_mask)
1099 		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1100 						 a, log);
1101 	else
1102 		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1103 						      a, log);
1104 	if (err <= 0)
1105 		return err;
1106 
1107 	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1108 	if (err)
1109 		return err;
1110 
1111 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1112 	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1113 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1114 
1115 	encap = a[OVS_KEY_ATTR_ENCAP];
1116 
1117 	if (!is_mask)
1118 		err = parse_flow_nlattrs(encap, a, key_attrs, log);
1119 	else
1120 		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1121 
1122 	return err;
1123 }
1124 
1125 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1126 				   u64 *key_attrs, const struct nlattr **a,
1127 				   bool is_mask, bool log)
1128 {
1129 	int err;
1130 	bool encap_valid = false;
1131 
1132 	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1133 					is_mask, log);
1134 	if (err)
1135 		return err;
1136 
1137 	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1138 	if (encap_valid) {
1139 		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1140 						is_mask, log);
1141 		if (err)
1142 			return err;
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1149 				       u64 *attrs, const struct nlattr **a,
1150 				       bool is_mask, bool log)
1151 {
1152 	__be16 eth_type;
1153 
1154 	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1155 	if (is_mask) {
1156 		/* Always exact match EtherType. */
1157 		eth_type = htons(0xffff);
1158 	} else if (!eth_proto_is_802_3(eth_type)) {
1159 		OVS_NLERR(log, "EtherType %x is less than min %x",
1160 				ntohs(eth_type), ETH_P_802_3_MIN);
1161 		return -EINVAL;
1162 	}
1163 
1164 	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1165 	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1166 	return 0;
1167 }
1168 
1169 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1170 				 u64 *attrs, const struct nlattr **a,
1171 				 bool is_mask, bool log)
1172 {
1173 	u8 mac_proto = MAC_PROTO_ETHERNET;
1174 
1175 	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1176 		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1177 
1178 		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1179 		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1180 	}
1181 
1182 	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1183 		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1184 
1185 		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1186 		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1187 	}
1188 
1189 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1190 		SW_FLOW_KEY_PUT(match, phy.priority,
1191 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1192 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1193 	}
1194 
1195 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1196 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1197 
1198 		if (is_mask) {
1199 			in_port = 0xffffffff; /* Always exact match in_port. */
1200 		} else if (in_port >= DP_MAX_PORTS) {
1201 			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1202 				  in_port, DP_MAX_PORTS);
1203 			return -EINVAL;
1204 		}
1205 
1206 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1207 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1208 	} else if (!is_mask) {
1209 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1210 	}
1211 
1212 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1213 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1214 
1215 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1216 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1217 	}
1218 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1219 		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1220 				       is_mask, log) < 0)
1221 			return -EINVAL;
1222 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1223 	}
1224 
1225 	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1226 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1227 		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1228 
1229 		if (ct_state & ~CT_SUPPORTED_MASK) {
1230 			OVS_NLERR(log, "ct_state flags %08x unsupported",
1231 				  ct_state);
1232 			return -EINVAL;
1233 		}
1234 
1235 		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1236 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1237 	}
1238 	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1239 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1240 		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1241 
1242 		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1243 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1244 	}
1245 	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1246 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1247 		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1248 
1249 		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1250 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1251 	}
1252 	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1253 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1254 		const struct ovs_key_ct_labels *cl;
1255 
1256 		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1257 		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1258 				   sizeof(*cl), is_mask);
1259 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1260 	}
1261 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1262 		const struct ovs_key_ct_tuple_ipv4 *ct;
1263 
1264 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1265 
1266 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1267 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1268 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1269 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1270 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1271 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1272 	}
1273 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1274 		const struct ovs_key_ct_tuple_ipv6 *ct;
1275 
1276 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1277 
1278 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1279 				   sizeof(match->key->ipv6.ct_orig.src),
1280 				   is_mask);
1281 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1282 				   sizeof(match->key->ipv6.ct_orig.dst),
1283 				   is_mask);
1284 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1285 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1286 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1287 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1288 	}
1289 
1290 	/* For layer 3 packets the Ethernet type is provided
1291 	 * and treated as metadata but no MAC addresses are provided.
1292 	 */
1293 	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1294 	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1295 		mac_proto = MAC_PROTO_NONE;
1296 
1297 	/* Always exact match mac_proto */
1298 	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1299 
1300 	if (mac_proto == MAC_PROTO_NONE)
1301 		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1302 						   log);
1303 
1304 	return 0;
1305 }
1306 
1307 int nsh_hdr_from_nlattr(const struct nlattr *attr,
1308 			struct nshhdr *nh, size_t size)
1309 {
1310 	struct nlattr *a;
1311 	int rem;
1312 	u8 flags = 0;
1313 	u8 ttl = 0;
1314 	int mdlen = 0;
1315 
1316 	/* validate_nsh has check this, so we needn't do duplicate check here
1317 	 */
1318 	if (size < NSH_BASE_HDR_LEN)
1319 		return -ENOBUFS;
1320 
1321 	nla_for_each_nested(a, attr, rem) {
1322 		int type = nla_type(a);
1323 
1324 		switch (type) {
1325 		case OVS_NSH_KEY_ATTR_BASE: {
1326 			const struct ovs_nsh_key_base *base = nla_data(a);
1327 
1328 			flags = base->flags;
1329 			ttl = base->ttl;
1330 			nh->np = base->np;
1331 			nh->mdtype = base->mdtype;
1332 			nh->path_hdr = base->path_hdr;
1333 			break;
1334 		}
1335 		case OVS_NSH_KEY_ATTR_MD1:
1336 			mdlen = nla_len(a);
1337 			if (mdlen > size - NSH_BASE_HDR_LEN)
1338 				return -ENOBUFS;
1339 			memcpy(&nh->md1, nla_data(a), mdlen);
1340 			break;
1341 
1342 		case OVS_NSH_KEY_ATTR_MD2:
1343 			mdlen = nla_len(a);
1344 			if (mdlen > size - NSH_BASE_HDR_LEN)
1345 				return -ENOBUFS;
1346 			memcpy(&nh->md2, nla_data(a), mdlen);
1347 			break;
1348 
1349 		default:
1350 			return -EINVAL;
1351 		}
1352 	}
1353 
1354 	/* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1355 	nh->ver_flags_ttl_len = 0;
1356 	nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1357 
1358 	return 0;
1359 }
1360 
1361 int nsh_key_from_nlattr(const struct nlattr *attr,
1362 			struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1363 {
1364 	struct nlattr *a;
1365 	int rem;
1366 
1367 	/* validate_nsh has check this, so we needn't do duplicate check here
1368 	 */
1369 	nla_for_each_nested(a, attr, rem) {
1370 		int type = nla_type(a);
1371 
1372 		switch (type) {
1373 		case OVS_NSH_KEY_ATTR_BASE: {
1374 			const struct ovs_nsh_key_base *base = nla_data(a);
1375 			const struct ovs_nsh_key_base *base_mask = base + 1;
1376 
1377 			nsh->base = *base;
1378 			nsh_mask->base = *base_mask;
1379 			break;
1380 		}
1381 		case OVS_NSH_KEY_ATTR_MD1: {
1382 			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1383 			const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1384 
1385 			memcpy(nsh->context, md1->context, sizeof(*md1));
1386 			memcpy(nsh_mask->context, md1_mask->context,
1387 			       sizeof(*md1_mask));
1388 			break;
1389 		}
1390 		case OVS_NSH_KEY_ATTR_MD2:
1391 			/* Not supported yet */
1392 			return -ENOTSUPP;
1393 		default:
1394 			return -EINVAL;
1395 		}
1396 	}
1397 
1398 	return 0;
1399 }
1400 
1401 static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1402 				   struct sw_flow_match *match, bool is_mask,
1403 				   bool is_push_nsh, bool log)
1404 {
1405 	struct nlattr *a;
1406 	int rem;
1407 	bool has_base = false;
1408 	bool has_md1 = false;
1409 	bool has_md2 = false;
1410 	u8 mdtype = 0;
1411 	int mdlen = 0;
1412 
1413 	if (WARN_ON(is_push_nsh && is_mask))
1414 		return -EINVAL;
1415 
1416 	nla_for_each_nested(a, attr, rem) {
1417 		int type = nla_type(a);
1418 		int i;
1419 
1420 		if (type > OVS_NSH_KEY_ATTR_MAX) {
1421 			OVS_NLERR(log, "nsh attr %d is out of range max %d",
1422 				  type, OVS_NSH_KEY_ATTR_MAX);
1423 			return -EINVAL;
1424 		}
1425 
1426 		if (!check_attr_len(nla_len(a),
1427 				    ovs_nsh_key_attr_lens[type].len)) {
1428 			OVS_NLERR(
1429 			    log,
1430 			    "nsh attr %d has unexpected len %d expected %d",
1431 			    type,
1432 			    nla_len(a),
1433 			    ovs_nsh_key_attr_lens[type].len
1434 			);
1435 			return -EINVAL;
1436 		}
1437 
1438 		switch (type) {
1439 		case OVS_NSH_KEY_ATTR_BASE: {
1440 			const struct ovs_nsh_key_base *base = nla_data(a);
1441 
1442 			has_base = true;
1443 			mdtype = base->mdtype;
1444 			SW_FLOW_KEY_PUT(match, nsh.base.flags,
1445 					base->flags, is_mask);
1446 			SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1447 					base->ttl, is_mask);
1448 			SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1449 					base->mdtype, is_mask);
1450 			SW_FLOW_KEY_PUT(match, nsh.base.np,
1451 					base->np, is_mask);
1452 			SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1453 					base->path_hdr, is_mask);
1454 			break;
1455 		}
1456 		case OVS_NSH_KEY_ATTR_MD1: {
1457 			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1458 
1459 			has_md1 = true;
1460 			for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1461 				SW_FLOW_KEY_PUT(match, nsh.context[i],
1462 						md1->context[i], is_mask);
1463 			break;
1464 		}
1465 		case OVS_NSH_KEY_ATTR_MD2:
1466 			if (!is_push_nsh) /* Not supported MD type 2 yet */
1467 				return -ENOTSUPP;
1468 
1469 			has_md2 = true;
1470 			mdlen = nla_len(a);
1471 			if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1472 				OVS_NLERR(
1473 				    log,
1474 				    "Invalid MD length %d for MD type %d",
1475 				    mdlen,
1476 				    mdtype
1477 				);
1478 				return -EINVAL;
1479 			}
1480 			break;
1481 		default:
1482 			OVS_NLERR(log, "Unknown nsh attribute %d",
1483 				  type);
1484 			return -EINVAL;
1485 		}
1486 	}
1487 
1488 	if (rem > 0) {
1489 		OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1490 		return -EINVAL;
1491 	}
1492 
1493 	if (has_md1 && has_md2) {
1494 		OVS_NLERR(
1495 		    1,
1496 		    "invalid nsh attribute: md1 and md2 are exclusive."
1497 		);
1498 		return -EINVAL;
1499 	}
1500 
1501 	if (!is_mask) {
1502 		if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1503 		    (has_md2 && mdtype != NSH_M_TYPE2)) {
1504 			OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1505 				  mdtype);
1506 			return -EINVAL;
1507 		}
1508 
1509 		if (is_push_nsh &&
1510 		    (!has_base || (!has_md1 && !has_md2))) {
1511 			OVS_NLERR(
1512 			    1,
1513 			    "push_nsh: missing base or metadata attributes"
1514 			);
1515 			return -EINVAL;
1516 		}
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1523 				u64 attrs, const struct nlattr **a,
1524 				bool is_mask, bool log)
1525 {
1526 	int err;
1527 
1528 	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1529 	if (err)
1530 		return err;
1531 
1532 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1533 		const struct ovs_key_ethernet *eth_key;
1534 
1535 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1536 		SW_FLOW_KEY_MEMCPY(match, eth.src,
1537 				eth_key->eth_src, ETH_ALEN, is_mask);
1538 		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1539 				eth_key->eth_dst, ETH_ALEN, is_mask);
1540 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1541 
1542 		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1543 			/* VLAN attribute is always parsed before getting here since it
1544 			 * may occur multiple times.
1545 			 */
1546 			OVS_NLERR(log, "VLAN attribute unexpected.");
1547 			return -EINVAL;
1548 		}
1549 
1550 		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1551 			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1552 							  log);
1553 			if (err)
1554 				return err;
1555 		} else if (!is_mask) {
1556 			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1557 		}
1558 	} else if (!match->key->eth.type) {
1559 		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1560 		return -EINVAL;
1561 	}
1562 
1563 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1564 		const struct ovs_key_ipv4 *ipv4_key;
1565 
1566 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1567 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1568 			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1569 				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1570 			return -EINVAL;
1571 		}
1572 		SW_FLOW_KEY_PUT(match, ip.proto,
1573 				ipv4_key->ipv4_proto, is_mask);
1574 		SW_FLOW_KEY_PUT(match, ip.tos,
1575 				ipv4_key->ipv4_tos, is_mask);
1576 		SW_FLOW_KEY_PUT(match, ip.ttl,
1577 				ipv4_key->ipv4_ttl, is_mask);
1578 		SW_FLOW_KEY_PUT(match, ip.frag,
1579 				ipv4_key->ipv4_frag, is_mask);
1580 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1581 				ipv4_key->ipv4_src, is_mask);
1582 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1583 				ipv4_key->ipv4_dst, is_mask);
1584 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1585 	}
1586 
1587 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1588 		const struct ovs_key_ipv6 *ipv6_key;
1589 
1590 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1591 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1592 			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1593 				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1594 			return -EINVAL;
1595 		}
1596 
1597 		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1598 			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1599 				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1600 			return -EINVAL;
1601 		}
1602 
1603 		SW_FLOW_KEY_PUT(match, ipv6.label,
1604 				ipv6_key->ipv6_label, is_mask);
1605 		SW_FLOW_KEY_PUT(match, ip.proto,
1606 				ipv6_key->ipv6_proto, is_mask);
1607 		SW_FLOW_KEY_PUT(match, ip.tos,
1608 				ipv6_key->ipv6_tclass, is_mask);
1609 		SW_FLOW_KEY_PUT(match, ip.ttl,
1610 				ipv6_key->ipv6_hlimit, is_mask);
1611 		SW_FLOW_KEY_PUT(match, ip.frag,
1612 				ipv6_key->ipv6_frag, is_mask);
1613 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1614 				ipv6_key->ipv6_src,
1615 				sizeof(match->key->ipv6.addr.src),
1616 				is_mask);
1617 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1618 				ipv6_key->ipv6_dst,
1619 				sizeof(match->key->ipv6.addr.dst),
1620 				is_mask);
1621 
1622 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1623 	}
1624 
1625 	if (attrs & (1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS)) {
1626 		const struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
1627 
1628 		ipv6_exthdrs_key = nla_data(a[OVS_KEY_ATTR_IPV6_EXTHDRS]);
1629 
1630 		SW_FLOW_KEY_PUT(match, ipv6.exthdrs,
1631 				ipv6_exthdrs_key->hdrs, is_mask);
1632 
1633 		attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS);
1634 	}
1635 
1636 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1637 		const struct ovs_key_arp *arp_key;
1638 
1639 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1640 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1641 			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1642 				  arp_key->arp_op);
1643 			return -EINVAL;
1644 		}
1645 
1646 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1647 				arp_key->arp_sip, is_mask);
1648 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1649 			arp_key->arp_tip, is_mask);
1650 		SW_FLOW_KEY_PUT(match, ip.proto,
1651 				ntohs(arp_key->arp_op), is_mask);
1652 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1653 				arp_key->arp_sha, ETH_ALEN, is_mask);
1654 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1655 				arp_key->arp_tha, ETH_ALEN, is_mask);
1656 
1657 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1658 	}
1659 
1660 	if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1661 		if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1662 					    is_mask, false, log) < 0)
1663 			return -EINVAL;
1664 		attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1665 	}
1666 
1667 	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1668 		const struct ovs_key_mpls *mpls_key;
1669 		u32 hdr_len;
1670 		u32 label_count, label_count_mask, i;
1671 
1672 		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1673 		hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]);
1674 		label_count = hdr_len / sizeof(struct ovs_key_mpls);
1675 
1676 		if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
1677 		    hdr_len % sizeof(struct ovs_key_mpls))
1678 			return -EINVAL;
1679 
1680 		label_count_mask =  GENMASK(label_count - 1, 0);
1681 
1682 		for (i = 0 ; i < label_count; i++)
1683 			SW_FLOW_KEY_PUT(match, mpls.lse[i],
1684 					mpls_key[i].mpls_lse, is_mask);
1685 
1686 		SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
1687 				label_count_mask, is_mask);
1688 
1689 		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1690 	 }
1691 
1692 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1693 		const struct ovs_key_tcp *tcp_key;
1694 
1695 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1696 		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1697 		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1698 		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1699 	}
1700 
1701 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1702 		SW_FLOW_KEY_PUT(match, tp.flags,
1703 				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1704 				is_mask);
1705 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1706 	}
1707 
1708 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1709 		const struct ovs_key_udp *udp_key;
1710 
1711 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1712 		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1713 		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1714 		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1715 	}
1716 
1717 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1718 		const struct ovs_key_sctp *sctp_key;
1719 
1720 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1721 		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1722 		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1723 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1724 	}
1725 
1726 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1727 		const struct ovs_key_icmp *icmp_key;
1728 
1729 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1730 		SW_FLOW_KEY_PUT(match, tp.src,
1731 				htons(icmp_key->icmp_type), is_mask);
1732 		SW_FLOW_KEY_PUT(match, tp.dst,
1733 				htons(icmp_key->icmp_code), is_mask);
1734 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1735 	}
1736 
1737 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1738 		const struct ovs_key_icmpv6 *icmpv6_key;
1739 
1740 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1741 		SW_FLOW_KEY_PUT(match, tp.src,
1742 				htons(icmpv6_key->icmpv6_type), is_mask);
1743 		SW_FLOW_KEY_PUT(match, tp.dst,
1744 				htons(icmpv6_key->icmpv6_code), is_mask);
1745 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1746 	}
1747 
1748 	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1749 		const struct ovs_key_nd *nd_key;
1750 
1751 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1752 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1753 			nd_key->nd_target,
1754 			sizeof(match->key->ipv6.nd.target),
1755 			is_mask);
1756 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1757 			nd_key->nd_sll, ETH_ALEN, is_mask);
1758 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1759 				nd_key->nd_tll, ETH_ALEN, is_mask);
1760 		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1761 	}
1762 
1763 	if (attrs != 0) {
1764 		OVS_NLERR(log, "Unknown key attributes %llx",
1765 			  (unsigned long long)attrs);
1766 		return -EINVAL;
1767 	}
1768 
1769 	return 0;
1770 }
1771 
1772 static void nlattr_set(struct nlattr *attr, u8 val,
1773 		       const struct ovs_len_tbl *tbl)
1774 {
1775 	struct nlattr *nla;
1776 	int rem;
1777 
1778 	/* The nlattr stream should already have been validated */
1779 	nla_for_each_nested(nla, attr, rem) {
1780 		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1781 			nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1782 		else
1783 			memset(nla_data(nla), val, nla_len(nla));
1784 
1785 		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1786 			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1787 	}
1788 }
1789 
1790 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1791 {
1792 	nlattr_set(attr, val, ovs_key_lens);
1793 }
1794 
1795 /**
1796  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1797  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1798  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1799  * does not include any don't care bit.
1800  * @net: Used to determine per-namespace field support.
1801  * @match: receives the extracted flow match information.
1802  * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1803  * sequence. The fields should of the packet that triggered the creation
1804  * of this flow.
1805  * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_*
1806  * Netlink attribute specifies the mask field of the wildcarded flow.
1807  * @log: Boolean to allow kernel error logging.  Normally true, but when
1808  * probing for feature compatibility this should be passed in as false to
1809  * suppress unnecessary error logging.
1810  */
1811 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1812 		      const struct nlattr *nla_key,
1813 		      const struct nlattr *nla_mask,
1814 		      bool log)
1815 {
1816 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1817 	struct nlattr *newmask = NULL;
1818 	u64 key_attrs = 0;
1819 	u64 mask_attrs = 0;
1820 	int err;
1821 
1822 	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1823 	if (err)
1824 		return err;
1825 
1826 	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1827 	if (err)
1828 		return err;
1829 
1830 	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1831 	if (err)
1832 		return err;
1833 
1834 	if (match->mask) {
1835 		if (!nla_mask) {
1836 			/* Create an exact match mask. We need to set to 0xff
1837 			 * all the 'match->mask' fields that have been touched
1838 			 * in 'match->key'. We cannot simply memset
1839 			 * 'match->mask', because padding bytes and fields not
1840 			 * specified in 'match->key' should be left to 0.
1841 			 * Instead, we use a stream of netlink attributes,
1842 			 * copied from 'key' and set to 0xff.
1843 			 * ovs_key_from_nlattrs() will take care of filling
1844 			 * 'match->mask' appropriately.
1845 			 */
1846 			newmask = kmemdup(nla_key,
1847 					  nla_total_size(nla_len(nla_key)),
1848 					  GFP_KERNEL);
1849 			if (!newmask)
1850 				return -ENOMEM;
1851 
1852 			mask_set_nlattr(newmask, 0xff);
1853 
1854 			/* The userspace does not send tunnel attributes that
1855 			 * are 0, but we should not wildcard them nonetheless.
1856 			 */
1857 			if (match->key->tun_proto)
1858 				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1859 							 0xff, true);
1860 
1861 			nla_mask = newmask;
1862 		}
1863 
1864 		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1865 		if (err)
1866 			goto free_newmask;
1867 
1868 		/* Always match on tci. */
1869 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1870 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1871 
1872 		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1873 		if (err)
1874 			goto free_newmask;
1875 
1876 		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1877 					   log);
1878 		if (err)
1879 			goto free_newmask;
1880 	}
1881 
1882 	if (!match_validate(match, key_attrs, mask_attrs, log))
1883 		err = -EINVAL;
1884 
1885 free_newmask:
1886 	kfree(newmask);
1887 	return err;
1888 }
1889 
1890 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1891 {
1892 	size_t len;
1893 
1894 	if (!attr)
1895 		return 0;
1896 
1897 	len = nla_len(attr);
1898 	if (len < 1 || len > MAX_UFID_LENGTH) {
1899 		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1900 			  nla_len(attr), MAX_UFID_LENGTH);
1901 		return 0;
1902 	}
1903 
1904 	return len;
1905 }
1906 
1907 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1908  * or false otherwise.
1909  */
1910 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1911 		      bool log)
1912 {
1913 	sfid->ufid_len = get_ufid_len(attr, log);
1914 	if (sfid->ufid_len)
1915 		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1916 
1917 	return sfid->ufid_len;
1918 }
1919 
1920 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1921 			   const struct sw_flow_key *key, bool log)
1922 {
1923 	struct sw_flow_key *new_key;
1924 
1925 	if (ovs_nla_get_ufid(sfid, ufid, log))
1926 		return 0;
1927 
1928 	/* If UFID was not provided, use unmasked key. */
1929 	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1930 	if (!new_key)
1931 		return -ENOMEM;
1932 	memcpy(new_key, key, sizeof(*key));
1933 	sfid->unmasked_key = new_key;
1934 
1935 	return 0;
1936 }
1937 
1938 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1939 {
1940 	return attr ? nla_get_u32(attr) : 0;
1941 }
1942 
1943 /**
1944  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1945  * @net: Network namespace.
1946  * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1947  * metadata.
1948  * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1949  * attributes.
1950  * @attrs: Bit mask for the netlink attributes included in @a.
1951  * @log: Boolean to allow kernel error logging.  Normally true, but when
1952  * probing for feature compatibility this should be passed in as false to
1953  * suppress unnecessary error logging.
1954  *
1955  * This parses a series of Netlink attributes that form a flow key, which must
1956  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1957  * get the metadata, that is, the parts of the flow key that cannot be
1958  * extracted from the packet itself.
1959  *
1960  * This must be called before the packet key fields are filled in 'key'.
1961  */
1962 
1963 int ovs_nla_get_flow_metadata(struct net *net,
1964 			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1965 			      u64 attrs, struct sw_flow_key *key, bool log)
1966 {
1967 	struct sw_flow_match match;
1968 
1969 	memset(&match, 0, sizeof(match));
1970 	match.key = key;
1971 
1972 	key->ct_state = 0;
1973 	key->ct_zone = 0;
1974 	key->ct_orig_proto = 0;
1975 	memset(&key->ct, 0, sizeof(key->ct));
1976 	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1977 	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1978 
1979 	key->phy.in_port = DP_MAX_PORTS;
1980 
1981 	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1982 }
1983 
1984 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1985 			    bool is_mask)
1986 {
1987 	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1988 
1989 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1990 	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1991 		return -EMSGSIZE;
1992 	return 0;
1993 }
1994 
1995 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1996 			     struct sk_buff *skb)
1997 {
1998 	struct nlattr *start;
1999 
2000 	start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
2001 	if (!start)
2002 		return -EMSGSIZE;
2003 
2004 	if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
2005 		goto nla_put_failure;
2006 
2007 	if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
2008 		if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
2009 			    sizeof(nsh->context), nsh->context))
2010 			goto nla_put_failure;
2011 	}
2012 
2013 	/* Don't support MD type 2 yet */
2014 
2015 	nla_nest_end(skb, start);
2016 
2017 	return 0;
2018 
2019 nla_put_failure:
2020 	return -EMSGSIZE;
2021 }
2022 
2023 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
2024 			     const struct sw_flow_key *output, bool is_mask,
2025 			     struct sk_buff *skb)
2026 {
2027 	struct ovs_key_ethernet *eth_key;
2028 	struct nlattr *nla;
2029 	struct nlattr *encap = NULL;
2030 	struct nlattr *in_encap = NULL;
2031 
2032 	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
2033 		goto nla_put_failure;
2034 
2035 	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
2036 		goto nla_put_failure;
2037 
2038 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
2039 		goto nla_put_failure;
2040 
2041 	if ((swkey->tun_proto || is_mask)) {
2042 		const void *opts = NULL;
2043 
2044 		if (ip_tunnel_is_options_present(output->tun_key.tun_flags))
2045 			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2046 
2047 		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2048 				     swkey->tun_opts_len, swkey->tun_proto, 0))
2049 			goto nla_put_failure;
2050 	}
2051 
2052 	if (swkey->phy.in_port == DP_MAX_PORTS) {
2053 		if (is_mask && (output->phy.in_port == 0xffff))
2054 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2055 				goto nla_put_failure;
2056 	} else {
2057 		u16 upper_u16;
2058 		upper_u16 = !is_mask ? 0 : 0xffff;
2059 
2060 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2061 				(upper_u16 << 16) | output->phy.in_port))
2062 			goto nla_put_failure;
2063 	}
2064 
2065 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2066 		goto nla_put_failure;
2067 
2068 	if (ovs_ct_put_key(swkey, output, skb))
2069 		goto nla_put_failure;
2070 
2071 	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2072 		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2073 		if (!nla)
2074 			goto nla_put_failure;
2075 
2076 		eth_key = nla_data(nla);
2077 		ether_addr_copy(eth_key->eth_src, output->eth.src);
2078 		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2079 
2080 		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2081 			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2082 				goto nla_put_failure;
2083 			encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2084 			if (!swkey->eth.vlan.tci)
2085 				goto unencap;
2086 
2087 			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2088 				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2089 					goto nla_put_failure;
2090 				in_encap = nla_nest_start_noflag(skb,
2091 								 OVS_KEY_ATTR_ENCAP);
2092 				if (!swkey->eth.cvlan.tci)
2093 					goto unencap;
2094 			}
2095 		}
2096 
2097 		if (swkey->eth.type == htons(ETH_P_802_2)) {
2098 			/*
2099 			* Ethertype 802.2 is represented in the netlink with omitted
2100 			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2101 			* 0xffff in the mask attribute.  Ethertype can also
2102 			* be wildcarded.
2103 			*/
2104 			if (is_mask && output->eth.type)
2105 				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2106 							output->eth.type))
2107 					goto nla_put_failure;
2108 			goto unencap;
2109 		}
2110 	}
2111 
2112 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2113 		goto nla_put_failure;
2114 
2115 	if (eth_type_vlan(swkey->eth.type)) {
2116 		/* There are 3 VLAN tags, we don't know anything about the rest
2117 		 * of the packet, so truncate here.
2118 		 */
2119 		WARN_ON_ONCE(!(encap && in_encap));
2120 		goto unencap;
2121 	}
2122 
2123 	if (swkey->eth.type == htons(ETH_P_IP)) {
2124 		struct ovs_key_ipv4 *ipv4_key;
2125 
2126 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2127 		if (!nla)
2128 			goto nla_put_failure;
2129 		ipv4_key = nla_data(nla);
2130 		ipv4_key->ipv4_src = output->ipv4.addr.src;
2131 		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2132 		ipv4_key->ipv4_proto = output->ip.proto;
2133 		ipv4_key->ipv4_tos = output->ip.tos;
2134 		ipv4_key->ipv4_ttl = output->ip.ttl;
2135 		ipv4_key->ipv4_frag = output->ip.frag;
2136 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2137 		struct ovs_key_ipv6 *ipv6_key;
2138 		struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
2139 
2140 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2141 		if (!nla)
2142 			goto nla_put_failure;
2143 		ipv6_key = nla_data(nla);
2144 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2145 				sizeof(ipv6_key->ipv6_src));
2146 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2147 				sizeof(ipv6_key->ipv6_dst));
2148 		ipv6_key->ipv6_label = output->ipv6.label;
2149 		ipv6_key->ipv6_proto = output->ip.proto;
2150 		ipv6_key->ipv6_tclass = output->ip.tos;
2151 		ipv6_key->ipv6_hlimit = output->ip.ttl;
2152 		ipv6_key->ipv6_frag = output->ip.frag;
2153 
2154 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6_EXTHDRS,
2155 				  sizeof(*ipv6_exthdrs_key));
2156 		if (!nla)
2157 			goto nla_put_failure;
2158 		ipv6_exthdrs_key = nla_data(nla);
2159 		ipv6_exthdrs_key->hdrs = output->ipv6.exthdrs;
2160 	} else if (swkey->eth.type == htons(ETH_P_NSH)) {
2161 		if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2162 			goto nla_put_failure;
2163 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
2164 		   swkey->eth.type == htons(ETH_P_RARP)) {
2165 		struct ovs_key_arp *arp_key;
2166 
2167 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2168 		if (!nla)
2169 			goto nla_put_failure;
2170 		arp_key = nla_data(nla);
2171 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
2172 		arp_key->arp_sip = output->ipv4.addr.src;
2173 		arp_key->arp_tip = output->ipv4.addr.dst;
2174 		arp_key->arp_op = htons(output->ip.proto);
2175 		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2176 		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2177 	} else if (eth_p_mpls(swkey->eth.type)) {
2178 		u8 i, num_labels;
2179 		struct ovs_key_mpls *mpls_key;
2180 
2181 		num_labels = hweight_long(output->mpls.num_labels_mask);
2182 		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS,
2183 				  num_labels * sizeof(*mpls_key));
2184 		if (!nla)
2185 			goto nla_put_failure;
2186 
2187 		mpls_key = nla_data(nla);
2188 		for (i = 0; i < num_labels; i++)
2189 			mpls_key[i].mpls_lse = output->mpls.lse[i];
2190 	}
2191 
2192 	if ((swkey->eth.type == htons(ETH_P_IP) ||
2193 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
2194 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2195 
2196 		if (swkey->ip.proto == IPPROTO_TCP) {
2197 			struct ovs_key_tcp *tcp_key;
2198 
2199 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2200 			if (!nla)
2201 				goto nla_put_failure;
2202 			tcp_key = nla_data(nla);
2203 			tcp_key->tcp_src = output->tp.src;
2204 			tcp_key->tcp_dst = output->tp.dst;
2205 			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2206 					 output->tp.flags))
2207 				goto nla_put_failure;
2208 		} else if (swkey->ip.proto == IPPROTO_UDP) {
2209 			struct ovs_key_udp *udp_key;
2210 
2211 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2212 			if (!nla)
2213 				goto nla_put_failure;
2214 			udp_key = nla_data(nla);
2215 			udp_key->udp_src = output->tp.src;
2216 			udp_key->udp_dst = output->tp.dst;
2217 		} else if (swkey->ip.proto == IPPROTO_SCTP) {
2218 			struct ovs_key_sctp *sctp_key;
2219 
2220 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2221 			if (!nla)
2222 				goto nla_put_failure;
2223 			sctp_key = nla_data(nla);
2224 			sctp_key->sctp_src = output->tp.src;
2225 			sctp_key->sctp_dst = output->tp.dst;
2226 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
2227 			   swkey->ip.proto == IPPROTO_ICMP) {
2228 			struct ovs_key_icmp *icmp_key;
2229 
2230 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2231 			if (!nla)
2232 				goto nla_put_failure;
2233 			icmp_key = nla_data(nla);
2234 			icmp_key->icmp_type = ntohs(output->tp.src);
2235 			icmp_key->icmp_code = ntohs(output->tp.dst);
2236 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2237 			   swkey->ip.proto == IPPROTO_ICMPV6) {
2238 			struct ovs_key_icmpv6 *icmpv6_key;
2239 
2240 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2241 						sizeof(*icmpv6_key));
2242 			if (!nla)
2243 				goto nla_put_failure;
2244 			icmpv6_key = nla_data(nla);
2245 			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2246 			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2247 
2248 			if (swkey->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
2249 			    swkey->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
2250 				struct ovs_key_nd *nd_key;
2251 
2252 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2253 				if (!nla)
2254 					goto nla_put_failure;
2255 				nd_key = nla_data(nla);
2256 				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2257 							sizeof(nd_key->nd_target));
2258 				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2259 				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2260 			}
2261 		}
2262 	}
2263 
2264 unencap:
2265 	if (in_encap)
2266 		nla_nest_end(skb, in_encap);
2267 	if (encap)
2268 		nla_nest_end(skb, encap);
2269 
2270 	return 0;
2271 
2272 nla_put_failure:
2273 	return -EMSGSIZE;
2274 }
2275 
2276 int ovs_nla_put_key(const struct sw_flow_key *swkey,
2277 		    const struct sw_flow_key *output, int attr, bool is_mask,
2278 		    struct sk_buff *skb)
2279 {
2280 	int err;
2281 	struct nlattr *nla;
2282 
2283 	nla = nla_nest_start_noflag(skb, attr);
2284 	if (!nla)
2285 		return -EMSGSIZE;
2286 	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2287 	if (err)
2288 		return err;
2289 	nla_nest_end(skb, nla);
2290 
2291 	return 0;
2292 }
2293 
2294 /* Called with ovs_mutex or RCU read lock. */
2295 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2296 {
2297 	if (ovs_identifier_is_ufid(&flow->id))
2298 		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2299 			       flow->id.ufid);
2300 
2301 	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2302 			       OVS_FLOW_ATTR_KEY, false, skb);
2303 }
2304 
2305 /* Called with ovs_mutex or RCU read lock. */
2306 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2307 {
2308 	return ovs_nla_put_key(&flow->key, &flow->key,
2309 				OVS_FLOW_ATTR_KEY, false, skb);
2310 }
2311 
2312 /* Called with ovs_mutex or RCU read lock. */
2313 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2314 {
2315 	return ovs_nla_put_key(&flow->key, &flow->mask->key,
2316 				OVS_FLOW_ATTR_MASK, true, skb);
2317 }
2318 
2319 #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
2320 
2321 static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2322 {
2323 	struct sw_flow_actions *sfa;
2324 
2325 	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2326 
2327 	sfa = kmalloc(kmalloc_size_roundup(sizeof(*sfa) + size), GFP_KERNEL);
2328 	if (!sfa)
2329 		return ERR_PTR(-ENOMEM);
2330 
2331 	sfa->actions_len = 0;
2332 	return sfa;
2333 }
2334 
2335 static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len);
2336 
2337 static void ovs_nla_free_check_pkt_len_action(const struct nlattr *action)
2338 {
2339 	const struct nlattr *a;
2340 	int rem;
2341 
2342 	nla_for_each_nested(a, action, rem) {
2343 		switch (nla_type(a)) {
2344 		case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL:
2345 		case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER:
2346 			ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2347 			break;
2348 		}
2349 	}
2350 }
2351 
2352 static void ovs_nla_free_clone_action(const struct nlattr *action)
2353 {
2354 	const struct nlattr *a = nla_data(action);
2355 	int rem = nla_len(action);
2356 
2357 	switch (nla_type(a)) {
2358 	case OVS_CLONE_ATTR_EXEC:
2359 		/* The real list of actions follows this attribute. */
2360 		a = nla_next(a, &rem);
2361 		ovs_nla_free_nested_actions(a, rem);
2362 		break;
2363 	}
2364 }
2365 
2366 static void ovs_nla_free_dec_ttl_action(const struct nlattr *action)
2367 {
2368 	const struct nlattr *a = nla_data(action);
2369 
2370 	switch (nla_type(a)) {
2371 	case OVS_DEC_TTL_ATTR_ACTION:
2372 		ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2373 		break;
2374 	}
2375 }
2376 
2377 static void ovs_nla_free_sample_action(const struct nlattr *action)
2378 {
2379 	const struct nlattr *a = nla_data(action);
2380 	int rem = nla_len(action);
2381 
2382 	switch (nla_type(a)) {
2383 	case OVS_SAMPLE_ATTR_ARG:
2384 		/* The real list of actions follows this attribute. */
2385 		a = nla_next(a, &rem);
2386 		ovs_nla_free_nested_actions(a, rem);
2387 		break;
2388 	}
2389 }
2390 
2391 static void ovs_nla_free_set_action(const struct nlattr *a)
2392 {
2393 	const struct nlattr *ovs_key = nla_data(a);
2394 	struct ovs_tunnel_info *ovs_tun;
2395 
2396 	switch (nla_type(ovs_key)) {
2397 	case OVS_KEY_ATTR_TUNNEL_INFO:
2398 		ovs_tun = nla_data(ovs_key);
2399 		dst_release((struct dst_entry *)ovs_tun->tun_dst);
2400 		break;
2401 	}
2402 }
2403 
2404 static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len)
2405 {
2406 	const struct nlattr *a;
2407 	int rem;
2408 
2409 	/* Whenever new actions are added, the need to update this
2410 	 * function should be considered.
2411 	 */
2412 	BUILD_BUG_ON(OVS_ACTION_ATTR_MAX != 24);
2413 
2414 	if (!actions)
2415 		return;
2416 
2417 	nla_for_each_attr(a, actions, len, rem) {
2418 		switch (nla_type(a)) {
2419 		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
2420 			ovs_nla_free_check_pkt_len_action(a);
2421 			break;
2422 
2423 		case OVS_ACTION_ATTR_CLONE:
2424 			ovs_nla_free_clone_action(a);
2425 			break;
2426 
2427 		case OVS_ACTION_ATTR_CT:
2428 			ovs_ct_free_action(a);
2429 			break;
2430 
2431 		case OVS_ACTION_ATTR_DEC_TTL:
2432 			ovs_nla_free_dec_ttl_action(a);
2433 			break;
2434 
2435 		case OVS_ACTION_ATTR_SAMPLE:
2436 			ovs_nla_free_sample_action(a);
2437 			break;
2438 
2439 		case OVS_ACTION_ATTR_SET:
2440 			ovs_nla_free_set_action(a);
2441 			break;
2442 		}
2443 	}
2444 }
2445 
2446 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2447 {
2448 	if (!sf_acts)
2449 		return;
2450 
2451 	ovs_nla_free_nested_actions(sf_acts->actions, sf_acts->actions_len);
2452 	kfree(sf_acts);
2453 }
2454 
2455 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2456 {
2457 	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2458 }
2459 
2460 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
2461  * The caller must hold rcu_read_lock for this to be sensible. */
2462 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2463 {
2464 	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2465 }
2466 
2467 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2468 				       int attr_len, bool log)
2469 {
2470 
2471 	struct sw_flow_actions *acts;
2472 	int new_acts_size;
2473 	size_t req_size = NLA_ALIGN(attr_len);
2474 	int next_offset = offsetof(struct sw_flow_actions, actions) +
2475 					(*sfa)->actions_len;
2476 
2477 	if (req_size <= (ksize(*sfa) - next_offset))
2478 		goto out;
2479 
2480 	new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2481 
2482 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2483 		if ((next_offset + req_size) > MAX_ACTIONS_BUFSIZE) {
2484 			OVS_NLERR(log, "Flow action size exceeds max %u",
2485 				  MAX_ACTIONS_BUFSIZE);
2486 			return ERR_PTR(-EMSGSIZE);
2487 		}
2488 		new_acts_size = MAX_ACTIONS_BUFSIZE;
2489 	}
2490 
2491 	acts = nla_alloc_flow_actions(new_acts_size);
2492 	if (IS_ERR(acts))
2493 		return (void *)acts;
2494 
2495 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2496 	acts->actions_len = (*sfa)->actions_len;
2497 	acts->orig_len = (*sfa)->orig_len;
2498 	kfree(*sfa);
2499 	*sfa = acts;
2500 
2501 out:
2502 	(*sfa)->actions_len += req_size;
2503 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2504 }
2505 
2506 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2507 				   int attrtype, void *data, int len, bool log)
2508 {
2509 	struct nlattr *a;
2510 
2511 	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2512 	if (IS_ERR(a))
2513 		return a;
2514 
2515 	a->nla_type = attrtype;
2516 	a->nla_len = nla_attr_size(len);
2517 
2518 	if (data)
2519 		memcpy(nla_data(a), data, len);
2520 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2521 
2522 	return a;
2523 }
2524 
2525 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2526 		       int len, bool log)
2527 {
2528 	struct nlattr *a;
2529 
2530 	a = __add_action(sfa, attrtype, data, len, log);
2531 
2532 	return PTR_ERR_OR_ZERO(a);
2533 }
2534 
2535 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2536 					  int attrtype, bool log)
2537 {
2538 	int used = (*sfa)->actions_len;
2539 	int err;
2540 
2541 	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2542 	if (err)
2543 		return err;
2544 
2545 	return used;
2546 }
2547 
2548 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2549 					 int st_offset)
2550 {
2551 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2552 							       st_offset);
2553 
2554 	a->nla_len = sfa->actions_len - st_offset;
2555 }
2556 
2557 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2558 				  const struct sw_flow_key *key,
2559 				  struct sw_flow_actions **sfa,
2560 				  __be16 eth_type, __be16 vlan_tci,
2561 				  u32 mpls_label_count, bool log,
2562 				  u32 depth);
2563 
2564 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2565 				    const struct sw_flow_key *key,
2566 				    struct sw_flow_actions **sfa,
2567 				    __be16 eth_type, __be16 vlan_tci,
2568 				    u32 mpls_label_count, bool log, bool last,
2569 				    u32 depth)
2570 {
2571 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2572 	const struct nlattr *probability, *actions;
2573 	const struct nlattr *a;
2574 	int rem, start, err;
2575 	struct sample_arg arg;
2576 
2577 	memset(attrs, 0, sizeof(attrs));
2578 	nla_for_each_nested(a, attr, rem) {
2579 		int type = nla_type(a);
2580 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2581 			return -EINVAL;
2582 		attrs[type] = a;
2583 	}
2584 	if (rem)
2585 		return -EINVAL;
2586 
2587 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2588 	if (!probability || nla_len(probability) != sizeof(u32))
2589 		return -EINVAL;
2590 
2591 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2592 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2593 		return -EINVAL;
2594 
2595 	/* validation done, copy sample action. */
2596 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2597 	if (start < 0)
2598 		return start;
2599 
2600 	/* When both skb and flow may be changed, put the sample
2601 	 * into a deferred fifo. On the other hand, if only skb
2602 	 * may be modified, the actions can be executed in place.
2603 	 *
2604 	 * Do this analysis at the flow installation time.
2605 	 * Set 'clone_action->exec' to true if the actions can be
2606 	 * executed without being deferred.
2607 	 *
2608 	 * If the sample is the last action, it can always be excuted
2609 	 * rather than deferred.
2610 	 */
2611 	arg.exec = last || !actions_may_change_flow(actions);
2612 	arg.probability = nla_get_u32(probability);
2613 
2614 	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2615 				 log);
2616 	if (err)
2617 		return err;
2618 
2619 	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2620 				     eth_type, vlan_tci, mpls_label_count, log,
2621 				     depth + 1);
2622 
2623 	if (err)
2624 		return err;
2625 
2626 	add_nested_action_end(*sfa, start);
2627 
2628 	return 0;
2629 }
2630 
2631 static int validate_and_copy_dec_ttl(struct net *net,
2632 				     const struct nlattr *attr,
2633 				     const struct sw_flow_key *key,
2634 				     struct sw_flow_actions **sfa,
2635 				     __be16 eth_type, __be16 vlan_tci,
2636 				     u32 mpls_label_count, bool log,
2637 				     u32 depth)
2638 {
2639 	const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1];
2640 	int start, action_start, err, rem;
2641 	const struct nlattr *a, *actions;
2642 
2643 	memset(attrs, 0, sizeof(attrs));
2644 	nla_for_each_nested(a, attr, rem) {
2645 		int type = nla_type(a);
2646 
2647 		/* Ignore unknown attributes to be future proof. */
2648 		if (type > OVS_DEC_TTL_ATTR_MAX)
2649 			continue;
2650 
2651 		if (!type || attrs[type]) {
2652 			OVS_NLERR(log, "Duplicate or invalid key (type %d).",
2653 				  type);
2654 			return -EINVAL;
2655 		}
2656 
2657 		attrs[type] = a;
2658 	}
2659 
2660 	if (rem) {
2661 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
2662 		return -EINVAL;
2663 	}
2664 
2665 	actions = attrs[OVS_DEC_TTL_ATTR_ACTION];
2666 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) {
2667 		OVS_NLERR(log, "Missing valid actions attribute.");
2668 		return -EINVAL;
2669 	}
2670 
2671 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log);
2672 	if (start < 0)
2673 		return start;
2674 
2675 	action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log);
2676 	if (action_start < 0)
2677 		return action_start;
2678 
2679 	err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type,
2680 				     vlan_tci, mpls_label_count, log,
2681 				     depth + 1);
2682 	if (err)
2683 		return err;
2684 
2685 	add_nested_action_end(*sfa, action_start);
2686 	add_nested_action_end(*sfa, start);
2687 	return 0;
2688 }
2689 
2690 static int validate_and_copy_clone(struct net *net,
2691 				   const struct nlattr *attr,
2692 				   const struct sw_flow_key *key,
2693 				   struct sw_flow_actions **sfa,
2694 				   __be16 eth_type, __be16 vlan_tci,
2695 				   u32 mpls_label_count, bool log, bool last,
2696 				   u32 depth)
2697 {
2698 	int start, err;
2699 	u32 exec;
2700 
2701 	if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2702 		return -EINVAL;
2703 
2704 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2705 	if (start < 0)
2706 		return start;
2707 
2708 	exec = last || !actions_may_change_flow(attr);
2709 
2710 	err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2711 				 sizeof(exec), log);
2712 	if (err)
2713 		return err;
2714 
2715 	err = __ovs_nla_copy_actions(net, attr, key, sfa,
2716 				     eth_type, vlan_tci, mpls_label_count, log,
2717 				     depth + 1);
2718 	if (err)
2719 		return err;
2720 
2721 	add_nested_action_end(*sfa, start);
2722 
2723 	return 0;
2724 }
2725 
2726 void ovs_match_init(struct sw_flow_match *match,
2727 		    struct sw_flow_key *key,
2728 		    bool reset_key,
2729 		    struct sw_flow_mask *mask)
2730 {
2731 	memset(match, 0, sizeof(*match));
2732 	match->key = key;
2733 	match->mask = mask;
2734 
2735 	if (reset_key)
2736 		memset(key, 0, sizeof(*key));
2737 
2738 	if (mask) {
2739 		memset(&mask->key, 0, sizeof(mask->key));
2740 		mask->range.start = mask->range.end = 0;
2741 	}
2742 }
2743 
2744 static int validate_geneve_opts(struct sw_flow_key *key)
2745 {
2746 	struct geneve_opt *option;
2747 	int opts_len = key->tun_opts_len;
2748 	bool crit_opt = false;
2749 
2750 	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2751 	while (opts_len > 0) {
2752 		int len;
2753 
2754 		if (opts_len < sizeof(*option))
2755 			return -EINVAL;
2756 
2757 		len = sizeof(*option) + option->length * 4;
2758 		if (len > opts_len)
2759 			return -EINVAL;
2760 
2761 		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2762 
2763 		option = (struct geneve_opt *)((u8 *)option + len);
2764 		opts_len -= len;
2765 	}
2766 
2767 	if (crit_opt)
2768 		__set_bit(IP_TUNNEL_CRIT_OPT_BIT, key->tun_key.tun_flags);
2769 
2770 	return 0;
2771 }
2772 
2773 static int validate_and_copy_set_tun(const struct nlattr *attr,
2774 				     struct sw_flow_actions **sfa, bool log)
2775 {
2776 	IP_TUNNEL_DECLARE_FLAGS(dst_opt_type) = { };
2777 	struct sw_flow_match match;
2778 	struct sw_flow_key key;
2779 	struct metadata_dst *tun_dst;
2780 	struct ip_tunnel_info *tun_info;
2781 	struct ovs_tunnel_info *ovs_tun;
2782 	struct nlattr *a;
2783 	int err = 0, start, opts_type;
2784 
2785 	ovs_match_init(&match, &key, true, NULL);
2786 	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2787 	if (opts_type < 0)
2788 		return opts_type;
2789 
2790 	if (key.tun_opts_len) {
2791 		switch (opts_type) {
2792 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2793 			err = validate_geneve_opts(&key);
2794 			if (err < 0)
2795 				return err;
2796 
2797 			__set_bit(IP_TUNNEL_GENEVE_OPT_BIT, dst_opt_type);
2798 			break;
2799 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2800 			__set_bit(IP_TUNNEL_VXLAN_OPT_BIT, dst_opt_type);
2801 			break;
2802 		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2803 			__set_bit(IP_TUNNEL_ERSPAN_OPT_BIT, dst_opt_type);
2804 			break;
2805 		}
2806 	}
2807 
2808 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2809 	if (start < 0)
2810 		return start;
2811 
2812 	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2813 				     GFP_KERNEL);
2814 
2815 	if (!tun_dst)
2816 		return -ENOMEM;
2817 
2818 	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2819 	if (err) {
2820 		dst_release((struct dst_entry *)tun_dst);
2821 		return err;
2822 	}
2823 
2824 	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2825 			 sizeof(*ovs_tun), log);
2826 	if (IS_ERR(a)) {
2827 		dst_release((struct dst_entry *)tun_dst);
2828 		return PTR_ERR(a);
2829 	}
2830 
2831 	ovs_tun = nla_data(a);
2832 	ovs_tun->tun_dst = tun_dst;
2833 
2834 	tun_info = &tun_dst->u.tun_info;
2835 	tun_info->mode = IP_TUNNEL_INFO_TX;
2836 	if (key.tun_proto == AF_INET6)
2837 		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2838 	else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2839 		tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2840 	tun_info->key = key.tun_key;
2841 
2842 	/* We need to store the options in the action itself since
2843 	 * everything else will go away after flow setup. We can append
2844 	 * it to tun_info and then point there.
2845 	 */
2846 	ip_tunnel_info_opts_set(tun_info,
2847 				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2848 				key.tun_opts_len, dst_opt_type);
2849 	add_nested_action_end(*sfa, start);
2850 
2851 	return err;
2852 }
2853 
2854 static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2855 			 bool is_push_nsh, bool log)
2856 {
2857 	struct sw_flow_match match;
2858 	struct sw_flow_key key;
2859 	int ret = 0;
2860 
2861 	ovs_match_init(&match, &key, true, NULL);
2862 	ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2863 				      is_push_nsh, log);
2864 	return !ret;
2865 }
2866 
2867 /* Return false if there are any non-masked bits set.
2868  * Mask follows data immediately, before any netlink padding.
2869  */
2870 static bool validate_masked(u8 *data, int len)
2871 {
2872 	u8 *mask = data + len;
2873 
2874 	while (len--)
2875 		if (*data++ & ~*mask++)
2876 			return false;
2877 
2878 	return true;
2879 }
2880 
2881 static int validate_set(const struct nlattr *a,
2882 			const struct sw_flow_key *flow_key,
2883 			struct sw_flow_actions **sfa, bool *skip_copy,
2884 			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2885 {
2886 	const struct nlattr *ovs_key = nla_data(a);
2887 	int key_type = nla_type(ovs_key);
2888 	size_t key_len;
2889 
2890 	/* There can be only one key in a action */
2891 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2892 		return -EINVAL;
2893 
2894 	key_len = nla_len(ovs_key);
2895 	if (masked)
2896 		key_len /= 2;
2897 
2898 	if (key_type > OVS_KEY_ATTR_MAX ||
2899 	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2900 		return -EINVAL;
2901 
2902 	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2903 		return -EINVAL;
2904 
2905 	switch (key_type) {
2906 	case OVS_KEY_ATTR_PRIORITY:
2907 	case OVS_KEY_ATTR_SKB_MARK:
2908 	case OVS_KEY_ATTR_CT_MARK:
2909 	case OVS_KEY_ATTR_CT_LABELS:
2910 		break;
2911 
2912 	case OVS_KEY_ATTR_ETHERNET:
2913 		if (mac_proto != MAC_PROTO_ETHERNET)
2914 			return -EINVAL;
2915 		break;
2916 
2917 	case OVS_KEY_ATTR_TUNNEL: {
2918 		int err;
2919 
2920 		if (masked)
2921 			return -EINVAL; /* Masked tunnel set not supported. */
2922 
2923 		*skip_copy = true;
2924 		err = validate_and_copy_set_tun(a, sfa, log);
2925 		if (err)
2926 			return err;
2927 		break;
2928 	}
2929 	case OVS_KEY_ATTR_IPV4: {
2930 		const struct ovs_key_ipv4 *ipv4_key;
2931 
2932 		if (eth_type != htons(ETH_P_IP))
2933 			return -EINVAL;
2934 
2935 		ipv4_key = nla_data(ovs_key);
2936 
2937 		if (masked) {
2938 			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2939 
2940 			/* Non-writeable fields. */
2941 			if (mask->ipv4_proto || mask->ipv4_frag)
2942 				return -EINVAL;
2943 		} else {
2944 			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2945 				return -EINVAL;
2946 
2947 			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2948 				return -EINVAL;
2949 		}
2950 		break;
2951 	}
2952 	case OVS_KEY_ATTR_IPV6: {
2953 		const struct ovs_key_ipv6 *ipv6_key;
2954 
2955 		if (eth_type != htons(ETH_P_IPV6))
2956 			return -EINVAL;
2957 
2958 		ipv6_key = nla_data(ovs_key);
2959 
2960 		if (masked) {
2961 			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2962 
2963 			/* Non-writeable fields. */
2964 			if (mask->ipv6_proto || mask->ipv6_frag)
2965 				return -EINVAL;
2966 
2967 			/* Invalid bits in the flow label mask? */
2968 			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2969 				return -EINVAL;
2970 		} else {
2971 			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2972 				return -EINVAL;
2973 
2974 			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2975 				return -EINVAL;
2976 		}
2977 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2978 			return -EINVAL;
2979 
2980 		break;
2981 	}
2982 	case OVS_KEY_ATTR_TCP:
2983 		if ((eth_type != htons(ETH_P_IP) &&
2984 		     eth_type != htons(ETH_P_IPV6)) ||
2985 		    flow_key->ip.proto != IPPROTO_TCP)
2986 			return -EINVAL;
2987 
2988 		break;
2989 
2990 	case OVS_KEY_ATTR_UDP:
2991 		if ((eth_type != htons(ETH_P_IP) &&
2992 		     eth_type != htons(ETH_P_IPV6)) ||
2993 		    flow_key->ip.proto != IPPROTO_UDP)
2994 			return -EINVAL;
2995 
2996 		break;
2997 
2998 	case OVS_KEY_ATTR_MPLS:
2999 		if (!eth_p_mpls(eth_type))
3000 			return -EINVAL;
3001 		break;
3002 
3003 	case OVS_KEY_ATTR_SCTP:
3004 		if ((eth_type != htons(ETH_P_IP) &&
3005 		     eth_type != htons(ETH_P_IPV6)) ||
3006 		    flow_key->ip.proto != IPPROTO_SCTP)
3007 			return -EINVAL;
3008 
3009 		break;
3010 
3011 	case OVS_KEY_ATTR_NSH:
3012 		if (eth_type != htons(ETH_P_NSH))
3013 			return -EINVAL;
3014 		if (!validate_nsh(nla_data(a), masked, false, log))
3015 			return -EINVAL;
3016 		break;
3017 
3018 	default:
3019 		return -EINVAL;
3020 	}
3021 
3022 	/* Convert non-masked non-tunnel set actions to masked set actions. */
3023 	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
3024 		int start, len = key_len * 2;
3025 		struct nlattr *at;
3026 
3027 		*skip_copy = true;
3028 
3029 		start = add_nested_action_start(sfa,
3030 						OVS_ACTION_ATTR_SET_TO_MASKED,
3031 						log);
3032 		if (start < 0)
3033 			return start;
3034 
3035 		at = __add_action(sfa, key_type, NULL, len, log);
3036 		if (IS_ERR(at))
3037 			return PTR_ERR(at);
3038 
3039 		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
3040 		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
3041 		/* Clear non-writeable bits from otherwise writeable fields. */
3042 		if (key_type == OVS_KEY_ATTR_IPV6) {
3043 			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
3044 
3045 			mask->ipv6_label &= htonl(0x000FFFFF);
3046 		}
3047 		add_nested_action_end(*sfa, start);
3048 	}
3049 
3050 	return 0;
3051 }
3052 
3053 static int validate_userspace(const struct nlattr *attr)
3054 {
3055 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
3056 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
3057 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
3058 		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
3059 	};
3060 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
3061 	int error;
3062 
3063 	error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
3064 					    userspace_policy, NULL);
3065 	if (error)
3066 		return error;
3067 
3068 	if (!a[OVS_USERSPACE_ATTR_PID] ||
3069 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
3070 		return -EINVAL;
3071 
3072 	return 0;
3073 }
3074 
3075 static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
3076 	[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
3077 	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
3078 	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
3079 };
3080 
3081 static int validate_and_copy_check_pkt_len(struct net *net,
3082 					   const struct nlattr *attr,
3083 					   const struct sw_flow_key *key,
3084 					   struct sw_flow_actions **sfa,
3085 					   __be16 eth_type, __be16 vlan_tci,
3086 					   u32 mpls_label_count,
3087 					   bool log, bool last, u32 depth)
3088 {
3089 	const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
3090 	struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
3091 	struct check_pkt_len_arg arg;
3092 	int nested_acts_start;
3093 	int start, err;
3094 
3095 	err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
3096 					  nla_data(attr), nla_len(attr),
3097 					  cpl_policy, NULL);
3098 	if (err)
3099 		return err;
3100 
3101 	if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
3102 	    !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
3103 		return -EINVAL;
3104 
3105 	acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
3106 	acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
3107 
3108 	/* Both the nested action should be present. */
3109 	if (!acts_if_greater || !acts_if_lesser_eq)
3110 		return -EINVAL;
3111 
3112 	/* validation done, copy the nested actions. */
3113 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
3114 					log);
3115 	if (start < 0)
3116 		return start;
3117 
3118 	arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
3119 	arg.exec_for_lesser_equal =
3120 		last || !actions_may_change_flow(acts_if_lesser_eq);
3121 	arg.exec_for_greater =
3122 		last || !actions_may_change_flow(acts_if_greater);
3123 
3124 	err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
3125 				 sizeof(arg), log);
3126 	if (err)
3127 		return err;
3128 
3129 	nested_acts_start = add_nested_action_start(sfa,
3130 		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
3131 	if (nested_acts_start < 0)
3132 		return nested_acts_start;
3133 
3134 	err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
3135 				     eth_type, vlan_tci, mpls_label_count, log,
3136 				     depth + 1);
3137 
3138 	if (err)
3139 		return err;
3140 
3141 	add_nested_action_end(*sfa, nested_acts_start);
3142 
3143 	nested_acts_start = add_nested_action_start(sfa,
3144 		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
3145 	if (nested_acts_start < 0)
3146 		return nested_acts_start;
3147 
3148 	err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
3149 				     eth_type, vlan_tci, mpls_label_count, log,
3150 				     depth + 1);
3151 
3152 	if (err)
3153 		return err;
3154 
3155 	add_nested_action_end(*sfa, nested_acts_start);
3156 	add_nested_action_end(*sfa, start);
3157 	return 0;
3158 }
3159 
3160 static int copy_action(const struct nlattr *from,
3161 		       struct sw_flow_actions **sfa, bool log)
3162 {
3163 	int totlen = NLA_ALIGN(from->nla_len);
3164 	struct nlattr *to;
3165 
3166 	to = reserve_sfa_size(sfa, from->nla_len, log);
3167 	if (IS_ERR(to))
3168 		return PTR_ERR(to);
3169 
3170 	memcpy(to, from, totlen);
3171 	return 0;
3172 }
3173 
3174 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3175 				  const struct sw_flow_key *key,
3176 				  struct sw_flow_actions **sfa,
3177 				  __be16 eth_type, __be16 vlan_tci,
3178 				  u32 mpls_label_count, bool log,
3179 				  u32 depth)
3180 {
3181 	u8 mac_proto = ovs_key_mac_proto(key);
3182 	const struct nlattr *a;
3183 	int rem, err;
3184 
3185 	if (depth > OVS_COPY_ACTIONS_MAX_DEPTH)
3186 		return -EOVERFLOW;
3187 
3188 	nla_for_each_nested(a, attr, rem) {
3189 		/* Expected argument lengths, (u32)-1 for variable length. */
3190 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
3191 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
3192 			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
3193 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
3194 			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
3195 			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
3196 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
3197 			[OVS_ACTION_ATTR_POP_VLAN] = 0,
3198 			[OVS_ACTION_ATTR_SET] = (u32)-1,
3199 			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
3200 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
3201 			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
3202 			[OVS_ACTION_ATTR_CT] = (u32)-1,
3203 			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
3204 			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
3205 			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
3206 			[OVS_ACTION_ATTR_POP_ETH] = 0,
3207 			[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
3208 			[OVS_ACTION_ATTR_POP_NSH] = 0,
3209 			[OVS_ACTION_ATTR_METER] = sizeof(u32),
3210 			[OVS_ACTION_ATTR_CLONE] = (u32)-1,
3211 			[OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
3212 			[OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls),
3213 			[OVS_ACTION_ATTR_DEC_TTL] = (u32)-1,
3214 			[OVS_ACTION_ATTR_DROP] = sizeof(u32),
3215 		};
3216 		const struct ovs_action_push_vlan *vlan;
3217 		int type = nla_type(a);
3218 		bool skip_copy;
3219 
3220 		if (type > OVS_ACTION_ATTR_MAX ||
3221 		    (action_lens[type] != nla_len(a) &&
3222 		     action_lens[type] != (u32)-1))
3223 			return -EINVAL;
3224 
3225 		skip_copy = false;
3226 		switch (type) {
3227 		case OVS_ACTION_ATTR_UNSPEC:
3228 			return -EINVAL;
3229 
3230 		case OVS_ACTION_ATTR_USERSPACE:
3231 			err = validate_userspace(a);
3232 			if (err)
3233 				return err;
3234 			break;
3235 
3236 		case OVS_ACTION_ATTR_OUTPUT:
3237 			if (nla_get_u32(a) >= DP_MAX_PORTS)
3238 				return -EINVAL;
3239 			break;
3240 
3241 		case OVS_ACTION_ATTR_TRUNC: {
3242 			const struct ovs_action_trunc *trunc = nla_data(a);
3243 
3244 			if (trunc->max_len < ETH_HLEN)
3245 				return -EINVAL;
3246 			break;
3247 		}
3248 
3249 		case OVS_ACTION_ATTR_HASH: {
3250 			const struct ovs_action_hash *act_hash = nla_data(a);
3251 
3252 			switch (act_hash->hash_alg) {
3253 			case OVS_HASH_ALG_L4:
3254 				fallthrough;
3255 			case OVS_HASH_ALG_SYM_L4:
3256 				break;
3257 			default:
3258 				return  -EINVAL;
3259 			}
3260 
3261 			break;
3262 		}
3263 
3264 		case OVS_ACTION_ATTR_POP_VLAN:
3265 			if (mac_proto != MAC_PROTO_ETHERNET)
3266 				return -EINVAL;
3267 			vlan_tci = htons(0);
3268 			break;
3269 
3270 		case OVS_ACTION_ATTR_PUSH_VLAN:
3271 			if (mac_proto != MAC_PROTO_ETHERNET)
3272 				return -EINVAL;
3273 			vlan = nla_data(a);
3274 			if (!eth_type_vlan(vlan->vlan_tpid))
3275 				return -EINVAL;
3276 			if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3277 				return -EINVAL;
3278 			vlan_tci = vlan->vlan_tci;
3279 			break;
3280 
3281 		case OVS_ACTION_ATTR_RECIRC:
3282 			break;
3283 
3284 		case OVS_ACTION_ATTR_ADD_MPLS: {
3285 			const struct ovs_action_add_mpls *mpls = nla_data(a);
3286 
3287 			if (!eth_p_mpls(mpls->mpls_ethertype))
3288 				return -EINVAL;
3289 
3290 			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) {
3291 				if (vlan_tci & htons(VLAN_CFI_MASK) ||
3292 				    (eth_type != htons(ETH_P_IP) &&
3293 				     eth_type != htons(ETH_P_IPV6) &&
3294 				     eth_type != htons(ETH_P_ARP) &&
3295 				     eth_type != htons(ETH_P_RARP) &&
3296 				     !eth_p_mpls(eth_type)))
3297 					return -EINVAL;
3298 				mpls_label_count++;
3299 			} else {
3300 				if (mac_proto == MAC_PROTO_ETHERNET) {
3301 					mpls_label_count = 1;
3302 					mac_proto = MAC_PROTO_NONE;
3303 				} else {
3304 					mpls_label_count++;
3305 				}
3306 			}
3307 			eth_type = mpls->mpls_ethertype;
3308 			break;
3309 		}
3310 
3311 		case OVS_ACTION_ATTR_PUSH_MPLS: {
3312 			const struct ovs_action_push_mpls *mpls = nla_data(a);
3313 
3314 			if (!eth_p_mpls(mpls->mpls_ethertype))
3315 				return -EINVAL;
3316 			/* Prohibit push MPLS other than to a white list
3317 			 * for packets that have a known tag order.
3318 			 */
3319 			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3320 			    (eth_type != htons(ETH_P_IP) &&
3321 			     eth_type != htons(ETH_P_IPV6) &&
3322 			     eth_type != htons(ETH_P_ARP) &&
3323 			     eth_type != htons(ETH_P_RARP) &&
3324 			     !eth_p_mpls(eth_type)))
3325 				return -EINVAL;
3326 			eth_type = mpls->mpls_ethertype;
3327 			mpls_label_count++;
3328 			break;
3329 		}
3330 
3331 		case OVS_ACTION_ATTR_POP_MPLS: {
3332 			__be16  proto;
3333 			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3334 			    !eth_p_mpls(eth_type))
3335 				return -EINVAL;
3336 
3337 			/* Disallow subsequent L2.5+ set actions and mpls_pop
3338 			 * actions once the last MPLS label in the packet is
3339 			 * popped as there is no check here to ensure that
3340 			 * the new eth type is valid and thus set actions could
3341 			 * write off the end of the packet or otherwise corrupt
3342 			 * it.
3343 			 *
3344 			 * Support for these actions is planned using packet
3345 			 * recirculation.
3346 			 */
3347 			proto = nla_get_be16(a);
3348 
3349 			if (proto == htons(ETH_P_TEB) &&
3350 			    mac_proto != MAC_PROTO_NONE)
3351 				return -EINVAL;
3352 
3353 			mpls_label_count--;
3354 
3355 			if (!eth_p_mpls(proto) || !mpls_label_count)
3356 				eth_type = htons(0);
3357 			else
3358 				eth_type =  proto;
3359 
3360 			break;
3361 		}
3362 
3363 		case OVS_ACTION_ATTR_SET:
3364 			err = validate_set(a, key, sfa,
3365 					   &skip_copy, mac_proto, eth_type,
3366 					   false, log);
3367 			if (err)
3368 				return err;
3369 			break;
3370 
3371 		case OVS_ACTION_ATTR_SET_MASKED:
3372 			err = validate_set(a, key, sfa,
3373 					   &skip_copy, mac_proto, eth_type,
3374 					   true, log);
3375 			if (err)
3376 				return err;
3377 			break;
3378 
3379 		case OVS_ACTION_ATTR_SAMPLE: {
3380 			bool last = nla_is_last(a, rem);
3381 
3382 			err = validate_and_copy_sample(net, a, key, sfa,
3383 						       eth_type, vlan_tci,
3384 						       mpls_label_count,
3385 						       log, last, depth);
3386 			if (err)
3387 				return err;
3388 			skip_copy = true;
3389 			break;
3390 		}
3391 
3392 		case OVS_ACTION_ATTR_CT:
3393 			err = ovs_ct_copy_action(net, a, key, sfa, log);
3394 			if (err)
3395 				return err;
3396 			skip_copy = true;
3397 			break;
3398 
3399 		case OVS_ACTION_ATTR_CT_CLEAR:
3400 			break;
3401 
3402 		case OVS_ACTION_ATTR_PUSH_ETH:
3403 			/* Disallow pushing an Ethernet header if one
3404 			 * is already present */
3405 			if (mac_proto != MAC_PROTO_NONE)
3406 				return -EINVAL;
3407 			mac_proto = MAC_PROTO_ETHERNET;
3408 			break;
3409 
3410 		case OVS_ACTION_ATTR_POP_ETH:
3411 			if (mac_proto != MAC_PROTO_ETHERNET)
3412 				return -EINVAL;
3413 			if (vlan_tci & htons(VLAN_CFI_MASK))
3414 				return -EINVAL;
3415 			mac_proto = MAC_PROTO_NONE;
3416 			break;
3417 
3418 		case OVS_ACTION_ATTR_PUSH_NSH:
3419 			if (mac_proto != MAC_PROTO_ETHERNET) {
3420 				u8 next_proto;
3421 
3422 				next_proto = tun_p_from_eth_p(eth_type);
3423 				if (!next_proto)
3424 					return -EINVAL;
3425 			}
3426 			mac_proto = MAC_PROTO_NONE;
3427 			if (!validate_nsh(nla_data(a), false, true, true))
3428 				return -EINVAL;
3429 			break;
3430 
3431 		case OVS_ACTION_ATTR_POP_NSH: {
3432 			__be16 inner_proto;
3433 
3434 			if (eth_type != htons(ETH_P_NSH))
3435 				return -EINVAL;
3436 			inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3437 			if (!inner_proto)
3438 				return -EINVAL;
3439 			if (key->nsh.base.np == TUN_P_ETHERNET)
3440 				mac_proto = MAC_PROTO_ETHERNET;
3441 			else
3442 				mac_proto = MAC_PROTO_NONE;
3443 			break;
3444 		}
3445 
3446 		case OVS_ACTION_ATTR_METER:
3447 			/* Non-existent meters are simply ignored.  */
3448 			break;
3449 
3450 		case OVS_ACTION_ATTR_CLONE: {
3451 			bool last = nla_is_last(a, rem);
3452 
3453 			err = validate_and_copy_clone(net, a, key, sfa,
3454 						      eth_type, vlan_tci,
3455 						      mpls_label_count,
3456 						      log, last, depth);
3457 			if (err)
3458 				return err;
3459 			skip_copy = true;
3460 			break;
3461 		}
3462 
3463 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3464 			bool last = nla_is_last(a, rem);
3465 
3466 			err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3467 							      eth_type,
3468 							      vlan_tci,
3469 							      mpls_label_count,
3470 							      log, last,
3471 							      depth);
3472 			if (err)
3473 				return err;
3474 			skip_copy = true;
3475 			break;
3476 		}
3477 
3478 		case OVS_ACTION_ATTR_DEC_TTL:
3479 			err = validate_and_copy_dec_ttl(net, a, key, sfa,
3480 							eth_type, vlan_tci,
3481 							mpls_label_count, log,
3482 							depth);
3483 			if (err)
3484 				return err;
3485 			skip_copy = true;
3486 			break;
3487 
3488 		case OVS_ACTION_ATTR_DROP:
3489 			if (!nla_is_last(a, rem))
3490 				return -EINVAL;
3491 			break;
3492 
3493 		default:
3494 			OVS_NLERR(log, "Unknown Action type %d", type);
3495 			return -EINVAL;
3496 		}
3497 		if (!skip_copy) {
3498 			err = copy_action(a, sfa, log);
3499 			if (err)
3500 				return err;
3501 		}
3502 	}
3503 
3504 	if (rem > 0)
3505 		return -EINVAL;
3506 
3507 	return 0;
3508 }
3509 
3510 /* 'key' must be the masked key. */
3511 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3512 			 const struct sw_flow_key *key,
3513 			 struct sw_flow_actions **sfa, bool log)
3514 {
3515 	int err;
3516 	u32 mpls_label_count = 0;
3517 
3518 	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3519 	if (IS_ERR(*sfa))
3520 		return PTR_ERR(*sfa);
3521 
3522 	if (eth_p_mpls(key->eth.type))
3523 		mpls_label_count = hweight_long(key->mpls.num_labels_mask);
3524 
3525 	(*sfa)->orig_len = nla_len(attr);
3526 	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3527 				     key->eth.vlan.tci, mpls_label_count, log,
3528 				     0);
3529 	if (err)
3530 		ovs_nla_free_flow_actions(*sfa);
3531 
3532 	return err;
3533 }
3534 
3535 static int sample_action_to_attr(const struct nlattr *attr,
3536 				 struct sk_buff *skb)
3537 {
3538 	struct nlattr *start, *ac_start = NULL, *sample_arg;
3539 	int err = 0, rem = nla_len(attr);
3540 	const struct sample_arg *arg;
3541 	struct nlattr *actions;
3542 
3543 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3544 	if (!start)
3545 		return -EMSGSIZE;
3546 
3547 	sample_arg = nla_data(attr);
3548 	arg = nla_data(sample_arg);
3549 	actions = nla_next(sample_arg, &rem);
3550 
3551 	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3552 		err = -EMSGSIZE;
3553 		goto out;
3554 	}
3555 
3556 	ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3557 	if (!ac_start) {
3558 		err = -EMSGSIZE;
3559 		goto out;
3560 	}
3561 
3562 	err = ovs_nla_put_actions(actions, rem, skb);
3563 
3564 out:
3565 	if (err) {
3566 		nla_nest_cancel(skb, ac_start);
3567 		nla_nest_cancel(skb, start);
3568 	} else {
3569 		nla_nest_end(skb, ac_start);
3570 		nla_nest_end(skb, start);
3571 	}
3572 
3573 	return err;
3574 }
3575 
3576 static int clone_action_to_attr(const struct nlattr *attr,
3577 				struct sk_buff *skb)
3578 {
3579 	struct nlattr *start;
3580 	int err = 0, rem = nla_len(attr);
3581 
3582 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3583 	if (!start)
3584 		return -EMSGSIZE;
3585 
3586 	/* Skipping the OVS_CLONE_ATTR_EXEC that is always the first attribute. */
3587 	attr = nla_next(nla_data(attr), &rem);
3588 	err = ovs_nla_put_actions(attr, rem, skb);
3589 
3590 	if (err)
3591 		nla_nest_cancel(skb, start);
3592 	else
3593 		nla_nest_end(skb, start);
3594 
3595 	return err;
3596 }
3597 
3598 static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3599 					struct sk_buff *skb)
3600 {
3601 	struct nlattr *start, *ac_start = NULL;
3602 	const struct check_pkt_len_arg *arg;
3603 	const struct nlattr *a, *cpl_arg;
3604 	int err = 0, rem = nla_len(attr);
3605 
3606 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3607 	if (!start)
3608 		return -EMSGSIZE;
3609 
3610 	/* The first nested attribute in 'attr' is always
3611 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3612 	 */
3613 	cpl_arg = nla_data(attr);
3614 	arg = nla_data(cpl_arg);
3615 
3616 	if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3617 		err = -EMSGSIZE;
3618 		goto out;
3619 	}
3620 
3621 	/* Second nested attribute in 'attr' is always
3622 	 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3623 	 */
3624 	a = nla_next(cpl_arg, &rem);
3625 	ac_start =  nla_nest_start_noflag(skb,
3626 					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3627 	if (!ac_start) {
3628 		err = -EMSGSIZE;
3629 		goto out;
3630 	}
3631 
3632 	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3633 	if (err) {
3634 		nla_nest_cancel(skb, ac_start);
3635 		goto out;
3636 	} else {
3637 		nla_nest_end(skb, ac_start);
3638 	}
3639 
3640 	/* Third nested attribute in 'attr' is always
3641 	 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3642 	 */
3643 	a = nla_next(a, &rem);
3644 	ac_start =  nla_nest_start_noflag(skb,
3645 					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3646 	if (!ac_start) {
3647 		err = -EMSGSIZE;
3648 		goto out;
3649 	}
3650 
3651 	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3652 	if (err) {
3653 		nla_nest_cancel(skb, ac_start);
3654 		goto out;
3655 	} else {
3656 		nla_nest_end(skb, ac_start);
3657 	}
3658 
3659 	nla_nest_end(skb, start);
3660 	return 0;
3661 
3662 out:
3663 	nla_nest_cancel(skb, start);
3664 	return err;
3665 }
3666 
3667 static int dec_ttl_action_to_attr(const struct nlattr *attr,
3668 				  struct sk_buff *skb)
3669 {
3670 	struct nlattr *start, *action_start;
3671 	const struct nlattr *a;
3672 	int err = 0, rem;
3673 
3674 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL);
3675 	if (!start)
3676 		return -EMSGSIZE;
3677 
3678 	nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
3679 		switch (nla_type(a)) {
3680 		case OVS_DEC_TTL_ATTR_ACTION:
3681 
3682 			action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION);
3683 			if (!action_start) {
3684 				err = -EMSGSIZE;
3685 				goto out;
3686 			}
3687 
3688 			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3689 			if (err)
3690 				goto out;
3691 
3692 			nla_nest_end(skb, action_start);
3693 			break;
3694 
3695 		default:
3696 			/* Ignore all other option to be future compatible */
3697 			break;
3698 		}
3699 	}
3700 
3701 	nla_nest_end(skb, start);
3702 	return 0;
3703 
3704 out:
3705 	nla_nest_cancel(skb, start);
3706 	return err;
3707 }
3708 
3709 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3710 {
3711 	const struct nlattr *ovs_key = nla_data(a);
3712 	int key_type = nla_type(ovs_key);
3713 	struct nlattr *start;
3714 	int err;
3715 
3716 	switch (key_type) {
3717 	case OVS_KEY_ATTR_TUNNEL_INFO: {
3718 		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3719 		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3720 
3721 		start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3722 		if (!start)
3723 			return -EMSGSIZE;
3724 
3725 		err =  ip_tun_to_nlattr(skb, &tun_info->key,
3726 					ip_tunnel_info_opts(tun_info),
3727 					tun_info->options_len,
3728 					ip_tunnel_info_af(tun_info), tun_info->mode);
3729 		if (err)
3730 			return err;
3731 		nla_nest_end(skb, start);
3732 		break;
3733 	}
3734 	default:
3735 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3736 			return -EMSGSIZE;
3737 		break;
3738 	}
3739 
3740 	return 0;
3741 }
3742 
3743 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3744 						struct sk_buff *skb)
3745 {
3746 	const struct nlattr *ovs_key = nla_data(a);
3747 	struct nlattr *nla;
3748 	size_t key_len = nla_len(ovs_key) / 2;
3749 
3750 	/* Revert the conversion we did from a non-masked set action to
3751 	 * masked set action.
3752 	 */
3753 	nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3754 	if (!nla)
3755 		return -EMSGSIZE;
3756 
3757 	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3758 		return -EMSGSIZE;
3759 
3760 	nla_nest_end(skb, nla);
3761 	return 0;
3762 }
3763 
3764 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3765 {
3766 	const struct nlattr *a;
3767 	int rem, err;
3768 
3769 	nla_for_each_attr(a, attr, len, rem) {
3770 		int type = nla_type(a);
3771 
3772 		switch (type) {
3773 		case OVS_ACTION_ATTR_SET:
3774 			err = set_action_to_attr(a, skb);
3775 			if (err)
3776 				return err;
3777 			break;
3778 
3779 		case OVS_ACTION_ATTR_SET_TO_MASKED:
3780 			err = masked_set_action_to_set_action_attr(a, skb);
3781 			if (err)
3782 				return err;
3783 			break;
3784 
3785 		case OVS_ACTION_ATTR_SAMPLE:
3786 			err = sample_action_to_attr(a, skb);
3787 			if (err)
3788 				return err;
3789 			break;
3790 
3791 		case OVS_ACTION_ATTR_CT:
3792 			err = ovs_ct_action_to_attr(nla_data(a), skb);
3793 			if (err)
3794 				return err;
3795 			break;
3796 
3797 		case OVS_ACTION_ATTR_CLONE:
3798 			err = clone_action_to_attr(a, skb);
3799 			if (err)
3800 				return err;
3801 			break;
3802 
3803 		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3804 			err = check_pkt_len_action_to_attr(a, skb);
3805 			if (err)
3806 				return err;
3807 			break;
3808 
3809 		case OVS_ACTION_ATTR_DEC_TTL:
3810 			err = dec_ttl_action_to_attr(a, skb);
3811 			if (err)
3812 				return err;
3813 			break;
3814 
3815 		default:
3816 			if (nla_put(skb, type, nla_len(a), nla_data(a)))
3817 				return -EMSGSIZE;
3818 			break;
3819 		}
3820 	}
3821 
3822 	return 0;
3823 }
3824