xref: /linux/net/openvswitch/flow_netlink.c (revision 79b6bb73f888933cbcd20b0ef3976cde67951b72)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (c) 2007-2017 Nicira, Inc.
4   */
5  
6  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7  
8  #include "flow.h"
9  #include "datapath.h"
10  #include <linux/uaccess.h>
11  #include <linux/netdevice.h>
12  #include <linux/etherdevice.h>
13  #include <linux/if_ether.h>
14  #include <linux/if_vlan.h>
15  #include <net/llc_pdu.h>
16  #include <linux/kernel.h>
17  #include <linux/jhash.h>
18  #include <linux/jiffies.h>
19  #include <linux/llc.h>
20  #include <linux/module.h>
21  #include <linux/in.h>
22  #include <linux/rcupdate.h>
23  #include <linux/if_arp.h>
24  #include <linux/ip.h>
25  #include <linux/ipv6.h>
26  #include <linux/sctp.h>
27  #include <linux/tcp.h>
28  #include <linux/udp.h>
29  #include <linux/icmp.h>
30  #include <linux/icmpv6.h>
31  #include <linux/rculist.h>
32  #include <net/geneve.h>
33  #include <net/ip.h>
34  #include <net/ipv6.h>
35  #include <net/ndisc.h>
36  #include <net/mpls.h>
37  #include <net/vxlan.h>
38  #include <net/tun_proto.h>
39  #include <net/erspan.h>
40  
41  #include "flow_netlink.h"
42  
43  struct ovs_len_tbl {
44  	int len;
45  	const struct ovs_len_tbl *next;
46  };
47  
48  #define OVS_ATTR_NESTED -1
49  #define OVS_ATTR_VARIABLE -2
50  
51  static bool actions_may_change_flow(const struct nlattr *actions)
52  {
53  	struct nlattr *nla;
54  	int rem;
55  
56  	nla_for_each_nested(nla, actions, rem) {
57  		u16 action = nla_type(nla);
58  
59  		switch (action) {
60  		case OVS_ACTION_ATTR_OUTPUT:
61  		case OVS_ACTION_ATTR_RECIRC:
62  		case OVS_ACTION_ATTR_TRUNC:
63  		case OVS_ACTION_ATTR_USERSPACE:
64  			break;
65  
66  		case OVS_ACTION_ATTR_CT:
67  		case OVS_ACTION_ATTR_CT_CLEAR:
68  		case OVS_ACTION_ATTR_HASH:
69  		case OVS_ACTION_ATTR_POP_ETH:
70  		case OVS_ACTION_ATTR_POP_MPLS:
71  		case OVS_ACTION_ATTR_POP_NSH:
72  		case OVS_ACTION_ATTR_POP_VLAN:
73  		case OVS_ACTION_ATTR_PUSH_ETH:
74  		case OVS_ACTION_ATTR_PUSH_MPLS:
75  		case OVS_ACTION_ATTR_PUSH_NSH:
76  		case OVS_ACTION_ATTR_PUSH_VLAN:
77  		case OVS_ACTION_ATTR_SAMPLE:
78  		case OVS_ACTION_ATTR_SET:
79  		case OVS_ACTION_ATTR_SET_MASKED:
80  		case OVS_ACTION_ATTR_METER:
81  		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
82  		default:
83  			return true;
84  		}
85  	}
86  	return false;
87  }
88  
89  static void update_range(struct sw_flow_match *match,
90  			 size_t offset, size_t size, bool is_mask)
91  {
92  	struct sw_flow_key_range *range;
93  	size_t start = rounddown(offset, sizeof(long));
94  	size_t end = roundup(offset + size, sizeof(long));
95  
96  	if (!is_mask)
97  		range = &match->range;
98  	else
99  		range = &match->mask->range;
100  
101  	if (range->start == range->end) {
102  		range->start = start;
103  		range->end = end;
104  		return;
105  	}
106  
107  	if (range->start > start)
108  		range->start = start;
109  
110  	if (range->end < end)
111  		range->end = end;
112  }
113  
114  #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
115  	do { \
116  		update_range(match, offsetof(struct sw_flow_key, field),    \
117  			     sizeof((match)->key->field), is_mask);	    \
118  		if (is_mask)						    \
119  			(match)->mask->key.field = value;		    \
120  		else							    \
121  			(match)->key->field = value;		            \
122  	} while (0)
123  
124  #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
125  	do {								    \
126  		update_range(match, offset, len, is_mask);		    \
127  		if (is_mask)						    \
128  			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
129  			       len);					   \
130  		else							    \
131  			memcpy((u8 *)(match)->key + offset, value_p, len);  \
132  	} while (0)
133  
134  #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
135  	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
136  				  value_p, len, is_mask)
137  
138  #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
139  	do {								    \
140  		update_range(match, offsetof(struct sw_flow_key, field),    \
141  			     sizeof((match)->key->field), is_mask);	    \
142  		if (is_mask)						    \
143  			memset((u8 *)&(match)->mask->key.field, value,      \
144  			       sizeof((match)->mask->key.field));	    \
145  		else							    \
146  			memset((u8 *)&(match)->key->field, value,           \
147  			       sizeof((match)->key->field));                \
148  	} while (0)
149  
150  static bool match_validate(const struct sw_flow_match *match,
151  			   u64 key_attrs, u64 mask_attrs, bool log)
152  {
153  	u64 key_expected = 0;
154  	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
155  
156  	/* The following mask attributes allowed only if they
157  	 * pass the validation tests. */
158  	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
159  			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
160  			| (1 << OVS_KEY_ATTR_IPV6)
161  			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
162  			| (1 << OVS_KEY_ATTR_TCP)
163  			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
164  			| (1 << OVS_KEY_ATTR_UDP)
165  			| (1 << OVS_KEY_ATTR_SCTP)
166  			| (1 << OVS_KEY_ATTR_ICMP)
167  			| (1 << OVS_KEY_ATTR_ICMPV6)
168  			| (1 << OVS_KEY_ATTR_ARP)
169  			| (1 << OVS_KEY_ATTR_ND)
170  			| (1 << OVS_KEY_ATTR_MPLS)
171  			| (1 << OVS_KEY_ATTR_NSH));
172  
173  	/* Always allowed mask fields. */
174  	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
175  		       | (1 << OVS_KEY_ATTR_IN_PORT)
176  		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
177  
178  	/* Check key attributes. */
179  	if (match->key->eth.type == htons(ETH_P_ARP)
180  			|| match->key->eth.type == htons(ETH_P_RARP)) {
181  		key_expected |= 1 << OVS_KEY_ATTR_ARP;
182  		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
183  			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
184  	}
185  
186  	if (eth_p_mpls(match->key->eth.type)) {
187  		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
188  		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
189  			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
190  	}
191  
192  	if (match->key->eth.type == htons(ETH_P_IP)) {
193  		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
194  		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
195  			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
196  			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
197  		}
198  
199  		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
200  			if (match->key->ip.proto == IPPROTO_UDP) {
201  				key_expected |= 1 << OVS_KEY_ATTR_UDP;
202  				if (match->mask && (match->mask->key.ip.proto == 0xff))
203  					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
204  			}
205  
206  			if (match->key->ip.proto == IPPROTO_SCTP) {
207  				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
208  				if (match->mask && (match->mask->key.ip.proto == 0xff))
209  					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
210  			}
211  
212  			if (match->key->ip.proto == IPPROTO_TCP) {
213  				key_expected |= 1 << OVS_KEY_ATTR_TCP;
214  				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
215  				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
216  					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
217  					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
218  				}
219  			}
220  
221  			if (match->key->ip.proto == IPPROTO_ICMP) {
222  				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
223  				if (match->mask && (match->mask->key.ip.proto == 0xff))
224  					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
225  			}
226  		}
227  	}
228  
229  	if (match->key->eth.type == htons(ETH_P_IPV6)) {
230  		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
231  		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
232  			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
233  			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
234  		}
235  
236  		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
237  			if (match->key->ip.proto == IPPROTO_UDP) {
238  				key_expected |= 1 << OVS_KEY_ATTR_UDP;
239  				if (match->mask && (match->mask->key.ip.proto == 0xff))
240  					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
241  			}
242  
243  			if (match->key->ip.proto == IPPROTO_SCTP) {
244  				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
245  				if (match->mask && (match->mask->key.ip.proto == 0xff))
246  					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
247  			}
248  
249  			if (match->key->ip.proto == IPPROTO_TCP) {
250  				key_expected |= 1 << OVS_KEY_ATTR_TCP;
251  				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
252  				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
253  					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
254  					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
255  				}
256  			}
257  
258  			if (match->key->ip.proto == IPPROTO_ICMPV6) {
259  				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
260  				if (match->mask && (match->mask->key.ip.proto == 0xff))
261  					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
262  
263  				if (match->key->tp.src ==
264  						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
265  				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
266  					key_expected |= 1 << OVS_KEY_ATTR_ND;
267  					/* Original direction conntrack tuple
268  					 * uses the same space as the ND fields
269  					 * in the key, so both are not allowed
270  					 * at the same time.
271  					 */
272  					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
273  					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
274  						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
275  				}
276  			}
277  		}
278  	}
279  
280  	if (match->key->eth.type == htons(ETH_P_NSH)) {
281  		key_expected |= 1 << OVS_KEY_ATTR_NSH;
282  		if (match->mask &&
283  		    match->mask->key.eth.type == htons(0xffff)) {
284  			mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
285  		}
286  	}
287  
288  	if ((key_attrs & key_expected) != key_expected) {
289  		/* Key attributes check failed. */
290  		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
291  			  (unsigned long long)key_attrs,
292  			  (unsigned long long)key_expected);
293  		return false;
294  	}
295  
296  	if ((mask_attrs & mask_allowed) != mask_attrs) {
297  		/* Mask attributes check failed. */
298  		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
299  			  (unsigned long long)mask_attrs,
300  			  (unsigned long long)mask_allowed);
301  		return false;
302  	}
303  
304  	return true;
305  }
306  
307  size_t ovs_tun_key_attr_size(void)
308  {
309  	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
310  	 * updating this function.
311  	 */
312  	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
313  		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
314  		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
315  		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
316  		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
317  		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
318  		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
319  		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
320  		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
321  		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
322  		 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
323  		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
324  		 */
325  		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
326  		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
327  }
328  
329  static size_t ovs_nsh_key_attr_size(void)
330  {
331  	/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
332  	 * updating this function.
333  	 */
334  	return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
335  		/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
336  		 * mutually exclusive, so the bigger one can cover
337  		 * the small one.
338  		 */
339  		+ nla_total_size(NSH_CTX_HDRS_MAX_LEN);
340  }
341  
342  size_t ovs_key_attr_size(void)
343  {
344  	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
345  	 * updating this function.
346  	 */
347  	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29);
348  
349  	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
350  		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
351  		  + ovs_tun_key_attr_size()
352  		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
353  		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
354  		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
355  		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
356  		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
357  		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
358  		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
359  		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
360  		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
361  		+ nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
362  		  + ovs_nsh_key_attr_size()
363  		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
364  		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
365  		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
366  		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
367  		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
368  		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
369  		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
370  		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
371  }
372  
373  static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
374  	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
375  };
376  
377  static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
378  	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
379  	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
380  	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
381  	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
382  	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
383  	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
384  	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
385  	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
386  	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
387  	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
388  	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
389  	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
390  						.next = ovs_vxlan_ext_key_lens },
391  	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
392  	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
393  	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE },
394  	[OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE]   = { .len = 0 },
395  };
396  
397  static const struct ovs_len_tbl
398  ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
399  	[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
400  	[OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
401  	[OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
402  };
403  
404  /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
405  static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
406  	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
407  	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
408  	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
409  	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
410  	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
411  	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
412  	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
413  	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
414  	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
415  	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
416  	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
417  	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
418  	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
419  	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
420  	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
421  	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
422  	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
423  	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
424  	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
425  	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
426  				     .next = ovs_tunnel_key_lens, },
427  	[OVS_KEY_ATTR_MPLS]	 = { .len = OVS_ATTR_VARIABLE },
428  	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
429  	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
430  	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
431  	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
432  	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
433  		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
434  	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
435  		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
436  	[OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
437  				     .next = ovs_nsh_key_attr_lens, },
438  };
439  
440  static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
441  {
442  	return expected_len == attr_len ||
443  	       expected_len == OVS_ATTR_NESTED ||
444  	       expected_len == OVS_ATTR_VARIABLE;
445  }
446  
447  static bool is_all_zero(const u8 *fp, size_t size)
448  {
449  	int i;
450  
451  	if (!fp)
452  		return false;
453  
454  	for (i = 0; i < size; i++)
455  		if (fp[i])
456  			return false;
457  
458  	return true;
459  }
460  
461  static int __parse_flow_nlattrs(const struct nlattr *attr,
462  				const struct nlattr *a[],
463  				u64 *attrsp, bool log, bool nz)
464  {
465  	const struct nlattr *nla;
466  	u64 attrs;
467  	int rem;
468  
469  	attrs = *attrsp;
470  	nla_for_each_nested(nla, attr, rem) {
471  		u16 type = nla_type(nla);
472  		int expected_len;
473  
474  		if (type > OVS_KEY_ATTR_MAX) {
475  			OVS_NLERR(log, "Key type %d is out of range max %d",
476  				  type, OVS_KEY_ATTR_MAX);
477  			return -EINVAL;
478  		}
479  
480  		if (attrs & (1 << type)) {
481  			OVS_NLERR(log, "Duplicate key (type %d).", type);
482  			return -EINVAL;
483  		}
484  
485  		expected_len = ovs_key_lens[type].len;
486  		if (!check_attr_len(nla_len(nla), expected_len)) {
487  			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
488  				  type, nla_len(nla), expected_len);
489  			return -EINVAL;
490  		}
491  
492  		if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
493  			attrs |= 1 << type;
494  			a[type] = nla;
495  		}
496  	}
497  	if (rem) {
498  		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
499  		return -EINVAL;
500  	}
501  
502  	*attrsp = attrs;
503  	return 0;
504  }
505  
506  static int parse_flow_mask_nlattrs(const struct nlattr *attr,
507  				   const struct nlattr *a[], u64 *attrsp,
508  				   bool log)
509  {
510  	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
511  }
512  
513  int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
514  		       u64 *attrsp, bool log)
515  {
516  	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
517  }
518  
519  static int genev_tun_opt_from_nlattr(const struct nlattr *a,
520  				     struct sw_flow_match *match, bool is_mask,
521  				     bool log)
522  {
523  	unsigned long opt_key_offset;
524  
525  	if (nla_len(a) > sizeof(match->key->tun_opts)) {
526  		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
527  			  nla_len(a), sizeof(match->key->tun_opts));
528  		return -EINVAL;
529  	}
530  
531  	if (nla_len(a) % 4 != 0) {
532  		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
533  			  nla_len(a));
534  		return -EINVAL;
535  	}
536  
537  	/* We need to record the length of the options passed
538  	 * down, otherwise packets with the same format but
539  	 * additional options will be silently matched.
540  	 */
541  	if (!is_mask) {
542  		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
543  				false);
544  	} else {
545  		/* This is somewhat unusual because it looks at
546  		 * both the key and mask while parsing the
547  		 * attributes (and by extension assumes the key
548  		 * is parsed first). Normally, we would verify
549  		 * that each is the correct length and that the
550  		 * attributes line up in the validate function.
551  		 * However, that is difficult because this is
552  		 * variable length and we won't have the
553  		 * information later.
554  		 */
555  		if (match->key->tun_opts_len != nla_len(a)) {
556  			OVS_NLERR(log, "Geneve option len %d != mask len %d",
557  				  match->key->tun_opts_len, nla_len(a));
558  			return -EINVAL;
559  		}
560  
561  		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
562  	}
563  
564  	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
565  	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
566  				  nla_len(a), is_mask);
567  	return 0;
568  }
569  
570  static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
571  				     struct sw_flow_match *match, bool is_mask,
572  				     bool log)
573  {
574  	struct nlattr *a;
575  	int rem;
576  	unsigned long opt_key_offset;
577  	struct vxlan_metadata opts;
578  
579  	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
580  
581  	memset(&opts, 0, sizeof(opts));
582  	nla_for_each_nested(a, attr, rem) {
583  		int type = nla_type(a);
584  
585  		if (type > OVS_VXLAN_EXT_MAX) {
586  			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
587  				  type, OVS_VXLAN_EXT_MAX);
588  			return -EINVAL;
589  		}
590  
591  		if (!check_attr_len(nla_len(a),
592  				    ovs_vxlan_ext_key_lens[type].len)) {
593  			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
594  				  type, nla_len(a),
595  				  ovs_vxlan_ext_key_lens[type].len);
596  			return -EINVAL;
597  		}
598  
599  		switch (type) {
600  		case OVS_VXLAN_EXT_GBP:
601  			opts.gbp = nla_get_u32(a);
602  			break;
603  		default:
604  			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
605  				  type);
606  			return -EINVAL;
607  		}
608  	}
609  	if (rem) {
610  		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
611  			  rem);
612  		return -EINVAL;
613  	}
614  
615  	if (!is_mask)
616  		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
617  	else
618  		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
619  
620  	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
621  	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
622  				  is_mask);
623  	return 0;
624  }
625  
626  static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
627  				      struct sw_flow_match *match, bool is_mask,
628  				      bool log)
629  {
630  	unsigned long opt_key_offset;
631  
632  	BUILD_BUG_ON(sizeof(struct erspan_metadata) >
633  		     sizeof(match->key->tun_opts));
634  
635  	if (nla_len(a) > sizeof(match->key->tun_opts)) {
636  		OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
637  			  nla_len(a), sizeof(match->key->tun_opts));
638  		return -EINVAL;
639  	}
640  
641  	if (!is_mask)
642  		SW_FLOW_KEY_PUT(match, tun_opts_len,
643  				sizeof(struct erspan_metadata), false);
644  	else
645  		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
646  
647  	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
648  	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
649  				  nla_len(a), is_mask);
650  	return 0;
651  }
652  
653  static int ip_tun_from_nlattr(const struct nlattr *attr,
654  			      struct sw_flow_match *match, bool is_mask,
655  			      bool log)
656  {
657  	bool ttl = false, ipv4 = false, ipv6 = false;
658  	bool info_bridge_mode = false;
659  	__be16 tun_flags = 0;
660  	int opts_type = 0;
661  	struct nlattr *a;
662  	int rem;
663  
664  	nla_for_each_nested(a, attr, rem) {
665  		int type = nla_type(a);
666  		int err;
667  
668  		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
669  			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
670  				  type, OVS_TUNNEL_KEY_ATTR_MAX);
671  			return -EINVAL;
672  		}
673  
674  		if (!check_attr_len(nla_len(a),
675  				    ovs_tunnel_key_lens[type].len)) {
676  			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
677  				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
678  			return -EINVAL;
679  		}
680  
681  		switch (type) {
682  		case OVS_TUNNEL_KEY_ATTR_ID:
683  			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
684  					nla_get_be64(a), is_mask);
685  			tun_flags |= TUNNEL_KEY;
686  			break;
687  		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
688  			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
689  					nla_get_in_addr(a), is_mask);
690  			ipv4 = true;
691  			break;
692  		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
693  			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
694  					nla_get_in_addr(a), is_mask);
695  			ipv4 = true;
696  			break;
697  		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
698  			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
699  					nla_get_in6_addr(a), is_mask);
700  			ipv6 = true;
701  			break;
702  		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
703  			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
704  					nla_get_in6_addr(a), is_mask);
705  			ipv6 = true;
706  			break;
707  		case OVS_TUNNEL_KEY_ATTR_TOS:
708  			SW_FLOW_KEY_PUT(match, tun_key.tos,
709  					nla_get_u8(a), is_mask);
710  			break;
711  		case OVS_TUNNEL_KEY_ATTR_TTL:
712  			SW_FLOW_KEY_PUT(match, tun_key.ttl,
713  					nla_get_u8(a), is_mask);
714  			ttl = true;
715  			break;
716  		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
717  			tun_flags |= TUNNEL_DONT_FRAGMENT;
718  			break;
719  		case OVS_TUNNEL_KEY_ATTR_CSUM:
720  			tun_flags |= TUNNEL_CSUM;
721  			break;
722  		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
723  			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
724  					nla_get_be16(a), is_mask);
725  			break;
726  		case OVS_TUNNEL_KEY_ATTR_TP_DST:
727  			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
728  					nla_get_be16(a), is_mask);
729  			break;
730  		case OVS_TUNNEL_KEY_ATTR_OAM:
731  			tun_flags |= TUNNEL_OAM;
732  			break;
733  		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
734  			if (opts_type) {
735  				OVS_NLERR(log, "Multiple metadata blocks provided");
736  				return -EINVAL;
737  			}
738  
739  			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
740  			if (err)
741  				return err;
742  
743  			tun_flags |= TUNNEL_GENEVE_OPT;
744  			opts_type = type;
745  			break;
746  		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
747  			if (opts_type) {
748  				OVS_NLERR(log, "Multiple metadata blocks provided");
749  				return -EINVAL;
750  			}
751  
752  			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
753  			if (err)
754  				return err;
755  
756  			tun_flags |= TUNNEL_VXLAN_OPT;
757  			opts_type = type;
758  			break;
759  		case OVS_TUNNEL_KEY_ATTR_PAD:
760  			break;
761  		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
762  			if (opts_type) {
763  				OVS_NLERR(log, "Multiple metadata blocks provided");
764  				return -EINVAL;
765  			}
766  
767  			err = erspan_tun_opt_from_nlattr(a, match, is_mask,
768  							 log);
769  			if (err)
770  				return err;
771  
772  			tun_flags |= TUNNEL_ERSPAN_OPT;
773  			opts_type = type;
774  			break;
775  		case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
776  			info_bridge_mode = true;
777  			ipv4 = true;
778  			break;
779  		default:
780  			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
781  				  type);
782  			return -EINVAL;
783  		}
784  	}
785  
786  	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
787  	if (is_mask)
788  		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
789  	else
790  		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
791  				false);
792  
793  	if (rem > 0) {
794  		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
795  			  rem);
796  		return -EINVAL;
797  	}
798  
799  	if (ipv4 && ipv6) {
800  		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
801  		return -EINVAL;
802  	}
803  
804  	if (!is_mask) {
805  		if (!ipv4 && !ipv6) {
806  			OVS_NLERR(log, "IP tunnel dst address not specified");
807  			return -EINVAL;
808  		}
809  		if (ipv4) {
810  			if (info_bridge_mode) {
811  				if (match->key->tun_key.u.ipv4.src ||
812  				    match->key->tun_key.u.ipv4.dst ||
813  				    match->key->tun_key.tp_src ||
814  				    match->key->tun_key.tp_dst ||
815  				    match->key->tun_key.ttl ||
816  				    match->key->tun_key.tos ||
817  				    tun_flags & ~TUNNEL_KEY) {
818  					OVS_NLERR(log, "IPv4 tun info is not correct");
819  					return -EINVAL;
820  				}
821  			} else if (!match->key->tun_key.u.ipv4.dst) {
822  				OVS_NLERR(log, "IPv4 tunnel dst address is zero");
823  				return -EINVAL;
824  			}
825  		}
826  		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
827  			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
828  			return -EINVAL;
829  		}
830  
831  		if (!ttl && !info_bridge_mode) {
832  			OVS_NLERR(log, "IP tunnel TTL not specified.");
833  			return -EINVAL;
834  		}
835  	}
836  
837  	return opts_type;
838  }
839  
840  static int vxlan_opt_to_nlattr(struct sk_buff *skb,
841  			       const void *tun_opts, int swkey_tun_opts_len)
842  {
843  	const struct vxlan_metadata *opts = tun_opts;
844  	struct nlattr *nla;
845  
846  	nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
847  	if (!nla)
848  		return -EMSGSIZE;
849  
850  	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
851  		return -EMSGSIZE;
852  
853  	nla_nest_end(skb, nla);
854  	return 0;
855  }
856  
857  static int __ip_tun_to_nlattr(struct sk_buff *skb,
858  			      const struct ip_tunnel_key *output,
859  			      const void *tun_opts, int swkey_tun_opts_len,
860  			      unsigned short tun_proto, u8 mode)
861  {
862  	if (output->tun_flags & TUNNEL_KEY &&
863  	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
864  			 OVS_TUNNEL_KEY_ATTR_PAD))
865  		return -EMSGSIZE;
866  
867  	if (mode & IP_TUNNEL_INFO_BRIDGE)
868  		return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
869  		       ? -EMSGSIZE : 0;
870  
871  	switch (tun_proto) {
872  	case AF_INET:
873  		if (output->u.ipv4.src &&
874  		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
875  				    output->u.ipv4.src))
876  			return -EMSGSIZE;
877  		if (output->u.ipv4.dst &&
878  		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
879  				    output->u.ipv4.dst))
880  			return -EMSGSIZE;
881  		break;
882  	case AF_INET6:
883  		if (!ipv6_addr_any(&output->u.ipv6.src) &&
884  		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
885  				     &output->u.ipv6.src))
886  			return -EMSGSIZE;
887  		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
888  		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
889  				     &output->u.ipv6.dst))
890  			return -EMSGSIZE;
891  		break;
892  	}
893  	if (output->tos &&
894  	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
895  		return -EMSGSIZE;
896  	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
897  		return -EMSGSIZE;
898  	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
899  	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
900  		return -EMSGSIZE;
901  	if ((output->tun_flags & TUNNEL_CSUM) &&
902  	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
903  		return -EMSGSIZE;
904  	if (output->tp_src &&
905  	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
906  		return -EMSGSIZE;
907  	if (output->tp_dst &&
908  	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
909  		return -EMSGSIZE;
910  	if ((output->tun_flags & TUNNEL_OAM) &&
911  	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
912  		return -EMSGSIZE;
913  	if (swkey_tun_opts_len) {
914  		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
915  		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
916  			    swkey_tun_opts_len, tun_opts))
917  			return -EMSGSIZE;
918  		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
919  			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
920  			return -EMSGSIZE;
921  		else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
922  			 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
923  				 swkey_tun_opts_len, tun_opts))
924  			return -EMSGSIZE;
925  	}
926  
927  	return 0;
928  }
929  
930  static int ip_tun_to_nlattr(struct sk_buff *skb,
931  			    const struct ip_tunnel_key *output,
932  			    const void *tun_opts, int swkey_tun_opts_len,
933  			    unsigned short tun_proto, u8 mode)
934  {
935  	struct nlattr *nla;
936  	int err;
937  
938  	nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
939  	if (!nla)
940  		return -EMSGSIZE;
941  
942  	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
943  				 tun_proto, mode);
944  	if (err)
945  		return err;
946  
947  	nla_nest_end(skb, nla);
948  	return 0;
949  }
950  
951  int ovs_nla_put_tunnel_info(struct sk_buff *skb,
952  			    struct ip_tunnel_info *tun_info)
953  {
954  	return __ip_tun_to_nlattr(skb, &tun_info->key,
955  				  ip_tunnel_info_opts(tun_info),
956  				  tun_info->options_len,
957  				  ip_tunnel_info_af(tun_info), tun_info->mode);
958  }
959  
960  static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
961  				    const struct nlattr *a[],
962  				    bool is_mask, bool inner)
963  {
964  	__be16 tci = 0;
965  	__be16 tpid = 0;
966  
967  	if (a[OVS_KEY_ATTR_VLAN])
968  		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
969  
970  	if (a[OVS_KEY_ATTR_ETHERTYPE])
971  		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
972  
973  	if (likely(!inner)) {
974  		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
975  		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
976  	} else {
977  		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
978  		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
979  	}
980  	return 0;
981  }
982  
983  static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
984  				      u64 key_attrs, bool inner,
985  				      const struct nlattr **a, bool log)
986  {
987  	__be16 tci = 0;
988  
989  	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
990  	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
991  	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
992  		/* Not a VLAN. */
993  		return 0;
994  	}
995  
996  	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
997  	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
998  		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
999  		return -EINVAL;
1000  	}
1001  
1002  	if (a[OVS_KEY_ATTR_VLAN])
1003  		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1004  
1005  	if (!(tci & htons(VLAN_CFI_MASK))) {
1006  		if (tci) {
1007  			OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1008  				  (inner) ? "C-VLAN" : "VLAN");
1009  			return -EINVAL;
1010  		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1011  			/* Corner case for truncated VLAN header. */
1012  			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1013  				  (inner) ? "C-VLAN" : "VLAN");
1014  			return -EINVAL;
1015  		}
1016  	}
1017  
1018  	return 1;
1019  }
1020  
1021  static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1022  					   u64 key_attrs, bool inner,
1023  					   const struct nlattr **a, bool log)
1024  {
1025  	__be16 tci = 0;
1026  	__be16 tpid = 0;
1027  	bool encap_valid = !!(match->key->eth.vlan.tci &
1028  			      htons(VLAN_CFI_MASK));
1029  	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1030  				htons(VLAN_CFI_MASK));
1031  
1032  	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1033  		/* Not a VLAN. */
1034  		return 0;
1035  	}
1036  
1037  	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1038  		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1039  			  (inner) ? "C-VLAN" : "VLAN");
1040  		return -EINVAL;
1041  	}
1042  
1043  	if (a[OVS_KEY_ATTR_VLAN])
1044  		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1045  
1046  	if (a[OVS_KEY_ATTR_ETHERTYPE])
1047  		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1048  
1049  	if (tpid != htons(0xffff)) {
1050  		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1051  			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1052  		return -EINVAL;
1053  	}
1054  	if (!(tci & htons(VLAN_CFI_MASK))) {
1055  		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1056  			  (inner) ? "C-VLAN" : "VLAN");
1057  		return -EINVAL;
1058  	}
1059  
1060  	return 1;
1061  }
1062  
1063  static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1064  				     u64 *key_attrs, bool inner,
1065  				     const struct nlattr **a, bool is_mask,
1066  				     bool log)
1067  {
1068  	int err;
1069  	const struct nlattr *encap;
1070  
1071  	if (!is_mask)
1072  		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1073  						 a, log);
1074  	else
1075  		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1076  						      a, log);
1077  	if (err <= 0)
1078  		return err;
1079  
1080  	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1081  	if (err)
1082  		return err;
1083  
1084  	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1085  	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1086  	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1087  
1088  	encap = a[OVS_KEY_ATTR_ENCAP];
1089  
1090  	if (!is_mask)
1091  		err = parse_flow_nlattrs(encap, a, key_attrs, log);
1092  	else
1093  		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1094  
1095  	return err;
1096  }
1097  
1098  static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1099  				   u64 *key_attrs, const struct nlattr **a,
1100  				   bool is_mask, bool log)
1101  {
1102  	int err;
1103  	bool encap_valid = false;
1104  
1105  	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1106  					is_mask, log);
1107  	if (err)
1108  		return err;
1109  
1110  	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1111  	if (encap_valid) {
1112  		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1113  						is_mask, log);
1114  		if (err)
1115  			return err;
1116  	}
1117  
1118  	return 0;
1119  }
1120  
1121  static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1122  				       u64 *attrs, const struct nlattr **a,
1123  				       bool is_mask, bool log)
1124  {
1125  	__be16 eth_type;
1126  
1127  	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1128  	if (is_mask) {
1129  		/* Always exact match EtherType. */
1130  		eth_type = htons(0xffff);
1131  	} else if (!eth_proto_is_802_3(eth_type)) {
1132  		OVS_NLERR(log, "EtherType %x is less than min %x",
1133  				ntohs(eth_type), ETH_P_802_3_MIN);
1134  		return -EINVAL;
1135  	}
1136  
1137  	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1138  	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1139  	return 0;
1140  }
1141  
1142  static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1143  				 u64 *attrs, const struct nlattr **a,
1144  				 bool is_mask, bool log)
1145  {
1146  	u8 mac_proto = MAC_PROTO_ETHERNET;
1147  
1148  	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1149  		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1150  
1151  		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1152  		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1153  	}
1154  
1155  	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1156  		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1157  
1158  		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1159  		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1160  	}
1161  
1162  	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1163  		SW_FLOW_KEY_PUT(match, phy.priority,
1164  			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1165  		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1166  	}
1167  
1168  	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1169  		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1170  
1171  		if (is_mask) {
1172  			in_port = 0xffffffff; /* Always exact match in_port. */
1173  		} else if (in_port >= DP_MAX_PORTS) {
1174  			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1175  				  in_port, DP_MAX_PORTS);
1176  			return -EINVAL;
1177  		}
1178  
1179  		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1180  		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1181  	} else if (!is_mask) {
1182  		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1183  	}
1184  
1185  	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1186  		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1187  
1188  		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1189  		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1190  	}
1191  	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1192  		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1193  				       is_mask, log) < 0)
1194  			return -EINVAL;
1195  		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1196  	}
1197  
1198  	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1199  	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1200  		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1201  
1202  		if (ct_state & ~CT_SUPPORTED_MASK) {
1203  			OVS_NLERR(log, "ct_state flags %08x unsupported",
1204  				  ct_state);
1205  			return -EINVAL;
1206  		}
1207  
1208  		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1209  		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1210  	}
1211  	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1212  	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1213  		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1214  
1215  		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1216  		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1217  	}
1218  	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1219  	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1220  		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1221  
1222  		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1223  		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1224  	}
1225  	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1226  	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1227  		const struct ovs_key_ct_labels *cl;
1228  
1229  		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1230  		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1231  				   sizeof(*cl), is_mask);
1232  		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1233  	}
1234  	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1235  		const struct ovs_key_ct_tuple_ipv4 *ct;
1236  
1237  		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1238  
1239  		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1240  		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1241  		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1242  		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1243  		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1244  		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1245  	}
1246  	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1247  		const struct ovs_key_ct_tuple_ipv6 *ct;
1248  
1249  		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1250  
1251  		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1252  				   sizeof(match->key->ipv6.ct_orig.src),
1253  				   is_mask);
1254  		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1255  				   sizeof(match->key->ipv6.ct_orig.dst),
1256  				   is_mask);
1257  		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1258  		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1259  		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1260  		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1261  	}
1262  
1263  	/* For layer 3 packets the Ethernet type is provided
1264  	 * and treated as metadata but no MAC addresses are provided.
1265  	 */
1266  	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1267  	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1268  		mac_proto = MAC_PROTO_NONE;
1269  
1270  	/* Always exact match mac_proto */
1271  	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1272  
1273  	if (mac_proto == MAC_PROTO_NONE)
1274  		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1275  						   log);
1276  
1277  	return 0;
1278  }
1279  
1280  int nsh_hdr_from_nlattr(const struct nlattr *attr,
1281  			struct nshhdr *nh, size_t size)
1282  {
1283  	struct nlattr *a;
1284  	int rem;
1285  	u8 flags = 0;
1286  	u8 ttl = 0;
1287  	int mdlen = 0;
1288  
1289  	/* validate_nsh has check this, so we needn't do duplicate check here
1290  	 */
1291  	if (size < NSH_BASE_HDR_LEN)
1292  		return -ENOBUFS;
1293  
1294  	nla_for_each_nested(a, attr, rem) {
1295  		int type = nla_type(a);
1296  
1297  		switch (type) {
1298  		case OVS_NSH_KEY_ATTR_BASE: {
1299  			const struct ovs_nsh_key_base *base = nla_data(a);
1300  
1301  			flags = base->flags;
1302  			ttl = base->ttl;
1303  			nh->np = base->np;
1304  			nh->mdtype = base->mdtype;
1305  			nh->path_hdr = base->path_hdr;
1306  			break;
1307  		}
1308  		case OVS_NSH_KEY_ATTR_MD1:
1309  			mdlen = nla_len(a);
1310  			if (mdlen > size - NSH_BASE_HDR_LEN)
1311  				return -ENOBUFS;
1312  			memcpy(&nh->md1, nla_data(a), mdlen);
1313  			break;
1314  
1315  		case OVS_NSH_KEY_ATTR_MD2:
1316  			mdlen = nla_len(a);
1317  			if (mdlen > size - NSH_BASE_HDR_LEN)
1318  				return -ENOBUFS;
1319  			memcpy(&nh->md2, nla_data(a), mdlen);
1320  			break;
1321  
1322  		default:
1323  			return -EINVAL;
1324  		}
1325  	}
1326  
1327  	/* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1328  	nh->ver_flags_ttl_len = 0;
1329  	nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1330  
1331  	return 0;
1332  }
1333  
1334  int nsh_key_from_nlattr(const struct nlattr *attr,
1335  			struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1336  {
1337  	struct nlattr *a;
1338  	int rem;
1339  
1340  	/* validate_nsh has check this, so we needn't do duplicate check here
1341  	 */
1342  	nla_for_each_nested(a, attr, rem) {
1343  		int type = nla_type(a);
1344  
1345  		switch (type) {
1346  		case OVS_NSH_KEY_ATTR_BASE: {
1347  			const struct ovs_nsh_key_base *base = nla_data(a);
1348  			const struct ovs_nsh_key_base *base_mask = base + 1;
1349  
1350  			nsh->base = *base;
1351  			nsh_mask->base = *base_mask;
1352  			break;
1353  		}
1354  		case OVS_NSH_KEY_ATTR_MD1: {
1355  			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1356  			const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1357  
1358  			memcpy(nsh->context, md1->context, sizeof(*md1));
1359  			memcpy(nsh_mask->context, md1_mask->context,
1360  			       sizeof(*md1_mask));
1361  			break;
1362  		}
1363  		case OVS_NSH_KEY_ATTR_MD2:
1364  			/* Not supported yet */
1365  			return -ENOTSUPP;
1366  		default:
1367  			return -EINVAL;
1368  		}
1369  	}
1370  
1371  	return 0;
1372  }
1373  
1374  static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1375  				   struct sw_flow_match *match, bool is_mask,
1376  				   bool is_push_nsh, bool log)
1377  {
1378  	struct nlattr *a;
1379  	int rem;
1380  	bool has_base = false;
1381  	bool has_md1 = false;
1382  	bool has_md2 = false;
1383  	u8 mdtype = 0;
1384  	int mdlen = 0;
1385  
1386  	if (WARN_ON(is_push_nsh && is_mask))
1387  		return -EINVAL;
1388  
1389  	nla_for_each_nested(a, attr, rem) {
1390  		int type = nla_type(a);
1391  		int i;
1392  
1393  		if (type > OVS_NSH_KEY_ATTR_MAX) {
1394  			OVS_NLERR(log, "nsh attr %d is out of range max %d",
1395  				  type, OVS_NSH_KEY_ATTR_MAX);
1396  			return -EINVAL;
1397  		}
1398  
1399  		if (!check_attr_len(nla_len(a),
1400  				    ovs_nsh_key_attr_lens[type].len)) {
1401  			OVS_NLERR(
1402  			    log,
1403  			    "nsh attr %d has unexpected len %d expected %d",
1404  			    type,
1405  			    nla_len(a),
1406  			    ovs_nsh_key_attr_lens[type].len
1407  			);
1408  			return -EINVAL;
1409  		}
1410  
1411  		switch (type) {
1412  		case OVS_NSH_KEY_ATTR_BASE: {
1413  			const struct ovs_nsh_key_base *base = nla_data(a);
1414  
1415  			has_base = true;
1416  			mdtype = base->mdtype;
1417  			SW_FLOW_KEY_PUT(match, nsh.base.flags,
1418  					base->flags, is_mask);
1419  			SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1420  					base->ttl, is_mask);
1421  			SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1422  					base->mdtype, is_mask);
1423  			SW_FLOW_KEY_PUT(match, nsh.base.np,
1424  					base->np, is_mask);
1425  			SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1426  					base->path_hdr, is_mask);
1427  			break;
1428  		}
1429  		case OVS_NSH_KEY_ATTR_MD1: {
1430  			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1431  
1432  			has_md1 = true;
1433  			for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1434  				SW_FLOW_KEY_PUT(match, nsh.context[i],
1435  						md1->context[i], is_mask);
1436  			break;
1437  		}
1438  		case OVS_NSH_KEY_ATTR_MD2:
1439  			if (!is_push_nsh) /* Not supported MD type 2 yet */
1440  				return -ENOTSUPP;
1441  
1442  			has_md2 = true;
1443  			mdlen = nla_len(a);
1444  			if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1445  				OVS_NLERR(
1446  				    log,
1447  				    "Invalid MD length %d for MD type %d",
1448  				    mdlen,
1449  				    mdtype
1450  				);
1451  				return -EINVAL;
1452  			}
1453  			break;
1454  		default:
1455  			OVS_NLERR(log, "Unknown nsh attribute %d",
1456  				  type);
1457  			return -EINVAL;
1458  		}
1459  	}
1460  
1461  	if (rem > 0) {
1462  		OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1463  		return -EINVAL;
1464  	}
1465  
1466  	if (has_md1 && has_md2) {
1467  		OVS_NLERR(
1468  		    1,
1469  		    "invalid nsh attribute: md1 and md2 are exclusive."
1470  		);
1471  		return -EINVAL;
1472  	}
1473  
1474  	if (!is_mask) {
1475  		if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1476  		    (has_md2 && mdtype != NSH_M_TYPE2)) {
1477  			OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1478  				  mdtype);
1479  			return -EINVAL;
1480  		}
1481  
1482  		if (is_push_nsh &&
1483  		    (!has_base || (!has_md1 && !has_md2))) {
1484  			OVS_NLERR(
1485  			    1,
1486  			    "push_nsh: missing base or metadata attributes"
1487  			);
1488  			return -EINVAL;
1489  		}
1490  	}
1491  
1492  	return 0;
1493  }
1494  
1495  static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1496  				u64 attrs, const struct nlattr **a,
1497  				bool is_mask, bool log)
1498  {
1499  	int err;
1500  
1501  	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1502  	if (err)
1503  		return err;
1504  
1505  	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1506  		const struct ovs_key_ethernet *eth_key;
1507  
1508  		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1509  		SW_FLOW_KEY_MEMCPY(match, eth.src,
1510  				eth_key->eth_src, ETH_ALEN, is_mask);
1511  		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1512  				eth_key->eth_dst, ETH_ALEN, is_mask);
1513  		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1514  
1515  		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1516  			/* VLAN attribute is always parsed before getting here since it
1517  			 * may occur multiple times.
1518  			 */
1519  			OVS_NLERR(log, "VLAN attribute unexpected.");
1520  			return -EINVAL;
1521  		}
1522  
1523  		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1524  			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1525  							  log);
1526  			if (err)
1527  				return err;
1528  		} else if (!is_mask) {
1529  			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1530  		}
1531  	} else if (!match->key->eth.type) {
1532  		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1533  		return -EINVAL;
1534  	}
1535  
1536  	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1537  		const struct ovs_key_ipv4 *ipv4_key;
1538  
1539  		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1540  		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1541  			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1542  				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1543  			return -EINVAL;
1544  		}
1545  		SW_FLOW_KEY_PUT(match, ip.proto,
1546  				ipv4_key->ipv4_proto, is_mask);
1547  		SW_FLOW_KEY_PUT(match, ip.tos,
1548  				ipv4_key->ipv4_tos, is_mask);
1549  		SW_FLOW_KEY_PUT(match, ip.ttl,
1550  				ipv4_key->ipv4_ttl, is_mask);
1551  		SW_FLOW_KEY_PUT(match, ip.frag,
1552  				ipv4_key->ipv4_frag, is_mask);
1553  		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1554  				ipv4_key->ipv4_src, is_mask);
1555  		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1556  				ipv4_key->ipv4_dst, is_mask);
1557  		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1558  	}
1559  
1560  	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1561  		const struct ovs_key_ipv6 *ipv6_key;
1562  
1563  		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1564  		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1565  			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1566  				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1567  			return -EINVAL;
1568  		}
1569  
1570  		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1571  			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1572  				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1573  			return -EINVAL;
1574  		}
1575  
1576  		SW_FLOW_KEY_PUT(match, ipv6.label,
1577  				ipv6_key->ipv6_label, is_mask);
1578  		SW_FLOW_KEY_PUT(match, ip.proto,
1579  				ipv6_key->ipv6_proto, is_mask);
1580  		SW_FLOW_KEY_PUT(match, ip.tos,
1581  				ipv6_key->ipv6_tclass, is_mask);
1582  		SW_FLOW_KEY_PUT(match, ip.ttl,
1583  				ipv6_key->ipv6_hlimit, is_mask);
1584  		SW_FLOW_KEY_PUT(match, ip.frag,
1585  				ipv6_key->ipv6_frag, is_mask);
1586  		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1587  				ipv6_key->ipv6_src,
1588  				sizeof(match->key->ipv6.addr.src),
1589  				is_mask);
1590  		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1591  				ipv6_key->ipv6_dst,
1592  				sizeof(match->key->ipv6.addr.dst),
1593  				is_mask);
1594  
1595  		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1596  	}
1597  
1598  	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1599  		const struct ovs_key_arp *arp_key;
1600  
1601  		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1602  		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1603  			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1604  				  arp_key->arp_op);
1605  			return -EINVAL;
1606  		}
1607  
1608  		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1609  				arp_key->arp_sip, is_mask);
1610  		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1611  			arp_key->arp_tip, is_mask);
1612  		SW_FLOW_KEY_PUT(match, ip.proto,
1613  				ntohs(arp_key->arp_op), is_mask);
1614  		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1615  				arp_key->arp_sha, ETH_ALEN, is_mask);
1616  		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1617  				arp_key->arp_tha, ETH_ALEN, is_mask);
1618  
1619  		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1620  	}
1621  
1622  	if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1623  		if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1624  					    is_mask, false, log) < 0)
1625  			return -EINVAL;
1626  		attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1627  	}
1628  
1629  	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1630  		const struct ovs_key_mpls *mpls_key;
1631  		u32 hdr_len;
1632  		u32 label_count, label_count_mask, i;
1633  
1634  		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1635  		hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]);
1636  		label_count = hdr_len / sizeof(struct ovs_key_mpls);
1637  
1638  		if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
1639  		    hdr_len % sizeof(struct ovs_key_mpls))
1640  			return -EINVAL;
1641  
1642  		label_count_mask =  GENMASK(label_count - 1, 0);
1643  
1644  		for (i = 0 ; i < label_count; i++)
1645  			SW_FLOW_KEY_PUT(match, mpls.lse[i],
1646  					mpls_key[i].mpls_lse, is_mask);
1647  
1648  		SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
1649  				label_count_mask, is_mask);
1650  
1651  		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1652  	 }
1653  
1654  	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1655  		const struct ovs_key_tcp *tcp_key;
1656  
1657  		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1658  		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1659  		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1660  		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1661  	}
1662  
1663  	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1664  		SW_FLOW_KEY_PUT(match, tp.flags,
1665  				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1666  				is_mask);
1667  		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1668  	}
1669  
1670  	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1671  		const struct ovs_key_udp *udp_key;
1672  
1673  		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1674  		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1675  		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1676  		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1677  	}
1678  
1679  	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1680  		const struct ovs_key_sctp *sctp_key;
1681  
1682  		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1683  		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1684  		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1685  		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1686  	}
1687  
1688  	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1689  		const struct ovs_key_icmp *icmp_key;
1690  
1691  		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1692  		SW_FLOW_KEY_PUT(match, tp.src,
1693  				htons(icmp_key->icmp_type), is_mask);
1694  		SW_FLOW_KEY_PUT(match, tp.dst,
1695  				htons(icmp_key->icmp_code), is_mask);
1696  		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1697  	}
1698  
1699  	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1700  		const struct ovs_key_icmpv6 *icmpv6_key;
1701  
1702  		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1703  		SW_FLOW_KEY_PUT(match, tp.src,
1704  				htons(icmpv6_key->icmpv6_type), is_mask);
1705  		SW_FLOW_KEY_PUT(match, tp.dst,
1706  				htons(icmpv6_key->icmpv6_code), is_mask);
1707  		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1708  	}
1709  
1710  	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1711  		const struct ovs_key_nd *nd_key;
1712  
1713  		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1714  		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1715  			nd_key->nd_target,
1716  			sizeof(match->key->ipv6.nd.target),
1717  			is_mask);
1718  		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1719  			nd_key->nd_sll, ETH_ALEN, is_mask);
1720  		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1721  				nd_key->nd_tll, ETH_ALEN, is_mask);
1722  		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1723  	}
1724  
1725  	if (attrs != 0) {
1726  		OVS_NLERR(log, "Unknown key attributes %llx",
1727  			  (unsigned long long)attrs);
1728  		return -EINVAL;
1729  	}
1730  
1731  	return 0;
1732  }
1733  
1734  static void nlattr_set(struct nlattr *attr, u8 val,
1735  		       const struct ovs_len_tbl *tbl)
1736  {
1737  	struct nlattr *nla;
1738  	int rem;
1739  
1740  	/* The nlattr stream should already have been validated */
1741  	nla_for_each_nested(nla, attr, rem) {
1742  		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1743  			nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1744  		else
1745  			memset(nla_data(nla), val, nla_len(nla));
1746  
1747  		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1748  			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1749  	}
1750  }
1751  
1752  static void mask_set_nlattr(struct nlattr *attr, u8 val)
1753  {
1754  	nlattr_set(attr, val, ovs_key_lens);
1755  }
1756  
1757  /**
1758   * ovs_nla_get_match - parses Netlink attributes into a flow key and
1759   * mask. In case the 'mask' is NULL, the flow is treated as exact match
1760   * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1761   * does not include any don't care bit.
1762   * @net: Used to determine per-namespace field support.
1763   * @match: receives the extracted flow match information.
1764   * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1765   * sequence. The fields should of the packet that triggered the creation
1766   * of this flow.
1767   * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1768   * attribute specifies the mask field of the wildcarded flow.
1769   * @log: Boolean to allow kernel error logging.  Normally true, but when
1770   * probing for feature compatibility this should be passed in as false to
1771   * suppress unnecessary error logging.
1772   */
1773  int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1774  		      const struct nlattr *nla_key,
1775  		      const struct nlattr *nla_mask,
1776  		      bool log)
1777  {
1778  	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1779  	struct nlattr *newmask = NULL;
1780  	u64 key_attrs = 0;
1781  	u64 mask_attrs = 0;
1782  	int err;
1783  
1784  	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1785  	if (err)
1786  		return err;
1787  
1788  	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1789  	if (err)
1790  		return err;
1791  
1792  	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1793  	if (err)
1794  		return err;
1795  
1796  	if (match->mask) {
1797  		if (!nla_mask) {
1798  			/* Create an exact match mask. We need to set to 0xff
1799  			 * all the 'match->mask' fields that have been touched
1800  			 * in 'match->key'. We cannot simply memset
1801  			 * 'match->mask', because padding bytes and fields not
1802  			 * specified in 'match->key' should be left to 0.
1803  			 * Instead, we use a stream of netlink attributes,
1804  			 * copied from 'key' and set to 0xff.
1805  			 * ovs_key_from_nlattrs() will take care of filling
1806  			 * 'match->mask' appropriately.
1807  			 */
1808  			newmask = kmemdup(nla_key,
1809  					  nla_total_size(nla_len(nla_key)),
1810  					  GFP_KERNEL);
1811  			if (!newmask)
1812  				return -ENOMEM;
1813  
1814  			mask_set_nlattr(newmask, 0xff);
1815  
1816  			/* The userspace does not send tunnel attributes that
1817  			 * are 0, but we should not wildcard them nonetheless.
1818  			 */
1819  			if (match->key->tun_proto)
1820  				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1821  							 0xff, true);
1822  
1823  			nla_mask = newmask;
1824  		}
1825  
1826  		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1827  		if (err)
1828  			goto free_newmask;
1829  
1830  		/* Always match on tci. */
1831  		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1832  		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1833  
1834  		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1835  		if (err)
1836  			goto free_newmask;
1837  
1838  		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1839  					   log);
1840  		if (err)
1841  			goto free_newmask;
1842  	}
1843  
1844  	if (!match_validate(match, key_attrs, mask_attrs, log))
1845  		err = -EINVAL;
1846  
1847  free_newmask:
1848  	kfree(newmask);
1849  	return err;
1850  }
1851  
1852  static size_t get_ufid_len(const struct nlattr *attr, bool log)
1853  {
1854  	size_t len;
1855  
1856  	if (!attr)
1857  		return 0;
1858  
1859  	len = nla_len(attr);
1860  	if (len < 1 || len > MAX_UFID_LENGTH) {
1861  		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1862  			  nla_len(attr), MAX_UFID_LENGTH);
1863  		return 0;
1864  	}
1865  
1866  	return len;
1867  }
1868  
1869  /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1870   * or false otherwise.
1871   */
1872  bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1873  		      bool log)
1874  {
1875  	sfid->ufid_len = get_ufid_len(attr, log);
1876  	if (sfid->ufid_len)
1877  		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1878  
1879  	return sfid->ufid_len;
1880  }
1881  
1882  int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1883  			   const struct sw_flow_key *key, bool log)
1884  {
1885  	struct sw_flow_key *new_key;
1886  
1887  	if (ovs_nla_get_ufid(sfid, ufid, log))
1888  		return 0;
1889  
1890  	/* If UFID was not provided, use unmasked key. */
1891  	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1892  	if (!new_key)
1893  		return -ENOMEM;
1894  	memcpy(new_key, key, sizeof(*key));
1895  	sfid->unmasked_key = new_key;
1896  
1897  	return 0;
1898  }
1899  
1900  u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1901  {
1902  	return attr ? nla_get_u32(attr) : 0;
1903  }
1904  
1905  /**
1906   * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1907   * @net: Network namespace.
1908   * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1909   * metadata.
1910   * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1911   * attributes.
1912   * @attrs: Bit mask for the netlink attributes included in @a.
1913   * @log: Boolean to allow kernel error logging.  Normally true, but when
1914   * probing for feature compatibility this should be passed in as false to
1915   * suppress unnecessary error logging.
1916   *
1917   * This parses a series of Netlink attributes that form a flow key, which must
1918   * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1919   * get the metadata, that is, the parts of the flow key that cannot be
1920   * extracted from the packet itself.
1921   *
1922   * This must be called before the packet key fields are filled in 'key'.
1923   */
1924  
1925  int ovs_nla_get_flow_metadata(struct net *net,
1926  			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1927  			      u64 attrs, struct sw_flow_key *key, bool log)
1928  {
1929  	struct sw_flow_match match;
1930  
1931  	memset(&match, 0, sizeof(match));
1932  	match.key = key;
1933  
1934  	key->ct_state = 0;
1935  	key->ct_zone = 0;
1936  	key->ct_orig_proto = 0;
1937  	memset(&key->ct, 0, sizeof(key->ct));
1938  	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1939  	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1940  
1941  	key->phy.in_port = DP_MAX_PORTS;
1942  
1943  	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1944  }
1945  
1946  static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1947  			    bool is_mask)
1948  {
1949  	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1950  
1951  	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1952  	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1953  		return -EMSGSIZE;
1954  	return 0;
1955  }
1956  
1957  static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1958  			     struct sk_buff *skb)
1959  {
1960  	struct nlattr *start;
1961  
1962  	start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
1963  	if (!start)
1964  		return -EMSGSIZE;
1965  
1966  	if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1967  		goto nla_put_failure;
1968  
1969  	if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1970  		if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1971  			    sizeof(nsh->context), nsh->context))
1972  			goto nla_put_failure;
1973  	}
1974  
1975  	/* Don't support MD type 2 yet */
1976  
1977  	nla_nest_end(skb, start);
1978  
1979  	return 0;
1980  
1981  nla_put_failure:
1982  	return -EMSGSIZE;
1983  }
1984  
1985  static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1986  			     const struct sw_flow_key *output, bool is_mask,
1987  			     struct sk_buff *skb)
1988  {
1989  	struct ovs_key_ethernet *eth_key;
1990  	struct nlattr *nla;
1991  	struct nlattr *encap = NULL;
1992  	struct nlattr *in_encap = NULL;
1993  
1994  	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1995  		goto nla_put_failure;
1996  
1997  	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1998  		goto nla_put_failure;
1999  
2000  	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
2001  		goto nla_put_failure;
2002  
2003  	if ((swkey->tun_proto || is_mask)) {
2004  		const void *opts = NULL;
2005  
2006  		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
2007  			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2008  
2009  		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2010  				     swkey->tun_opts_len, swkey->tun_proto, 0))
2011  			goto nla_put_failure;
2012  	}
2013  
2014  	if (swkey->phy.in_port == DP_MAX_PORTS) {
2015  		if (is_mask && (output->phy.in_port == 0xffff))
2016  			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2017  				goto nla_put_failure;
2018  	} else {
2019  		u16 upper_u16;
2020  		upper_u16 = !is_mask ? 0 : 0xffff;
2021  
2022  		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2023  				(upper_u16 << 16) | output->phy.in_port))
2024  			goto nla_put_failure;
2025  	}
2026  
2027  	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2028  		goto nla_put_failure;
2029  
2030  	if (ovs_ct_put_key(swkey, output, skb))
2031  		goto nla_put_failure;
2032  
2033  	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2034  		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2035  		if (!nla)
2036  			goto nla_put_failure;
2037  
2038  		eth_key = nla_data(nla);
2039  		ether_addr_copy(eth_key->eth_src, output->eth.src);
2040  		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2041  
2042  		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2043  			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2044  				goto nla_put_failure;
2045  			encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2046  			if (!swkey->eth.vlan.tci)
2047  				goto unencap;
2048  
2049  			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2050  				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2051  					goto nla_put_failure;
2052  				in_encap = nla_nest_start_noflag(skb,
2053  								 OVS_KEY_ATTR_ENCAP);
2054  				if (!swkey->eth.cvlan.tci)
2055  					goto unencap;
2056  			}
2057  		}
2058  
2059  		if (swkey->eth.type == htons(ETH_P_802_2)) {
2060  			/*
2061  			* Ethertype 802.2 is represented in the netlink with omitted
2062  			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2063  			* 0xffff in the mask attribute.  Ethertype can also
2064  			* be wildcarded.
2065  			*/
2066  			if (is_mask && output->eth.type)
2067  				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2068  							output->eth.type))
2069  					goto nla_put_failure;
2070  			goto unencap;
2071  		}
2072  	}
2073  
2074  	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2075  		goto nla_put_failure;
2076  
2077  	if (eth_type_vlan(swkey->eth.type)) {
2078  		/* There are 3 VLAN tags, we don't know anything about the rest
2079  		 * of the packet, so truncate here.
2080  		 */
2081  		WARN_ON_ONCE(!(encap && in_encap));
2082  		goto unencap;
2083  	}
2084  
2085  	if (swkey->eth.type == htons(ETH_P_IP)) {
2086  		struct ovs_key_ipv4 *ipv4_key;
2087  
2088  		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2089  		if (!nla)
2090  			goto nla_put_failure;
2091  		ipv4_key = nla_data(nla);
2092  		ipv4_key->ipv4_src = output->ipv4.addr.src;
2093  		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2094  		ipv4_key->ipv4_proto = output->ip.proto;
2095  		ipv4_key->ipv4_tos = output->ip.tos;
2096  		ipv4_key->ipv4_ttl = output->ip.ttl;
2097  		ipv4_key->ipv4_frag = output->ip.frag;
2098  	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2099  		struct ovs_key_ipv6 *ipv6_key;
2100  
2101  		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2102  		if (!nla)
2103  			goto nla_put_failure;
2104  		ipv6_key = nla_data(nla);
2105  		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2106  				sizeof(ipv6_key->ipv6_src));
2107  		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2108  				sizeof(ipv6_key->ipv6_dst));
2109  		ipv6_key->ipv6_label = output->ipv6.label;
2110  		ipv6_key->ipv6_proto = output->ip.proto;
2111  		ipv6_key->ipv6_tclass = output->ip.tos;
2112  		ipv6_key->ipv6_hlimit = output->ip.ttl;
2113  		ipv6_key->ipv6_frag = output->ip.frag;
2114  	} else if (swkey->eth.type == htons(ETH_P_NSH)) {
2115  		if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2116  			goto nla_put_failure;
2117  	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
2118  		   swkey->eth.type == htons(ETH_P_RARP)) {
2119  		struct ovs_key_arp *arp_key;
2120  
2121  		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2122  		if (!nla)
2123  			goto nla_put_failure;
2124  		arp_key = nla_data(nla);
2125  		memset(arp_key, 0, sizeof(struct ovs_key_arp));
2126  		arp_key->arp_sip = output->ipv4.addr.src;
2127  		arp_key->arp_tip = output->ipv4.addr.dst;
2128  		arp_key->arp_op = htons(output->ip.proto);
2129  		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2130  		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2131  	} else if (eth_p_mpls(swkey->eth.type)) {
2132  		u8 i, num_labels;
2133  		struct ovs_key_mpls *mpls_key;
2134  
2135  		num_labels = hweight_long(output->mpls.num_labels_mask);
2136  		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS,
2137  				  num_labels * sizeof(*mpls_key));
2138  		if (!nla)
2139  			goto nla_put_failure;
2140  
2141  		mpls_key = nla_data(nla);
2142  		for (i = 0; i < num_labels; i++)
2143  			mpls_key[i].mpls_lse = output->mpls.lse[i];
2144  	}
2145  
2146  	if ((swkey->eth.type == htons(ETH_P_IP) ||
2147  	     swkey->eth.type == htons(ETH_P_IPV6)) &&
2148  	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2149  
2150  		if (swkey->ip.proto == IPPROTO_TCP) {
2151  			struct ovs_key_tcp *tcp_key;
2152  
2153  			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2154  			if (!nla)
2155  				goto nla_put_failure;
2156  			tcp_key = nla_data(nla);
2157  			tcp_key->tcp_src = output->tp.src;
2158  			tcp_key->tcp_dst = output->tp.dst;
2159  			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2160  					 output->tp.flags))
2161  				goto nla_put_failure;
2162  		} else if (swkey->ip.proto == IPPROTO_UDP) {
2163  			struct ovs_key_udp *udp_key;
2164  
2165  			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2166  			if (!nla)
2167  				goto nla_put_failure;
2168  			udp_key = nla_data(nla);
2169  			udp_key->udp_src = output->tp.src;
2170  			udp_key->udp_dst = output->tp.dst;
2171  		} else if (swkey->ip.proto == IPPROTO_SCTP) {
2172  			struct ovs_key_sctp *sctp_key;
2173  
2174  			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2175  			if (!nla)
2176  				goto nla_put_failure;
2177  			sctp_key = nla_data(nla);
2178  			sctp_key->sctp_src = output->tp.src;
2179  			sctp_key->sctp_dst = output->tp.dst;
2180  		} else if (swkey->eth.type == htons(ETH_P_IP) &&
2181  			   swkey->ip.proto == IPPROTO_ICMP) {
2182  			struct ovs_key_icmp *icmp_key;
2183  
2184  			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2185  			if (!nla)
2186  				goto nla_put_failure;
2187  			icmp_key = nla_data(nla);
2188  			icmp_key->icmp_type = ntohs(output->tp.src);
2189  			icmp_key->icmp_code = ntohs(output->tp.dst);
2190  		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2191  			   swkey->ip.proto == IPPROTO_ICMPV6) {
2192  			struct ovs_key_icmpv6 *icmpv6_key;
2193  
2194  			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2195  						sizeof(*icmpv6_key));
2196  			if (!nla)
2197  				goto nla_put_failure;
2198  			icmpv6_key = nla_data(nla);
2199  			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2200  			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2201  
2202  			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
2203  			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
2204  				struct ovs_key_nd *nd_key;
2205  
2206  				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2207  				if (!nla)
2208  					goto nla_put_failure;
2209  				nd_key = nla_data(nla);
2210  				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2211  							sizeof(nd_key->nd_target));
2212  				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2213  				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2214  			}
2215  		}
2216  	}
2217  
2218  unencap:
2219  	if (in_encap)
2220  		nla_nest_end(skb, in_encap);
2221  	if (encap)
2222  		nla_nest_end(skb, encap);
2223  
2224  	return 0;
2225  
2226  nla_put_failure:
2227  	return -EMSGSIZE;
2228  }
2229  
2230  int ovs_nla_put_key(const struct sw_flow_key *swkey,
2231  		    const struct sw_flow_key *output, int attr, bool is_mask,
2232  		    struct sk_buff *skb)
2233  {
2234  	int err;
2235  	struct nlattr *nla;
2236  
2237  	nla = nla_nest_start_noflag(skb, attr);
2238  	if (!nla)
2239  		return -EMSGSIZE;
2240  	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2241  	if (err)
2242  		return err;
2243  	nla_nest_end(skb, nla);
2244  
2245  	return 0;
2246  }
2247  
2248  /* Called with ovs_mutex or RCU read lock. */
2249  int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2250  {
2251  	if (ovs_identifier_is_ufid(&flow->id))
2252  		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2253  			       flow->id.ufid);
2254  
2255  	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2256  			       OVS_FLOW_ATTR_KEY, false, skb);
2257  }
2258  
2259  /* Called with ovs_mutex or RCU read lock. */
2260  int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2261  {
2262  	return ovs_nla_put_key(&flow->key, &flow->key,
2263  				OVS_FLOW_ATTR_KEY, false, skb);
2264  }
2265  
2266  /* Called with ovs_mutex or RCU read lock. */
2267  int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2268  {
2269  	return ovs_nla_put_key(&flow->key, &flow->mask->key,
2270  				OVS_FLOW_ATTR_MASK, true, skb);
2271  }
2272  
2273  #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
2274  
2275  static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2276  {
2277  	struct sw_flow_actions *sfa;
2278  
2279  	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2280  
2281  	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
2282  	if (!sfa)
2283  		return ERR_PTR(-ENOMEM);
2284  
2285  	sfa->actions_len = 0;
2286  	return sfa;
2287  }
2288  
2289  static void ovs_nla_free_set_action(const struct nlattr *a)
2290  {
2291  	const struct nlattr *ovs_key = nla_data(a);
2292  	struct ovs_tunnel_info *ovs_tun;
2293  
2294  	switch (nla_type(ovs_key)) {
2295  	case OVS_KEY_ATTR_TUNNEL_INFO:
2296  		ovs_tun = nla_data(ovs_key);
2297  		dst_release((struct dst_entry *)ovs_tun->tun_dst);
2298  		break;
2299  	}
2300  }
2301  
2302  void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2303  {
2304  	const struct nlattr *a;
2305  	int rem;
2306  
2307  	if (!sf_acts)
2308  		return;
2309  
2310  	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
2311  		switch (nla_type(a)) {
2312  		case OVS_ACTION_ATTR_SET:
2313  			ovs_nla_free_set_action(a);
2314  			break;
2315  		case OVS_ACTION_ATTR_CT:
2316  			ovs_ct_free_action(a);
2317  			break;
2318  		}
2319  	}
2320  
2321  	kfree(sf_acts);
2322  }
2323  
2324  static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2325  {
2326  	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2327  }
2328  
2329  /* Schedules 'sf_acts' to be freed after the next RCU grace period.
2330   * The caller must hold rcu_read_lock for this to be sensible. */
2331  void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2332  {
2333  	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2334  }
2335  
2336  static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2337  				       int attr_len, bool log)
2338  {
2339  
2340  	struct sw_flow_actions *acts;
2341  	int new_acts_size;
2342  	size_t req_size = NLA_ALIGN(attr_len);
2343  	int next_offset = offsetof(struct sw_flow_actions, actions) +
2344  					(*sfa)->actions_len;
2345  
2346  	if (req_size <= (ksize(*sfa) - next_offset))
2347  		goto out;
2348  
2349  	new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2350  
2351  	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2352  		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) {
2353  			OVS_NLERR(log, "Flow action size exceeds max %u",
2354  				  MAX_ACTIONS_BUFSIZE);
2355  			return ERR_PTR(-EMSGSIZE);
2356  		}
2357  		new_acts_size = MAX_ACTIONS_BUFSIZE;
2358  	}
2359  
2360  	acts = nla_alloc_flow_actions(new_acts_size);
2361  	if (IS_ERR(acts))
2362  		return (void *)acts;
2363  
2364  	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2365  	acts->actions_len = (*sfa)->actions_len;
2366  	acts->orig_len = (*sfa)->orig_len;
2367  	kfree(*sfa);
2368  	*sfa = acts;
2369  
2370  out:
2371  	(*sfa)->actions_len += req_size;
2372  	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2373  }
2374  
2375  static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2376  				   int attrtype, void *data, int len, bool log)
2377  {
2378  	struct nlattr *a;
2379  
2380  	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2381  	if (IS_ERR(a))
2382  		return a;
2383  
2384  	a->nla_type = attrtype;
2385  	a->nla_len = nla_attr_size(len);
2386  
2387  	if (data)
2388  		memcpy(nla_data(a), data, len);
2389  	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2390  
2391  	return a;
2392  }
2393  
2394  int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2395  		       int len, bool log)
2396  {
2397  	struct nlattr *a;
2398  
2399  	a = __add_action(sfa, attrtype, data, len, log);
2400  
2401  	return PTR_ERR_OR_ZERO(a);
2402  }
2403  
2404  static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2405  					  int attrtype, bool log)
2406  {
2407  	int used = (*sfa)->actions_len;
2408  	int err;
2409  
2410  	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2411  	if (err)
2412  		return err;
2413  
2414  	return used;
2415  }
2416  
2417  static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2418  					 int st_offset)
2419  {
2420  	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2421  							       st_offset);
2422  
2423  	a->nla_len = sfa->actions_len - st_offset;
2424  }
2425  
2426  static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2427  				  const struct sw_flow_key *key,
2428  				  struct sw_flow_actions **sfa,
2429  				  __be16 eth_type, __be16 vlan_tci,
2430  				  u32 mpls_label_count, bool log);
2431  
2432  static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2433  				    const struct sw_flow_key *key,
2434  				    struct sw_flow_actions **sfa,
2435  				    __be16 eth_type, __be16 vlan_tci,
2436  				    u32 mpls_label_count, bool log, bool last)
2437  {
2438  	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2439  	const struct nlattr *probability, *actions;
2440  	const struct nlattr *a;
2441  	int rem, start, err;
2442  	struct sample_arg arg;
2443  
2444  	memset(attrs, 0, sizeof(attrs));
2445  	nla_for_each_nested(a, attr, rem) {
2446  		int type = nla_type(a);
2447  		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2448  			return -EINVAL;
2449  		attrs[type] = a;
2450  	}
2451  	if (rem)
2452  		return -EINVAL;
2453  
2454  	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2455  	if (!probability || nla_len(probability) != sizeof(u32))
2456  		return -EINVAL;
2457  
2458  	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2459  	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2460  		return -EINVAL;
2461  
2462  	/* validation done, copy sample action. */
2463  	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2464  	if (start < 0)
2465  		return start;
2466  
2467  	/* When both skb and flow may be changed, put the sample
2468  	 * into a deferred fifo. On the other hand, if only skb
2469  	 * may be modified, the actions can be executed in place.
2470  	 *
2471  	 * Do this analysis at the flow installation time.
2472  	 * Set 'clone_action->exec' to true if the actions can be
2473  	 * executed without being deferred.
2474  	 *
2475  	 * If the sample is the last action, it can always be excuted
2476  	 * rather than deferred.
2477  	 */
2478  	arg.exec = last || !actions_may_change_flow(actions);
2479  	arg.probability = nla_get_u32(probability);
2480  
2481  	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2482  				 log);
2483  	if (err)
2484  		return err;
2485  
2486  	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2487  				     eth_type, vlan_tci, mpls_label_count, log);
2488  
2489  	if (err)
2490  		return err;
2491  
2492  	add_nested_action_end(*sfa, start);
2493  
2494  	return 0;
2495  }
2496  
2497  static int validate_and_copy_clone(struct net *net,
2498  				   const struct nlattr *attr,
2499  				   const struct sw_flow_key *key,
2500  				   struct sw_flow_actions **sfa,
2501  				   __be16 eth_type, __be16 vlan_tci,
2502  				   u32 mpls_label_count, bool log, bool last)
2503  {
2504  	int start, err;
2505  	u32 exec;
2506  
2507  	if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2508  		return -EINVAL;
2509  
2510  	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2511  	if (start < 0)
2512  		return start;
2513  
2514  	exec = last || !actions_may_change_flow(attr);
2515  
2516  	err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2517  				 sizeof(exec), log);
2518  	if (err)
2519  		return err;
2520  
2521  	err = __ovs_nla_copy_actions(net, attr, key, sfa,
2522  				     eth_type, vlan_tci, mpls_label_count, log);
2523  	if (err)
2524  		return err;
2525  
2526  	add_nested_action_end(*sfa, start);
2527  
2528  	return 0;
2529  }
2530  
2531  void ovs_match_init(struct sw_flow_match *match,
2532  		    struct sw_flow_key *key,
2533  		    bool reset_key,
2534  		    struct sw_flow_mask *mask)
2535  {
2536  	memset(match, 0, sizeof(*match));
2537  	match->key = key;
2538  	match->mask = mask;
2539  
2540  	if (reset_key)
2541  		memset(key, 0, sizeof(*key));
2542  
2543  	if (mask) {
2544  		memset(&mask->key, 0, sizeof(mask->key));
2545  		mask->range.start = mask->range.end = 0;
2546  	}
2547  }
2548  
2549  static int validate_geneve_opts(struct sw_flow_key *key)
2550  {
2551  	struct geneve_opt *option;
2552  	int opts_len = key->tun_opts_len;
2553  	bool crit_opt = false;
2554  
2555  	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2556  	while (opts_len > 0) {
2557  		int len;
2558  
2559  		if (opts_len < sizeof(*option))
2560  			return -EINVAL;
2561  
2562  		len = sizeof(*option) + option->length * 4;
2563  		if (len > opts_len)
2564  			return -EINVAL;
2565  
2566  		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2567  
2568  		option = (struct geneve_opt *)((u8 *)option + len);
2569  		opts_len -= len;
2570  	}
2571  
2572  	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2573  
2574  	return 0;
2575  }
2576  
2577  static int validate_and_copy_set_tun(const struct nlattr *attr,
2578  				     struct sw_flow_actions **sfa, bool log)
2579  {
2580  	struct sw_flow_match match;
2581  	struct sw_flow_key key;
2582  	struct metadata_dst *tun_dst;
2583  	struct ip_tunnel_info *tun_info;
2584  	struct ovs_tunnel_info *ovs_tun;
2585  	struct nlattr *a;
2586  	int err = 0, start, opts_type;
2587  	__be16 dst_opt_type;
2588  
2589  	dst_opt_type = 0;
2590  	ovs_match_init(&match, &key, true, NULL);
2591  	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2592  	if (opts_type < 0)
2593  		return opts_type;
2594  
2595  	if (key.tun_opts_len) {
2596  		switch (opts_type) {
2597  		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2598  			err = validate_geneve_opts(&key);
2599  			if (err < 0)
2600  				return err;
2601  			dst_opt_type = TUNNEL_GENEVE_OPT;
2602  			break;
2603  		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2604  			dst_opt_type = TUNNEL_VXLAN_OPT;
2605  			break;
2606  		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2607  			dst_opt_type = TUNNEL_ERSPAN_OPT;
2608  			break;
2609  		}
2610  	}
2611  
2612  	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2613  	if (start < 0)
2614  		return start;
2615  
2616  	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2617  				     GFP_KERNEL);
2618  
2619  	if (!tun_dst)
2620  		return -ENOMEM;
2621  
2622  	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2623  	if (err) {
2624  		dst_release((struct dst_entry *)tun_dst);
2625  		return err;
2626  	}
2627  
2628  	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2629  			 sizeof(*ovs_tun), log);
2630  	if (IS_ERR(a)) {
2631  		dst_release((struct dst_entry *)tun_dst);
2632  		return PTR_ERR(a);
2633  	}
2634  
2635  	ovs_tun = nla_data(a);
2636  	ovs_tun->tun_dst = tun_dst;
2637  
2638  	tun_info = &tun_dst->u.tun_info;
2639  	tun_info->mode = IP_TUNNEL_INFO_TX;
2640  	if (key.tun_proto == AF_INET6)
2641  		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2642  	else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2643  		tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2644  	tun_info->key = key.tun_key;
2645  
2646  	/* We need to store the options in the action itself since
2647  	 * everything else will go away after flow setup. We can append
2648  	 * it to tun_info and then point there.
2649  	 */
2650  	ip_tunnel_info_opts_set(tun_info,
2651  				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2652  				key.tun_opts_len, dst_opt_type);
2653  	add_nested_action_end(*sfa, start);
2654  
2655  	return err;
2656  }
2657  
2658  static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2659  			 bool is_push_nsh, bool log)
2660  {
2661  	struct sw_flow_match match;
2662  	struct sw_flow_key key;
2663  	int ret = 0;
2664  
2665  	ovs_match_init(&match, &key, true, NULL);
2666  	ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2667  				      is_push_nsh, log);
2668  	return !ret;
2669  }
2670  
2671  /* Return false if there are any non-masked bits set.
2672   * Mask follows data immediately, before any netlink padding.
2673   */
2674  static bool validate_masked(u8 *data, int len)
2675  {
2676  	u8 *mask = data + len;
2677  
2678  	while (len--)
2679  		if (*data++ & ~*mask++)
2680  			return false;
2681  
2682  	return true;
2683  }
2684  
2685  static int validate_set(const struct nlattr *a,
2686  			const struct sw_flow_key *flow_key,
2687  			struct sw_flow_actions **sfa, bool *skip_copy,
2688  			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2689  {
2690  	const struct nlattr *ovs_key = nla_data(a);
2691  	int key_type = nla_type(ovs_key);
2692  	size_t key_len;
2693  
2694  	/* There can be only one key in a action */
2695  	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2696  		return -EINVAL;
2697  
2698  	key_len = nla_len(ovs_key);
2699  	if (masked)
2700  		key_len /= 2;
2701  
2702  	if (key_type > OVS_KEY_ATTR_MAX ||
2703  	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2704  		return -EINVAL;
2705  
2706  	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2707  		return -EINVAL;
2708  
2709  	switch (key_type) {
2710  	const struct ovs_key_ipv4 *ipv4_key;
2711  	const struct ovs_key_ipv6 *ipv6_key;
2712  	int err;
2713  
2714  	case OVS_KEY_ATTR_PRIORITY:
2715  	case OVS_KEY_ATTR_SKB_MARK:
2716  	case OVS_KEY_ATTR_CT_MARK:
2717  	case OVS_KEY_ATTR_CT_LABELS:
2718  		break;
2719  
2720  	case OVS_KEY_ATTR_ETHERNET:
2721  		if (mac_proto != MAC_PROTO_ETHERNET)
2722  			return -EINVAL;
2723  		break;
2724  
2725  	case OVS_KEY_ATTR_TUNNEL:
2726  		if (masked)
2727  			return -EINVAL; /* Masked tunnel set not supported. */
2728  
2729  		*skip_copy = true;
2730  		err = validate_and_copy_set_tun(a, sfa, log);
2731  		if (err)
2732  			return err;
2733  		break;
2734  
2735  	case OVS_KEY_ATTR_IPV4:
2736  		if (eth_type != htons(ETH_P_IP))
2737  			return -EINVAL;
2738  
2739  		ipv4_key = nla_data(ovs_key);
2740  
2741  		if (masked) {
2742  			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2743  
2744  			/* Non-writeable fields. */
2745  			if (mask->ipv4_proto || mask->ipv4_frag)
2746  				return -EINVAL;
2747  		} else {
2748  			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2749  				return -EINVAL;
2750  
2751  			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2752  				return -EINVAL;
2753  		}
2754  		break;
2755  
2756  	case OVS_KEY_ATTR_IPV6:
2757  		if (eth_type != htons(ETH_P_IPV6))
2758  			return -EINVAL;
2759  
2760  		ipv6_key = nla_data(ovs_key);
2761  
2762  		if (masked) {
2763  			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2764  
2765  			/* Non-writeable fields. */
2766  			if (mask->ipv6_proto || mask->ipv6_frag)
2767  				return -EINVAL;
2768  
2769  			/* Invalid bits in the flow label mask? */
2770  			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2771  				return -EINVAL;
2772  		} else {
2773  			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2774  				return -EINVAL;
2775  
2776  			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2777  				return -EINVAL;
2778  		}
2779  		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2780  			return -EINVAL;
2781  
2782  		break;
2783  
2784  	case OVS_KEY_ATTR_TCP:
2785  		if ((eth_type != htons(ETH_P_IP) &&
2786  		     eth_type != htons(ETH_P_IPV6)) ||
2787  		    flow_key->ip.proto != IPPROTO_TCP)
2788  			return -EINVAL;
2789  
2790  		break;
2791  
2792  	case OVS_KEY_ATTR_UDP:
2793  		if ((eth_type != htons(ETH_P_IP) &&
2794  		     eth_type != htons(ETH_P_IPV6)) ||
2795  		    flow_key->ip.proto != IPPROTO_UDP)
2796  			return -EINVAL;
2797  
2798  		break;
2799  
2800  	case OVS_KEY_ATTR_MPLS:
2801  		if (!eth_p_mpls(eth_type))
2802  			return -EINVAL;
2803  		break;
2804  
2805  	case OVS_KEY_ATTR_SCTP:
2806  		if ((eth_type != htons(ETH_P_IP) &&
2807  		     eth_type != htons(ETH_P_IPV6)) ||
2808  		    flow_key->ip.proto != IPPROTO_SCTP)
2809  			return -EINVAL;
2810  
2811  		break;
2812  
2813  	case OVS_KEY_ATTR_NSH:
2814  		if (eth_type != htons(ETH_P_NSH))
2815  			return -EINVAL;
2816  		if (!validate_nsh(nla_data(a), masked, false, log))
2817  			return -EINVAL;
2818  		break;
2819  
2820  	default:
2821  		return -EINVAL;
2822  	}
2823  
2824  	/* Convert non-masked non-tunnel set actions to masked set actions. */
2825  	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2826  		int start, len = key_len * 2;
2827  		struct nlattr *at;
2828  
2829  		*skip_copy = true;
2830  
2831  		start = add_nested_action_start(sfa,
2832  						OVS_ACTION_ATTR_SET_TO_MASKED,
2833  						log);
2834  		if (start < 0)
2835  			return start;
2836  
2837  		at = __add_action(sfa, key_type, NULL, len, log);
2838  		if (IS_ERR(at))
2839  			return PTR_ERR(at);
2840  
2841  		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2842  		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2843  		/* Clear non-writeable bits from otherwise writeable fields. */
2844  		if (key_type == OVS_KEY_ATTR_IPV6) {
2845  			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2846  
2847  			mask->ipv6_label &= htonl(0x000FFFFF);
2848  		}
2849  		add_nested_action_end(*sfa, start);
2850  	}
2851  
2852  	return 0;
2853  }
2854  
2855  static int validate_userspace(const struct nlattr *attr)
2856  {
2857  	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2858  		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2859  		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2860  		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2861  	};
2862  	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2863  	int error;
2864  
2865  	error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
2866  					    userspace_policy, NULL);
2867  	if (error)
2868  		return error;
2869  
2870  	if (!a[OVS_USERSPACE_ATTR_PID] ||
2871  	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2872  		return -EINVAL;
2873  
2874  	return 0;
2875  }
2876  
2877  static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
2878  	[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
2879  	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
2880  	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
2881  };
2882  
2883  static int validate_and_copy_check_pkt_len(struct net *net,
2884  					   const struct nlattr *attr,
2885  					   const struct sw_flow_key *key,
2886  					   struct sw_flow_actions **sfa,
2887  					   __be16 eth_type, __be16 vlan_tci,
2888  					   u32 mpls_label_count,
2889  					   bool log, bool last)
2890  {
2891  	const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
2892  	struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
2893  	struct check_pkt_len_arg arg;
2894  	int nested_acts_start;
2895  	int start, err;
2896  
2897  	err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
2898  					  nla_data(attr), nla_len(attr),
2899  					  cpl_policy, NULL);
2900  	if (err)
2901  		return err;
2902  
2903  	if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
2904  	    !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
2905  		return -EINVAL;
2906  
2907  	acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
2908  	acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
2909  
2910  	/* Both the nested action should be present. */
2911  	if (!acts_if_greater || !acts_if_lesser_eq)
2912  		return -EINVAL;
2913  
2914  	/* validation done, copy the nested actions. */
2915  	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
2916  					log);
2917  	if (start < 0)
2918  		return start;
2919  
2920  	arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
2921  	arg.exec_for_lesser_equal =
2922  		last || !actions_may_change_flow(acts_if_lesser_eq);
2923  	arg.exec_for_greater =
2924  		last || !actions_may_change_flow(acts_if_greater);
2925  
2926  	err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
2927  				 sizeof(arg), log);
2928  	if (err)
2929  		return err;
2930  
2931  	nested_acts_start = add_nested_action_start(sfa,
2932  		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
2933  	if (nested_acts_start < 0)
2934  		return nested_acts_start;
2935  
2936  	err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
2937  				     eth_type, vlan_tci, mpls_label_count, log);
2938  
2939  	if (err)
2940  		return err;
2941  
2942  	add_nested_action_end(*sfa, nested_acts_start);
2943  
2944  	nested_acts_start = add_nested_action_start(sfa,
2945  		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
2946  	if (nested_acts_start < 0)
2947  		return nested_acts_start;
2948  
2949  	err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
2950  				     eth_type, vlan_tci, mpls_label_count, log);
2951  
2952  	if (err)
2953  		return err;
2954  
2955  	add_nested_action_end(*sfa, nested_acts_start);
2956  	add_nested_action_end(*sfa, start);
2957  	return 0;
2958  }
2959  
2960  static int copy_action(const struct nlattr *from,
2961  		       struct sw_flow_actions **sfa, bool log)
2962  {
2963  	int totlen = NLA_ALIGN(from->nla_len);
2964  	struct nlattr *to;
2965  
2966  	to = reserve_sfa_size(sfa, from->nla_len, log);
2967  	if (IS_ERR(to))
2968  		return PTR_ERR(to);
2969  
2970  	memcpy(to, from, totlen);
2971  	return 0;
2972  }
2973  
2974  static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2975  				  const struct sw_flow_key *key,
2976  				  struct sw_flow_actions **sfa,
2977  				  __be16 eth_type, __be16 vlan_tci,
2978  				  u32 mpls_label_count, bool log)
2979  {
2980  	u8 mac_proto = ovs_key_mac_proto(key);
2981  	const struct nlattr *a;
2982  	int rem, err;
2983  
2984  	nla_for_each_nested(a, attr, rem) {
2985  		/* Expected argument lengths, (u32)-1 for variable length. */
2986  		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2987  			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2988  			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2989  			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2990  			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2991  			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2992  			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2993  			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2994  			[OVS_ACTION_ATTR_SET] = (u32)-1,
2995  			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2996  			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2997  			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2998  			[OVS_ACTION_ATTR_CT] = (u32)-1,
2999  			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
3000  			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
3001  			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
3002  			[OVS_ACTION_ATTR_POP_ETH] = 0,
3003  			[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
3004  			[OVS_ACTION_ATTR_POP_NSH] = 0,
3005  			[OVS_ACTION_ATTR_METER] = sizeof(u32),
3006  			[OVS_ACTION_ATTR_CLONE] = (u32)-1,
3007  			[OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
3008  		};
3009  		const struct ovs_action_push_vlan *vlan;
3010  		int type = nla_type(a);
3011  		bool skip_copy;
3012  
3013  		if (type > OVS_ACTION_ATTR_MAX ||
3014  		    (action_lens[type] != nla_len(a) &&
3015  		     action_lens[type] != (u32)-1))
3016  			return -EINVAL;
3017  
3018  		skip_copy = false;
3019  		switch (type) {
3020  		case OVS_ACTION_ATTR_UNSPEC:
3021  			return -EINVAL;
3022  
3023  		case OVS_ACTION_ATTR_USERSPACE:
3024  			err = validate_userspace(a);
3025  			if (err)
3026  				return err;
3027  			break;
3028  
3029  		case OVS_ACTION_ATTR_OUTPUT:
3030  			if (nla_get_u32(a) >= DP_MAX_PORTS)
3031  				return -EINVAL;
3032  			break;
3033  
3034  		case OVS_ACTION_ATTR_TRUNC: {
3035  			const struct ovs_action_trunc *trunc = nla_data(a);
3036  
3037  			if (trunc->max_len < ETH_HLEN)
3038  				return -EINVAL;
3039  			break;
3040  		}
3041  
3042  		case OVS_ACTION_ATTR_HASH: {
3043  			const struct ovs_action_hash *act_hash = nla_data(a);
3044  
3045  			switch (act_hash->hash_alg) {
3046  			case OVS_HASH_ALG_L4:
3047  				break;
3048  			default:
3049  				return  -EINVAL;
3050  			}
3051  
3052  			break;
3053  		}
3054  
3055  		case OVS_ACTION_ATTR_POP_VLAN:
3056  			if (mac_proto != MAC_PROTO_ETHERNET)
3057  				return -EINVAL;
3058  			vlan_tci = htons(0);
3059  			break;
3060  
3061  		case OVS_ACTION_ATTR_PUSH_VLAN:
3062  			if (mac_proto != MAC_PROTO_ETHERNET)
3063  				return -EINVAL;
3064  			vlan = nla_data(a);
3065  			if (!eth_type_vlan(vlan->vlan_tpid))
3066  				return -EINVAL;
3067  			if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3068  				return -EINVAL;
3069  			vlan_tci = vlan->vlan_tci;
3070  			break;
3071  
3072  		case OVS_ACTION_ATTR_RECIRC:
3073  			break;
3074  
3075  		case OVS_ACTION_ATTR_PUSH_MPLS: {
3076  			const struct ovs_action_push_mpls *mpls = nla_data(a);
3077  
3078  			if (!eth_p_mpls(mpls->mpls_ethertype))
3079  				return -EINVAL;
3080  			/* Prohibit push MPLS other than to a white list
3081  			 * for packets that have a known tag order.
3082  			 */
3083  			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3084  			    (eth_type != htons(ETH_P_IP) &&
3085  			     eth_type != htons(ETH_P_IPV6) &&
3086  			     eth_type != htons(ETH_P_ARP) &&
3087  			     eth_type != htons(ETH_P_RARP) &&
3088  			     !eth_p_mpls(eth_type)))
3089  				return -EINVAL;
3090  			eth_type = mpls->mpls_ethertype;
3091  			mpls_label_count++;
3092  			break;
3093  		}
3094  
3095  		case OVS_ACTION_ATTR_POP_MPLS: {
3096  			__be16  proto;
3097  			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3098  			    !eth_p_mpls(eth_type))
3099  				return -EINVAL;
3100  
3101  			/* Disallow subsequent L2.5+ set actions and mpls_pop
3102  			 * actions once the last MPLS label in the packet is
3103  			 * is popped as there is no check here to ensure that
3104  			 * the new eth type is valid and thus set actions could
3105  			 * write off the end of the packet or otherwise corrupt
3106  			 * it.
3107  			 *
3108  			 * Support for these actions is planned using packet
3109  			 * recirculation.
3110  			 */
3111  			proto = nla_get_be16(a);
3112  			mpls_label_count--;
3113  
3114  			if (!eth_p_mpls(proto) || !mpls_label_count)
3115  				eth_type = htons(0);
3116  			else
3117  				eth_type =  proto;
3118  
3119  			break;
3120  		}
3121  
3122  		case OVS_ACTION_ATTR_SET:
3123  			err = validate_set(a, key, sfa,
3124  					   &skip_copy, mac_proto, eth_type,
3125  					   false, log);
3126  			if (err)
3127  				return err;
3128  			break;
3129  
3130  		case OVS_ACTION_ATTR_SET_MASKED:
3131  			err = validate_set(a, key, sfa,
3132  					   &skip_copy, mac_proto, eth_type,
3133  					   true, log);
3134  			if (err)
3135  				return err;
3136  			break;
3137  
3138  		case OVS_ACTION_ATTR_SAMPLE: {
3139  			bool last = nla_is_last(a, rem);
3140  
3141  			err = validate_and_copy_sample(net, a, key, sfa,
3142  						       eth_type, vlan_tci,
3143  						       mpls_label_count,
3144  						       log, last);
3145  			if (err)
3146  				return err;
3147  			skip_copy = true;
3148  			break;
3149  		}
3150  
3151  		case OVS_ACTION_ATTR_CT:
3152  			err = ovs_ct_copy_action(net, a, key, sfa, log);
3153  			if (err)
3154  				return err;
3155  			skip_copy = true;
3156  			break;
3157  
3158  		case OVS_ACTION_ATTR_CT_CLEAR:
3159  			break;
3160  
3161  		case OVS_ACTION_ATTR_PUSH_ETH:
3162  			/* Disallow pushing an Ethernet header if one
3163  			 * is already present */
3164  			if (mac_proto != MAC_PROTO_NONE)
3165  				return -EINVAL;
3166  			mac_proto = MAC_PROTO_ETHERNET;
3167  			break;
3168  
3169  		case OVS_ACTION_ATTR_POP_ETH:
3170  			if (mac_proto != MAC_PROTO_ETHERNET)
3171  				return -EINVAL;
3172  			if (vlan_tci & htons(VLAN_CFI_MASK))
3173  				return -EINVAL;
3174  			mac_proto = MAC_PROTO_NONE;
3175  			break;
3176  
3177  		case OVS_ACTION_ATTR_PUSH_NSH:
3178  			if (mac_proto != MAC_PROTO_ETHERNET) {
3179  				u8 next_proto;
3180  
3181  				next_proto = tun_p_from_eth_p(eth_type);
3182  				if (!next_proto)
3183  					return -EINVAL;
3184  			}
3185  			mac_proto = MAC_PROTO_NONE;
3186  			if (!validate_nsh(nla_data(a), false, true, true))
3187  				return -EINVAL;
3188  			break;
3189  
3190  		case OVS_ACTION_ATTR_POP_NSH: {
3191  			__be16 inner_proto;
3192  
3193  			if (eth_type != htons(ETH_P_NSH))
3194  				return -EINVAL;
3195  			inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3196  			if (!inner_proto)
3197  				return -EINVAL;
3198  			if (key->nsh.base.np == TUN_P_ETHERNET)
3199  				mac_proto = MAC_PROTO_ETHERNET;
3200  			else
3201  				mac_proto = MAC_PROTO_NONE;
3202  			break;
3203  		}
3204  
3205  		case OVS_ACTION_ATTR_METER:
3206  			/* Non-existent meters are simply ignored.  */
3207  			break;
3208  
3209  		case OVS_ACTION_ATTR_CLONE: {
3210  			bool last = nla_is_last(a, rem);
3211  
3212  			err = validate_and_copy_clone(net, a, key, sfa,
3213  						      eth_type, vlan_tci,
3214  						      mpls_label_count,
3215  						      log, last);
3216  			if (err)
3217  				return err;
3218  			skip_copy = true;
3219  			break;
3220  		}
3221  
3222  		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3223  			bool last = nla_is_last(a, rem);
3224  
3225  			err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3226  							      eth_type,
3227  							      vlan_tci,
3228  							      mpls_label_count,
3229  							      log, last);
3230  			if (err)
3231  				return err;
3232  			skip_copy = true;
3233  			break;
3234  		}
3235  
3236  		default:
3237  			OVS_NLERR(log, "Unknown Action type %d", type);
3238  			return -EINVAL;
3239  		}
3240  		if (!skip_copy) {
3241  			err = copy_action(a, sfa, log);
3242  			if (err)
3243  				return err;
3244  		}
3245  	}
3246  
3247  	if (rem > 0)
3248  		return -EINVAL;
3249  
3250  	return 0;
3251  }
3252  
3253  /* 'key' must be the masked key. */
3254  int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3255  			 const struct sw_flow_key *key,
3256  			 struct sw_flow_actions **sfa, bool log)
3257  {
3258  	int err;
3259  	u32 mpls_label_count = 0;
3260  
3261  	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3262  	if (IS_ERR(*sfa))
3263  		return PTR_ERR(*sfa);
3264  
3265  	if (eth_p_mpls(key->eth.type))
3266  		mpls_label_count = hweight_long(key->mpls.num_labels_mask);
3267  
3268  	(*sfa)->orig_len = nla_len(attr);
3269  	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3270  				     key->eth.vlan.tci, mpls_label_count, log);
3271  	if (err)
3272  		ovs_nla_free_flow_actions(*sfa);
3273  
3274  	return err;
3275  }
3276  
3277  static int sample_action_to_attr(const struct nlattr *attr,
3278  				 struct sk_buff *skb)
3279  {
3280  	struct nlattr *start, *ac_start = NULL, *sample_arg;
3281  	int err = 0, rem = nla_len(attr);
3282  	const struct sample_arg *arg;
3283  	struct nlattr *actions;
3284  
3285  	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3286  	if (!start)
3287  		return -EMSGSIZE;
3288  
3289  	sample_arg = nla_data(attr);
3290  	arg = nla_data(sample_arg);
3291  	actions = nla_next(sample_arg, &rem);
3292  
3293  	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3294  		err = -EMSGSIZE;
3295  		goto out;
3296  	}
3297  
3298  	ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3299  	if (!ac_start) {
3300  		err = -EMSGSIZE;
3301  		goto out;
3302  	}
3303  
3304  	err = ovs_nla_put_actions(actions, rem, skb);
3305  
3306  out:
3307  	if (err) {
3308  		nla_nest_cancel(skb, ac_start);
3309  		nla_nest_cancel(skb, start);
3310  	} else {
3311  		nla_nest_end(skb, ac_start);
3312  		nla_nest_end(skb, start);
3313  	}
3314  
3315  	return err;
3316  }
3317  
3318  static int clone_action_to_attr(const struct nlattr *attr,
3319  				struct sk_buff *skb)
3320  {
3321  	struct nlattr *start;
3322  	int err = 0, rem = nla_len(attr);
3323  
3324  	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3325  	if (!start)
3326  		return -EMSGSIZE;
3327  
3328  	err = ovs_nla_put_actions(nla_data(attr), rem, skb);
3329  
3330  	if (err)
3331  		nla_nest_cancel(skb, start);
3332  	else
3333  		nla_nest_end(skb, start);
3334  
3335  	return err;
3336  }
3337  
3338  static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3339  					struct sk_buff *skb)
3340  {
3341  	struct nlattr *start, *ac_start = NULL;
3342  	const struct check_pkt_len_arg *arg;
3343  	const struct nlattr *a, *cpl_arg;
3344  	int err = 0, rem = nla_len(attr);
3345  
3346  	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3347  	if (!start)
3348  		return -EMSGSIZE;
3349  
3350  	/* The first nested attribute in 'attr' is always
3351  	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3352  	 */
3353  	cpl_arg = nla_data(attr);
3354  	arg = nla_data(cpl_arg);
3355  
3356  	if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3357  		err = -EMSGSIZE;
3358  		goto out;
3359  	}
3360  
3361  	/* Second nested attribute in 'attr' is always
3362  	 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3363  	 */
3364  	a = nla_next(cpl_arg, &rem);
3365  	ac_start =  nla_nest_start_noflag(skb,
3366  					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3367  	if (!ac_start) {
3368  		err = -EMSGSIZE;
3369  		goto out;
3370  	}
3371  
3372  	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3373  	if (err) {
3374  		nla_nest_cancel(skb, ac_start);
3375  		goto out;
3376  	} else {
3377  		nla_nest_end(skb, ac_start);
3378  	}
3379  
3380  	/* Third nested attribute in 'attr' is always
3381  	 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3382  	 */
3383  	a = nla_next(a, &rem);
3384  	ac_start =  nla_nest_start_noflag(skb,
3385  					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3386  	if (!ac_start) {
3387  		err = -EMSGSIZE;
3388  		goto out;
3389  	}
3390  
3391  	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3392  	if (err) {
3393  		nla_nest_cancel(skb, ac_start);
3394  		goto out;
3395  	} else {
3396  		nla_nest_end(skb, ac_start);
3397  	}
3398  
3399  	nla_nest_end(skb, start);
3400  	return 0;
3401  
3402  out:
3403  	nla_nest_cancel(skb, start);
3404  	return err;
3405  }
3406  
3407  static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3408  {
3409  	const struct nlattr *ovs_key = nla_data(a);
3410  	int key_type = nla_type(ovs_key);
3411  	struct nlattr *start;
3412  	int err;
3413  
3414  	switch (key_type) {
3415  	case OVS_KEY_ATTR_TUNNEL_INFO: {
3416  		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3417  		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3418  
3419  		start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3420  		if (!start)
3421  			return -EMSGSIZE;
3422  
3423  		err =  ip_tun_to_nlattr(skb, &tun_info->key,
3424  					ip_tunnel_info_opts(tun_info),
3425  					tun_info->options_len,
3426  					ip_tunnel_info_af(tun_info), tun_info->mode);
3427  		if (err)
3428  			return err;
3429  		nla_nest_end(skb, start);
3430  		break;
3431  	}
3432  	default:
3433  		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3434  			return -EMSGSIZE;
3435  		break;
3436  	}
3437  
3438  	return 0;
3439  }
3440  
3441  static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3442  						struct sk_buff *skb)
3443  {
3444  	const struct nlattr *ovs_key = nla_data(a);
3445  	struct nlattr *nla;
3446  	size_t key_len = nla_len(ovs_key) / 2;
3447  
3448  	/* Revert the conversion we did from a non-masked set action to
3449  	 * masked set action.
3450  	 */
3451  	nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3452  	if (!nla)
3453  		return -EMSGSIZE;
3454  
3455  	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3456  		return -EMSGSIZE;
3457  
3458  	nla_nest_end(skb, nla);
3459  	return 0;
3460  }
3461  
3462  int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3463  {
3464  	const struct nlattr *a;
3465  	int rem, err;
3466  
3467  	nla_for_each_attr(a, attr, len, rem) {
3468  		int type = nla_type(a);
3469  
3470  		switch (type) {
3471  		case OVS_ACTION_ATTR_SET:
3472  			err = set_action_to_attr(a, skb);
3473  			if (err)
3474  				return err;
3475  			break;
3476  
3477  		case OVS_ACTION_ATTR_SET_TO_MASKED:
3478  			err = masked_set_action_to_set_action_attr(a, skb);
3479  			if (err)
3480  				return err;
3481  			break;
3482  
3483  		case OVS_ACTION_ATTR_SAMPLE:
3484  			err = sample_action_to_attr(a, skb);
3485  			if (err)
3486  				return err;
3487  			break;
3488  
3489  		case OVS_ACTION_ATTR_CT:
3490  			err = ovs_ct_action_to_attr(nla_data(a), skb);
3491  			if (err)
3492  				return err;
3493  			break;
3494  
3495  		case OVS_ACTION_ATTR_CLONE:
3496  			err = clone_action_to_attr(a, skb);
3497  			if (err)
3498  				return err;
3499  			break;
3500  
3501  		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3502  			err = check_pkt_len_action_to_attr(a, skb);
3503  			if (err)
3504  				return err;
3505  			break;
3506  
3507  		default:
3508  			if (nla_put(skb, type, nla_len(a), nla_data(a)))
3509  				return -EMSGSIZE;
3510  			break;
3511  		}
3512  	}
3513  
3514  	return 0;
3515  }
3516