xref: /linux/net/openvswitch/flow_netlink.c (revision 39daa09d34ada1bc7227d68def63e0a2105b5496)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include "flow.h"
9 #include "datapath.h"
10 #include <linux/uaccess.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_ether.h>
14 #include <linux/if_vlan.h>
15 #include <net/llc_pdu.h>
16 #include <linux/kernel.h>
17 #include <linux/jhash.h>
18 #include <linux/jiffies.h>
19 #include <linux/llc.h>
20 #include <linux/module.h>
21 #include <linux/in.h>
22 #include <linux/rcupdate.h>
23 #include <linux/if_arp.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/icmp.h>
30 #include <linux/icmpv6.h>
31 #include <linux/rculist.h>
32 #include <net/geneve.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/mpls.h>
37 #include <net/vxlan.h>
38 #include <net/tun_proto.h>
39 #include <net/erspan.h>
40 
41 #include "drop.h"
42 #include "flow_netlink.h"
43 
44 struct ovs_len_tbl {
45 	int len;
46 	const struct ovs_len_tbl *next;
47 };
48 
49 #define OVS_ATTR_NESTED -1
50 #define OVS_ATTR_VARIABLE -2
51 #define OVS_COPY_ACTIONS_MAX_DEPTH 16
52 
53 static bool actions_may_change_flow(const struct nlattr *actions)
54 {
55 	struct nlattr *nla;
56 	int rem;
57 
58 	nla_for_each_nested(nla, actions, rem) {
59 		u16 action = nla_type(nla);
60 
61 		switch (action) {
62 		case OVS_ACTION_ATTR_OUTPUT:
63 		case OVS_ACTION_ATTR_RECIRC:
64 		case OVS_ACTION_ATTR_TRUNC:
65 		case OVS_ACTION_ATTR_USERSPACE:
66 		case OVS_ACTION_ATTR_DROP:
67 		case OVS_ACTION_ATTR_PSAMPLE:
68 			break;
69 
70 		case OVS_ACTION_ATTR_CT:
71 		case OVS_ACTION_ATTR_CT_CLEAR:
72 		case OVS_ACTION_ATTR_HASH:
73 		case OVS_ACTION_ATTR_POP_ETH:
74 		case OVS_ACTION_ATTR_POP_MPLS:
75 		case OVS_ACTION_ATTR_POP_NSH:
76 		case OVS_ACTION_ATTR_POP_VLAN:
77 		case OVS_ACTION_ATTR_PUSH_ETH:
78 		case OVS_ACTION_ATTR_PUSH_MPLS:
79 		case OVS_ACTION_ATTR_PUSH_NSH:
80 		case OVS_ACTION_ATTR_PUSH_VLAN:
81 		case OVS_ACTION_ATTR_SAMPLE:
82 		case OVS_ACTION_ATTR_SET:
83 		case OVS_ACTION_ATTR_SET_MASKED:
84 		case OVS_ACTION_ATTR_METER:
85 		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
86 		case OVS_ACTION_ATTR_ADD_MPLS:
87 		case OVS_ACTION_ATTR_DEC_TTL:
88 		default:
89 			return true;
90 		}
91 	}
92 	return false;
93 }
94 
95 static void update_range(struct sw_flow_match *match,
96 			 size_t offset, size_t size, bool is_mask)
97 {
98 	struct sw_flow_key_range *range;
99 	size_t start = rounddown(offset, sizeof(long));
100 	size_t end = roundup(offset + size, sizeof(long));
101 
102 	if (!is_mask)
103 		range = &match->range;
104 	else
105 		range = &match->mask->range;
106 
107 	if (range->start == range->end) {
108 		range->start = start;
109 		range->end = end;
110 		return;
111 	}
112 
113 	if (range->start > start)
114 		range->start = start;
115 
116 	if (range->end < end)
117 		range->end = end;
118 }
119 
120 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
121 	do { \
122 		update_range(match, offsetof(struct sw_flow_key, field),    \
123 			     sizeof((match)->key->field), is_mask);	    \
124 		if (is_mask)						    \
125 			(match)->mask->key.field = value;		    \
126 		else							    \
127 			(match)->key->field = value;		            \
128 	} while (0)
129 
130 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
131 	do {								    \
132 		update_range(match, offset, len, is_mask);		    \
133 		if (is_mask)						    \
134 			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
135 			       len);					   \
136 		else							    \
137 			memcpy((u8 *)(match)->key + offset, value_p, len);  \
138 	} while (0)
139 
140 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
141 	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
142 				  value_p, len, is_mask)
143 
144 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
145 	do {								    \
146 		update_range(match, offsetof(struct sw_flow_key, field),    \
147 			     sizeof((match)->key->field), is_mask);	    \
148 		if (is_mask)						    \
149 			memset((u8 *)&(match)->mask->key.field, value,      \
150 			       sizeof((match)->mask->key.field));	    \
151 		else							    \
152 			memset((u8 *)&(match)->key->field, value,           \
153 			       sizeof((match)->key->field));                \
154 	} while (0)
155 
156 #define SW_FLOW_KEY_BITMAP_COPY(match, field, value_p, nbits, is_mask) ({     \
157 	update_range(match, offsetof(struct sw_flow_key, field),	      \
158 		     bitmap_size(nbits), is_mask);			      \
159 	bitmap_copy(is_mask ? (match)->mask->key.field : (match)->key->field, \
160 		    value_p, nbits);					      \
161 })
162 
163 static bool match_validate(const struct sw_flow_match *match,
164 			   u64 key_attrs, u64 mask_attrs, bool log)
165 {
166 	u64 key_expected = 0;
167 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
168 
169 	/* The following mask attributes allowed only if they
170 	 * pass the validation tests. */
171 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
172 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
173 			| (1 << OVS_KEY_ATTR_IPV6)
174 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
175 			| (1 << OVS_KEY_ATTR_TCP)
176 			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
177 			| (1 << OVS_KEY_ATTR_UDP)
178 			| (1 << OVS_KEY_ATTR_SCTP)
179 			| (1 << OVS_KEY_ATTR_ICMP)
180 			| (1 << OVS_KEY_ATTR_ICMPV6)
181 			| (1 << OVS_KEY_ATTR_ARP)
182 			| (1 << OVS_KEY_ATTR_ND)
183 			| (1 << OVS_KEY_ATTR_MPLS)
184 			| (1 << OVS_KEY_ATTR_NSH));
185 
186 	/* Always allowed mask fields. */
187 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
188 		       | (1 << OVS_KEY_ATTR_IN_PORT)
189 		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
190 
191 	/* Check key attributes. */
192 	if (match->key->eth.type == htons(ETH_P_ARP)
193 			|| match->key->eth.type == htons(ETH_P_RARP)) {
194 		key_expected |= 1 << OVS_KEY_ATTR_ARP;
195 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
196 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
197 	}
198 
199 	if (eth_p_mpls(match->key->eth.type)) {
200 		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
201 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
202 			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
203 	}
204 
205 	if (match->key->eth.type == htons(ETH_P_IP)) {
206 		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
207 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
208 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
209 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
210 		}
211 
212 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
213 			if (match->key->ip.proto == IPPROTO_UDP) {
214 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
215 				if (match->mask && (match->mask->key.ip.proto == 0xff))
216 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
217 			}
218 
219 			if (match->key->ip.proto == IPPROTO_SCTP) {
220 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
221 				if (match->mask && (match->mask->key.ip.proto == 0xff))
222 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
223 			}
224 
225 			if (match->key->ip.proto == IPPROTO_TCP) {
226 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
227 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
228 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
229 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
230 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
231 				}
232 			}
233 
234 			if (match->key->ip.proto == IPPROTO_ICMP) {
235 				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
236 				if (match->mask && (match->mask->key.ip.proto == 0xff))
237 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
238 			}
239 		}
240 	}
241 
242 	if (match->key->eth.type == htons(ETH_P_IPV6)) {
243 		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
244 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
245 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
246 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
247 		}
248 
249 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
250 			if (match->key->ip.proto == IPPROTO_UDP) {
251 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
252 				if (match->mask && (match->mask->key.ip.proto == 0xff))
253 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
254 			}
255 
256 			if (match->key->ip.proto == IPPROTO_SCTP) {
257 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
258 				if (match->mask && (match->mask->key.ip.proto == 0xff))
259 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
260 			}
261 
262 			if (match->key->ip.proto == IPPROTO_TCP) {
263 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
264 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
265 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
266 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
267 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
268 				}
269 			}
270 
271 			if (match->key->ip.proto == IPPROTO_ICMPV6) {
272 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
273 				if (match->mask && (match->mask->key.ip.proto == 0xff))
274 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
275 
276 				if (match->key->tp.src ==
277 						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
278 				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
279 					key_expected |= 1 << OVS_KEY_ATTR_ND;
280 					/* Original direction conntrack tuple
281 					 * uses the same space as the ND fields
282 					 * in the key, so both are not allowed
283 					 * at the same time.
284 					 */
285 					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
286 					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
287 						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
288 				}
289 			}
290 		}
291 	}
292 
293 	if (match->key->eth.type == htons(ETH_P_NSH)) {
294 		key_expected |= 1 << OVS_KEY_ATTR_NSH;
295 		if (match->mask &&
296 		    match->mask->key.eth.type == htons(0xffff)) {
297 			mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
298 		}
299 	}
300 
301 	if ((key_attrs & key_expected) != key_expected) {
302 		/* Key attributes check failed. */
303 		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
304 			  (unsigned long long)key_attrs,
305 			  (unsigned long long)key_expected);
306 		return false;
307 	}
308 
309 	if ((mask_attrs & mask_allowed) != mask_attrs) {
310 		/* Mask attributes check failed. */
311 		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
312 			  (unsigned long long)mask_attrs,
313 			  (unsigned long long)mask_allowed);
314 		return false;
315 	}
316 
317 	return true;
318 }
319 
320 size_t ovs_tun_key_attr_size(void)
321 {
322 	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
323 	 * updating this function.
324 	 */
325 	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
326 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
327 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
328 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
329 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
330 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
331 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
332 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
333 		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
334 		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
335 		 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
336 		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
337 		 */
338 		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
339 		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
340 }
341 
342 static size_t ovs_nsh_key_attr_size(void)
343 {
344 	/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
345 	 * updating this function.
346 	 */
347 	return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
348 		/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
349 		 * mutually exclusive, so the bigger one can cover
350 		 * the small one.
351 		 */
352 		+ nla_total_size(NSH_CTX_HDRS_MAX_LEN);
353 }
354 
355 size_t ovs_key_attr_size(void)
356 {
357 	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
358 	 * updating this function.
359 	 */
360 	BUILD_BUG_ON(OVS_KEY_ATTR_MAX != 32);
361 
362 	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
363 		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
364 		  + ovs_tun_key_attr_size()
365 		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
366 		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
367 		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
368 		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
369 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
370 		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
371 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
372 		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
373 		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
374 		+ nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
375 		  + ovs_nsh_key_attr_size()
376 		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
377 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
378 		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
379 		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
380 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
381 		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
382 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
383 		+ nla_total_size(28)  /* OVS_KEY_ATTR_ND */
384 		+ nla_total_size(2);  /* OVS_KEY_ATTR_IPV6_EXTHDRS */
385 }
386 
387 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
388 	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
389 };
390 
391 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
392 	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
393 	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
394 	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
395 	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
396 	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
397 	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
398 	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
399 	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
400 	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
401 	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
402 	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
403 	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
404 						.next = ovs_vxlan_ext_key_lens },
405 	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
406 	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
407 	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE },
408 	[OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE]   = { .len = 0 },
409 };
410 
411 static const struct ovs_len_tbl
412 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
413 	[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
414 	[OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
415 	[OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
416 };
417 
418 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
419 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
420 	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
421 	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
422 	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
423 	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
424 	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
425 	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
426 	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
427 	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
428 	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
429 	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
430 	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
431 	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
432 	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
433 	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
434 	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
435 	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
436 	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
437 	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
438 	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
439 	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
440 				     .next = ovs_tunnel_key_lens, },
441 	[OVS_KEY_ATTR_MPLS]	 = { .len = OVS_ATTR_VARIABLE },
442 	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
443 	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
444 	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
445 	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
446 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
447 		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
448 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
449 		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
450 	[OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
451 				     .next = ovs_nsh_key_attr_lens, },
452 	[OVS_KEY_ATTR_IPV6_EXTHDRS] = {
453 		.len = sizeof(struct ovs_key_ipv6_exthdrs) },
454 };
455 
456 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
457 {
458 	return expected_len == attr_len ||
459 	       expected_len == OVS_ATTR_NESTED ||
460 	       expected_len == OVS_ATTR_VARIABLE;
461 }
462 
463 static bool is_all_zero(const u8 *fp, size_t size)
464 {
465 	int i;
466 
467 	if (!fp)
468 		return false;
469 
470 	for (i = 0; i < size; i++)
471 		if (fp[i])
472 			return false;
473 
474 	return true;
475 }
476 
477 static int __parse_flow_nlattrs(const struct nlattr *attr,
478 				const struct nlattr *a[],
479 				u64 *attrsp, bool log, bool nz)
480 {
481 	const struct nlattr *nla;
482 	u64 attrs;
483 	int rem;
484 
485 	attrs = *attrsp;
486 	nla_for_each_nested(nla, attr, rem) {
487 		u16 type = nla_type(nla);
488 		int expected_len;
489 
490 		if (type > OVS_KEY_ATTR_MAX) {
491 			OVS_NLERR(log, "Key type %d is out of range max %d",
492 				  type, OVS_KEY_ATTR_MAX);
493 			return -EINVAL;
494 		}
495 
496 		if (type == OVS_KEY_ATTR_PACKET_TYPE ||
497 		    type == OVS_KEY_ATTR_ND_EXTENSIONS ||
498 		    type == OVS_KEY_ATTR_TUNNEL_INFO) {
499 			OVS_NLERR(log, "Key type %d is not supported", type);
500 			return -EINVAL;
501 		}
502 
503 		if (attrs & (1ULL << type)) {
504 			OVS_NLERR(log, "Duplicate key (type %d).", type);
505 			return -EINVAL;
506 		}
507 
508 		expected_len = ovs_key_lens[type].len;
509 		if (!check_attr_len(nla_len(nla), expected_len)) {
510 			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
511 				  type, nla_len(nla), expected_len);
512 			return -EINVAL;
513 		}
514 
515 		if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
516 			attrs |= 1ULL << type;
517 			a[type] = nla;
518 		}
519 	}
520 	if (rem) {
521 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
522 		return -EINVAL;
523 	}
524 
525 	*attrsp = attrs;
526 	return 0;
527 }
528 
529 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
530 				   const struct nlattr *a[], u64 *attrsp,
531 				   bool log)
532 {
533 	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
534 }
535 
536 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
537 		       u64 *attrsp, bool log)
538 {
539 	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
540 }
541 
542 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
543 				     struct sw_flow_match *match, bool is_mask,
544 				     bool log)
545 {
546 	unsigned long opt_key_offset;
547 
548 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
549 		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
550 			  nla_len(a), sizeof(match->key->tun_opts));
551 		return -EINVAL;
552 	}
553 
554 	if (nla_len(a) % 4 != 0) {
555 		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
556 			  nla_len(a));
557 		return -EINVAL;
558 	}
559 
560 	/* We need to record the length of the options passed
561 	 * down, otherwise packets with the same format but
562 	 * additional options will be silently matched.
563 	 */
564 	if (!is_mask) {
565 		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
566 				false);
567 	} else {
568 		/* This is somewhat unusual because it looks at
569 		 * both the key and mask while parsing the
570 		 * attributes (and by extension assumes the key
571 		 * is parsed first). Normally, we would verify
572 		 * that each is the correct length and that the
573 		 * attributes line up in the validate function.
574 		 * However, that is difficult because this is
575 		 * variable length and we won't have the
576 		 * information later.
577 		 */
578 		if (match->key->tun_opts_len != nla_len(a)) {
579 			OVS_NLERR(log, "Geneve option len %d != mask len %d",
580 				  match->key->tun_opts_len, nla_len(a));
581 			return -EINVAL;
582 		}
583 
584 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
585 	}
586 
587 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
588 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
589 				  nla_len(a), is_mask);
590 	return 0;
591 }
592 
593 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
594 				     struct sw_flow_match *match, bool is_mask,
595 				     bool log)
596 {
597 	struct nlattr *a;
598 	int rem;
599 	unsigned long opt_key_offset;
600 	struct vxlan_metadata opts;
601 
602 	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
603 
604 	memset(&opts, 0, sizeof(opts));
605 	nla_for_each_nested(a, attr, rem) {
606 		int type = nla_type(a);
607 
608 		if (type > OVS_VXLAN_EXT_MAX) {
609 			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
610 				  type, OVS_VXLAN_EXT_MAX);
611 			return -EINVAL;
612 		}
613 
614 		if (!check_attr_len(nla_len(a),
615 				    ovs_vxlan_ext_key_lens[type].len)) {
616 			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
617 				  type, nla_len(a),
618 				  ovs_vxlan_ext_key_lens[type].len);
619 			return -EINVAL;
620 		}
621 
622 		switch (type) {
623 		case OVS_VXLAN_EXT_GBP:
624 			opts.gbp = nla_get_u32(a);
625 			break;
626 		default:
627 			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
628 				  type);
629 			return -EINVAL;
630 		}
631 	}
632 	if (rem) {
633 		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
634 			  rem);
635 		return -EINVAL;
636 	}
637 
638 	if (!is_mask)
639 		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
640 	else
641 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
642 
643 	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
644 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
645 				  is_mask);
646 	return 0;
647 }
648 
649 static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
650 				      struct sw_flow_match *match, bool is_mask,
651 				      bool log)
652 {
653 	unsigned long opt_key_offset;
654 
655 	BUILD_BUG_ON(sizeof(struct erspan_metadata) >
656 		     sizeof(match->key->tun_opts));
657 
658 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
659 		OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
660 			  nla_len(a), sizeof(match->key->tun_opts));
661 		return -EINVAL;
662 	}
663 
664 	if (!is_mask)
665 		SW_FLOW_KEY_PUT(match, tun_opts_len,
666 				sizeof(struct erspan_metadata), false);
667 	else
668 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
669 
670 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
671 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
672 				  nla_len(a), is_mask);
673 	return 0;
674 }
675 
676 static int ip_tun_from_nlattr(const struct nlattr *attr,
677 			      struct sw_flow_match *match, bool is_mask,
678 			      bool log)
679 {
680 	bool ttl = false, ipv4 = false, ipv6 = false;
681 	IP_TUNNEL_DECLARE_FLAGS(tun_flags) = { };
682 	bool info_bridge_mode = false;
683 	int opts_type = 0;
684 	struct nlattr *a;
685 	int rem;
686 
687 	nla_for_each_nested(a, attr, rem) {
688 		int type = nla_type(a);
689 		int err;
690 
691 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
692 			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
693 				  type, OVS_TUNNEL_KEY_ATTR_MAX);
694 			return -EINVAL;
695 		}
696 
697 		if (!check_attr_len(nla_len(a),
698 				    ovs_tunnel_key_lens[type].len)) {
699 			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
700 				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
701 			return -EINVAL;
702 		}
703 
704 		switch (type) {
705 		case OVS_TUNNEL_KEY_ATTR_ID:
706 			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
707 					nla_get_be64(a), is_mask);
708 			__set_bit(IP_TUNNEL_KEY_BIT, tun_flags);
709 			break;
710 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
711 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
712 					nla_get_in_addr(a), is_mask);
713 			ipv4 = true;
714 			break;
715 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
716 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
717 					nla_get_in_addr(a), is_mask);
718 			ipv4 = true;
719 			break;
720 		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
721 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
722 					nla_get_in6_addr(a), is_mask);
723 			ipv6 = true;
724 			break;
725 		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
726 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
727 					nla_get_in6_addr(a), is_mask);
728 			ipv6 = true;
729 			break;
730 		case OVS_TUNNEL_KEY_ATTR_TOS:
731 			SW_FLOW_KEY_PUT(match, tun_key.tos,
732 					nla_get_u8(a), is_mask);
733 			break;
734 		case OVS_TUNNEL_KEY_ATTR_TTL:
735 			SW_FLOW_KEY_PUT(match, tun_key.ttl,
736 					nla_get_u8(a), is_mask);
737 			ttl = true;
738 			break;
739 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
740 			__set_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, tun_flags);
741 			break;
742 		case OVS_TUNNEL_KEY_ATTR_CSUM:
743 			__set_bit(IP_TUNNEL_CSUM_BIT, tun_flags);
744 			break;
745 		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
746 			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
747 					nla_get_be16(a), is_mask);
748 			break;
749 		case OVS_TUNNEL_KEY_ATTR_TP_DST:
750 			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
751 					nla_get_be16(a), is_mask);
752 			break;
753 		case OVS_TUNNEL_KEY_ATTR_OAM:
754 			__set_bit(IP_TUNNEL_OAM_BIT, tun_flags);
755 			break;
756 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
757 			if (opts_type) {
758 				OVS_NLERR(log, "Multiple metadata blocks provided");
759 				return -EINVAL;
760 			}
761 
762 			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
763 			if (err)
764 				return err;
765 
766 			__set_bit(IP_TUNNEL_GENEVE_OPT_BIT, tun_flags);
767 			opts_type = type;
768 			break;
769 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
770 			if (opts_type) {
771 				OVS_NLERR(log, "Multiple metadata blocks provided");
772 				return -EINVAL;
773 			}
774 
775 			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
776 			if (err)
777 				return err;
778 
779 			__set_bit(IP_TUNNEL_VXLAN_OPT_BIT, tun_flags);
780 			opts_type = type;
781 			break;
782 		case OVS_TUNNEL_KEY_ATTR_PAD:
783 			break;
784 		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
785 			if (opts_type) {
786 				OVS_NLERR(log, "Multiple metadata blocks provided");
787 				return -EINVAL;
788 			}
789 
790 			err = erspan_tun_opt_from_nlattr(a, match, is_mask,
791 							 log);
792 			if (err)
793 				return err;
794 
795 			__set_bit(IP_TUNNEL_ERSPAN_OPT_BIT, tun_flags);
796 			opts_type = type;
797 			break;
798 		case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
799 			info_bridge_mode = true;
800 			ipv4 = true;
801 			break;
802 		default:
803 			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
804 				  type);
805 			return -EINVAL;
806 		}
807 	}
808 
809 	SW_FLOW_KEY_BITMAP_COPY(match, tun_key.tun_flags, tun_flags,
810 				__IP_TUNNEL_FLAG_NUM, is_mask);
811 	if (is_mask)
812 		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
813 	else
814 		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
815 				false);
816 
817 	if (rem > 0) {
818 		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
819 			  rem);
820 		return -EINVAL;
821 	}
822 
823 	if (ipv4 && ipv6) {
824 		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
825 		return -EINVAL;
826 	}
827 
828 	if (!is_mask) {
829 		if (!ipv4 && !ipv6) {
830 			OVS_NLERR(log, "IP tunnel dst address not specified");
831 			return -EINVAL;
832 		}
833 		if (ipv4) {
834 			if (info_bridge_mode) {
835 				__clear_bit(IP_TUNNEL_KEY_BIT, tun_flags);
836 
837 				if (match->key->tun_key.u.ipv4.src ||
838 				    match->key->tun_key.u.ipv4.dst ||
839 				    match->key->tun_key.tp_src ||
840 				    match->key->tun_key.tp_dst ||
841 				    match->key->tun_key.ttl ||
842 				    match->key->tun_key.tos ||
843 				    !ip_tunnel_flags_empty(tun_flags)) {
844 					OVS_NLERR(log, "IPv4 tun info is not correct");
845 					return -EINVAL;
846 				}
847 			} else if (!match->key->tun_key.u.ipv4.dst) {
848 				OVS_NLERR(log, "IPv4 tunnel dst address is zero");
849 				return -EINVAL;
850 			}
851 		}
852 		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
853 			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
854 			return -EINVAL;
855 		}
856 
857 		if (!ttl && !info_bridge_mode) {
858 			OVS_NLERR(log, "IP tunnel TTL not specified.");
859 			return -EINVAL;
860 		}
861 	}
862 
863 	return opts_type;
864 }
865 
866 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
867 			       const void *tun_opts, int swkey_tun_opts_len)
868 {
869 	const struct vxlan_metadata *opts = tun_opts;
870 	struct nlattr *nla;
871 
872 	nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
873 	if (!nla)
874 		return -EMSGSIZE;
875 
876 	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
877 		return -EMSGSIZE;
878 
879 	nla_nest_end(skb, nla);
880 	return 0;
881 }
882 
883 static int __ip_tun_to_nlattr(struct sk_buff *skb,
884 			      const struct ip_tunnel_key *output,
885 			      const void *tun_opts, int swkey_tun_opts_len,
886 			      unsigned short tun_proto, u8 mode)
887 {
888 	if (test_bit(IP_TUNNEL_KEY_BIT, output->tun_flags) &&
889 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
890 			 OVS_TUNNEL_KEY_ATTR_PAD))
891 		return -EMSGSIZE;
892 
893 	if (mode & IP_TUNNEL_INFO_BRIDGE)
894 		return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
895 		       ? -EMSGSIZE : 0;
896 
897 	switch (tun_proto) {
898 	case AF_INET:
899 		if (output->u.ipv4.src &&
900 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
901 				    output->u.ipv4.src))
902 			return -EMSGSIZE;
903 		if (output->u.ipv4.dst &&
904 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
905 				    output->u.ipv4.dst))
906 			return -EMSGSIZE;
907 		break;
908 	case AF_INET6:
909 		if (!ipv6_addr_any(&output->u.ipv6.src) &&
910 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
911 				     &output->u.ipv6.src))
912 			return -EMSGSIZE;
913 		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
914 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
915 				     &output->u.ipv6.dst))
916 			return -EMSGSIZE;
917 		break;
918 	}
919 	if (output->tos &&
920 	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
921 		return -EMSGSIZE;
922 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
923 		return -EMSGSIZE;
924 	if (test_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, output->tun_flags) &&
925 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
926 		return -EMSGSIZE;
927 	if (test_bit(IP_TUNNEL_CSUM_BIT, output->tun_flags) &&
928 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
929 		return -EMSGSIZE;
930 	if (output->tp_src &&
931 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
932 		return -EMSGSIZE;
933 	if (output->tp_dst &&
934 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
935 		return -EMSGSIZE;
936 	if (test_bit(IP_TUNNEL_OAM_BIT, output->tun_flags) &&
937 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
938 		return -EMSGSIZE;
939 	if (swkey_tun_opts_len) {
940 		if (test_bit(IP_TUNNEL_GENEVE_OPT_BIT, output->tun_flags) &&
941 		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
942 			    swkey_tun_opts_len, tun_opts))
943 			return -EMSGSIZE;
944 		else if (test_bit(IP_TUNNEL_VXLAN_OPT_BIT,
945 				  output->tun_flags) &&
946 			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
947 			return -EMSGSIZE;
948 		else if (test_bit(IP_TUNNEL_ERSPAN_OPT_BIT,
949 				  output->tun_flags) &&
950 			 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
951 				 swkey_tun_opts_len, tun_opts))
952 			return -EMSGSIZE;
953 	}
954 
955 	return 0;
956 }
957 
958 static int ip_tun_to_nlattr(struct sk_buff *skb,
959 			    const struct ip_tunnel_key *output,
960 			    const void *tun_opts, int swkey_tun_opts_len,
961 			    unsigned short tun_proto, u8 mode)
962 {
963 	struct nlattr *nla;
964 	int err;
965 
966 	nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
967 	if (!nla)
968 		return -EMSGSIZE;
969 
970 	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
971 				 tun_proto, mode);
972 	if (err)
973 		return err;
974 
975 	nla_nest_end(skb, nla);
976 	return 0;
977 }
978 
979 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
980 			    struct ip_tunnel_info *tun_info)
981 {
982 	return __ip_tun_to_nlattr(skb, &tun_info->key,
983 				  ip_tunnel_info_opts(tun_info),
984 				  tun_info->options_len,
985 				  ip_tunnel_info_af(tun_info), tun_info->mode);
986 }
987 
988 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
989 				    const struct nlattr *a[],
990 				    bool is_mask, bool inner)
991 {
992 	__be16 tci = 0;
993 	__be16 tpid = 0;
994 
995 	if (a[OVS_KEY_ATTR_VLAN])
996 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
997 
998 	if (a[OVS_KEY_ATTR_ETHERTYPE])
999 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1000 
1001 	if (likely(!inner)) {
1002 		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
1003 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
1004 	} else {
1005 		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
1006 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
1007 	}
1008 	return 0;
1009 }
1010 
1011 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
1012 				      u64 key_attrs, bool inner,
1013 				      const struct nlattr **a, bool log)
1014 {
1015 	__be16 tci = 0;
1016 
1017 	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1018 	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1019 	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
1020 		/* Not a VLAN. */
1021 		return 0;
1022 	}
1023 
1024 	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1025 	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1026 		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1027 		return -EINVAL;
1028 	}
1029 
1030 	if (a[OVS_KEY_ATTR_VLAN])
1031 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1032 
1033 	if (!(tci & htons(VLAN_CFI_MASK))) {
1034 		if (tci) {
1035 			OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1036 				  (inner) ? "C-VLAN" : "VLAN");
1037 			return -EINVAL;
1038 		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1039 			/* Corner case for truncated VLAN header. */
1040 			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1041 				  (inner) ? "C-VLAN" : "VLAN");
1042 			return -EINVAL;
1043 		}
1044 	}
1045 
1046 	return 1;
1047 }
1048 
1049 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1050 					   u64 key_attrs, bool inner,
1051 					   const struct nlattr **a, bool log)
1052 {
1053 	__be16 tci = 0;
1054 	__be16 tpid = 0;
1055 	bool encap_valid = !!(match->key->eth.vlan.tci &
1056 			      htons(VLAN_CFI_MASK));
1057 	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1058 				htons(VLAN_CFI_MASK));
1059 
1060 	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1061 		/* Not a VLAN. */
1062 		return 0;
1063 	}
1064 
1065 	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1066 		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1067 			  (inner) ? "C-VLAN" : "VLAN");
1068 		return -EINVAL;
1069 	}
1070 
1071 	if (a[OVS_KEY_ATTR_VLAN])
1072 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1073 
1074 	if (a[OVS_KEY_ATTR_ETHERTYPE])
1075 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1076 
1077 	if (tpid != htons(0xffff)) {
1078 		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1079 			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1080 		return -EINVAL;
1081 	}
1082 	if (!(tci & htons(VLAN_CFI_MASK))) {
1083 		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1084 			  (inner) ? "C-VLAN" : "VLAN");
1085 		return -EINVAL;
1086 	}
1087 
1088 	return 1;
1089 }
1090 
1091 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1092 				     u64 *key_attrs, bool inner,
1093 				     const struct nlattr **a, bool is_mask,
1094 				     bool log)
1095 {
1096 	int err;
1097 	const struct nlattr *encap;
1098 
1099 	if (!is_mask)
1100 		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1101 						 a, log);
1102 	else
1103 		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1104 						      a, log);
1105 	if (err <= 0)
1106 		return err;
1107 
1108 	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1109 	if (err)
1110 		return err;
1111 
1112 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1113 	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1114 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1115 
1116 	encap = a[OVS_KEY_ATTR_ENCAP];
1117 
1118 	if (!is_mask)
1119 		err = parse_flow_nlattrs(encap, a, key_attrs, log);
1120 	else
1121 		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1122 
1123 	return err;
1124 }
1125 
1126 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1127 				   u64 *key_attrs, const struct nlattr **a,
1128 				   bool is_mask, bool log)
1129 {
1130 	int err;
1131 	bool encap_valid = false;
1132 
1133 	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1134 					is_mask, log);
1135 	if (err)
1136 		return err;
1137 
1138 	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1139 	if (encap_valid) {
1140 		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1141 						is_mask, log);
1142 		if (err)
1143 			return err;
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1150 				       u64 *attrs, const struct nlattr **a,
1151 				       bool is_mask, bool log)
1152 {
1153 	__be16 eth_type;
1154 
1155 	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1156 	if (is_mask) {
1157 		/* Always exact match EtherType. */
1158 		eth_type = htons(0xffff);
1159 	} else if (!eth_proto_is_802_3(eth_type)) {
1160 		OVS_NLERR(log, "EtherType %x is less than min %x",
1161 				ntohs(eth_type), ETH_P_802_3_MIN);
1162 		return -EINVAL;
1163 	}
1164 
1165 	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1166 	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1167 	return 0;
1168 }
1169 
1170 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1171 				 u64 *attrs, const struct nlattr **a,
1172 				 bool is_mask, bool log)
1173 {
1174 	u8 mac_proto = MAC_PROTO_ETHERNET;
1175 
1176 	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1177 		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1178 
1179 		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1180 		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1181 	}
1182 
1183 	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1184 		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1185 
1186 		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1187 		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1188 	}
1189 
1190 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1191 		SW_FLOW_KEY_PUT(match, phy.priority,
1192 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1193 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1194 	}
1195 
1196 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1197 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1198 
1199 		if (is_mask) {
1200 			in_port = 0xffffffff; /* Always exact match in_port. */
1201 		} else if (in_port >= DP_MAX_PORTS) {
1202 			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1203 				  in_port, DP_MAX_PORTS);
1204 			return -EINVAL;
1205 		}
1206 
1207 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1208 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1209 	} else if (!is_mask) {
1210 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1211 	}
1212 
1213 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1214 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1215 
1216 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1217 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1218 	}
1219 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1220 		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1221 				       is_mask, log) < 0)
1222 			return -EINVAL;
1223 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1224 	}
1225 
1226 	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1227 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1228 		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1229 
1230 		if (ct_state & ~CT_SUPPORTED_MASK) {
1231 			OVS_NLERR(log, "ct_state flags %08x unsupported",
1232 				  ct_state);
1233 			return -EINVAL;
1234 		}
1235 
1236 		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1237 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1238 	}
1239 	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1240 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1241 		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1242 
1243 		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1244 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1245 	}
1246 	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1247 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1248 		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1249 
1250 		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1251 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1252 	}
1253 	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1254 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1255 		const struct ovs_key_ct_labels *cl;
1256 
1257 		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1258 		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1259 				   sizeof(*cl), is_mask);
1260 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1261 	}
1262 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1263 		const struct ovs_key_ct_tuple_ipv4 *ct;
1264 
1265 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1266 
1267 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1268 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1269 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1270 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1271 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1272 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1273 	}
1274 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1275 		const struct ovs_key_ct_tuple_ipv6 *ct;
1276 
1277 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1278 
1279 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1280 				   sizeof(match->key->ipv6.ct_orig.src),
1281 				   is_mask);
1282 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1283 				   sizeof(match->key->ipv6.ct_orig.dst),
1284 				   is_mask);
1285 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1286 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1287 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1288 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1289 	}
1290 
1291 	/* For layer 3 packets the Ethernet type is provided
1292 	 * and treated as metadata but no MAC addresses are provided.
1293 	 */
1294 	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1295 	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1296 		mac_proto = MAC_PROTO_NONE;
1297 
1298 	/* Always exact match mac_proto */
1299 	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1300 
1301 	if (mac_proto == MAC_PROTO_NONE)
1302 		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1303 						   log);
1304 
1305 	return 0;
1306 }
1307 
1308 int nsh_hdr_from_nlattr(const struct nlattr *attr,
1309 			struct nshhdr *nh, size_t size)
1310 {
1311 	struct nlattr *a;
1312 	int rem;
1313 	u8 flags = 0;
1314 	u8 ttl = 0;
1315 	int mdlen = 0;
1316 
1317 	/* validate_nsh has check this, so we needn't do duplicate check here
1318 	 */
1319 	if (size < NSH_BASE_HDR_LEN)
1320 		return -ENOBUFS;
1321 
1322 	nla_for_each_nested(a, attr, rem) {
1323 		int type = nla_type(a);
1324 
1325 		switch (type) {
1326 		case OVS_NSH_KEY_ATTR_BASE: {
1327 			const struct ovs_nsh_key_base *base = nla_data(a);
1328 
1329 			flags = base->flags;
1330 			ttl = base->ttl;
1331 			nh->np = base->np;
1332 			nh->mdtype = base->mdtype;
1333 			nh->path_hdr = base->path_hdr;
1334 			break;
1335 		}
1336 		case OVS_NSH_KEY_ATTR_MD1:
1337 			mdlen = nla_len(a);
1338 			if (mdlen > size - NSH_BASE_HDR_LEN)
1339 				return -ENOBUFS;
1340 			memcpy(&nh->md1, nla_data(a), mdlen);
1341 			break;
1342 
1343 		case OVS_NSH_KEY_ATTR_MD2:
1344 			mdlen = nla_len(a);
1345 			if (mdlen > size - NSH_BASE_HDR_LEN)
1346 				return -ENOBUFS;
1347 			memcpy(&nh->md2, nla_data(a), mdlen);
1348 			break;
1349 
1350 		default:
1351 			return -EINVAL;
1352 		}
1353 	}
1354 
1355 	/* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1356 	nh->ver_flags_ttl_len = 0;
1357 	nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1358 
1359 	return 0;
1360 }
1361 
1362 int nsh_key_from_nlattr(const struct nlattr *attr,
1363 			struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1364 {
1365 	struct nlattr *a;
1366 	int rem;
1367 
1368 	/* validate_nsh has check this, so we needn't do duplicate check here
1369 	 */
1370 	nla_for_each_nested(a, attr, rem) {
1371 		int type = nla_type(a);
1372 
1373 		switch (type) {
1374 		case OVS_NSH_KEY_ATTR_BASE: {
1375 			const struct ovs_nsh_key_base *base = nla_data(a);
1376 			const struct ovs_nsh_key_base *base_mask = base + 1;
1377 
1378 			nsh->base = *base;
1379 			nsh_mask->base = *base_mask;
1380 			break;
1381 		}
1382 		case OVS_NSH_KEY_ATTR_MD1: {
1383 			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1384 			const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1385 
1386 			memcpy(nsh->context, md1->context, sizeof(*md1));
1387 			memcpy(nsh_mask->context, md1_mask->context,
1388 			       sizeof(*md1_mask));
1389 			break;
1390 		}
1391 		case OVS_NSH_KEY_ATTR_MD2:
1392 			/* Not supported yet */
1393 			return -ENOTSUPP;
1394 		default:
1395 			return -EINVAL;
1396 		}
1397 	}
1398 
1399 	return 0;
1400 }
1401 
1402 static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1403 				   struct sw_flow_match *match, bool is_mask,
1404 				   bool is_push_nsh, bool log)
1405 {
1406 	struct nlattr *a;
1407 	int rem;
1408 	bool has_base = false;
1409 	bool has_md1 = false;
1410 	bool has_md2 = false;
1411 	u8 mdtype = 0;
1412 	int mdlen = 0;
1413 
1414 	if (WARN_ON(is_push_nsh && is_mask))
1415 		return -EINVAL;
1416 
1417 	nla_for_each_nested(a, attr, rem) {
1418 		int type = nla_type(a);
1419 		int i;
1420 
1421 		if (type > OVS_NSH_KEY_ATTR_MAX) {
1422 			OVS_NLERR(log, "nsh attr %d is out of range max %d",
1423 				  type, OVS_NSH_KEY_ATTR_MAX);
1424 			return -EINVAL;
1425 		}
1426 
1427 		if (!check_attr_len(nla_len(a),
1428 				    ovs_nsh_key_attr_lens[type].len)) {
1429 			OVS_NLERR(
1430 			    log,
1431 			    "nsh attr %d has unexpected len %d expected %d",
1432 			    type,
1433 			    nla_len(a),
1434 			    ovs_nsh_key_attr_lens[type].len
1435 			);
1436 			return -EINVAL;
1437 		}
1438 
1439 		switch (type) {
1440 		case OVS_NSH_KEY_ATTR_BASE: {
1441 			const struct ovs_nsh_key_base *base = nla_data(a);
1442 
1443 			has_base = true;
1444 			mdtype = base->mdtype;
1445 			SW_FLOW_KEY_PUT(match, nsh.base.flags,
1446 					base->flags, is_mask);
1447 			SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1448 					base->ttl, is_mask);
1449 			SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1450 					base->mdtype, is_mask);
1451 			SW_FLOW_KEY_PUT(match, nsh.base.np,
1452 					base->np, is_mask);
1453 			SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1454 					base->path_hdr, is_mask);
1455 			break;
1456 		}
1457 		case OVS_NSH_KEY_ATTR_MD1: {
1458 			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1459 
1460 			has_md1 = true;
1461 			for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1462 				SW_FLOW_KEY_PUT(match, nsh.context[i],
1463 						md1->context[i], is_mask);
1464 			break;
1465 		}
1466 		case OVS_NSH_KEY_ATTR_MD2:
1467 			if (!is_push_nsh) /* Not supported MD type 2 yet */
1468 				return -ENOTSUPP;
1469 
1470 			has_md2 = true;
1471 			mdlen = nla_len(a);
1472 			if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1473 				OVS_NLERR(
1474 				    log,
1475 				    "Invalid MD length %d for MD type %d",
1476 				    mdlen,
1477 				    mdtype
1478 				);
1479 				return -EINVAL;
1480 			}
1481 			break;
1482 		default:
1483 			OVS_NLERR(log, "Unknown nsh attribute %d",
1484 				  type);
1485 			return -EINVAL;
1486 		}
1487 	}
1488 
1489 	if (rem > 0) {
1490 		OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1491 		return -EINVAL;
1492 	}
1493 
1494 	if (has_md1 && has_md2) {
1495 		OVS_NLERR(
1496 		    1,
1497 		    "invalid nsh attribute: md1 and md2 are exclusive."
1498 		);
1499 		return -EINVAL;
1500 	}
1501 
1502 	if (!is_mask) {
1503 		if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1504 		    (has_md2 && mdtype != NSH_M_TYPE2)) {
1505 			OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1506 				  mdtype);
1507 			return -EINVAL;
1508 		}
1509 
1510 		if (is_push_nsh &&
1511 		    (!has_base || (!has_md1 && !has_md2))) {
1512 			OVS_NLERR(
1513 			    1,
1514 			    "push_nsh: missing base or metadata attributes"
1515 			);
1516 			return -EINVAL;
1517 		}
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1524 				u64 attrs, const struct nlattr **a,
1525 				bool is_mask, bool log)
1526 {
1527 	int err;
1528 
1529 	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1530 	if (err)
1531 		return err;
1532 
1533 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1534 		const struct ovs_key_ethernet *eth_key;
1535 
1536 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1537 		SW_FLOW_KEY_MEMCPY(match, eth.src,
1538 				eth_key->eth_src, ETH_ALEN, is_mask);
1539 		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1540 				eth_key->eth_dst, ETH_ALEN, is_mask);
1541 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1542 
1543 		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1544 			/* VLAN attribute is always parsed before getting here since it
1545 			 * may occur multiple times.
1546 			 */
1547 			OVS_NLERR(log, "VLAN attribute unexpected.");
1548 			return -EINVAL;
1549 		}
1550 
1551 		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1552 			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1553 							  log);
1554 			if (err)
1555 				return err;
1556 		} else if (!is_mask) {
1557 			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1558 		}
1559 	} else if (!match->key->eth.type) {
1560 		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1561 		return -EINVAL;
1562 	}
1563 
1564 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1565 		const struct ovs_key_ipv4 *ipv4_key;
1566 
1567 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1568 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1569 			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1570 				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1571 			return -EINVAL;
1572 		}
1573 		SW_FLOW_KEY_PUT(match, ip.proto,
1574 				ipv4_key->ipv4_proto, is_mask);
1575 		SW_FLOW_KEY_PUT(match, ip.tos,
1576 				ipv4_key->ipv4_tos, is_mask);
1577 		SW_FLOW_KEY_PUT(match, ip.ttl,
1578 				ipv4_key->ipv4_ttl, is_mask);
1579 		SW_FLOW_KEY_PUT(match, ip.frag,
1580 				ipv4_key->ipv4_frag, is_mask);
1581 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1582 				ipv4_key->ipv4_src, is_mask);
1583 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1584 				ipv4_key->ipv4_dst, is_mask);
1585 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1586 	}
1587 
1588 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1589 		const struct ovs_key_ipv6 *ipv6_key;
1590 
1591 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1592 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1593 			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1594 				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1595 			return -EINVAL;
1596 		}
1597 
1598 		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1599 			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1600 				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1601 			return -EINVAL;
1602 		}
1603 
1604 		SW_FLOW_KEY_PUT(match, ipv6.label,
1605 				ipv6_key->ipv6_label, is_mask);
1606 		SW_FLOW_KEY_PUT(match, ip.proto,
1607 				ipv6_key->ipv6_proto, is_mask);
1608 		SW_FLOW_KEY_PUT(match, ip.tos,
1609 				ipv6_key->ipv6_tclass, is_mask);
1610 		SW_FLOW_KEY_PUT(match, ip.ttl,
1611 				ipv6_key->ipv6_hlimit, is_mask);
1612 		SW_FLOW_KEY_PUT(match, ip.frag,
1613 				ipv6_key->ipv6_frag, is_mask);
1614 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1615 				ipv6_key->ipv6_src,
1616 				sizeof(match->key->ipv6.addr.src),
1617 				is_mask);
1618 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1619 				ipv6_key->ipv6_dst,
1620 				sizeof(match->key->ipv6.addr.dst),
1621 				is_mask);
1622 
1623 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1624 	}
1625 
1626 	if (attrs & (1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS)) {
1627 		const struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
1628 
1629 		ipv6_exthdrs_key = nla_data(a[OVS_KEY_ATTR_IPV6_EXTHDRS]);
1630 
1631 		SW_FLOW_KEY_PUT(match, ipv6.exthdrs,
1632 				ipv6_exthdrs_key->hdrs, is_mask);
1633 
1634 		attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS);
1635 	}
1636 
1637 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1638 		const struct ovs_key_arp *arp_key;
1639 
1640 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1641 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1642 			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1643 				  arp_key->arp_op);
1644 			return -EINVAL;
1645 		}
1646 
1647 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1648 				arp_key->arp_sip, is_mask);
1649 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1650 			arp_key->arp_tip, is_mask);
1651 		SW_FLOW_KEY_PUT(match, ip.proto,
1652 				ntohs(arp_key->arp_op), is_mask);
1653 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1654 				arp_key->arp_sha, ETH_ALEN, is_mask);
1655 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1656 				arp_key->arp_tha, ETH_ALEN, is_mask);
1657 
1658 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1659 	}
1660 
1661 	if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1662 		if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1663 					    is_mask, false, log) < 0)
1664 			return -EINVAL;
1665 		attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1666 	}
1667 
1668 	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1669 		const struct ovs_key_mpls *mpls_key;
1670 		u32 hdr_len;
1671 		u32 label_count, label_count_mask, i;
1672 
1673 		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1674 		hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]);
1675 		label_count = hdr_len / sizeof(struct ovs_key_mpls);
1676 
1677 		if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
1678 		    hdr_len % sizeof(struct ovs_key_mpls))
1679 			return -EINVAL;
1680 
1681 		label_count_mask =  GENMASK(label_count - 1, 0);
1682 
1683 		for (i = 0 ; i < label_count; i++)
1684 			SW_FLOW_KEY_PUT(match, mpls.lse[i],
1685 					mpls_key[i].mpls_lse, is_mask);
1686 
1687 		SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
1688 				label_count_mask, is_mask);
1689 
1690 		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1691 	 }
1692 
1693 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1694 		const struct ovs_key_tcp *tcp_key;
1695 
1696 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1697 		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1698 		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1699 		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1700 	}
1701 
1702 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1703 		SW_FLOW_KEY_PUT(match, tp.flags,
1704 				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1705 				is_mask);
1706 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1707 	}
1708 
1709 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1710 		const struct ovs_key_udp *udp_key;
1711 
1712 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1713 		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1714 		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1715 		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1716 	}
1717 
1718 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1719 		const struct ovs_key_sctp *sctp_key;
1720 
1721 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1722 		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1723 		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1724 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1725 	}
1726 
1727 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1728 		const struct ovs_key_icmp *icmp_key;
1729 
1730 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1731 		SW_FLOW_KEY_PUT(match, tp.src,
1732 				htons(icmp_key->icmp_type), is_mask);
1733 		SW_FLOW_KEY_PUT(match, tp.dst,
1734 				htons(icmp_key->icmp_code), is_mask);
1735 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1736 	}
1737 
1738 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1739 		const struct ovs_key_icmpv6 *icmpv6_key;
1740 
1741 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1742 		SW_FLOW_KEY_PUT(match, tp.src,
1743 				htons(icmpv6_key->icmpv6_type), is_mask);
1744 		SW_FLOW_KEY_PUT(match, tp.dst,
1745 				htons(icmpv6_key->icmpv6_code), is_mask);
1746 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1747 	}
1748 
1749 	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1750 		const struct ovs_key_nd *nd_key;
1751 
1752 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1753 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1754 			nd_key->nd_target,
1755 			sizeof(match->key->ipv6.nd.target),
1756 			is_mask);
1757 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1758 			nd_key->nd_sll, ETH_ALEN, is_mask);
1759 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1760 				nd_key->nd_tll, ETH_ALEN, is_mask);
1761 		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1762 	}
1763 
1764 	if (attrs != 0) {
1765 		OVS_NLERR(log, "Unknown key attributes %llx",
1766 			  (unsigned long long)attrs);
1767 		return -EINVAL;
1768 	}
1769 
1770 	return 0;
1771 }
1772 
1773 static void nlattr_set(struct nlattr *attr, u8 val,
1774 		       const struct ovs_len_tbl *tbl)
1775 {
1776 	struct nlattr *nla;
1777 	int rem;
1778 
1779 	/* The nlattr stream should already have been validated */
1780 	nla_for_each_nested(nla, attr, rem) {
1781 		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1782 			nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1783 		else
1784 			memset(nla_data(nla), val, nla_len(nla));
1785 
1786 		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1787 			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1788 	}
1789 }
1790 
1791 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1792 {
1793 	nlattr_set(attr, val, ovs_key_lens);
1794 }
1795 
1796 /**
1797  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1798  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1799  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1800  * does not include any don't care bit.
1801  * @net: Used to determine per-namespace field support.
1802  * @match: receives the extracted flow match information.
1803  * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1804  * sequence. The fields should of the packet that triggered the creation
1805  * of this flow.
1806  * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_*
1807  * Netlink attribute specifies the mask field of the wildcarded flow.
1808  * @log: Boolean to allow kernel error logging.  Normally true, but when
1809  * probing for feature compatibility this should be passed in as false to
1810  * suppress unnecessary error logging.
1811  */
1812 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1813 		      const struct nlattr *nla_key,
1814 		      const struct nlattr *nla_mask,
1815 		      bool log)
1816 {
1817 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1818 	struct nlattr *newmask = NULL;
1819 	u64 key_attrs = 0;
1820 	u64 mask_attrs = 0;
1821 	int err;
1822 
1823 	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1824 	if (err)
1825 		return err;
1826 
1827 	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1828 	if (err)
1829 		return err;
1830 
1831 	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1832 	if (err)
1833 		return err;
1834 
1835 	if (match->mask) {
1836 		if (!nla_mask) {
1837 			/* Create an exact match mask. We need to set to 0xff
1838 			 * all the 'match->mask' fields that have been touched
1839 			 * in 'match->key'. We cannot simply memset
1840 			 * 'match->mask', because padding bytes and fields not
1841 			 * specified in 'match->key' should be left to 0.
1842 			 * Instead, we use a stream of netlink attributes,
1843 			 * copied from 'key' and set to 0xff.
1844 			 * ovs_key_from_nlattrs() will take care of filling
1845 			 * 'match->mask' appropriately.
1846 			 */
1847 			newmask = kmemdup(nla_key,
1848 					  nla_total_size(nla_len(nla_key)),
1849 					  GFP_KERNEL);
1850 			if (!newmask)
1851 				return -ENOMEM;
1852 
1853 			mask_set_nlattr(newmask, 0xff);
1854 
1855 			/* The userspace does not send tunnel attributes that
1856 			 * are 0, but we should not wildcard them nonetheless.
1857 			 */
1858 			if (match->key->tun_proto)
1859 				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1860 							 0xff, true);
1861 
1862 			nla_mask = newmask;
1863 		}
1864 
1865 		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1866 		if (err)
1867 			goto free_newmask;
1868 
1869 		/* Always match on tci. */
1870 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1871 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1872 
1873 		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1874 		if (err)
1875 			goto free_newmask;
1876 
1877 		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1878 					   log);
1879 		if (err)
1880 			goto free_newmask;
1881 	}
1882 
1883 	if (!match_validate(match, key_attrs, mask_attrs, log))
1884 		err = -EINVAL;
1885 
1886 free_newmask:
1887 	kfree(newmask);
1888 	return err;
1889 }
1890 
1891 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1892 {
1893 	size_t len;
1894 
1895 	if (!attr)
1896 		return 0;
1897 
1898 	len = nla_len(attr);
1899 	if (len < 1 || len > MAX_UFID_LENGTH) {
1900 		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1901 			  nla_len(attr), MAX_UFID_LENGTH);
1902 		return 0;
1903 	}
1904 
1905 	return len;
1906 }
1907 
1908 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1909  * or false otherwise.
1910  */
1911 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1912 		      bool log)
1913 {
1914 	sfid->ufid_len = get_ufid_len(attr, log);
1915 	if (sfid->ufid_len)
1916 		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1917 
1918 	return sfid->ufid_len;
1919 }
1920 
1921 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1922 			   const struct sw_flow_key *key, bool log)
1923 {
1924 	struct sw_flow_key *new_key;
1925 
1926 	if (ovs_nla_get_ufid(sfid, ufid, log))
1927 		return 0;
1928 
1929 	/* If UFID was not provided, use unmasked key. */
1930 	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1931 	if (!new_key)
1932 		return -ENOMEM;
1933 	memcpy(new_key, key, sizeof(*key));
1934 	sfid->unmasked_key = new_key;
1935 
1936 	return 0;
1937 }
1938 
1939 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1940 {
1941 	return attr ? nla_get_u32(attr) : 0;
1942 }
1943 
1944 /**
1945  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1946  * @net: Network namespace.
1947  * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1948  * metadata.
1949  * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1950  * attributes.
1951  * @attrs: Bit mask for the netlink attributes included in @a.
1952  * @log: Boolean to allow kernel error logging.  Normally true, but when
1953  * probing for feature compatibility this should be passed in as false to
1954  * suppress unnecessary error logging.
1955  *
1956  * This parses a series of Netlink attributes that form a flow key, which must
1957  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1958  * get the metadata, that is, the parts of the flow key that cannot be
1959  * extracted from the packet itself.
1960  *
1961  * This must be called before the packet key fields are filled in 'key'.
1962  */
1963 
1964 int ovs_nla_get_flow_metadata(struct net *net,
1965 			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1966 			      u64 attrs, struct sw_flow_key *key, bool log)
1967 {
1968 	struct sw_flow_match match;
1969 
1970 	memset(&match, 0, sizeof(match));
1971 	match.key = key;
1972 
1973 	key->ct_state = 0;
1974 	key->ct_zone = 0;
1975 	key->ct_orig_proto = 0;
1976 	memset(&key->ct, 0, sizeof(key->ct));
1977 	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1978 	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1979 
1980 	key->phy.in_port = DP_MAX_PORTS;
1981 
1982 	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1983 }
1984 
1985 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1986 			    bool is_mask)
1987 {
1988 	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1989 
1990 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1991 	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1992 		return -EMSGSIZE;
1993 	return 0;
1994 }
1995 
1996 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1997 			     struct sk_buff *skb)
1998 {
1999 	struct nlattr *start;
2000 
2001 	start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
2002 	if (!start)
2003 		return -EMSGSIZE;
2004 
2005 	if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
2006 		goto nla_put_failure;
2007 
2008 	if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
2009 		if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
2010 			    sizeof(nsh->context), nsh->context))
2011 			goto nla_put_failure;
2012 	}
2013 
2014 	/* Don't support MD type 2 yet */
2015 
2016 	nla_nest_end(skb, start);
2017 
2018 	return 0;
2019 
2020 nla_put_failure:
2021 	return -EMSGSIZE;
2022 }
2023 
2024 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
2025 			     const struct sw_flow_key *output, bool is_mask,
2026 			     struct sk_buff *skb)
2027 {
2028 	struct ovs_key_ethernet *eth_key;
2029 	struct nlattr *nla;
2030 	struct nlattr *encap = NULL;
2031 	struct nlattr *in_encap = NULL;
2032 
2033 	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
2034 		goto nla_put_failure;
2035 
2036 	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
2037 		goto nla_put_failure;
2038 
2039 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
2040 		goto nla_put_failure;
2041 
2042 	if ((swkey->tun_proto || is_mask)) {
2043 		const void *opts = NULL;
2044 
2045 		if (ip_tunnel_is_options_present(output->tun_key.tun_flags))
2046 			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2047 
2048 		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2049 				     swkey->tun_opts_len, swkey->tun_proto, 0))
2050 			goto nla_put_failure;
2051 	}
2052 
2053 	if (swkey->phy.in_port == DP_MAX_PORTS) {
2054 		if (is_mask && (output->phy.in_port == 0xffff))
2055 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2056 				goto nla_put_failure;
2057 	} else {
2058 		u16 upper_u16;
2059 		upper_u16 = !is_mask ? 0 : 0xffff;
2060 
2061 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2062 				(upper_u16 << 16) | output->phy.in_port))
2063 			goto nla_put_failure;
2064 	}
2065 
2066 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2067 		goto nla_put_failure;
2068 
2069 	if (ovs_ct_put_key(swkey, output, skb))
2070 		goto nla_put_failure;
2071 
2072 	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2073 		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2074 		if (!nla)
2075 			goto nla_put_failure;
2076 
2077 		eth_key = nla_data(nla);
2078 		ether_addr_copy(eth_key->eth_src, output->eth.src);
2079 		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2080 
2081 		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2082 			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2083 				goto nla_put_failure;
2084 			encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2085 			if (!swkey->eth.vlan.tci)
2086 				goto unencap;
2087 
2088 			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2089 				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2090 					goto nla_put_failure;
2091 				in_encap = nla_nest_start_noflag(skb,
2092 								 OVS_KEY_ATTR_ENCAP);
2093 				if (!swkey->eth.cvlan.tci)
2094 					goto unencap;
2095 			}
2096 		}
2097 
2098 		if (swkey->eth.type == htons(ETH_P_802_2)) {
2099 			/*
2100 			* Ethertype 802.2 is represented in the netlink with omitted
2101 			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2102 			* 0xffff in the mask attribute.  Ethertype can also
2103 			* be wildcarded.
2104 			*/
2105 			if (is_mask && output->eth.type)
2106 				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2107 							output->eth.type))
2108 					goto nla_put_failure;
2109 			goto unencap;
2110 		}
2111 	}
2112 
2113 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2114 		goto nla_put_failure;
2115 
2116 	if (eth_type_vlan(swkey->eth.type)) {
2117 		/* There are 3 VLAN tags, we don't know anything about the rest
2118 		 * of the packet, so truncate here.
2119 		 */
2120 		WARN_ON_ONCE(!(encap && in_encap));
2121 		goto unencap;
2122 	}
2123 
2124 	if (swkey->eth.type == htons(ETH_P_IP)) {
2125 		struct ovs_key_ipv4 *ipv4_key;
2126 
2127 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2128 		if (!nla)
2129 			goto nla_put_failure;
2130 		ipv4_key = nla_data(nla);
2131 		ipv4_key->ipv4_src = output->ipv4.addr.src;
2132 		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2133 		ipv4_key->ipv4_proto = output->ip.proto;
2134 		ipv4_key->ipv4_tos = output->ip.tos;
2135 		ipv4_key->ipv4_ttl = output->ip.ttl;
2136 		ipv4_key->ipv4_frag = output->ip.frag;
2137 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2138 		struct ovs_key_ipv6 *ipv6_key;
2139 		struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
2140 
2141 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2142 		if (!nla)
2143 			goto nla_put_failure;
2144 		ipv6_key = nla_data(nla);
2145 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2146 				sizeof(ipv6_key->ipv6_src));
2147 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2148 				sizeof(ipv6_key->ipv6_dst));
2149 		ipv6_key->ipv6_label = output->ipv6.label;
2150 		ipv6_key->ipv6_proto = output->ip.proto;
2151 		ipv6_key->ipv6_tclass = output->ip.tos;
2152 		ipv6_key->ipv6_hlimit = output->ip.ttl;
2153 		ipv6_key->ipv6_frag = output->ip.frag;
2154 
2155 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6_EXTHDRS,
2156 				  sizeof(*ipv6_exthdrs_key));
2157 		if (!nla)
2158 			goto nla_put_failure;
2159 		ipv6_exthdrs_key = nla_data(nla);
2160 		ipv6_exthdrs_key->hdrs = output->ipv6.exthdrs;
2161 	} else if (swkey->eth.type == htons(ETH_P_NSH)) {
2162 		if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2163 			goto nla_put_failure;
2164 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
2165 		   swkey->eth.type == htons(ETH_P_RARP)) {
2166 		struct ovs_key_arp *arp_key;
2167 
2168 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2169 		if (!nla)
2170 			goto nla_put_failure;
2171 		arp_key = nla_data(nla);
2172 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
2173 		arp_key->arp_sip = output->ipv4.addr.src;
2174 		arp_key->arp_tip = output->ipv4.addr.dst;
2175 		arp_key->arp_op = htons(output->ip.proto);
2176 		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2177 		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2178 	} else if (eth_p_mpls(swkey->eth.type)) {
2179 		u8 i, num_labels;
2180 		struct ovs_key_mpls *mpls_key;
2181 
2182 		num_labels = hweight_long(output->mpls.num_labels_mask);
2183 		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS,
2184 				  num_labels * sizeof(*mpls_key));
2185 		if (!nla)
2186 			goto nla_put_failure;
2187 
2188 		mpls_key = nla_data(nla);
2189 		for (i = 0; i < num_labels; i++)
2190 			mpls_key[i].mpls_lse = output->mpls.lse[i];
2191 	}
2192 
2193 	if ((swkey->eth.type == htons(ETH_P_IP) ||
2194 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
2195 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2196 
2197 		if (swkey->ip.proto == IPPROTO_TCP) {
2198 			struct ovs_key_tcp *tcp_key;
2199 
2200 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2201 			if (!nla)
2202 				goto nla_put_failure;
2203 			tcp_key = nla_data(nla);
2204 			tcp_key->tcp_src = output->tp.src;
2205 			tcp_key->tcp_dst = output->tp.dst;
2206 			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2207 					 output->tp.flags))
2208 				goto nla_put_failure;
2209 		} else if (swkey->ip.proto == IPPROTO_UDP) {
2210 			struct ovs_key_udp *udp_key;
2211 
2212 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2213 			if (!nla)
2214 				goto nla_put_failure;
2215 			udp_key = nla_data(nla);
2216 			udp_key->udp_src = output->tp.src;
2217 			udp_key->udp_dst = output->tp.dst;
2218 		} else if (swkey->ip.proto == IPPROTO_SCTP) {
2219 			struct ovs_key_sctp *sctp_key;
2220 
2221 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2222 			if (!nla)
2223 				goto nla_put_failure;
2224 			sctp_key = nla_data(nla);
2225 			sctp_key->sctp_src = output->tp.src;
2226 			sctp_key->sctp_dst = output->tp.dst;
2227 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
2228 			   swkey->ip.proto == IPPROTO_ICMP) {
2229 			struct ovs_key_icmp *icmp_key;
2230 
2231 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2232 			if (!nla)
2233 				goto nla_put_failure;
2234 			icmp_key = nla_data(nla);
2235 			icmp_key->icmp_type = ntohs(output->tp.src);
2236 			icmp_key->icmp_code = ntohs(output->tp.dst);
2237 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2238 			   swkey->ip.proto == IPPROTO_ICMPV6) {
2239 			struct ovs_key_icmpv6 *icmpv6_key;
2240 
2241 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2242 						sizeof(*icmpv6_key));
2243 			if (!nla)
2244 				goto nla_put_failure;
2245 			icmpv6_key = nla_data(nla);
2246 			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2247 			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2248 
2249 			if (swkey->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
2250 			    swkey->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
2251 				struct ovs_key_nd *nd_key;
2252 
2253 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2254 				if (!nla)
2255 					goto nla_put_failure;
2256 				nd_key = nla_data(nla);
2257 				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2258 							sizeof(nd_key->nd_target));
2259 				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2260 				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2261 			}
2262 		}
2263 	}
2264 
2265 unencap:
2266 	if (in_encap)
2267 		nla_nest_end(skb, in_encap);
2268 	if (encap)
2269 		nla_nest_end(skb, encap);
2270 
2271 	return 0;
2272 
2273 nla_put_failure:
2274 	return -EMSGSIZE;
2275 }
2276 
2277 int ovs_nla_put_key(const struct sw_flow_key *swkey,
2278 		    const struct sw_flow_key *output, int attr, bool is_mask,
2279 		    struct sk_buff *skb)
2280 {
2281 	int err;
2282 	struct nlattr *nla;
2283 
2284 	nla = nla_nest_start_noflag(skb, attr);
2285 	if (!nla)
2286 		return -EMSGSIZE;
2287 	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2288 	if (err)
2289 		return err;
2290 	nla_nest_end(skb, nla);
2291 
2292 	return 0;
2293 }
2294 
2295 /* Called with ovs_mutex or RCU read lock. */
2296 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2297 {
2298 	if (ovs_identifier_is_ufid(&flow->id))
2299 		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2300 			       flow->id.ufid);
2301 
2302 	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2303 			       OVS_FLOW_ATTR_KEY, false, skb);
2304 }
2305 
2306 /* Called with ovs_mutex or RCU read lock. */
2307 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2308 {
2309 	return ovs_nla_put_key(&flow->key, &flow->key,
2310 				OVS_FLOW_ATTR_KEY, false, skb);
2311 }
2312 
2313 /* Called with ovs_mutex or RCU read lock. */
2314 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2315 {
2316 	return ovs_nla_put_key(&flow->key, &flow->mask->key,
2317 				OVS_FLOW_ATTR_MASK, true, skb);
2318 }
2319 
2320 #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
2321 
2322 static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2323 {
2324 	struct sw_flow_actions *sfa;
2325 
2326 	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2327 
2328 	sfa = kmalloc(kmalloc_size_roundup(sizeof(*sfa) + size), GFP_KERNEL);
2329 	if (!sfa)
2330 		return ERR_PTR(-ENOMEM);
2331 
2332 	sfa->actions_len = 0;
2333 	return sfa;
2334 }
2335 
2336 static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len);
2337 
2338 static void ovs_nla_free_check_pkt_len_action(const struct nlattr *action)
2339 {
2340 	const struct nlattr *a;
2341 	int rem;
2342 
2343 	nla_for_each_nested(a, action, rem) {
2344 		switch (nla_type(a)) {
2345 		case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL:
2346 		case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER:
2347 			ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2348 			break;
2349 		}
2350 	}
2351 }
2352 
2353 static void ovs_nla_free_clone_action(const struct nlattr *action)
2354 {
2355 	const struct nlattr *a = nla_data(action);
2356 	int rem = nla_len(action);
2357 
2358 	switch (nla_type(a)) {
2359 	case OVS_CLONE_ATTR_EXEC:
2360 		/* The real list of actions follows this attribute. */
2361 		a = nla_next(a, &rem);
2362 		ovs_nla_free_nested_actions(a, rem);
2363 		break;
2364 	}
2365 }
2366 
2367 static void ovs_nla_free_dec_ttl_action(const struct nlattr *action)
2368 {
2369 	const struct nlattr *a = nla_data(action);
2370 
2371 	switch (nla_type(a)) {
2372 	case OVS_DEC_TTL_ATTR_ACTION:
2373 		ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2374 		break;
2375 	}
2376 }
2377 
2378 static void ovs_nla_free_sample_action(const struct nlattr *action)
2379 {
2380 	const struct nlattr *a = nla_data(action);
2381 	int rem = nla_len(action);
2382 
2383 	switch (nla_type(a)) {
2384 	case OVS_SAMPLE_ATTR_ARG:
2385 		/* The real list of actions follows this attribute. */
2386 		a = nla_next(a, &rem);
2387 		ovs_nla_free_nested_actions(a, rem);
2388 		break;
2389 	}
2390 }
2391 
2392 static void ovs_nla_free_set_action(const struct nlattr *a)
2393 {
2394 	const struct nlattr *ovs_key = nla_data(a);
2395 	struct ovs_tunnel_info *ovs_tun;
2396 
2397 	switch (nla_type(ovs_key)) {
2398 	case OVS_KEY_ATTR_TUNNEL_INFO:
2399 		ovs_tun = nla_data(ovs_key);
2400 		dst_release((struct dst_entry *)ovs_tun->tun_dst);
2401 		break;
2402 	}
2403 }
2404 
2405 static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len)
2406 {
2407 	const struct nlattr *a;
2408 	int rem;
2409 
2410 	/* Whenever new actions are added, the need to update this
2411 	 * function should be considered.
2412 	 */
2413 	BUILD_BUG_ON(OVS_ACTION_ATTR_MAX != 25);
2414 
2415 	if (!actions)
2416 		return;
2417 
2418 	nla_for_each_attr(a, actions, len, rem) {
2419 		switch (nla_type(a)) {
2420 		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
2421 			ovs_nla_free_check_pkt_len_action(a);
2422 			break;
2423 
2424 		case OVS_ACTION_ATTR_CLONE:
2425 			ovs_nla_free_clone_action(a);
2426 			break;
2427 
2428 		case OVS_ACTION_ATTR_CT:
2429 			ovs_ct_free_action(a);
2430 			break;
2431 
2432 		case OVS_ACTION_ATTR_DEC_TTL:
2433 			ovs_nla_free_dec_ttl_action(a);
2434 			break;
2435 
2436 		case OVS_ACTION_ATTR_SAMPLE:
2437 			ovs_nla_free_sample_action(a);
2438 			break;
2439 
2440 		case OVS_ACTION_ATTR_SET:
2441 			ovs_nla_free_set_action(a);
2442 			break;
2443 		}
2444 	}
2445 }
2446 
2447 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2448 {
2449 	if (!sf_acts)
2450 		return;
2451 
2452 	ovs_nla_free_nested_actions(sf_acts->actions, sf_acts->actions_len);
2453 	kfree(sf_acts);
2454 }
2455 
2456 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2457 {
2458 	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2459 }
2460 
2461 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
2462  * The caller must hold rcu_read_lock for this to be sensible. */
2463 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2464 {
2465 	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2466 }
2467 
2468 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2469 				       int attr_len, bool log)
2470 {
2471 
2472 	struct sw_flow_actions *acts;
2473 	int new_acts_size;
2474 	size_t req_size = NLA_ALIGN(attr_len);
2475 	int next_offset = offsetof(struct sw_flow_actions, actions) +
2476 					(*sfa)->actions_len;
2477 
2478 	if (req_size <= (ksize(*sfa) - next_offset))
2479 		goto out;
2480 
2481 	new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2482 
2483 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2484 		if ((next_offset + req_size) > MAX_ACTIONS_BUFSIZE) {
2485 			OVS_NLERR(log, "Flow action size exceeds max %u",
2486 				  MAX_ACTIONS_BUFSIZE);
2487 			return ERR_PTR(-EMSGSIZE);
2488 		}
2489 		new_acts_size = MAX_ACTIONS_BUFSIZE;
2490 	}
2491 
2492 	acts = nla_alloc_flow_actions(new_acts_size);
2493 	if (IS_ERR(acts))
2494 		return (void *)acts;
2495 
2496 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2497 	acts->actions_len = (*sfa)->actions_len;
2498 	acts->orig_len = (*sfa)->orig_len;
2499 	kfree(*sfa);
2500 	*sfa = acts;
2501 
2502 out:
2503 	(*sfa)->actions_len += req_size;
2504 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2505 }
2506 
2507 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2508 				   int attrtype, void *data, int len, bool log)
2509 {
2510 	struct nlattr *a;
2511 
2512 	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2513 	if (IS_ERR(a))
2514 		return a;
2515 
2516 	a->nla_type = attrtype;
2517 	a->nla_len = nla_attr_size(len);
2518 
2519 	if (data)
2520 		memcpy(nla_data(a), data, len);
2521 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2522 
2523 	return a;
2524 }
2525 
2526 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2527 		       int len, bool log)
2528 {
2529 	struct nlattr *a;
2530 
2531 	a = __add_action(sfa, attrtype, data, len, log);
2532 
2533 	return PTR_ERR_OR_ZERO(a);
2534 }
2535 
2536 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2537 					  int attrtype, bool log)
2538 {
2539 	int used = (*sfa)->actions_len;
2540 	int err;
2541 
2542 	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2543 	if (err)
2544 		return err;
2545 
2546 	return used;
2547 }
2548 
2549 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2550 					 int st_offset)
2551 {
2552 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2553 							       st_offset);
2554 
2555 	a->nla_len = sfa->actions_len - st_offset;
2556 }
2557 
2558 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2559 				  const struct sw_flow_key *key,
2560 				  struct sw_flow_actions **sfa,
2561 				  __be16 eth_type, __be16 vlan_tci,
2562 				  u32 mpls_label_count, bool log,
2563 				  u32 depth);
2564 
2565 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2566 				    const struct sw_flow_key *key,
2567 				    struct sw_flow_actions **sfa,
2568 				    __be16 eth_type, __be16 vlan_tci,
2569 				    u32 mpls_label_count, bool log, bool last,
2570 				    u32 depth)
2571 {
2572 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2573 	const struct nlattr *probability, *actions;
2574 	const struct nlattr *a;
2575 	int rem, start, err;
2576 	struct sample_arg arg;
2577 
2578 	memset(attrs, 0, sizeof(attrs));
2579 	nla_for_each_nested(a, attr, rem) {
2580 		int type = nla_type(a);
2581 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2582 			return -EINVAL;
2583 		attrs[type] = a;
2584 	}
2585 	if (rem)
2586 		return -EINVAL;
2587 
2588 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2589 	if (!probability || nla_len(probability) != sizeof(u32))
2590 		return -EINVAL;
2591 
2592 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2593 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2594 		return -EINVAL;
2595 
2596 	/* validation done, copy sample action. */
2597 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2598 	if (start < 0)
2599 		return start;
2600 
2601 	/* When both skb and flow may be changed, put the sample
2602 	 * into a deferred fifo. On the other hand, if only skb
2603 	 * may be modified, the actions can be executed in place.
2604 	 *
2605 	 * Do this analysis at the flow installation time.
2606 	 * Set 'clone_action->exec' to true if the actions can be
2607 	 * executed without being deferred.
2608 	 *
2609 	 * If the sample is the last action, it can always be excuted
2610 	 * rather than deferred.
2611 	 */
2612 	arg.exec = last || !actions_may_change_flow(actions);
2613 	arg.probability = nla_get_u32(probability);
2614 
2615 	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2616 				 log);
2617 	if (err)
2618 		return err;
2619 
2620 	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2621 				     eth_type, vlan_tci, mpls_label_count, log,
2622 				     depth + 1);
2623 
2624 	if (err)
2625 		return err;
2626 
2627 	add_nested_action_end(*sfa, start);
2628 
2629 	return 0;
2630 }
2631 
2632 static int validate_and_copy_dec_ttl(struct net *net,
2633 				     const struct nlattr *attr,
2634 				     const struct sw_flow_key *key,
2635 				     struct sw_flow_actions **sfa,
2636 				     __be16 eth_type, __be16 vlan_tci,
2637 				     u32 mpls_label_count, bool log,
2638 				     u32 depth)
2639 {
2640 	const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1];
2641 	int start, action_start, err, rem;
2642 	const struct nlattr *a, *actions;
2643 
2644 	memset(attrs, 0, sizeof(attrs));
2645 	nla_for_each_nested(a, attr, rem) {
2646 		int type = nla_type(a);
2647 
2648 		/* Ignore unknown attributes to be future proof. */
2649 		if (type > OVS_DEC_TTL_ATTR_MAX)
2650 			continue;
2651 
2652 		if (!type || attrs[type]) {
2653 			OVS_NLERR(log, "Duplicate or invalid key (type %d).",
2654 				  type);
2655 			return -EINVAL;
2656 		}
2657 
2658 		attrs[type] = a;
2659 	}
2660 
2661 	if (rem) {
2662 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
2663 		return -EINVAL;
2664 	}
2665 
2666 	actions = attrs[OVS_DEC_TTL_ATTR_ACTION];
2667 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) {
2668 		OVS_NLERR(log, "Missing valid actions attribute.");
2669 		return -EINVAL;
2670 	}
2671 
2672 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log);
2673 	if (start < 0)
2674 		return start;
2675 
2676 	action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log);
2677 	if (action_start < 0)
2678 		return action_start;
2679 
2680 	err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type,
2681 				     vlan_tci, mpls_label_count, log,
2682 				     depth + 1);
2683 	if (err)
2684 		return err;
2685 
2686 	add_nested_action_end(*sfa, action_start);
2687 	add_nested_action_end(*sfa, start);
2688 	return 0;
2689 }
2690 
2691 static int validate_and_copy_clone(struct net *net,
2692 				   const struct nlattr *attr,
2693 				   const struct sw_flow_key *key,
2694 				   struct sw_flow_actions **sfa,
2695 				   __be16 eth_type, __be16 vlan_tci,
2696 				   u32 mpls_label_count, bool log, bool last,
2697 				   u32 depth)
2698 {
2699 	int start, err;
2700 	u32 exec;
2701 
2702 	if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2703 		return -EINVAL;
2704 
2705 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2706 	if (start < 0)
2707 		return start;
2708 
2709 	exec = last || !actions_may_change_flow(attr);
2710 
2711 	err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2712 				 sizeof(exec), log);
2713 	if (err)
2714 		return err;
2715 
2716 	err = __ovs_nla_copy_actions(net, attr, key, sfa,
2717 				     eth_type, vlan_tci, mpls_label_count, log,
2718 				     depth + 1);
2719 	if (err)
2720 		return err;
2721 
2722 	add_nested_action_end(*sfa, start);
2723 
2724 	return 0;
2725 }
2726 
2727 void ovs_match_init(struct sw_flow_match *match,
2728 		    struct sw_flow_key *key,
2729 		    bool reset_key,
2730 		    struct sw_flow_mask *mask)
2731 {
2732 	memset(match, 0, sizeof(*match));
2733 	match->key = key;
2734 	match->mask = mask;
2735 
2736 	if (reset_key)
2737 		memset(key, 0, sizeof(*key));
2738 
2739 	if (mask) {
2740 		memset(&mask->key, 0, sizeof(mask->key));
2741 		mask->range.start = mask->range.end = 0;
2742 	}
2743 }
2744 
2745 static int validate_geneve_opts(struct sw_flow_key *key)
2746 {
2747 	struct geneve_opt *option;
2748 	int opts_len = key->tun_opts_len;
2749 	bool crit_opt = false;
2750 
2751 	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2752 	while (opts_len > 0) {
2753 		int len;
2754 
2755 		if (opts_len < sizeof(*option))
2756 			return -EINVAL;
2757 
2758 		len = sizeof(*option) + option->length * 4;
2759 		if (len > opts_len)
2760 			return -EINVAL;
2761 
2762 		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2763 
2764 		option = (struct geneve_opt *)((u8 *)option + len);
2765 		opts_len -= len;
2766 	}
2767 
2768 	if (crit_opt)
2769 		__set_bit(IP_TUNNEL_CRIT_OPT_BIT, key->tun_key.tun_flags);
2770 
2771 	return 0;
2772 }
2773 
2774 static int validate_and_copy_set_tun(const struct nlattr *attr,
2775 				     struct sw_flow_actions **sfa, bool log)
2776 {
2777 	IP_TUNNEL_DECLARE_FLAGS(dst_opt_type) = { };
2778 	struct sw_flow_match match;
2779 	struct sw_flow_key key;
2780 	struct metadata_dst *tun_dst;
2781 	struct ip_tunnel_info *tun_info;
2782 	struct ovs_tunnel_info *ovs_tun;
2783 	struct nlattr *a;
2784 	int err = 0, start, opts_type;
2785 
2786 	ovs_match_init(&match, &key, true, NULL);
2787 	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2788 	if (opts_type < 0)
2789 		return opts_type;
2790 
2791 	if (key.tun_opts_len) {
2792 		switch (opts_type) {
2793 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2794 			err = validate_geneve_opts(&key);
2795 			if (err < 0)
2796 				return err;
2797 
2798 			__set_bit(IP_TUNNEL_GENEVE_OPT_BIT, dst_opt_type);
2799 			break;
2800 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2801 			__set_bit(IP_TUNNEL_VXLAN_OPT_BIT, dst_opt_type);
2802 			break;
2803 		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2804 			__set_bit(IP_TUNNEL_ERSPAN_OPT_BIT, dst_opt_type);
2805 			break;
2806 		}
2807 	}
2808 
2809 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2810 	if (start < 0)
2811 		return start;
2812 
2813 	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2814 				     GFP_KERNEL);
2815 
2816 	if (!tun_dst)
2817 		return -ENOMEM;
2818 
2819 	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2820 	if (err) {
2821 		dst_release((struct dst_entry *)tun_dst);
2822 		return err;
2823 	}
2824 
2825 	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2826 			 sizeof(*ovs_tun), log);
2827 	if (IS_ERR(a)) {
2828 		dst_release((struct dst_entry *)tun_dst);
2829 		return PTR_ERR(a);
2830 	}
2831 
2832 	ovs_tun = nla_data(a);
2833 	ovs_tun->tun_dst = tun_dst;
2834 
2835 	tun_info = &tun_dst->u.tun_info;
2836 	tun_info->mode = IP_TUNNEL_INFO_TX;
2837 	if (key.tun_proto == AF_INET6)
2838 		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2839 	else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2840 		tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2841 	tun_info->key = key.tun_key;
2842 
2843 	/* We need to store the options in the action itself since
2844 	 * everything else will go away after flow setup. We can append
2845 	 * it to tun_info and then point there.
2846 	 */
2847 	ip_tunnel_info_opts_set(tun_info,
2848 				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2849 				key.tun_opts_len, dst_opt_type);
2850 	add_nested_action_end(*sfa, start);
2851 
2852 	return err;
2853 }
2854 
2855 static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2856 			 bool is_push_nsh, bool log)
2857 {
2858 	struct sw_flow_match match;
2859 	struct sw_flow_key key;
2860 	int ret = 0;
2861 
2862 	ovs_match_init(&match, &key, true, NULL);
2863 	ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2864 				      is_push_nsh, log);
2865 	return !ret;
2866 }
2867 
2868 /* Return false if there are any non-masked bits set.
2869  * Mask follows data immediately, before any netlink padding.
2870  */
2871 static bool validate_masked(u8 *data, int len)
2872 {
2873 	u8 *mask = data + len;
2874 
2875 	while (len--)
2876 		if (*data++ & ~*mask++)
2877 			return false;
2878 
2879 	return true;
2880 }
2881 
2882 static int validate_set(const struct nlattr *a,
2883 			const struct sw_flow_key *flow_key,
2884 			struct sw_flow_actions **sfa, bool *skip_copy,
2885 			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2886 {
2887 	const struct nlattr *ovs_key = nla_data(a);
2888 	int key_type = nla_type(ovs_key);
2889 	size_t key_len;
2890 
2891 	/* There can be only one key in a action */
2892 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2893 		return -EINVAL;
2894 
2895 	key_len = nla_len(ovs_key);
2896 	if (masked)
2897 		key_len /= 2;
2898 
2899 	if (key_type > OVS_KEY_ATTR_MAX ||
2900 	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2901 		return -EINVAL;
2902 
2903 	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2904 		return -EINVAL;
2905 
2906 	switch (key_type) {
2907 	case OVS_KEY_ATTR_PRIORITY:
2908 	case OVS_KEY_ATTR_SKB_MARK:
2909 	case OVS_KEY_ATTR_CT_MARK:
2910 	case OVS_KEY_ATTR_CT_LABELS:
2911 		break;
2912 
2913 	case OVS_KEY_ATTR_ETHERNET:
2914 		if (mac_proto != MAC_PROTO_ETHERNET)
2915 			return -EINVAL;
2916 		break;
2917 
2918 	case OVS_KEY_ATTR_TUNNEL: {
2919 		int err;
2920 
2921 		if (masked)
2922 			return -EINVAL; /* Masked tunnel set not supported. */
2923 
2924 		*skip_copy = true;
2925 		err = validate_and_copy_set_tun(a, sfa, log);
2926 		if (err)
2927 			return err;
2928 		break;
2929 	}
2930 	case OVS_KEY_ATTR_IPV4: {
2931 		const struct ovs_key_ipv4 *ipv4_key;
2932 
2933 		if (eth_type != htons(ETH_P_IP))
2934 			return -EINVAL;
2935 
2936 		ipv4_key = nla_data(ovs_key);
2937 
2938 		if (masked) {
2939 			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2940 
2941 			/* Non-writeable fields. */
2942 			if (mask->ipv4_proto || mask->ipv4_frag)
2943 				return -EINVAL;
2944 		} else {
2945 			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2946 				return -EINVAL;
2947 
2948 			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2949 				return -EINVAL;
2950 		}
2951 		break;
2952 	}
2953 	case OVS_KEY_ATTR_IPV6: {
2954 		const struct ovs_key_ipv6 *ipv6_key;
2955 
2956 		if (eth_type != htons(ETH_P_IPV6))
2957 			return -EINVAL;
2958 
2959 		ipv6_key = nla_data(ovs_key);
2960 
2961 		if (masked) {
2962 			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2963 
2964 			/* Non-writeable fields. */
2965 			if (mask->ipv6_proto || mask->ipv6_frag)
2966 				return -EINVAL;
2967 
2968 			/* Invalid bits in the flow label mask? */
2969 			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2970 				return -EINVAL;
2971 		} else {
2972 			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2973 				return -EINVAL;
2974 
2975 			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2976 				return -EINVAL;
2977 		}
2978 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2979 			return -EINVAL;
2980 
2981 		break;
2982 	}
2983 	case OVS_KEY_ATTR_TCP:
2984 		if ((eth_type != htons(ETH_P_IP) &&
2985 		     eth_type != htons(ETH_P_IPV6)) ||
2986 		    flow_key->ip.proto != IPPROTO_TCP)
2987 			return -EINVAL;
2988 
2989 		break;
2990 
2991 	case OVS_KEY_ATTR_UDP:
2992 		if ((eth_type != htons(ETH_P_IP) &&
2993 		     eth_type != htons(ETH_P_IPV6)) ||
2994 		    flow_key->ip.proto != IPPROTO_UDP)
2995 			return -EINVAL;
2996 
2997 		break;
2998 
2999 	case OVS_KEY_ATTR_MPLS:
3000 		if (!eth_p_mpls(eth_type))
3001 			return -EINVAL;
3002 		break;
3003 
3004 	case OVS_KEY_ATTR_SCTP:
3005 		if ((eth_type != htons(ETH_P_IP) &&
3006 		     eth_type != htons(ETH_P_IPV6)) ||
3007 		    flow_key->ip.proto != IPPROTO_SCTP)
3008 			return -EINVAL;
3009 
3010 		break;
3011 
3012 	case OVS_KEY_ATTR_NSH:
3013 		if (eth_type != htons(ETH_P_NSH))
3014 			return -EINVAL;
3015 		if (!validate_nsh(nla_data(a), masked, false, log))
3016 			return -EINVAL;
3017 		break;
3018 
3019 	default:
3020 		return -EINVAL;
3021 	}
3022 
3023 	/* Convert non-masked non-tunnel set actions to masked set actions. */
3024 	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
3025 		int start, len = key_len * 2;
3026 		struct nlattr *at;
3027 
3028 		*skip_copy = true;
3029 
3030 		start = add_nested_action_start(sfa,
3031 						OVS_ACTION_ATTR_SET_TO_MASKED,
3032 						log);
3033 		if (start < 0)
3034 			return start;
3035 
3036 		at = __add_action(sfa, key_type, NULL, len, log);
3037 		if (IS_ERR(at))
3038 			return PTR_ERR(at);
3039 
3040 		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
3041 		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
3042 		/* Clear non-writeable bits from otherwise writeable fields. */
3043 		if (key_type == OVS_KEY_ATTR_IPV6) {
3044 			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
3045 
3046 			mask->ipv6_label &= htonl(0x000FFFFF);
3047 		}
3048 		add_nested_action_end(*sfa, start);
3049 	}
3050 
3051 	return 0;
3052 }
3053 
3054 static int validate_userspace(const struct nlattr *attr)
3055 {
3056 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
3057 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
3058 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
3059 		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
3060 	};
3061 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
3062 	int error;
3063 
3064 	error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
3065 					    userspace_policy, NULL);
3066 	if (error)
3067 		return error;
3068 
3069 	if (!a[OVS_USERSPACE_ATTR_PID] ||
3070 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
3071 		return -EINVAL;
3072 
3073 	return 0;
3074 }
3075 
3076 static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
3077 	[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
3078 	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
3079 	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
3080 };
3081 
3082 static int validate_and_copy_check_pkt_len(struct net *net,
3083 					   const struct nlattr *attr,
3084 					   const struct sw_flow_key *key,
3085 					   struct sw_flow_actions **sfa,
3086 					   __be16 eth_type, __be16 vlan_tci,
3087 					   u32 mpls_label_count,
3088 					   bool log, bool last, u32 depth)
3089 {
3090 	const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
3091 	struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
3092 	struct check_pkt_len_arg arg;
3093 	int nested_acts_start;
3094 	int start, err;
3095 
3096 	err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
3097 					  nla_data(attr), nla_len(attr),
3098 					  cpl_policy, NULL);
3099 	if (err)
3100 		return err;
3101 
3102 	if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
3103 	    !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
3104 		return -EINVAL;
3105 
3106 	acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
3107 	acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
3108 
3109 	/* Both the nested action should be present. */
3110 	if (!acts_if_greater || !acts_if_lesser_eq)
3111 		return -EINVAL;
3112 
3113 	/* validation done, copy the nested actions. */
3114 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
3115 					log);
3116 	if (start < 0)
3117 		return start;
3118 
3119 	arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
3120 	arg.exec_for_lesser_equal =
3121 		last || !actions_may_change_flow(acts_if_lesser_eq);
3122 	arg.exec_for_greater =
3123 		last || !actions_may_change_flow(acts_if_greater);
3124 
3125 	err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
3126 				 sizeof(arg), log);
3127 	if (err)
3128 		return err;
3129 
3130 	nested_acts_start = add_nested_action_start(sfa,
3131 		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
3132 	if (nested_acts_start < 0)
3133 		return nested_acts_start;
3134 
3135 	err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
3136 				     eth_type, vlan_tci, mpls_label_count, log,
3137 				     depth + 1);
3138 
3139 	if (err)
3140 		return err;
3141 
3142 	add_nested_action_end(*sfa, nested_acts_start);
3143 
3144 	nested_acts_start = add_nested_action_start(sfa,
3145 		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
3146 	if (nested_acts_start < 0)
3147 		return nested_acts_start;
3148 
3149 	err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
3150 				     eth_type, vlan_tci, mpls_label_count, log,
3151 				     depth + 1);
3152 
3153 	if (err)
3154 		return err;
3155 
3156 	add_nested_action_end(*sfa, nested_acts_start);
3157 	add_nested_action_end(*sfa, start);
3158 	return 0;
3159 }
3160 
3161 static int validate_psample(const struct nlattr *attr)
3162 {
3163 	static const struct nla_policy policy[OVS_PSAMPLE_ATTR_MAX + 1] = {
3164 		[OVS_PSAMPLE_ATTR_GROUP] = { .type = NLA_U32 },
3165 		[OVS_PSAMPLE_ATTR_COOKIE] = {
3166 			.type = NLA_BINARY,
3167 			.len = OVS_PSAMPLE_COOKIE_MAX_SIZE,
3168 		},
3169 	};
3170 	struct nlattr *a[OVS_PSAMPLE_ATTR_MAX + 1];
3171 	int err;
3172 
3173 	if (!IS_ENABLED(CONFIG_PSAMPLE))
3174 		return -EOPNOTSUPP;
3175 
3176 	err = nla_parse_nested(a, OVS_PSAMPLE_ATTR_MAX, attr, policy, NULL);
3177 	if (err)
3178 		return err;
3179 
3180 	return a[OVS_PSAMPLE_ATTR_GROUP] ? 0 : -EINVAL;
3181 }
3182 
3183 static int copy_action(const struct nlattr *from,
3184 		       struct sw_flow_actions **sfa, bool log)
3185 {
3186 	int totlen = NLA_ALIGN(from->nla_len);
3187 	struct nlattr *to;
3188 
3189 	to = reserve_sfa_size(sfa, from->nla_len, log);
3190 	if (IS_ERR(to))
3191 		return PTR_ERR(to);
3192 
3193 	memcpy(to, from, totlen);
3194 	return 0;
3195 }
3196 
3197 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3198 				  const struct sw_flow_key *key,
3199 				  struct sw_flow_actions **sfa,
3200 				  __be16 eth_type, __be16 vlan_tci,
3201 				  u32 mpls_label_count, bool log,
3202 				  u32 depth)
3203 {
3204 	u8 mac_proto = ovs_key_mac_proto(key);
3205 	const struct nlattr *a;
3206 	int rem, err;
3207 
3208 	if (depth > OVS_COPY_ACTIONS_MAX_DEPTH)
3209 		return -EOVERFLOW;
3210 
3211 	nla_for_each_nested(a, attr, rem) {
3212 		/* Expected argument lengths, (u32)-1 for variable length. */
3213 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
3214 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
3215 			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
3216 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
3217 			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
3218 			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
3219 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
3220 			[OVS_ACTION_ATTR_POP_VLAN] = 0,
3221 			[OVS_ACTION_ATTR_SET] = (u32)-1,
3222 			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
3223 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
3224 			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
3225 			[OVS_ACTION_ATTR_CT] = (u32)-1,
3226 			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
3227 			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
3228 			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
3229 			[OVS_ACTION_ATTR_POP_ETH] = 0,
3230 			[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
3231 			[OVS_ACTION_ATTR_POP_NSH] = 0,
3232 			[OVS_ACTION_ATTR_METER] = sizeof(u32),
3233 			[OVS_ACTION_ATTR_CLONE] = (u32)-1,
3234 			[OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
3235 			[OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls),
3236 			[OVS_ACTION_ATTR_DEC_TTL] = (u32)-1,
3237 			[OVS_ACTION_ATTR_DROP] = sizeof(u32),
3238 			[OVS_ACTION_ATTR_PSAMPLE] = (u32)-1,
3239 		};
3240 		const struct ovs_action_push_vlan *vlan;
3241 		int type = nla_type(a);
3242 		bool skip_copy;
3243 
3244 		if (type > OVS_ACTION_ATTR_MAX ||
3245 		    (action_lens[type] != nla_len(a) &&
3246 		     action_lens[type] != (u32)-1))
3247 			return -EINVAL;
3248 
3249 		skip_copy = false;
3250 		switch (type) {
3251 		case OVS_ACTION_ATTR_UNSPEC:
3252 			return -EINVAL;
3253 
3254 		case OVS_ACTION_ATTR_USERSPACE:
3255 			err = validate_userspace(a);
3256 			if (err)
3257 				return err;
3258 			break;
3259 
3260 		case OVS_ACTION_ATTR_OUTPUT:
3261 			if (nla_get_u32(a) >= DP_MAX_PORTS)
3262 				return -EINVAL;
3263 			break;
3264 
3265 		case OVS_ACTION_ATTR_TRUNC: {
3266 			const struct ovs_action_trunc *trunc = nla_data(a);
3267 
3268 			if (trunc->max_len < ETH_HLEN)
3269 				return -EINVAL;
3270 			break;
3271 		}
3272 
3273 		case OVS_ACTION_ATTR_HASH: {
3274 			const struct ovs_action_hash *act_hash = nla_data(a);
3275 
3276 			switch (act_hash->hash_alg) {
3277 			case OVS_HASH_ALG_L4:
3278 				fallthrough;
3279 			case OVS_HASH_ALG_SYM_L4:
3280 				break;
3281 			default:
3282 				return  -EINVAL;
3283 			}
3284 
3285 			break;
3286 		}
3287 
3288 		case OVS_ACTION_ATTR_POP_VLAN:
3289 			if (mac_proto != MAC_PROTO_ETHERNET)
3290 				return -EINVAL;
3291 			vlan_tci = htons(0);
3292 			break;
3293 
3294 		case OVS_ACTION_ATTR_PUSH_VLAN:
3295 			if (mac_proto != MAC_PROTO_ETHERNET)
3296 				return -EINVAL;
3297 			vlan = nla_data(a);
3298 			if (!eth_type_vlan(vlan->vlan_tpid))
3299 				return -EINVAL;
3300 			if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3301 				return -EINVAL;
3302 			vlan_tci = vlan->vlan_tci;
3303 			break;
3304 
3305 		case OVS_ACTION_ATTR_RECIRC:
3306 			break;
3307 
3308 		case OVS_ACTION_ATTR_ADD_MPLS: {
3309 			const struct ovs_action_add_mpls *mpls = nla_data(a);
3310 
3311 			if (!eth_p_mpls(mpls->mpls_ethertype))
3312 				return -EINVAL;
3313 
3314 			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) {
3315 				if (vlan_tci & htons(VLAN_CFI_MASK) ||
3316 				    (eth_type != htons(ETH_P_IP) &&
3317 				     eth_type != htons(ETH_P_IPV6) &&
3318 				     eth_type != htons(ETH_P_ARP) &&
3319 				     eth_type != htons(ETH_P_RARP) &&
3320 				     !eth_p_mpls(eth_type)))
3321 					return -EINVAL;
3322 				mpls_label_count++;
3323 			} else {
3324 				if (mac_proto == MAC_PROTO_ETHERNET) {
3325 					mpls_label_count = 1;
3326 					mac_proto = MAC_PROTO_NONE;
3327 				} else {
3328 					mpls_label_count++;
3329 				}
3330 			}
3331 			eth_type = mpls->mpls_ethertype;
3332 			break;
3333 		}
3334 
3335 		case OVS_ACTION_ATTR_PUSH_MPLS: {
3336 			const struct ovs_action_push_mpls *mpls = nla_data(a);
3337 
3338 			if (!eth_p_mpls(mpls->mpls_ethertype))
3339 				return -EINVAL;
3340 			/* Prohibit push MPLS other than to a white list
3341 			 * for packets that have a known tag order.
3342 			 */
3343 			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3344 			    (eth_type != htons(ETH_P_IP) &&
3345 			     eth_type != htons(ETH_P_IPV6) &&
3346 			     eth_type != htons(ETH_P_ARP) &&
3347 			     eth_type != htons(ETH_P_RARP) &&
3348 			     !eth_p_mpls(eth_type)))
3349 				return -EINVAL;
3350 			eth_type = mpls->mpls_ethertype;
3351 			mpls_label_count++;
3352 			break;
3353 		}
3354 
3355 		case OVS_ACTION_ATTR_POP_MPLS: {
3356 			__be16  proto;
3357 			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3358 			    !eth_p_mpls(eth_type))
3359 				return -EINVAL;
3360 
3361 			/* Disallow subsequent L2.5+ set actions and mpls_pop
3362 			 * actions once the last MPLS label in the packet is
3363 			 * popped as there is no check here to ensure that
3364 			 * the new eth type is valid and thus set actions could
3365 			 * write off the end of the packet or otherwise corrupt
3366 			 * it.
3367 			 *
3368 			 * Support for these actions is planned using packet
3369 			 * recirculation.
3370 			 */
3371 			proto = nla_get_be16(a);
3372 
3373 			if (proto == htons(ETH_P_TEB) &&
3374 			    mac_proto != MAC_PROTO_NONE)
3375 				return -EINVAL;
3376 
3377 			mpls_label_count--;
3378 
3379 			if (!eth_p_mpls(proto) || !mpls_label_count)
3380 				eth_type = htons(0);
3381 			else
3382 				eth_type =  proto;
3383 
3384 			break;
3385 		}
3386 
3387 		case OVS_ACTION_ATTR_SET:
3388 			err = validate_set(a, key, sfa,
3389 					   &skip_copy, mac_proto, eth_type,
3390 					   false, log);
3391 			if (err)
3392 				return err;
3393 			break;
3394 
3395 		case OVS_ACTION_ATTR_SET_MASKED:
3396 			err = validate_set(a, key, sfa,
3397 					   &skip_copy, mac_proto, eth_type,
3398 					   true, log);
3399 			if (err)
3400 				return err;
3401 			break;
3402 
3403 		case OVS_ACTION_ATTR_SAMPLE: {
3404 			bool last = nla_is_last(a, rem);
3405 
3406 			err = validate_and_copy_sample(net, a, key, sfa,
3407 						       eth_type, vlan_tci,
3408 						       mpls_label_count,
3409 						       log, last, depth);
3410 			if (err)
3411 				return err;
3412 			skip_copy = true;
3413 			break;
3414 		}
3415 
3416 		case OVS_ACTION_ATTR_CT:
3417 			err = ovs_ct_copy_action(net, a, key, sfa, log);
3418 			if (err)
3419 				return err;
3420 			skip_copy = true;
3421 			break;
3422 
3423 		case OVS_ACTION_ATTR_CT_CLEAR:
3424 			break;
3425 
3426 		case OVS_ACTION_ATTR_PUSH_ETH:
3427 			/* Disallow pushing an Ethernet header if one
3428 			 * is already present */
3429 			if (mac_proto != MAC_PROTO_NONE)
3430 				return -EINVAL;
3431 			mac_proto = MAC_PROTO_ETHERNET;
3432 			break;
3433 
3434 		case OVS_ACTION_ATTR_POP_ETH:
3435 			if (mac_proto != MAC_PROTO_ETHERNET)
3436 				return -EINVAL;
3437 			if (vlan_tci & htons(VLAN_CFI_MASK))
3438 				return -EINVAL;
3439 			mac_proto = MAC_PROTO_NONE;
3440 			break;
3441 
3442 		case OVS_ACTION_ATTR_PUSH_NSH:
3443 			if (mac_proto != MAC_PROTO_ETHERNET) {
3444 				u8 next_proto;
3445 
3446 				next_proto = tun_p_from_eth_p(eth_type);
3447 				if (!next_proto)
3448 					return -EINVAL;
3449 			}
3450 			mac_proto = MAC_PROTO_NONE;
3451 			if (!validate_nsh(nla_data(a), false, true, true))
3452 				return -EINVAL;
3453 			break;
3454 
3455 		case OVS_ACTION_ATTR_POP_NSH: {
3456 			__be16 inner_proto;
3457 
3458 			if (eth_type != htons(ETH_P_NSH))
3459 				return -EINVAL;
3460 			inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3461 			if (!inner_proto)
3462 				return -EINVAL;
3463 			if (key->nsh.base.np == TUN_P_ETHERNET)
3464 				mac_proto = MAC_PROTO_ETHERNET;
3465 			else
3466 				mac_proto = MAC_PROTO_NONE;
3467 			break;
3468 		}
3469 
3470 		case OVS_ACTION_ATTR_METER:
3471 			/* Non-existent meters are simply ignored.  */
3472 			break;
3473 
3474 		case OVS_ACTION_ATTR_CLONE: {
3475 			bool last = nla_is_last(a, rem);
3476 
3477 			err = validate_and_copy_clone(net, a, key, sfa,
3478 						      eth_type, vlan_tci,
3479 						      mpls_label_count,
3480 						      log, last, depth);
3481 			if (err)
3482 				return err;
3483 			skip_copy = true;
3484 			break;
3485 		}
3486 
3487 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3488 			bool last = nla_is_last(a, rem);
3489 
3490 			err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3491 							      eth_type,
3492 							      vlan_tci,
3493 							      mpls_label_count,
3494 							      log, last,
3495 							      depth);
3496 			if (err)
3497 				return err;
3498 			skip_copy = true;
3499 			break;
3500 		}
3501 
3502 		case OVS_ACTION_ATTR_DEC_TTL:
3503 			err = validate_and_copy_dec_ttl(net, a, key, sfa,
3504 							eth_type, vlan_tci,
3505 							mpls_label_count, log,
3506 							depth);
3507 			if (err)
3508 				return err;
3509 			skip_copy = true;
3510 			break;
3511 
3512 		case OVS_ACTION_ATTR_DROP:
3513 			if (!nla_is_last(a, rem))
3514 				return -EINVAL;
3515 			break;
3516 
3517 		case OVS_ACTION_ATTR_PSAMPLE:
3518 			err = validate_psample(a);
3519 			if (err)
3520 				return err;
3521 			break;
3522 
3523 		default:
3524 			OVS_NLERR(log, "Unknown Action type %d", type);
3525 			return -EINVAL;
3526 		}
3527 		if (!skip_copy) {
3528 			err = copy_action(a, sfa, log);
3529 			if (err)
3530 				return err;
3531 		}
3532 	}
3533 
3534 	if (rem > 0)
3535 		return -EINVAL;
3536 
3537 	return 0;
3538 }
3539 
3540 /* 'key' must be the masked key. */
3541 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3542 			 const struct sw_flow_key *key,
3543 			 struct sw_flow_actions **sfa, bool log)
3544 {
3545 	int err;
3546 	u32 mpls_label_count = 0;
3547 
3548 	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3549 	if (IS_ERR(*sfa))
3550 		return PTR_ERR(*sfa);
3551 
3552 	if (eth_p_mpls(key->eth.type))
3553 		mpls_label_count = hweight_long(key->mpls.num_labels_mask);
3554 
3555 	(*sfa)->orig_len = nla_len(attr);
3556 	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3557 				     key->eth.vlan.tci, mpls_label_count, log,
3558 				     0);
3559 	if (err)
3560 		ovs_nla_free_flow_actions(*sfa);
3561 
3562 	return err;
3563 }
3564 
3565 static int sample_action_to_attr(const struct nlattr *attr,
3566 				 struct sk_buff *skb)
3567 {
3568 	struct nlattr *start, *ac_start = NULL, *sample_arg;
3569 	int err = 0, rem = nla_len(attr);
3570 	const struct sample_arg *arg;
3571 	struct nlattr *actions;
3572 
3573 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3574 	if (!start)
3575 		return -EMSGSIZE;
3576 
3577 	sample_arg = nla_data(attr);
3578 	arg = nla_data(sample_arg);
3579 	actions = nla_next(sample_arg, &rem);
3580 
3581 	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3582 		err = -EMSGSIZE;
3583 		goto out;
3584 	}
3585 
3586 	ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3587 	if (!ac_start) {
3588 		err = -EMSGSIZE;
3589 		goto out;
3590 	}
3591 
3592 	err = ovs_nla_put_actions(actions, rem, skb);
3593 
3594 out:
3595 	if (err) {
3596 		nla_nest_cancel(skb, ac_start);
3597 		nla_nest_cancel(skb, start);
3598 	} else {
3599 		nla_nest_end(skb, ac_start);
3600 		nla_nest_end(skb, start);
3601 	}
3602 
3603 	return err;
3604 }
3605 
3606 static int clone_action_to_attr(const struct nlattr *attr,
3607 				struct sk_buff *skb)
3608 {
3609 	struct nlattr *start;
3610 	int err = 0, rem = nla_len(attr);
3611 
3612 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3613 	if (!start)
3614 		return -EMSGSIZE;
3615 
3616 	/* Skipping the OVS_CLONE_ATTR_EXEC that is always the first attribute. */
3617 	attr = nla_next(nla_data(attr), &rem);
3618 	err = ovs_nla_put_actions(attr, rem, skb);
3619 
3620 	if (err)
3621 		nla_nest_cancel(skb, start);
3622 	else
3623 		nla_nest_end(skb, start);
3624 
3625 	return err;
3626 }
3627 
3628 static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3629 					struct sk_buff *skb)
3630 {
3631 	struct nlattr *start, *ac_start = NULL;
3632 	const struct check_pkt_len_arg *arg;
3633 	const struct nlattr *a, *cpl_arg;
3634 	int err = 0, rem = nla_len(attr);
3635 
3636 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3637 	if (!start)
3638 		return -EMSGSIZE;
3639 
3640 	/* The first nested attribute in 'attr' is always
3641 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3642 	 */
3643 	cpl_arg = nla_data(attr);
3644 	arg = nla_data(cpl_arg);
3645 
3646 	if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3647 		err = -EMSGSIZE;
3648 		goto out;
3649 	}
3650 
3651 	/* Second nested attribute in 'attr' is always
3652 	 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3653 	 */
3654 	a = nla_next(cpl_arg, &rem);
3655 	ac_start =  nla_nest_start_noflag(skb,
3656 					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3657 	if (!ac_start) {
3658 		err = -EMSGSIZE;
3659 		goto out;
3660 	}
3661 
3662 	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3663 	if (err) {
3664 		nla_nest_cancel(skb, ac_start);
3665 		goto out;
3666 	} else {
3667 		nla_nest_end(skb, ac_start);
3668 	}
3669 
3670 	/* Third nested attribute in 'attr' is always
3671 	 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3672 	 */
3673 	a = nla_next(a, &rem);
3674 	ac_start =  nla_nest_start_noflag(skb,
3675 					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3676 	if (!ac_start) {
3677 		err = -EMSGSIZE;
3678 		goto out;
3679 	}
3680 
3681 	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3682 	if (err) {
3683 		nla_nest_cancel(skb, ac_start);
3684 		goto out;
3685 	} else {
3686 		nla_nest_end(skb, ac_start);
3687 	}
3688 
3689 	nla_nest_end(skb, start);
3690 	return 0;
3691 
3692 out:
3693 	nla_nest_cancel(skb, start);
3694 	return err;
3695 }
3696 
3697 static int dec_ttl_action_to_attr(const struct nlattr *attr,
3698 				  struct sk_buff *skb)
3699 {
3700 	struct nlattr *start, *action_start;
3701 	const struct nlattr *a;
3702 	int err = 0, rem;
3703 
3704 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL);
3705 	if (!start)
3706 		return -EMSGSIZE;
3707 
3708 	nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
3709 		switch (nla_type(a)) {
3710 		case OVS_DEC_TTL_ATTR_ACTION:
3711 
3712 			action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION);
3713 			if (!action_start) {
3714 				err = -EMSGSIZE;
3715 				goto out;
3716 			}
3717 
3718 			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3719 			if (err)
3720 				goto out;
3721 
3722 			nla_nest_end(skb, action_start);
3723 			break;
3724 
3725 		default:
3726 			/* Ignore all other option to be future compatible */
3727 			break;
3728 		}
3729 	}
3730 
3731 	nla_nest_end(skb, start);
3732 	return 0;
3733 
3734 out:
3735 	nla_nest_cancel(skb, start);
3736 	return err;
3737 }
3738 
3739 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3740 {
3741 	const struct nlattr *ovs_key = nla_data(a);
3742 	int key_type = nla_type(ovs_key);
3743 	struct nlattr *start;
3744 	int err;
3745 
3746 	switch (key_type) {
3747 	case OVS_KEY_ATTR_TUNNEL_INFO: {
3748 		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3749 		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3750 
3751 		start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3752 		if (!start)
3753 			return -EMSGSIZE;
3754 
3755 		err =  ip_tun_to_nlattr(skb, &tun_info->key,
3756 					ip_tunnel_info_opts(tun_info),
3757 					tun_info->options_len,
3758 					ip_tunnel_info_af(tun_info), tun_info->mode);
3759 		if (err)
3760 			return err;
3761 		nla_nest_end(skb, start);
3762 		break;
3763 	}
3764 	default:
3765 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3766 			return -EMSGSIZE;
3767 		break;
3768 	}
3769 
3770 	return 0;
3771 }
3772 
3773 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3774 						struct sk_buff *skb)
3775 {
3776 	const struct nlattr *ovs_key = nla_data(a);
3777 	struct nlattr *nla;
3778 	size_t key_len = nla_len(ovs_key) / 2;
3779 
3780 	/* Revert the conversion we did from a non-masked set action to
3781 	 * masked set action.
3782 	 */
3783 	nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3784 	if (!nla)
3785 		return -EMSGSIZE;
3786 
3787 	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3788 		return -EMSGSIZE;
3789 
3790 	nla_nest_end(skb, nla);
3791 	return 0;
3792 }
3793 
3794 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3795 {
3796 	const struct nlattr *a;
3797 	int rem, err;
3798 
3799 	nla_for_each_attr(a, attr, len, rem) {
3800 		int type = nla_type(a);
3801 
3802 		switch (type) {
3803 		case OVS_ACTION_ATTR_SET:
3804 			err = set_action_to_attr(a, skb);
3805 			if (err)
3806 				return err;
3807 			break;
3808 
3809 		case OVS_ACTION_ATTR_SET_TO_MASKED:
3810 			err = masked_set_action_to_set_action_attr(a, skb);
3811 			if (err)
3812 				return err;
3813 			break;
3814 
3815 		case OVS_ACTION_ATTR_SAMPLE:
3816 			err = sample_action_to_attr(a, skb);
3817 			if (err)
3818 				return err;
3819 			break;
3820 
3821 		case OVS_ACTION_ATTR_CT:
3822 			err = ovs_ct_action_to_attr(nla_data(a), skb);
3823 			if (err)
3824 				return err;
3825 			break;
3826 
3827 		case OVS_ACTION_ATTR_CLONE:
3828 			err = clone_action_to_attr(a, skb);
3829 			if (err)
3830 				return err;
3831 			break;
3832 
3833 		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3834 			err = check_pkt_len_action_to_attr(a, skb);
3835 			if (err)
3836 				return err;
3837 			break;
3838 
3839 		case OVS_ACTION_ATTR_DEC_TTL:
3840 			err = dec_ttl_action_to_attr(a, skb);
3841 			if (err)
3842 				return err;
3843 			break;
3844 
3845 		default:
3846 			if (nla_put(skb, type, nla_len(a), nla_data(a)))
3847 				return -EMSGSIZE;
3848 			break;
3849 		}
3850 	}
3851 
3852 	return 0;
3853 }
3854