xref: /linux/net/openvswitch/flow_netlink.c (revision 22d55f02b8922a097cd4be1e2f131dfa7ef65901)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include "flow.h"
9 #include "datapath.h"
10 #include <linux/uaccess.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_ether.h>
14 #include <linux/if_vlan.h>
15 #include <net/llc_pdu.h>
16 #include <linux/kernel.h>
17 #include <linux/jhash.h>
18 #include <linux/jiffies.h>
19 #include <linux/llc.h>
20 #include <linux/module.h>
21 #include <linux/in.h>
22 #include <linux/rcupdate.h>
23 #include <linux/if_arp.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/icmp.h>
30 #include <linux/icmpv6.h>
31 #include <linux/rculist.h>
32 #include <net/geneve.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/mpls.h>
37 #include <net/vxlan.h>
38 #include <net/tun_proto.h>
39 #include <net/erspan.h>
40 
41 #include "flow_netlink.h"
42 
43 struct ovs_len_tbl {
44 	int len;
45 	const struct ovs_len_tbl *next;
46 };
47 
48 #define OVS_ATTR_NESTED -1
49 #define OVS_ATTR_VARIABLE -2
50 
51 static bool actions_may_change_flow(const struct nlattr *actions)
52 {
53 	struct nlattr *nla;
54 	int rem;
55 
56 	nla_for_each_nested(nla, actions, rem) {
57 		u16 action = nla_type(nla);
58 
59 		switch (action) {
60 		case OVS_ACTION_ATTR_OUTPUT:
61 		case OVS_ACTION_ATTR_RECIRC:
62 		case OVS_ACTION_ATTR_TRUNC:
63 		case OVS_ACTION_ATTR_USERSPACE:
64 			break;
65 
66 		case OVS_ACTION_ATTR_CT:
67 		case OVS_ACTION_ATTR_CT_CLEAR:
68 		case OVS_ACTION_ATTR_HASH:
69 		case OVS_ACTION_ATTR_POP_ETH:
70 		case OVS_ACTION_ATTR_POP_MPLS:
71 		case OVS_ACTION_ATTR_POP_NSH:
72 		case OVS_ACTION_ATTR_POP_VLAN:
73 		case OVS_ACTION_ATTR_PUSH_ETH:
74 		case OVS_ACTION_ATTR_PUSH_MPLS:
75 		case OVS_ACTION_ATTR_PUSH_NSH:
76 		case OVS_ACTION_ATTR_PUSH_VLAN:
77 		case OVS_ACTION_ATTR_SAMPLE:
78 		case OVS_ACTION_ATTR_SET:
79 		case OVS_ACTION_ATTR_SET_MASKED:
80 		case OVS_ACTION_ATTR_METER:
81 		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
82 		default:
83 			return true;
84 		}
85 	}
86 	return false;
87 }
88 
89 static void update_range(struct sw_flow_match *match,
90 			 size_t offset, size_t size, bool is_mask)
91 {
92 	struct sw_flow_key_range *range;
93 	size_t start = rounddown(offset, sizeof(long));
94 	size_t end = roundup(offset + size, sizeof(long));
95 
96 	if (!is_mask)
97 		range = &match->range;
98 	else
99 		range = &match->mask->range;
100 
101 	if (range->start == range->end) {
102 		range->start = start;
103 		range->end = end;
104 		return;
105 	}
106 
107 	if (range->start > start)
108 		range->start = start;
109 
110 	if (range->end < end)
111 		range->end = end;
112 }
113 
114 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
115 	do { \
116 		update_range(match, offsetof(struct sw_flow_key, field),    \
117 			     sizeof((match)->key->field), is_mask);	    \
118 		if (is_mask)						    \
119 			(match)->mask->key.field = value;		    \
120 		else							    \
121 			(match)->key->field = value;		            \
122 	} while (0)
123 
124 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
125 	do {								    \
126 		update_range(match, offset, len, is_mask);		    \
127 		if (is_mask)						    \
128 			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
129 			       len);					   \
130 		else							    \
131 			memcpy((u8 *)(match)->key + offset, value_p, len);  \
132 	} while (0)
133 
134 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
135 	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
136 				  value_p, len, is_mask)
137 
138 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
139 	do {								    \
140 		update_range(match, offsetof(struct sw_flow_key, field),    \
141 			     sizeof((match)->key->field), is_mask);	    \
142 		if (is_mask)						    \
143 			memset((u8 *)&(match)->mask->key.field, value,      \
144 			       sizeof((match)->mask->key.field));	    \
145 		else							    \
146 			memset((u8 *)&(match)->key->field, value,           \
147 			       sizeof((match)->key->field));                \
148 	} while (0)
149 
150 static bool match_validate(const struct sw_flow_match *match,
151 			   u64 key_attrs, u64 mask_attrs, bool log)
152 {
153 	u64 key_expected = 0;
154 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
155 
156 	/* The following mask attributes allowed only if they
157 	 * pass the validation tests. */
158 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
159 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
160 			| (1 << OVS_KEY_ATTR_IPV6)
161 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
162 			| (1 << OVS_KEY_ATTR_TCP)
163 			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
164 			| (1 << OVS_KEY_ATTR_UDP)
165 			| (1 << OVS_KEY_ATTR_SCTP)
166 			| (1 << OVS_KEY_ATTR_ICMP)
167 			| (1 << OVS_KEY_ATTR_ICMPV6)
168 			| (1 << OVS_KEY_ATTR_ARP)
169 			| (1 << OVS_KEY_ATTR_ND)
170 			| (1 << OVS_KEY_ATTR_MPLS)
171 			| (1 << OVS_KEY_ATTR_NSH));
172 
173 	/* Always allowed mask fields. */
174 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
175 		       | (1 << OVS_KEY_ATTR_IN_PORT)
176 		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
177 
178 	/* Check key attributes. */
179 	if (match->key->eth.type == htons(ETH_P_ARP)
180 			|| match->key->eth.type == htons(ETH_P_RARP)) {
181 		key_expected |= 1 << OVS_KEY_ATTR_ARP;
182 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
183 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
184 	}
185 
186 	if (eth_p_mpls(match->key->eth.type)) {
187 		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
188 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
189 			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
190 	}
191 
192 	if (match->key->eth.type == htons(ETH_P_IP)) {
193 		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
194 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
195 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
196 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
197 		}
198 
199 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
200 			if (match->key->ip.proto == IPPROTO_UDP) {
201 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
202 				if (match->mask && (match->mask->key.ip.proto == 0xff))
203 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
204 			}
205 
206 			if (match->key->ip.proto == IPPROTO_SCTP) {
207 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
208 				if (match->mask && (match->mask->key.ip.proto == 0xff))
209 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
210 			}
211 
212 			if (match->key->ip.proto == IPPROTO_TCP) {
213 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
214 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
215 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
216 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
217 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
218 				}
219 			}
220 
221 			if (match->key->ip.proto == IPPROTO_ICMP) {
222 				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
223 				if (match->mask && (match->mask->key.ip.proto == 0xff))
224 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
225 			}
226 		}
227 	}
228 
229 	if (match->key->eth.type == htons(ETH_P_IPV6)) {
230 		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
231 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
232 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
233 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
234 		}
235 
236 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
237 			if (match->key->ip.proto == IPPROTO_UDP) {
238 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
239 				if (match->mask && (match->mask->key.ip.proto == 0xff))
240 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
241 			}
242 
243 			if (match->key->ip.proto == IPPROTO_SCTP) {
244 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
245 				if (match->mask && (match->mask->key.ip.proto == 0xff))
246 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
247 			}
248 
249 			if (match->key->ip.proto == IPPROTO_TCP) {
250 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
251 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
252 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
253 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
254 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
255 				}
256 			}
257 
258 			if (match->key->ip.proto == IPPROTO_ICMPV6) {
259 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
260 				if (match->mask && (match->mask->key.ip.proto == 0xff))
261 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
262 
263 				if (match->key->tp.src ==
264 						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
265 				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
266 					key_expected |= 1 << OVS_KEY_ATTR_ND;
267 					/* Original direction conntrack tuple
268 					 * uses the same space as the ND fields
269 					 * in the key, so both are not allowed
270 					 * at the same time.
271 					 */
272 					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
273 					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
274 						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
275 				}
276 			}
277 		}
278 	}
279 
280 	if (match->key->eth.type == htons(ETH_P_NSH)) {
281 		key_expected |= 1 << OVS_KEY_ATTR_NSH;
282 		if (match->mask &&
283 		    match->mask->key.eth.type == htons(0xffff)) {
284 			mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
285 		}
286 	}
287 
288 	if ((key_attrs & key_expected) != key_expected) {
289 		/* Key attributes check failed. */
290 		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
291 			  (unsigned long long)key_attrs,
292 			  (unsigned long long)key_expected);
293 		return false;
294 	}
295 
296 	if ((mask_attrs & mask_allowed) != mask_attrs) {
297 		/* Mask attributes check failed. */
298 		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
299 			  (unsigned long long)mask_attrs,
300 			  (unsigned long long)mask_allowed);
301 		return false;
302 	}
303 
304 	return true;
305 }
306 
307 size_t ovs_tun_key_attr_size(void)
308 {
309 	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
310 	 * updating this function.
311 	 */
312 	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
313 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
314 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
315 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
316 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
317 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
318 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
319 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
320 		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
321 		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
322 		 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
323 		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
324 		 */
325 		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
326 		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
327 }
328 
329 static size_t ovs_nsh_key_attr_size(void)
330 {
331 	/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
332 	 * updating this function.
333 	 */
334 	return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
335 		/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
336 		 * mutually exclusive, so the bigger one can cover
337 		 * the small one.
338 		 */
339 		+ nla_total_size(NSH_CTX_HDRS_MAX_LEN);
340 }
341 
342 size_t ovs_key_attr_size(void)
343 {
344 	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
345 	 * updating this function.
346 	 */
347 	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29);
348 
349 	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
350 		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
351 		  + ovs_tun_key_attr_size()
352 		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
353 		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
354 		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
355 		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
356 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
357 		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
358 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
359 		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
360 		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
361 		+ nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
362 		  + ovs_nsh_key_attr_size()
363 		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
364 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
365 		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
366 		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
367 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
368 		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
369 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
370 		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
371 }
372 
373 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
374 	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
375 };
376 
377 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
378 	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
379 	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
380 	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
381 	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
382 	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
383 	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
384 	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
385 	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
386 	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
387 	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
388 	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
389 	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
390 						.next = ovs_vxlan_ext_key_lens },
391 	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
392 	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
393 	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE },
394 	[OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE]   = { .len = 0 },
395 };
396 
397 static const struct ovs_len_tbl
398 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
399 	[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
400 	[OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
401 	[OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
402 };
403 
404 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
405 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
406 	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
407 	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
408 	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
409 	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
410 	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
411 	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
412 	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
413 	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
414 	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
415 	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
416 	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
417 	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
418 	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
419 	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
420 	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
421 	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
422 	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
423 	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
424 	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
425 	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
426 				     .next = ovs_tunnel_key_lens, },
427 	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
428 	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
429 	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
430 	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
431 	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
432 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
433 		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
434 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
435 		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
436 	[OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
437 				     .next = ovs_nsh_key_attr_lens, },
438 };
439 
440 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
441 {
442 	return expected_len == attr_len ||
443 	       expected_len == OVS_ATTR_NESTED ||
444 	       expected_len == OVS_ATTR_VARIABLE;
445 }
446 
447 static bool is_all_zero(const u8 *fp, size_t size)
448 {
449 	int i;
450 
451 	if (!fp)
452 		return false;
453 
454 	for (i = 0; i < size; i++)
455 		if (fp[i])
456 			return false;
457 
458 	return true;
459 }
460 
461 static int __parse_flow_nlattrs(const struct nlattr *attr,
462 				const struct nlattr *a[],
463 				u64 *attrsp, bool log, bool nz)
464 {
465 	const struct nlattr *nla;
466 	u64 attrs;
467 	int rem;
468 
469 	attrs = *attrsp;
470 	nla_for_each_nested(nla, attr, rem) {
471 		u16 type = nla_type(nla);
472 		int expected_len;
473 
474 		if (type > OVS_KEY_ATTR_MAX) {
475 			OVS_NLERR(log, "Key type %d is out of range max %d",
476 				  type, OVS_KEY_ATTR_MAX);
477 			return -EINVAL;
478 		}
479 
480 		if (attrs & (1 << type)) {
481 			OVS_NLERR(log, "Duplicate key (type %d).", type);
482 			return -EINVAL;
483 		}
484 
485 		expected_len = ovs_key_lens[type].len;
486 		if (!check_attr_len(nla_len(nla), expected_len)) {
487 			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
488 				  type, nla_len(nla), expected_len);
489 			return -EINVAL;
490 		}
491 
492 		if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
493 			attrs |= 1 << type;
494 			a[type] = nla;
495 		}
496 	}
497 	if (rem) {
498 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
499 		return -EINVAL;
500 	}
501 
502 	*attrsp = attrs;
503 	return 0;
504 }
505 
506 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
507 				   const struct nlattr *a[], u64 *attrsp,
508 				   bool log)
509 {
510 	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
511 }
512 
513 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
514 		       u64 *attrsp, bool log)
515 {
516 	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
517 }
518 
519 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
520 				     struct sw_flow_match *match, bool is_mask,
521 				     bool log)
522 {
523 	unsigned long opt_key_offset;
524 
525 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
526 		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
527 			  nla_len(a), sizeof(match->key->tun_opts));
528 		return -EINVAL;
529 	}
530 
531 	if (nla_len(a) % 4 != 0) {
532 		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
533 			  nla_len(a));
534 		return -EINVAL;
535 	}
536 
537 	/* We need to record the length of the options passed
538 	 * down, otherwise packets with the same format but
539 	 * additional options will be silently matched.
540 	 */
541 	if (!is_mask) {
542 		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
543 				false);
544 	} else {
545 		/* This is somewhat unusual because it looks at
546 		 * both the key and mask while parsing the
547 		 * attributes (and by extension assumes the key
548 		 * is parsed first). Normally, we would verify
549 		 * that each is the correct length and that the
550 		 * attributes line up in the validate function.
551 		 * However, that is difficult because this is
552 		 * variable length and we won't have the
553 		 * information later.
554 		 */
555 		if (match->key->tun_opts_len != nla_len(a)) {
556 			OVS_NLERR(log, "Geneve option len %d != mask len %d",
557 				  match->key->tun_opts_len, nla_len(a));
558 			return -EINVAL;
559 		}
560 
561 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
562 	}
563 
564 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
565 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
566 				  nla_len(a), is_mask);
567 	return 0;
568 }
569 
570 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
571 				     struct sw_flow_match *match, bool is_mask,
572 				     bool log)
573 {
574 	struct nlattr *a;
575 	int rem;
576 	unsigned long opt_key_offset;
577 	struct vxlan_metadata opts;
578 
579 	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
580 
581 	memset(&opts, 0, sizeof(opts));
582 	nla_for_each_nested(a, attr, rem) {
583 		int type = nla_type(a);
584 
585 		if (type > OVS_VXLAN_EXT_MAX) {
586 			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
587 				  type, OVS_VXLAN_EXT_MAX);
588 			return -EINVAL;
589 		}
590 
591 		if (!check_attr_len(nla_len(a),
592 				    ovs_vxlan_ext_key_lens[type].len)) {
593 			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
594 				  type, nla_len(a),
595 				  ovs_vxlan_ext_key_lens[type].len);
596 			return -EINVAL;
597 		}
598 
599 		switch (type) {
600 		case OVS_VXLAN_EXT_GBP:
601 			opts.gbp = nla_get_u32(a);
602 			break;
603 		default:
604 			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
605 				  type);
606 			return -EINVAL;
607 		}
608 	}
609 	if (rem) {
610 		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
611 			  rem);
612 		return -EINVAL;
613 	}
614 
615 	if (!is_mask)
616 		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
617 	else
618 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
619 
620 	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
621 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
622 				  is_mask);
623 	return 0;
624 }
625 
626 static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
627 				      struct sw_flow_match *match, bool is_mask,
628 				      bool log)
629 {
630 	unsigned long opt_key_offset;
631 
632 	BUILD_BUG_ON(sizeof(struct erspan_metadata) >
633 		     sizeof(match->key->tun_opts));
634 
635 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
636 		OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
637 			  nla_len(a), sizeof(match->key->tun_opts));
638 		return -EINVAL;
639 	}
640 
641 	if (!is_mask)
642 		SW_FLOW_KEY_PUT(match, tun_opts_len,
643 				sizeof(struct erspan_metadata), false);
644 	else
645 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
646 
647 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
648 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
649 				  nla_len(a), is_mask);
650 	return 0;
651 }
652 
653 static int ip_tun_from_nlattr(const struct nlattr *attr,
654 			      struct sw_flow_match *match, bool is_mask,
655 			      bool log)
656 {
657 	bool ttl = false, ipv4 = false, ipv6 = false;
658 	bool info_bridge_mode = false;
659 	__be16 tun_flags = 0;
660 	int opts_type = 0;
661 	struct nlattr *a;
662 	int rem;
663 
664 	nla_for_each_nested(a, attr, rem) {
665 		int type = nla_type(a);
666 		int err;
667 
668 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
669 			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
670 				  type, OVS_TUNNEL_KEY_ATTR_MAX);
671 			return -EINVAL;
672 		}
673 
674 		if (!check_attr_len(nla_len(a),
675 				    ovs_tunnel_key_lens[type].len)) {
676 			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
677 				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
678 			return -EINVAL;
679 		}
680 
681 		switch (type) {
682 		case OVS_TUNNEL_KEY_ATTR_ID:
683 			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
684 					nla_get_be64(a), is_mask);
685 			tun_flags |= TUNNEL_KEY;
686 			break;
687 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
688 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
689 					nla_get_in_addr(a), is_mask);
690 			ipv4 = true;
691 			break;
692 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
693 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
694 					nla_get_in_addr(a), is_mask);
695 			ipv4 = true;
696 			break;
697 		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
698 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
699 					nla_get_in6_addr(a), is_mask);
700 			ipv6 = true;
701 			break;
702 		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
703 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
704 					nla_get_in6_addr(a), is_mask);
705 			ipv6 = true;
706 			break;
707 		case OVS_TUNNEL_KEY_ATTR_TOS:
708 			SW_FLOW_KEY_PUT(match, tun_key.tos,
709 					nla_get_u8(a), is_mask);
710 			break;
711 		case OVS_TUNNEL_KEY_ATTR_TTL:
712 			SW_FLOW_KEY_PUT(match, tun_key.ttl,
713 					nla_get_u8(a), is_mask);
714 			ttl = true;
715 			break;
716 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
717 			tun_flags |= TUNNEL_DONT_FRAGMENT;
718 			break;
719 		case OVS_TUNNEL_KEY_ATTR_CSUM:
720 			tun_flags |= TUNNEL_CSUM;
721 			break;
722 		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
723 			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
724 					nla_get_be16(a), is_mask);
725 			break;
726 		case OVS_TUNNEL_KEY_ATTR_TP_DST:
727 			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
728 					nla_get_be16(a), is_mask);
729 			break;
730 		case OVS_TUNNEL_KEY_ATTR_OAM:
731 			tun_flags |= TUNNEL_OAM;
732 			break;
733 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
734 			if (opts_type) {
735 				OVS_NLERR(log, "Multiple metadata blocks provided");
736 				return -EINVAL;
737 			}
738 
739 			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
740 			if (err)
741 				return err;
742 
743 			tun_flags |= TUNNEL_GENEVE_OPT;
744 			opts_type = type;
745 			break;
746 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
747 			if (opts_type) {
748 				OVS_NLERR(log, "Multiple metadata blocks provided");
749 				return -EINVAL;
750 			}
751 
752 			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
753 			if (err)
754 				return err;
755 
756 			tun_flags |= TUNNEL_VXLAN_OPT;
757 			opts_type = type;
758 			break;
759 		case OVS_TUNNEL_KEY_ATTR_PAD:
760 			break;
761 		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
762 			if (opts_type) {
763 				OVS_NLERR(log, "Multiple metadata blocks provided");
764 				return -EINVAL;
765 			}
766 
767 			err = erspan_tun_opt_from_nlattr(a, match, is_mask,
768 							 log);
769 			if (err)
770 				return err;
771 
772 			tun_flags |= TUNNEL_ERSPAN_OPT;
773 			opts_type = type;
774 			break;
775 		case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
776 			info_bridge_mode = true;
777 			ipv4 = true;
778 			break;
779 		default:
780 			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
781 				  type);
782 			return -EINVAL;
783 		}
784 	}
785 
786 	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
787 	if (is_mask)
788 		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
789 	else
790 		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
791 				false);
792 
793 	if (rem > 0) {
794 		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
795 			  rem);
796 		return -EINVAL;
797 	}
798 
799 	if (ipv4 && ipv6) {
800 		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
801 		return -EINVAL;
802 	}
803 
804 	if (!is_mask) {
805 		if (!ipv4 && !ipv6) {
806 			OVS_NLERR(log, "IP tunnel dst address not specified");
807 			return -EINVAL;
808 		}
809 		if (ipv4) {
810 			if (info_bridge_mode) {
811 				if (match->key->tun_key.u.ipv4.src ||
812 				    match->key->tun_key.u.ipv4.dst ||
813 				    match->key->tun_key.tp_src ||
814 				    match->key->tun_key.tp_dst ||
815 				    match->key->tun_key.ttl ||
816 				    match->key->tun_key.tos ||
817 				    tun_flags & ~TUNNEL_KEY) {
818 					OVS_NLERR(log, "IPv4 tun info is not correct");
819 					return -EINVAL;
820 				}
821 			} else if (!match->key->tun_key.u.ipv4.dst) {
822 				OVS_NLERR(log, "IPv4 tunnel dst address is zero");
823 				return -EINVAL;
824 			}
825 		}
826 		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
827 			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
828 			return -EINVAL;
829 		}
830 
831 		if (!ttl && !info_bridge_mode) {
832 			OVS_NLERR(log, "IP tunnel TTL not specified.");
833 			return -EINVAL;
834 		}
835 	}
836 
837 	return opts_type;
838 }
839 
840 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
841 			       const void *tun_opts, int swkey_tun_opts_len)
842 {
843 	const struct vxlan_metadata *opts = tun_opts;
844 	struct nlattr *nla;
845 
846 	nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
847 	if (!nla)
848 		return -EMSGSIZE;
849 
850 	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
851 		return -EMSGSIZE;
852 
853 	nla_nest_end(skb, nla);
854 	return 0;
855 }
856 
857 static int __ip_tun_to_nlattr(struct sk_buff *skb,
858 			      const struct ip_tunnel_key *output,
859 			      const void *tun_opts, int swkey_tun_opts_len,
860 			      unsigned short tun_proto, u8 mode)
861 {
862 	if (output->tun_flags & TUNNEL_KEY &&
863 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
864 			 OVS_TUNNEL_KEY_ATTR_PAD))
865 		return -EMSGSIZE;
866 
867 	if (mode & IP_TUNNEL_INFO_BRIDGE)
868 		return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
869 		       ? -EMSGSIZE : 0;
870 
871 	switch (tun_proto) {
872 	case AF_INET:
873 		if (output->u.ipv4.src &&
874 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
875 				    output->u.ipv4.src))
876 			return -EMSGSIZE;
877 		if (output->u.ipv4.dst &&
878 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
879 				    output->u.ipv4.dst))
880 			return -EMSGSIZE;
881 		break;
882 	case AF_INET6:
883 		if (!ipv6_addr_any(&output->u.ipv6.src) &&
884 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
885 				     &output->u.ipv6.src))
886 			return -EMSGSIZE;
887 		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
888 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
889 				     &output->u.ipv6.dst))
890 			return -EMSGSIZE;
891 		break;
892 	}
893 	if (output->tos &&
894 	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
895 		return -EMSGSIZE;
896 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
897 		return -EMSGSIZE;
898 	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
899 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
900 		return -EMSGSIZE;
901 	if ((output->tun_flags & TUNNEL_CSUM) &&
902 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
903 		return -EMSGSIZE;
904 	if (output->tp_src &&
905 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
906 		return -EMSGSIZE;
907 	if (output->tp_dst &&
908 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
909 		return -EMSGSIZE;
910 	if ((output->tun_flags & TUNNEL_OAM) &&
911 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
912 		return -EMSGSIZE;
913 	if (swkey_tun_opts_len) {
914 		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
915 		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
916 			    swkey_tun_opts_len, tun_opts))
917 			return -EMSGSIZE;
918 		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
919 			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
920 			return -EMSGSIZE;
921 		else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
922 			 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
923 				 swkey_tun_opts_len, tun_opts))
924 			return -EMSGSIZE;
925 	}
926 
927 	return 0;
928 }
929 
930 static int ip_tun_to_nlattr(struct sk_buff *skb,
931 			    const struct ip_tunnel_key *output,
932 			    const void *tun_opts, int swkey_tun_opts_len,
933 			    unsigned short tun_proto, u8 mode)
934 {
935 	struct nlattr *nla;
936 	int err;
937 
938 	nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
939 	if (!nla)
940 		return -EMSGSIZE;
941 
942 	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
943 				 tun_proto, mode);
944 	if (err)
945 		return err;
946 
947 	nla_nest_end(skb, nla);
948 	return 0;
949 }
950 
951 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
952 			    struct ip_tunnel_info *tun_info)
953 {
954 	return __ip_tun_to_nlattr(skb, &tun_info->key,
955 				  ip_tunnel_info_opts(tun_info),
956 				  tun_info->options_len,
957 				  ip_tunnel_info_af(tun_info), tun_info->mode);
958 }
959 
960 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
961 				    const struct nlattr *a[],
962 				    bool is_mask, bool inner)
963 {
964 	__be16 tci = 0;
965 	__be16 tpid = 0;
966 
967 	if (a[OVS_KEY_ATTR_VLAN])
968 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
969 
970 	if (a[OVS_KEY_ATTR_ETHERTYPE])
971 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
972 
973 	if (likely(!inner)) {
974 		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
975 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
976 	} else {
977 		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
978 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
979 	}
980 	return 0;
981 }
982 
983 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
984 				      u64 key_attrs, bool inner,
985 				      const struct nlattr **a, bool log)
986 {
987 	__be16 tci = 0;
988 
989 	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
990 	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
991 	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
992 		/* Not a VLAN. */
993 		return 0;
994 	}
995 
996 	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
997 	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
998 		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
999 		return -EINVAL;
1000 	}
1001 
1002 	if (a[OVS_KEY_ATTR_VLAN])
1003 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1004 
1005 	if (!(tci & htons(VLAN_CFI_MASK))) {
1006 		if (tci) {
1007 			OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1008 				  (inner) ? "C-VLAN" : "VLAN");
1009 			return -EINVAL;
1010 		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1011 			/* Corner case for truncated VLAN header. */
1012 			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1013 				  (inner) ? "C-VLAN" : "VLAN");
1014 			return -EINVAL;
1015 		}
1016 	}
1017 
1018 	return 1;
1019 }
1020 
1021 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1022 					   u64 key_attrs, bool inner,
1023 					   const struct nlattr **a, bool log)
1024 {
1025 	__be16 tci = 0;
1026 	__be16 tpid = 0;
1027 	bool encap_valid = !!(match->key->eth.vlan.tci &
1028 			      htons(VLAN_CFI_MASK));
1029 	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1030 				htons(VLAN_CFI_MASK));
1031 
1032 	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1033 		/* Not a VLAN. */
1034 		return 0;
1035 	}
1036 
1037 	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1038 		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1039 			  (inner) ? "C-VLAN" : "VLAN");
1040 		return -EINVAL;
1041 	}
1042 
1043 	if (a[OVS_KEY_ATTR_VLAN])
1044 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1045 
1046 	if (a[OVS_KEY_ATTR_ETHERTYPE])
1047 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1048 
1049 	if (tpid != htons(0xffff)) {
1050 		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1051 			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1052 		return -EINVAL;
1053 	}
1054 	if (!(tci & htons(VLAN_CFI_MASK))) {
1055 		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1056 			  (inner) ? "C-VLAN" : "VLAN");
1057 		return -EINVAL;
1058 	}
1059 
1060 	return 1;
1061 }
1062 
1063 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1064 				     u64 *key_attrs, bool inner,
1065 				     const struct nlattr **a, bool is_mask,
1066 				     bool log)
1067 {
1068 	int err;
1069 	const struct nlattr *encap;
1070 
1071 	if (!is_mask)
1072 		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1073 						 a, log);
1074 	else
1075 		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1076 						      a, log);
1077 	if (err <= 0)
1078 		return err;
1079 
1080 	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1081 	if (err)
1082 		return err;
1083 
1084 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1085 	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1086 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1087 
1088 	encap = a[OVS_KEY_ATTR_ENCAP];
1089 
1090 	if (!is_mask)
1091 		err = parse_flow_nlattrs(encap, a, key_attrs, log);
1092 	else
1093 		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1094 
1095 	return err;
1096 }
1097 
1098 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1099 				   u64 *key_attrs, const struct nlattr **a,
1100 				   bool is_mask, bool log)
1101 {
1102 	int err;
1103 	bool encap_valid = false;
1104 
1105 	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1106 					is_mask, log);
1107 	if (err)
1108 		return err;
1109 
1110 	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1111 	if (encap_valid) {
1112 		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1113 						is_mask, log);
1114 		if (err)
1115 			return err;
1116 	}
1117 
1118 	return 0;
1119 }
1120 
1121 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1122 				       u64 *attrs, const struct nlattr **a,
1123 				       bool is_mask, bool log)
1124 {
1125 	__be16 eth_type;
1126 
1127 	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1128 	if (is_mask) {
1129 		/* Always exact match EtherType. */
1130 		eth_type = htons(0xffff);
1131 	} else if (!eth_proto_is_802_3(eth_type)) {
1132 		OVS_NLERR(log, "EtherType %x is less than min %x",
1133 				ntohs(eth_type), ETH_P_802_3_MIN);
1134 		return -EINVAL;
1135 	}
1136 
1137 	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1138 	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1139 	return 0;
1140 }
1141 
1142 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1143 				 u64 *attrs, const struct nlattr **a,
1144 				 bool is_mask, bool log)
1145 {
1146 	u8 mac_proto = MAC_PROTO_ETHERNET;
1147 
1148 	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1149 		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1150 
1151 		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1152 		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1153 	}
1154 
1155 	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1156 		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1157 
1158 		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1159 		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1160 	}
1161 
1162 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1163 		SW_FLOW_KEY_PUT(match, phy.priority,
1164 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1165 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1166 	}
1167 
1168 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1169 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1170 
1171 		if (is_mask) {
1172 			in_port = 0xffffffff; /* Always exact match in_port. */
1173 		} else if (in_port >= DP_MAX_PORTS) {
1174 			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1175 				  in_port, DP_MAX_PORTS);
1176 			return -EINVAL;
1177 		}
1178 
1179 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1180 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1181 	} else if (!is_mask) {
1182 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1183 	}
1184 
1185 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1186 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1187 
1188 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1189 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1190 	}
1191 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1192 		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1193 				       is_mask, log) < 0)
1194 			return -EINVAL;
1195 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1196 	}
1197 
1198 	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1199 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1200 		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1201 
1202 		if (ct_state & ~CT_SUPPORTED_MASK) {
1203 			OVS_NLERR(log, "ct_state flags %08x unsupported",
1204 				  ct_state);
1205 			return -EINVAL;
1206 		}
1207 
1208 		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1209 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1210 	}
1211 	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1212 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1213 		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1214 
1215 		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1216 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1217 	}
1218 	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1219 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1220 		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1221 
1222 		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1223 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1224 	}
1225 	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1226 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1227 		const struct ovs_key_ct_labels *cl;
1228 
1229 		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1230 		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1231 				   sizeof(*cl), is_mask);
1232 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1233 	}
1234 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1235 		const struct ovs_key_ct_tuple_ipv4 *ct;
1236 
1237 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1238 
1239 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1240 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1241 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1242 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1243 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1244 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1245 	}
1246 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1247 		const struct ovs_key_ct_tuple_ipv6 *ct;
1248 
1249 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1250 
1251 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1252 				   sizeof(match->key->ipv6.ct_orig.src),
1253 				   is_mask);
1254 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1255 				   sizeof(match->key->ipv6.ct_orig.dst),
1256 				   is_mask);
1257 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1258 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1259 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1260 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1261 	}
1262 
1263 	/* For layer 3 packets the Ethernet type is provided
1264 	 * and treated as metadata but no MAC addresses are provided.
1265 	 */
1266 	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1267 	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1268 		mac_proto = MAC_PROTO_NONE;
1269 
1270 	/* Always exact match mac_proto */
1271 	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1272 
1273 	if (mac_proto == MAC_PROTO_NONE)
1274 		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1275 						   log);
1276 
1277 	return 0;
1278 }
1279 
1280 int nsh_hdr_from_nlattr(const struct nlattr *attr,
1281 			struct nshhdr *nh, size_t size)
1282 {
1283 	struct nlattr *a;
1284 	int rem;
1285 	u8 flags = 0;
1286 	u8 ttl = 0;
1287 	int mdlen = 0;
1288 
1289 	/* validate_nsh has check this, so we needn't do duplicate check here
1290 	 */
1291 	if (size < NSH_BASE_HDR_LEN)
1292 		return -ENOBUFS;
1293 
1294 	nla_for_each_nested(a, attr, rem) {
1295 		int type = nla_type(a);
1296 
1297 		switch (type) {
1298 		case OVS_NSH_KEY_ATTR_BASE: {
1299 			const struct ovs_nsh_key_base *base = nla_data(a);
1300 
1301 			flags = base->flags;
1302 			ttl = base->ttl;
1303 			nh->np = base->np;
1304 			nh->mdtype = base->mdtype;
1305 			nh->path_hdr = base->path_hdr;
1306 			break;
1307 		}
1308 		case OVS_NSH_KEY_ATTR_MD1:
1309 			mdlen = nla_len(a);
1310 			if (mdlen > size - NSH_BASE_HDR_LEN)
1311 				return -ENOBUFS;
1312 			memcpy(&nh->md1, nla_data(a), mdlen);
1313 			break;
1314 
1315 		case OVS_NSH_KEY_ATTR_MD2:
1316 			mdlen = nla_len(a);
1317 			if (mdlen > size - NSH_BASE_HDR_LEN)
1318 				return -ENOBUFS;
1319 			memcpy(&nh->md2, nla_data(a), mdlen);
1320 			break;
1321 
1322 		default:
1323 			return -EINVAL;
1324 		}
1325 	}
1326 
1327 	/* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1328 	nh->ver_flags_ttl_len = 0;
1329 	nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1330 
1331 	return 0;
1332 }
1333 
1334 int nsh_key_from_nlattr(const struct nlattr *attr,
1335 			struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1336 {
1337 	struct nlattr *a;
1338 	int rem;
1339 
1340 	/* validate_nsh has check this, so we needn't do duplicate check here
1341 	 */
1342 	nla_for_each_nested(a, attr, rem) {
1343 		int type = nla_type(a);
1344 
1345 		switch (type) {
1346 		case OVS_NSH_KEY_ATTR_BASE: {
1347 			const struct ovs_nsh_key_base *base = nla_data(a);
1348 			const struct ovs_nsh_key_base *base_mask = base + 1;
1349 
1350 			nsh->base = *base;
1351 			nsh_mask->base = *base_mask;
1352 			break;
1353 		}
1354 		case OVS_NSH_KEY_ATTR_MD1: {
1355 			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1356 			const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1357 
1358 			memcpy(nsh->context, md1->context, sizeof(*md1));
1359 			memcpy(nsh_mask->context, md1_mask->context,
1360 			       sizeof(*md1_mask));
1361 			break;
1362 		}
1363 		case OVS_NSH_KEY_ATTR_MD2:
1364 			/* Not supported yet */
1365 			return -ENOTSUPP;
1366 		default:
1367 			return -EINVAL;
1368 		}
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1375 				   struct sw_flow_match *match, bool is_mask,
1376 				   bool is_push_nsh, bool log)
1377 {
1378 	struct nlattr *a;
1379 	int rem;
1380 	bool has_base = false;
1381 	bool has_md1 = false;
1382 	bool has_md2 = false;
1383 	u8 mdtype = 0;
1384 	int mdlen = 0;
1385 
1386 	if (WARN_ON(is_push_nsh && is_mask))
1387 		return -EINVAL;
1388 
1389 	nla_for_each_nested(a, attr, rem) {
1390 		int type = nla_type(a);
1391 		int i;
1392 
1393 		if (type > OVS_NSH_KEY_ATTR_MAX) {
1394 			OVS_NLERR(log, "nsh attr %d is out of range max %d",
1395 				  type, OVS_NSH_KEY_ATTR_MAX);
1396 			return -EINVAL;
1397 		}
1398 
1399 		if (!check_attr_len(nla_len(a),
1400 				    ovs_nsh_key_attr_lens[type].len)) {
1401 			OVS_NLERR(
1402 			    log,
1403 			    "nsh attr %d has unexpected len %d expected %d",
1404 			    type,
1405 			    nla_len(a),
1406 			    ovs_nsh_key_attr_lens[type].len
1407 			);
1408 			return -EINVAL;
1409 		}
1410 
1411 		switch (type) {
1412 		case OVS_NSH_KEY_ATTR_BASE: {
1413 			const struct ovs_nsh_key_base *base = nla_data(a);
1414 
1415 			has_base = true;
1416 			mdtype = base->mdtype;
1417 			SW_FLOW_KEY_PUT(match, nsh.base.flags,
1418 					base->flags, is_mask);
1419 			SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1420 					base->ttl, is_mask);
1421 			SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1422 					base->mdtype, is_mask);
1423 			SW_FLOW_KEY_PUT(match, nsh.base.np,
1424 					base->np, is_mask);
1425 			SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1426 					base->path_hdr, is_mask);
1427 			break;
1428 		}
1429 		case OVS_NSH_KEY_ATTR_MD1: {
1430 			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1431 
1432 			has_md1 = true;
1433 			for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1434 				SW_FLOW_KEY_PUT(match, nsh.context[i],
1435 						md1->context[i], is_mask);
1436 			break;
1437 		}
1438 		case OVS_NSH_KEY_ATTR_MD2:
1439 			if (!is_push_nsh) /* Not supported MD type 2 yet */
1440 				return -ENOTSUPP;
1441 
1442 			has_md2 = true;
1443 			mdlen = nla_len(a);
1444 			if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1445 				OVS_NLERR(
1446 				    log,
1447 				    "Invalid MD length %d for MD type %d",
1448 				    mdlen,
1449 				    mdtype
1450 				);
1451 				return -EINVAL;
1452 			}
1453 			break;
1454 		default:
1455 			OVS_NLERR(log, "Unknown nsh attribute %d",
1456 				  type);
1457 			return -EINVAL;
1458 		}
1459 	}
1460 
1461 	if (rem > 0) {
1462 		OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1463 		return -EINVAL;
1464 	}
1465 
1466 	if (has_md1 && has_md2) {
1467 		OVS_NLERR(
1468 		    1,
1469 		    "invalid nsh attribute: md1 and md2 are exclusive."
1470 		);
1471 		return -EINVAL;
1472 	}
1473 
1474 	if (!is_mask) {
1475 		if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1476 		    (has_md2 && mdtype != NSH_M_TYPE2)) {
1477 			OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1478 				  mdtype);
1479 			return -EINVAL;
1480 		}
1481 
1482 		if (is_push_nsh &&
1483 		    (!has_base || (!has_md1 && !has_md2))) {
1484 			OVS_NLERR(
1485 			    1,
1486 			    "push_nsh: missing base or metadata attributes"
1487 			);
1488 			return -EINVAL;
1489 		}
1490 	}
1491 
1492 	return 0;
1493 }
1494 
1495 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1496 				u64 attrs, const struct nlattr **a,
1497 				bool is_mask, bool log)
1498 {
1499 	int err;
1500 
1501 	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1502 	if (err)
1503 		return err;
1504 
1505 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1506 		const struct ovs_key_ethernet *eth_key;
1507 
1508 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1509 		SW_FLOW_KEY_MEMCPY(match, eth.src,
1510 				eth_key->eth_src, ETH_ALEN, is_mask);
1511 		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1512 				eth_key->eth_dst, ETH_ALEN, is_mask);
1513 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1514 
1515 		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1516 			/* VLAN attribute is always parsed before getting here since it
1517 			 * may occur multiple times.
1518 			 */
1519 			OVS_NLERR(log, "VLAN attribute unexpected.");
1520 			return -EINVAL;
1521 		}
1522 
1523 		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1524 			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1525 							  log);
1526 			if (err)
1527 				return err;
1528 		} else if (!is_mask) {
1529 			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1530 		}
1531 	} else if (!match->key->eth.type) {
1532 		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1533 		return -EINVAL;
1534 	}
1535 
1536 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1537 		const struct ovs_key_ipv4 *ipv4_key;
1538 
1539 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1540 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1541 			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1542 				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1543 			return -EINVAL;
1544 		}
1545 		SW_FLOW_KEY_PUT(match, ip.proto,
1546 				ipv4_key->ipv4_proto, is_mask);
1547 		SW_FLOW_KEY_PUT(match, ip.tos,
1548 				ipv4_key->ipv4_tos, is_mask);
1549 		SW_FLOW_KEY_PUT(match, ip.ttl,
1550 				ipv4_key->ipv4_ttl, is_mask);
1551 		SW_FLOW_KEY_PUT(match, ip.frag,
1552 				ipv4_key->ipv4_frag, is_mask);
1553 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1554 				ipv4_key->ipv4_src, is_mask);
1555 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1556 				ipv4_key->ipv4_dst, is_mask);
1557 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1558 	}
1559 
1560 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1561 		const struct ovs_key_ipv6 *ipv6_key;
1562 
1563 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1564 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1565 			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1566 				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1567 			return -EINVAL;
1568 		}
1569 
1570 		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1571 			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1572 				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1573 			return -EINVAL;
1574 		}
1575 
1576 		SW_FLOW_KEY_PUT(match, ipv6.label,
1577 				ipv6_key->ipv6_label, is_mask);
1578 		SW_FLOW_KEY_PUT(match, ip.proto,
1579 				ipv6_key->ipv6_proto, is_mask);
1580 		SW_FLOW_KEY_PUT(match, ip.tos,
1581 				ipv6_key->ipv6_tclass, is_mask);
1582 		SW_FLOW_KEY_PUT(match, ip.ttl,
1583 				ipv6_key->ipv6_hlimit, is_mask);
1584 		SW_FLOW_KEY_PUT(match, ip.frag,
1585 				ipv6_key->ipv6_frag, is_mask);
1586 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1587 				ipv6_key->ipv6_src,
1588 				sizeof(match->key->ipv6.addr.src),
1589 				is_mask);
1590 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1591 				ipv6_key->ipv6_dst,
1592 				sizeof(match->key->ipv6.addr.dst),
1593 				is_mask);
1594 
1595 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1596 	}
1597 
1598 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1599 		const struct ovs_key_arp *arp_key;
1600 
1601 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1602 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1603 			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1604 				  arp_key->arp_op);
1605 			return -EINVAL;
1606 		}
1607 
1608 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1609 				arp_key->arp_sip, is_mask);
1610 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1611 			arp_key->arp_tip, is_mask);
1612 		SW_FLOW_KEY_PUT(match, ip.proto,
1613 				ntohs(arp_key->arp_op), is_mask);
1614 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1615 				arp_key->arp_sha, ETH_ALEN, is_mask);
1616 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1617 				arp_key->arp_tha, ETH_ALEN, is_mask);
1618 
1619 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1620 	}
1621 
1622 	if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1623 		if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1624 					    is_mask, false, log) < 0)
1625 			return -EINVAL;
1626 		attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1627 	}
1628 
1629 	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1630 		const struct ovs_key_mpls *mpls_key;
1631 
1632 		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1633 		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1634 				mpls_key->mpls_lse, is_mask);
1635 
1636 		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1637 	 }
1638 
1639 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1640 		const struct ovs_key_tcp *tcp_key;
1641 
1642 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1643 		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1644 		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1645 		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1646 	}
1647 
1648 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1649 		SW_FLOW_KEY_PUT(match, tp.flags,
1650 				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1651 				is_mask);
1652 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1653 	}
1654 
1655 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1656 		const struct ovs_key_udp *udp_key;
1657 
1658 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1659 		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1660 		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1661 		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1662 	}
1663 
1664 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1665 		const struct ovs_key_sctp *sctp_key;
1666 
1667 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1668 		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1669 		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1670 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1671 	}
1672 
1673 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1674 		const struct ovs_key_icmp *icmp_key;
1675 
1676 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1677 		SW_FLOW_KEY_PUT(match, tp.src,
1678 				htons(icmp_key->icmp_type), is_mask);
1679 		SW_FLOW_KEY_PUT(match, tp.dst,
1680 				htons(icmp_key->icmp_code), is_mask);
1681 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1682 	}
1683 
1684 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1685 		const struct ovs_key_icmpv6 *icmpv6_key;
1686 
1687 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1688 		SW_FLOW_KEY_PUT(match, tp.src,
1689 				htons(icmpv6_key->icmpv6_type), is_mask);
1690 		SW_FLOW_KEY_PUT(match, tp.dst,
1691 				htons(icmpv6_key->icmpv6_code), is_mask);
1692 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1693 	}
1694 
1695 	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1696 		const struct ovs_key_nd *nd_key;
1697 
1698 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1699 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1700 			nd_key->nd_target,
1701 			sizeof(match->key->ipv6.nd.target),
1702 			is_mask);
1703 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1704 			nd_key->nd_sll, ETH_ALEN, is_mask);
1705 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1706 				nd_key->nd_tll, ETH_ALEN, is_mask);
1707 		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1708 	}
1709 
1710 	if (attrs != 0) {
1711 		OVS_NLERR(log, "Unknown key attributes %llx",
1712 			  (unsigned long long)attrs);
1713 		return -EINVAL;
1714 	}
1715 
1716 	return 0;
1717 }
1718 
1719 static void nlattr_set(struct nlattr *attr, u8 val,
1720 		       const struct ovs_len_tbl *tbl)
1721 {
1722 	struct nlattr *nla;
1723 	int rem;
1724 
1725 	/* The nlattr stream should already have been validated */
1726 	nla_for_each_nested(nla, attr, rem) {
1727 		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1728 			nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1729 		else
1730 			memset(nla_data(nla), val, nla_len(nla));
1731 
1732 		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1733 			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1734 	}
1735 }
1736 
1737 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1738 {
1739 	nlattr_set(attr, val, ovs_key_lens);
1740 }
1741 
1742 /**
1743  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1744  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1745  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1746  * does not include any don't care bit.
1747  * @net: Used to determine per-namespace field support.
1748  * @match: receives the extracted flow match information.
1749  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1750  * sequence. The fields should of the packet that triggered the creation
1751  * of this flow.
1752  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1753  * attribute specifies the mask field of the wildcarded flow.
1754  * @log: Boolean to allow kernel error logging.  Normally true, but when
1755  * probing for feature compatibility this should be passed in as false to
1756  * suppress unnecessary error logging.
1757  */
1758 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1759 		      const struct nlattr *nla_key,
1760 		      const struct nlattr *nla_mask,
1761 		      bool log)
1762 {
1763 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1764 	struct nlattr *newmask = NULL;
1765 	u64 key_attrs = 0;
1766 	u64 mask_attrs = 0;
1767 	int err;
1768 
1769 	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1770 	if (err)
1771 		return err;
1772 
1773 	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1774 	if (err)
1775 		return err;
1776 
1777 	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1778 	if (err)
1779 		return err;
1780 
1781 	if (match->mask) {
1782 		if (!nla_mask) {
1783 			/* Create an exact match mask. We need to set to 0xff
1784 			 * all the 'match->mask' fields that have been touched
1785 			 * in 'match->key'. We cannot simply memset
1786 			 * 'match->mask', because padding bytes and fields not
1787 			 * specified in 'match->key' should be left to 0.
1788 			 * Instead, we use a stream of netlink attributes,
1789 			 * copied from 'key' and set to 0xff.
1790 			 * ovs_key_from_nlattrs() will take care of filling
1791 			 * 'match->mask' appropriately.
1792 			 */
1793 			newmask = kmemdup(nla_key,
1794 					  nla_total_size(nla_len(nla_key)),
1795 					  GFP_KERNEL);
1796 			if (!newmask)
1797 				return -ENOMEM;
1798 
1799 			mask_set_nlattr(newmask, 0xff);
1800 
1801 			/* The userspace does not send tunnel attributes that
1802 			 * are 0, but we should not wildcard them nonetheless.
1803 			 */
1804 			if (match->key->tun_proto)
1805 				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1806 							 0xff, true);
1807 
1808 			nla_mask = newmask;
1809 		}
1810 
1811 		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1812 		if (err)
1813 			goto free_newmask;
1814 
1815 		/* Always match on tci. */
1816 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1817 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1818 
1819 		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1820 		if (err)
1821 			goto free_newmask;
1822 
1823 		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1824 					   log);
1825 		if (err)
1826 			goto free_newmask;
1827 	}
1828 
1829 	if (!match_validate(match, key_attrs, mask_attrs, log))
1830 		err = -EINVAL;
1831 
1832 free_newmask:
1833 	kfree(newmask);
1834 	return err;
1835 }
1836 
1837 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1838 {
1839 	size_t len;
1840 
1841 	if (!attr)
1842 		return 0;
1843 
1844 	len = nla_len(attr);
1845 	if (len < 1 || len > MAX_UFID_LENGTH) {
1846 		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1847 			  nla_len(attr), MAX_UFID_LENGTH);
1848 		return 0;
1849 	}
1850 
1851 	return len;
1852 }
1853 
1854 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1855  * or false otherwise.
1856  */
1857 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1858 		      bool log)
1859 {
1860 	sfid->ufid_len = get_ufid_len(attr, log);
1861 	if (sfid->ufid_len)
1862 		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1863 
1864 	return sfid->ufid_len;
1865 }
1866 
1867 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1868 			   const struct sw_flow_key *key, bool log)
1869 {
1870 	struct sw_flow_key *new_key;
1871 
1872 	if (ovs_nla_get_ufid(sfid, ufid, log))
1873 		return 0;
1874 
1875 	/* If UFID was not provided, use unmasked key. */
1876 	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1877 	if (!new_key)
1878 		return -ENOMEM;
1879 	memcpy(new_key, key, sizeof(*key));
1880 	sfid->unmasked_key = new_key;
1881 
1882 	return 0;
1883 }
1884 
1885 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1886 {
1887 	return attr ? nla_get_u32(attr) : 0;
1888 }
1889 
1890 /**
1891  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1892  * @net: Network namespace.
1893  * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1894  * metadata.
1895  * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1896  * attributes.
1897  * @attrs: Bit mask for the netlink attributes included in @a.
1898  * @log: Boolean to allow kernel error logging.  Normally true, but when
1899  * probing for feature compatibility this should be passed in as false to
1900  * suppress unnecessary error logging.
1901  *
1902  * This parses a series of Netlink attributes that form a flow key, which must
1903  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1904  * get the metadata, that is, the parts of the flow key that cannot be
1905  * extracted from the packet itself.
1906  *
1907  * This must be called before the packet key fields are filled in 'key'.
1908  */
1909 
1910 int ovs_nla_get_flow_metadata(struct net *net,
1911 			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1912 			      u64 attrs, struct sw_flow_key *key, bool log)
1913 {
1914 	struct sw_flow_match match;
1915 
1916 	memset(&match, 0, sizeof(match));
1917 	match.key = key;
1918 
1919 	key->ct_state = 0;
1920 	key->ct_zone = 0;
1921 	key->ct_orig_proto = 0;
1922 	memset(&key->ct, 0, sizeof(key->ct));
1923 	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1924 	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1925 
1926 	key->phy.in_port = DP_MAX_PORTS;
1927 
1928 	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1929 }
1930 
1931 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1932 			    bool is_mask)
1933 {
1934 	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1935 
1936 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1937 	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1938 		return -EMSGSIZE;
1939 	return 0;
1940 }
1941 
1942 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1943 			     struct sk_buff *skb)
1944 {
1945 	struct nlattr *start;
1946 
1947 	start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
1948 	if (!start)
1949 		return -EMSGSIZE;
1950 
1951 	if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1952 		goto nla_put_failure;
1953 
1954 	if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1955 		if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1956 			    sizeof(nsh->context), nsh->context))
1957 			goto nla_put_failure;
1958 	}
1959 
1960 	/* Don't support MD type 2 yet */
1961 
1962 	nla_nest_end(skb, start);
1963 
1964 	return 0;
1965 
1966 nla_put_failure:
1967 	return -EMSGSIZE;
1968 }
1969 
1970 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1971 			     const struct sw_flow_key *output, bool is_mask,
1972 			     struct sk_buff *skb)
1973 {
1974 	struct ovs_key_ethernet *eth_key;
1975 	struct nlattr *nla;
1976 	struct nlattr *encap = NULL;
1977 	struct nlattr *in_encap = NULL;
1978 
1979 	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1980 		goto nla_put_failure;
1981 
1982 	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1983 		goto nla_put_failure;
1984 
1985 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1986 		goto nla_put_failure;
1987 
1988 	if ((swkey->tun_proto || is_mask)) {
1989 		const void *opts = NULL;
1990 
1991 		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1992 			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1993 
1994 		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1995 				     swkey->tun_opts_len, swkey->tun_proto, 0))
1996 			goto nla_put_failure;
1997 	}
1998 
1999 	if (swkey->phy.in_port == DP_MAX_PORTS) {
2000 		if (is_mask && (output->phy.in_port == 0xffff))
2001 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2002 				goto nla_put_failure;
2003 	} else {
2004 		u16 upper_u16;
2005 		upper_u16 = !is_mask ? 0 : 0xffff;
2006 
2007 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2008 				(upper_u16 << 16) | output->phy.in_port))
2009 			goto nla_put_failure;
2010 	}
2011 
2012 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2013 		goto nla_put_failure;
2014 
2015 	if (ovs_ct_put_key(swkey, output, skb))
2016 		goto nla_put_failure;
2017 
2018 	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2019 		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2020 		if (!nla)
2021 			goto nla_put_failure;
2022 
2023 		eth_key = nla_data(nla);
2024 		ether_addr_copy(eth_key->eth_src, output->eth.src);
2025 		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2026 
2027 		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2028 			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2029 				goto nla_put_failure;
2030 			encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2031 			if (!swkey->eth.vlan.tci)
2032 				goto unencap;
2033 
2034 			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2035 				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2036 					goto nla_put_failure;
2037 				in_encap = nla_nest_start_noflag(skb,
2038 								 OVS_KEY_ATTR_ENCAP);
2039 				if (!swkey->eth.cvlan.tci)
2040 					goto unencap;
2041 			}
2042 		}
2043 
2044 		if (swkey->eth.type == htons(ETH_P_802_2)) {
2045 			/*
2046 			* Ethertype 802.2 is represented in the netlink with omitted
2047 			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2048 			* 0xffff in the mask attribute.  Ethertype can also
2049 			* be wildcarded.
2050 			*/
2051 			if (is_mask && output->eth.type)
2052 				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2053 							output->eth.type))
2054 					goto nla_put_failure;
2055 			goto unencap;
2056 		}
2057 	}
2058 
2059 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2060 		goto nla_put_failure;
2061 
2062 	if (eth_type_vlan(swkey->eth.type)) {
2063 		/* There are 3 VLAN tags, we don't know anything about the rest
2064 		 * of the packet, so truncate here.
2065 		 */
2066 		WARN_ON_ONCE(!(encap && in_encap));
2067 		goto unencap;
2068 	}
2069 
2070 	if (swkey->eth.type == htons(ETH_P_IP)) {
2071 		struct ovs_key_ipv4 *ipv4_key;
2072 
2073 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2074 		if (!nla)
2075 			goto nla_put_failure;
2076 		ipv4_key = nla_data(nla);
2077 		ipv4_key->ipv4_src = output->ipv4.addr.src;
2078 		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2079 		ipv4_key->ipv4_proto = output->ip.proto;
2080 		ipv4_key->ipv4_tos = output->ip.tos;
2081 		ipv4_key->ipv4_ttl = output->ip.ttl;
2082 		ipv4_key->ipv4_frag = output->ip.frag;
2083 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2084 		struct ovs_key_ipv6 *ipv6_key;
2085 
2086 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2087 		if (!nla)
2088 			goto nla_put_failure;
2089 		ipv6_key = nla_data(nla);
2090 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2091 				sizeof(ipv6_key->ipv6_src));
2092 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2093 				sizeof(ipv6_key->ipv6_dst));
2094 		ipv6_key->ipv6_label = output->ipv6.label;
2095 		ipv6_key->ipv6_proto = output->ip.proto;
2096 		ipv6_key->ipv6_tclass = output->ip.tos;
2097 		ipv6_key->ipv6_hlimit = output->ip.ttl;
2098 		ipv6_key->ipv6_frag = output->ip.frag;
2099 	} else if (swkey->eth.type == htons(ETH_P_NSH)) {
2100 		if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2101 			goto nla_put_failure;
2102 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
2103 		   swkey->eth.type == htons(ETH_P_RARP)) {
2104 		struct ovs_key_arp *arp_key;
2105 
2106 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2107 		if (!nla)
2108 			goto nla_put_failure;
2109 		arp_key = nla_data(nla);
2110 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
2111 		arp_key->arp_sip = output->ipv4.addr.src;
2112 		arp_key->arp_tip = output->ipv4.addr.dst;
2113 		arp_key->arp_op = htons(output->ip.proto);
2114 		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2115 		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2116 	} else if (eth_p_mpls(swkey->eth.type)) {
2117 		struct ovs_key_mpls *mpls_key;
2118 
2119 		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
2120 		if (!nla)
2121 			goto nla_put_failure;
2122 		mpls_key = nla_data(nla);
2123 		mpls_key->mpls_lse = output->mpls.top_lse;
2124 	}
2125 
2126 	if ((swkey->eth.type == htons(ETH_P_IP) ||
2127 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
2128 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2129 
2130 		if (swkey->ip.proto == IPPROTO_TCP) {
2131 			struct ovs_key_tcp *tcp_key;
2132 
2133 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2134 			if (!nla)
2135 				goto nla_put_failure;
2136 			tcp_key = nla_data(nla);
2137 			tcp_key->tcp_src = output->tp.src;
2138 			tcp_key->tcp_dst = output->tp.dst;
2139 			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2140 					 output->tp.flags))
2141 				goto nla_put_failure;
2142 		} else if (swkey->ip.proto == IPPROTO_UDP) {
2143 			struct ovs_key_udp *udp_key;
2144 
2145 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2146 			if (!nla)
2147 				goto nla_put_failure;
2148 			udp_key = nla_data(nla);
2149 			udp_key->udp_src = output->tp.src;
2150 			udp_key->udp_dst = output->tp.dst;
2151 		} else if (swkey->ip.proto == IPPROTO_SCTP) {
2152 			struct ovs_key_sctp *sctp_key;
2153 
2154 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2155 			if (!nla)
2156 				goto nla_put_failure;
2157 			sctp_key = nla_data(nla);
2158 			sctp_key->sctp_src = output->tp.src;
2159 			sctp_key->sctp_dst = output->tp.dst;
2160 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
2161 			   swkey->ip.proto == IPPROTO_ICMP) {
2162 			struct ovs_key_icmp *icmp_key;
2163 
2164 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2165 			if (!nla)
2166 				goto nla_put_failure;
2167 			icmp_key = nla_data(nla);
2168 			icmp_key->icmp_type = ntohs(output->tp.src);
2169 			icmp_key->icmp_code = ntohs(output->tp.dst);
2170 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2171 			   swkey->ip.proto == IPPROTO_ICMPV6) {
2172 			struct ovs_key_icmpv6 *icmpv6_key;
2173 
2174 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2175 						sizeof(*icmpv6_key));
2176 			if (!nla)
2177 				goto nla_put_failure;
2178 			icmpv6_key = nla_data(nla);
2179 			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2180 			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2181 
2182 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
2183 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
2184 				struct ovs_key_nd *nd_key;
2185 
2186 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2187 				if (!nla)
2188 					goto nla_put_failure;
2189 				nd_key = nla_data(nla);
2190 				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2191 							sizeof(nd_key->nd_target));
2192 				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2193 				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2194 			}
2195 		}
2196 	}
2197 
2198 unencap:
2199 	if (in_encap)
2200 		nla_nest_end(skb, in_encap);
2201 	if (encap)
2202 		nla_nest_end(skb, encap);
2203 
2204 	return 0;
2205 
2206 nla_put_failure:
2207 	return -EMSGSIZE;
2208 }
2209 
2210 int ovs_nla_put_key(const struct sw_flow_key *swkey,
2211 		    const struct sw_flow_key *output, int attr, bool is_mask,
2212 		    struct sk_buff *skb)
2213 {
2214 	int err;
2215 	struct nlattr *nla;
2216 
2217 	nla = nla_nest_start_noflag(skb, attr);
2218 	if (!nla)
2219 		return -EMSGSIZE;
2220 	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2221 	if (err)
2222 		return err;
2223 	nla_nest_end(skb, nla);
2224 
2225 	return 0;
2226 }
2227 
2228 /* Called with ovs_mutex or RCU read lock. */
2229 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2230 {
2231 	if (ovs_identifier_is_ufid(&flow->id))
2232 		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2233 			       flow->id.ufid);
2234 
2235 	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2236 			       OVS_FLOW_ATTR_KEY, false, skb);
2237 }
2238 
2239 /* Called with ovs_mutex or RCU read lock. */
2240 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2241 {
2242 	return ovs_nla_put_key(&flow->key, &flow->key,
2243 				OVS_FLOW_ATTR_KEY, false, skb);
2244 }
2245 
2246 /* Called with ovs_mutex or RCU read lock. */
2247 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2248 {
2249 	return ovs_nla_put_key(&flow->key, &flow->mask->key,
2250 				OVS_FLOW_ATTR_MASK, true, skb);
2251 }
2252 
2253 #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
2254 
2255 static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2256 {
2257 	struct sw_flow_actions *sfa;
2258 
2259 	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2260 
2261 	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
2262 	if (!sfa)
2263 		return ERR_PTR(-ENOMEM);
2264 
2265 	sfa->actions_len = 0;
2266 	return sfa;
2267 }
2268 
2269 static void ovs_nla_free_set_action(const struct nlattr *a)
2270 {
2271 	const struct nlattr *ovs_key = nla_data(a);
2272 	struct ovs_tunnel_info *ovs_tun;
2273 
2274 	switch (nla_type(ovs_key)) {
2275 	case OVS_KEY_ATTR_TUNNEL_INFO:
2276 		ovs_tun = nla_data(ovs_key);
2277 		dst_release((struct dst_entry *)ovs_tun->tun_dst);
2278 		break;
2279 	}
2280 }
2281 
2282 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2283 {
2284 	const struct nlattr *a;
2285 	int rem;
2286 
2287 	if (!sf_acts)
2288 		return;
2289 
2290 	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
2291 		switch (nla_type(a)) {
2292 		case OVS_ACTION_ATTR_SET:
2293 			ovs_nla_free_set_action(a);
2294 			break;
2295 		case OVS_ACTION_ATTR_CT:
2296 			ovs_ct_free_action(a);
2297 			break;
2298 		}
2299 	}
2300 
2301 	kfree(sf_acts);
2302 }
2303 
2304 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2305 {
2306 	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2307 }
2308 
2309 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
2310  * The caller must hold rcu_read_lock for this to be sensible. */
2311 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2312 {
2313 	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2314 }
2315 
2316 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2317 				       int attr_len, bool log)
2318 {
2319 
2320 	struct sw_flow_actions *acts;
2321 	int new_acts_size;
2322 	size_t req_size = NLA_ALIGN(attr_len);
2323 	int next_offset = offsetof(struct sw_flow_actions, actions) +
2324 					(*sfa)->actions_len;
2325 
2326 	if (req_size <= (ksize(*sfa) - next_offset))
2327 		goto out;
2328 
2329 	new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2330 
2331 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2332 		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) {
2333 			OVS_NLERR(log, "Flow action size exceeds max %u",
2334 				  MAX_ACTIONS_BUFSIZE);
2335 			return ERR_PTR(-EMSGSIZE);
2336 		}
2337 		new_acts_size = MAX_ACTIONS_BUFSIZE;
2338 	}
2339 
2340 	acts = nla_alloc_flow_actions(new_acts_size);
2341 	if (IS_ERR(acts))
2342 		return (void *)acts;
2343 
2344 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2345 	acts->actions_len = (*sfa)->actions_len;
2346 	acts->orig_len = (*sfa)->orig_len;
2347 	kfree(*sfa);
2348 	*sfa = acts;
2349 
2350 out:
2351 	(*sfa)->actions_len += req_size;
2352 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2353 }
2354 
2355 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2356 				   int attrtype, void *data, int len, bool log)
2357 {
2358 	struct nlattr *a;
2359 
2360 	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2361 	if (IS_ERR(a))
2362 		return a;
2363 
2364 	a->nla_type = attrtype;
2365 	a->nla_len = nla_attr_size(len);
2366 
2367 	if (data)
2368 		memcpy(nla_data(a), data, len);
2369 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2370 
2371 	return a;
2372 }
2373 
2374 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2375 		       int len, bool log)
2376 {
2377 	struct nlattr *a;
2378 
2379 	a = __add_action(sfa, attrtype, data, len, log);
2380 
2381 	return PTR_ERR_OR_ZERO(a);
2382 }
2383 
2384 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2385 					  int attrtype, bool log)
2386 {
2387 	int used = (*sfa)->actions_len;
2388 	int err;
2389 
2390 	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2391 	if (err)
2392 		return err;
2393 
2394 	return used;
2395 }
2396 
2397 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2398 					 int st_offset)
2399 {
2400 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2401 							       st_offset);
2402 
2403 	a->nla_len = sfa->actions_len - st_offset;
2404 }
2405 
2406 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2407 				  const struct sw_flow_key *key,
2408 				  struct sw_flow_actions **sfa,
2409 				  __be16 eth_type, __be16 vlan_tci, bool log);
2410 
2411 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2412 				    const struct sw_flow_key *key,
2413 				    struct sw_flow_actions **sfa,
2414 				    __be16 eth_type, __be16 vlan_tci,
2415 				    bool log, bool last)
2416 {
2417 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2418 	const struct nlattr *probability, *actions;
2419 	const struct nlattr *a;
2420 	int rem, start, err;
2421 	struct sample_arg arg;
2422 
2423 	memset(attrs, 0, sizeof(attrs));
2424 	nla_for_each_nested(a, attr, rem) {
2425 		int type = nla_type(a);
2426 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2427 			return -EINVAL;
2428 		attrs[type] = a;
2429 	}
2430 	if (rem)
2431 		return -EINVAL;
2432 
2433 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2434 	if (!probability || nla_len(probability) != sizeof(u32))
2435 		return -EINVAL;
2436 
2437 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2438 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2439 		return -EINVAL;
2440 
2441 	/* validation done, copy sample action. */
2442 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2443 	if (start < 0)
2444 		return start;
2445 
2446 	/* When both skb and flow may be changed, put the sample
2447 	 * into a deferred fifo. On the other hand, if only skb
2448 	 * may be modified, the actions can be executed in place.
2449 	 *
2450 	 * Do this analysis at the flow installation time.
2451 	 * Set 'clone_action->exec' to true if the actions can be
2452 	 * executed without being deferred.
2453 	 *
2454 	 * If the sample is the last action, it can always be excuted
2455 	 * rather than deferred.
2456 	 */
2457 	arg.exec = last || !actions_may_change_flow(actions);
2458 	arg.probability = nla_get_u32(probability);
2459 
2460 	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2461 				 log);
2462 	if (err)
2463 		return err;
2464 
2465 	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2466 				     eth_type, vlan_tci, log);
2467 
2468 	if (err)
2469 		return err;
2470 
2471 	add_nested_action_end(*sfa, start);
2472 
2473 	return 0;
2474 }
2475 
2476 static int validate_and_copy_clone(struct net *net,
2477 				   const struct nlattr *attr,
2478 				   const struct sw_flow_key *key,
2479 				   struct sw_flow_actions **sfa,
2480 				   __be16 eth_type, __be16 vlan_tci,
2481 				   bool log, bool last)
2482 {
2483 	int start, err;
2484 	u32 exec;
2485 
2486 	if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2487 		return -EINVAL;
2488 
2489 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2490 	if (start < 0)
2491 		return start;
2492 
2493 	exec = last || !actions_may_change_flow(attr);
2494 
2495 	err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2496 				 sizeof(exec), log);
2497 	if (err)
2498 		return err;
2499 
2500 	err = __ovs_nla_copy_actions(net, attr, key, sfa,
2501 				     eth_type, vlan_tci, log);
2502 	if (err)
2503 		return err;
2504 
2505 	add_nested_action_end(*sfa, start);
2506 
2507 	return 0;
2508 }
2509 
2510 void ovs_match_init(struct sw_flow_match *match,
2511 		    struct sw_flow_key *key,
2512 		    bool reset_key,
2513 		    struct sw_flow_mask *mask)
2514 {
2515 	memset(match, 0, sizeof(*match));
2516 	match->key = key;
2517 	match->mask = mask;
2518 
2519 	if (reset_key)
2520 		memset(key, 0, sizeof(*key));
2521 
2522 	if (mask) {
2523 		memset(&mask->key, 0, sizeof(mask->key));
2524 		mask->range.start = mask->range.end = 0;
2525 	}
2526 }
2527 
2528 static int validate_geneve_opts(struct sw_flow_key *key)
2529 {
2530 	struct geneve_opt *option;
2531 	int opts_len = key->tun_opts_len;
2532 	bool crit_opt = false;
2533 
2534 	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2535 	while (opts_len > 0) {
2536 		int len;
2537 
2538 		if (opts_len < sizeof(*option))
2539 			return -EINVAL;
2540 
2541 		len = sizeof(*option) + option->length * 4;
2542 		if (len > opts_len)
2543 			return -EINVAL;
2544 
2545 		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2546 
2547 		option = (struct geneve_opt *)((u8 *)option + len);
2548 		opts_len -= len;
2549 	}
2550 
2551 	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2552 
2553 	return 0;
2554 }
2555 
2556 static int validate_and_copy_set_tun(const struct nlattr *attr,
2557 				     struct sw_flow_actions **sfa, bool log)
2558 {
2559 	struct sw_flow_match match;
2560 	struct sw_flow_key key;
2561 	struct metadata_dst *tun_dst;
2562 	struct ip_tunnel_info *tun_info;
2563 	struct ovs_tunnel_info *ovs_tun;
2564 	struct nlattr *a;
2565 	int err = 0, start, opts_type;
2566 	__be16 dst_opt_type;
2567 
2568 	dst_opt_type = 0;
2569 	ovs_match_init(&match, &key, true, NULL);
2570 	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2571 	if (opts_type < 0)
2572 		return opts_type;
2573 
2574 	if (key.tun_opts_len) {
2575 		switch (opts_type) {
2576 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2577 			err = validate_geneve_opts(&key);
2578 			if (err < 0)
2579 				return err;
2580 			dst_opt_type = TUNNEL_GENEVE_OPT;
2581 			break;
2582 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2583 			dst_opt_type = TUNNEL_VXLAN_OPT;
2584 			break;
2585 		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2586 			dst_opt_type = TUNNEL_ERSPAN_OPT;
2587 			break;
2588 		}
2589 	}
2590 
2591 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2592 	if (start < 0)
2593 		return start;
2594 
2595 	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2596 				     GFP_KERNEL);
2597 
2598 	if (!tun_dst)
2599 		return -ENOMEM;
2600 
2601 	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2602 	if (err) {
2603 		dst_release((struct dst_entry *)tun_dst);
2604 		return err;
2605 	}
2606 
2607 	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2608 			 sizeof(*ovs_tun), log);
2609 	if (IS_ERR(a)) {
2610 		dst_release((struct dst_entry *)tun_dst);
2611 		return PTR_ERR(a);
2612 	}
2613 
2614 	ovs_tun = nla_data(a);
2615 	ovs_tun->tun_dst = tun_dst;
2616 
2617 	tun_info = &tun_dst->u.tun_info;
2618 	tun_info->mode = IP_TUNNEL_INFO_TX;
2619 	if (key.tun_proto == AF_INET6)
2620 		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2621 	else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2622 		tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2623 	tun_info->key = key.tun_key;
2624 
2625 	/* We need to store the options in the action itself since
2626 	 * everything else will go away after flow setup. We can append
2627 	 * it to tun_info and then point there.
2628 	 */
2629 	ip_tunnel_info_opts_set(tun_info,
2630 				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2631 				key.tun_opts_len, dst_opt_type);
2632 	add_nested_action_end(*sfa, start);
2633 
2634 	return err;
2635 }
2636 
2637 static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2638 			 bool is_push_nsh, bool log)
2639 {
2640 	struct sw_flow_match match;
2641 	struct sw_flow_key key;
2642 	int ret = 0;
2643 
2644 	ovs_match_init(&match, &key, true, NULL);
2645 	ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2646 				      is_push_nsh, log);
2647 	return !ret;
2648 }
2649 
2650 /* Return false if there are any non-masked bits set.
2651  * Mask follows data immediately, before any netlink padding.
2652  */
2653 static bool validate_masked(u8 *data, int len)
2654 {
2655 	u8 *mask = data + len;
2656 
2657 	while (len--)
2658 		if (*data++ & ~*mask++)
2659 			return false;
2660 
2661 	return true;
2662 }
2663 
2664 static int validate_set(const struct nlattr *a,
2665 			const struct sw_flow_key *flow_key,
2666 			struct sw_flow_actions **sfa, bool *skip_copy,
2667 			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2668 {
2669 	const struct nlattr *ovs_key = nla_data(a);
2670 	int key_type = nla_type(ovs_key);
2671 	size_t key_len;
2672 
2673 	/* There can be only one key in a action */
2674 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2675 		return -EINVAL;
2676 
2677 	key_len = nla_len(ovs_key);
2678 	if (masked)
2679 		key_len /= 2;
2680 
2681 	if (key_type > OVS_KEY_ATTR_MAX ||
2682 	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2683 		return -EINVAL;
2684 
2685 	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2686 		return -EINVAL;
2687 
2688 	switch (key_type) {
2689 	const struct ovs_key_ipv4 *ipv4_key;
2690 	const struct ovs_key_ipv6 *ipv6_key;
2691 	int err;
2692 
2693 	case OVS_KEY_ATTR_PRIORITY:
2694 	case OVS_KEY_ATTR_SKB_MARK:
2695 	case OVS_KEY_ATTR_CT_MARK:
2696 	case OVS_KEY_ATTR_CT_LABELS:
2697 		break;
2698 
2699 	case OVS_KEY_ATTR_ETHERNET:
2700 		if (mac_proto != MAC_PROTO_ETHERNET)
2701 			return -EINVAL;
2702 		break;
2703 
2704 	case OVS_KEY_ATTR_TUNNEL:
2705 		if (masked)
2706 			return -EINVAL; /* Masked tunnel set not supported. */
2707 
2708 		*skip_copy = true;
2709 		err = validate_and_copy_set_tun(a, sfa, log);
2710 		if (err)
2711 			return err;
2712 		break;
2713 
2714 	case OVS_KEY_ATTR_IPV4:
2715 		if (eth_type != htons(ETH_P_IP))
2716 			return -EINVAL;
2717 
2718 		ipv4_key = nla_data(ovs_key);
2719 
2720 		if (masked) {
2721 			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2722 
2723 			/* Non-writeable fields. */
2724 			if (mask->ipv4_proto || mask->ipv4_frag)
2725 				return -EINVAL;
2726 		} else {
2727 			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2728 				return -EINVAL;
2729 
2730 			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2731 				return -EINVAL;
2732 		}
2733 		break;
2734 
2735 	case OVS_KEY_ATTR_IPV6:
2736 		if (eth_type != htons(ETH_P_IPV6))
2737 			return -EINVAL;
2738 
2739 		ipv6_key = nla_data(ovs_key);
2740 
2741 		if (masked) {
2742 			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2743 
2744 			/* Non-writeable fields. */
2745 			if (mask->ipv6_proto || mask->ipv6_frag)
2746 				return -EINVAL;
2747 
2748 			/* Invalid bits in the flow label mask? */
2749 			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2750 				return -EINVAL;
2751 		} else {
2752 			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2753 				return -EINVAL;
2754 
2755 			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2756 				return -EINVAL;
2757 		}
2758 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2759 			return -EINVAL;
2760 
2761 		break;
2762 
2763 	case OVS_KEY_ATTR_TCP:
2764 		if ((eth_type != htons(ETH_P_IP) &&
2765 		     eth_type != htons(ETH_P_IPV6)) ||
2766 		    flow_key->ip.proto != IPPROTO_TCP)
2767 			return -EINVAL;
2768 
2769 		break;
2770 
2771 	case OVS_KEY_ATTR_UDP:
2772 		if ((eth_type != htons(ETH_P_IP) &&
2773 		     eth_type != htons(ETH_P_IPV6)) ||
2774 		    flow_key->ip.proto != IPPROTO_UDP)
2775 			return -EINVAL;
2776 
2777 		break;
2778 
2779 	case OVS_KEY_ATTR_MPLS:
2780 		if (!eth_p_mpls(eth_type))
2781 			return -EINVAL;
2782 		break;
2783 
2784 	case OVS_KEY_ATTR_SCTP:
2785 		if ((eth_type != htons(ETH_P_IP) &&
2786 		     eth_type != htons(ETH_P_IPV6)) ||
2787 		    flow_key->ip.proto != IPPROTO_SCTP)
2788 			return -EINVAL;
2789 
2790 		break;
2791 
2792 	case OVS_KEY_ATTR_NSH:
2793 		if (eth_type != htons(ETH_P_NSH))
2794 			return -EINVAL;
2795 		if (!validate_nsh(nla_data(a), masked, false, log))
2796 			return -EINVAL;
2797 		break;
2798 
2799 	default:
2800 		return -EINVAL;
2801 	}
2802 
2803 	/* Convert non-masked non-tunnel set actions to masked set actions. */
2804 	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2805 		int start, len = key_len * 2;
2806 		struct nlattr *at;
2807 
2808 		*skip_copy = true;
2809 
2810 		start = add_nested_action_start(sfa,
2811 						OVS_ACTION_ATTR_SET_TO_MASKED,
2812 						log);
2813 		if (start < 0)
2814 			return start;
2815 
2816 		at = __add_action(sfa, key_type, NULL, len, log);
2817 		if (IS_ERR(at))
2818 			return PTR_ERR(at);
2819 
2820 		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2821 		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2822 		/* Clear non-writeable bits from otherwise writeable fields. */
2823 		if (key_type == OVS_KEY_ATTR_IPV6) {
2824 			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2825 
2826 			mask->ipv6_label &= htonl(0x000FFFFF);
2827 		}
2828 		add_nested_action_end(*sfa, start);
2829 	}
2830 
2831 	return 0;
2832 }
2833 
2834 static int validate_userspace(const struct nlattr *attr)
2835 {
2836 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2837 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2838 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2839 		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2840 	};
2841 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2842 	int error;
2843 
2844 	error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
2845 					    userspace_policy, NULL);
2846 	if (error)
2847 		return error;
2848 
2849 	if (!a[OVS_USERSPACE_ATTR_PID] ||
2850 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2851 		return -EINVAL;
2852 
2853 	return 0;
2854 }
2855 
2856 static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
2857 	[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
2858 	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
2859 	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
2860 };
2861 
2862 static int validate_and_copy_check_pkt_len(struct net *net,
2863 					   const struct nlattr *attr,
2864 					   const struct sw_flow_key *key,
2865 					   struct sw_flow_actions **sfa,
2866 					   __be16 eth_type, __be16 vlan_tci,
2867 					   bool log, bool last)
2868 {
2869 	const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
2870 	struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
2871 	struct check_pkt_len_arg arg;
2872 	int nested_acts_start;
2873 	int start, err;
2874 
2875 	err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
2876 					  nla_data(attr), nla_len(attr),
2877 					  cpl_policy, NULL);
2878 	if (err)
2879 		return err;
2880 
2881 	if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
2882 	    !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
2883 		return -EINVAL;
2884 
2885 	acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
2886 	acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
2887 
2888 	/* Both the nested action should be present. */
2889 	if (!acts_if_greater || !acts_if_lesser_eq)
2890 		return -EINVAL;
2891 
2892 	/* validation done, copy the nested actions. */
2893 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
2894 					log);
2895 	if (start < 0)
2896 		return start;
2897 
2898 	arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
2899 	arg.exec_for_lesser_equal =
2900 		last || !actions_may_change_flow(acts_if_lesser_eq);
2901 	arg.exec_for_greater =
2902 		last || !actions_may_change_flow(acts_if_greater);
2903 
2904 	err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
2905 				 sizeof(arg), log);
2906 	if (err)
2907 		return err;
2908 
2909 	nested_acts_start = add_nested_action_start(sfa,
2910 		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
2911 	if (nested_acts_start < 0)
2912 		return nested_acts_start;
2913 
2914 	err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
2915 				     eth_type, vlan_tci, log);
2916 
2917 	if (err)
2918 		return err;
2919 
2920 	add_nested_action_end(*sfa, nested_acts_start);
2921 
2922 	nested_acts_start = add_nested_action_start(sfa,
2923 		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
2924 	if (nested_acts_start < 0)
2925 		return nested_acts_start;
2926 
2927 	err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
2928 				     eth_type, vlan_tci, log);
2929 
2930 	if (err)
2931 		return err;
2932 
2933 	add_nested_action_end(*sfa, nested_acts_start);
2934 	add_nested_action_end(*sfa, start);
2935 	return 0;
2936 }
2937 
2938 static int copy_action(const struct nlattr *from,
2939 		       struct sw_flow_actions **sfa, bool log)
2940 {
2941 	int totlen = NLA_ALIGN(from->nla_len);
2942 	struct nlattr *to;
2943 
2944 	to = reserve_sfa_size(sfa, from->nla_len, log);
2945 	if (IS_ERR(to))
2946 		return PTR_ERR(to);
2947 
2948 	memcpy(to, from, totlen);
2949 	return 0;
2950 }
2951 
2952 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2953 				  const struct sw_flow_key *key,
2954 				  struct sw_flow_actions **sfa,
2955 				  __be16 eth_type, __be16 vlan_tci, bool log)
2956 {
2957 	u8 mac_proto = ovs_key_mac_proto(key);
2958 	const struct nlattr *a;
2959 	int rem, err;
2960 
2961 	nla_for_each_nested(a, attr, rem) {
2962 		/* Expected argument lengths, (u32)-1 for variable length. */
2963 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2964 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2965 			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2966 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2967 			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2968 			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2969 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2970 			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2971 			[OVS_ACTION_ATTR_SET] = (u32)-1,
2972 			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2973 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2974 			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2975 			[OVS_ACTION_ATTR_CT] = (u32)-1,
2976 			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
2977 			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2978 			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2979 			[OVS_ACTION_ATTR_POP_ETH] = 0,
2980 			[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
2981 			[OVS_ACTION_ATTR_POP_NSH] = 0,
2982 			[OVS_ACTION_ATTR_METER] = sizeof(u32),
2983 			[OVS_ACTION_ATTR_CLONE] = (u32)-1,
2984 			[OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
2985 		};
2986 		const struct ovs_action_push_vlan *vlan;
2987 		int type = nla_type(a);
2988 		bool skip_copy;
2989 
2990 		if (type > OVS_ACTION_ATTR_MAX ||
2991 		    (action_lens[type] != nla_len(a) &&
2992 		     action_lens[type] != (u32)-1))
2993 			return -EINVAL;
2994 
2995 		skip_copy = false;
2996 		switch (type) {
2997 		case OVS_ACTION_ATTR_UNSPEC:
2998 			return -EINVAL;
2999 
3000 		case OVS_ACTION_ATTR_USERSPACE:
3001 			err = validate_userspace(a);
3002 			if (err)
3003 				return err;
3004 			break;
3005 
3006 		case OVS_ACTION_ATTR_OUTPUT:
3007 			if (nla_get_u32(a) >= DP_MAX_PORTS)
3008 				return -EINVAL;
3009 			break;
3010 
3011 		case OVS_ACTION_ATTR_TRUNC: {
3012 			const struct ovs_action_trunc *trunc = nla_data(a);
3013 
3014 			if (trunc->max_len < ETH_HLEN)
3015 				return -EINVAL;
3016 			break;
3017 		}
3018 
3019 		case OVS_ACTION_ATTR_HASH: {
3020 			const struct ovs_action_hash *act_hash = nla_data(a);
3021 
3022 			switch (act_hash->hash_alg) {
3023 			case OVS_HASH_ALG_L4:
3024 				break;
3025 			default:
3026 				return  -EINVAL;
3027 			}
3028 
3029 			break;
3030 		}
3031 
3032 		case OVS_ACTION_ATTR_POP_VLAN:
3033 			if (mac_proto != MAC_PROTO_ETHERNET)
3034 				return -EINVAL;
3035 			vlan_tci = htons(0);
3036 			break;
3037 
3038 		case OVS_ACTION_ATTR_PUSH_VLAN:
3039 			if (mac_proto != MAC_PROTO_ETHERNET)
3040 				return -EINVAL;
3041 			vlan = nla_data(a);
3042 			if (!eth_type_vlan(vlan->vlan_tpid))
3043 				return -EINVAL;
3044 			if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3045 				return -EINVAL;
3046 			vlan_tci = vlan->vlan_tci;
3047 			break;
3048 
3049 		case OVS_ACTION_ATTR_RECIRC:
3050 			break;
3051 
3052 		case OVS_ACTION_ATTR_PUSH_MPLS: {
3053 			const struct ovs_action_push_mpls *mpls = nla_data(a);
3054 
3055 			if (!eth_p_mpls(mpls->mpls_ethertype))
3056 				return -EINVAL;
3057 			/* Prohibit push MPLS other than to a white list
3058 			 * for packets that have a known tag order.
3059 			 */
3060 			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3061 			    (eth_type != htons(ETH_P_IP) &&
3062 			     eth_type != htons(ETH_P_IPV6) &&
3063 			     eth_type != htons(ETH_P_ARP) &&
3064 			     eth_type != htons(ETH_P_RARP) &&
3065 			     !eth_p_mpls(eth_type)))
3066 				return -EINVAL;
3067 			eth_type = mpls->mpls_ethertype;
3068 			break;
3069 		}
3070 
3071 		case OVS_ACTION_ATTR_POP_MPLS:
3072 			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3073 			    !eth_p_mpls(eth_type))
3074 				return -EINVAL;
3075 
3076 			/* Disallow subsequent L2.5+ set and mpls_pop actions
3077 			 * as there is no check here to ensure that the new
3078 			 * eth_type is valid and thus set actions could
3079 			 * write off the end of the packet or otherwise
3080 			 * corrupt it.
3081 			 *
3082 			 * Support for these actions is planned using packet
3083 			 * recirculation.
3084 			 */
3085 			eth_type = htons(0);
3086 			break;
3087 
3088 		case OVS_ACTION_ATTR_SET:
3089 			err = validate_set(a, key, sfa,
3090 					   &skip_copy, mac_proto, eth_type,
3091 					   false, log);
3092 			if (err)
3093 				return err;
3094 			break;
3095 
3096 		case OVS_ACTION_ATTR_SET_MASKED:
3097 			err = validate_set(a, key, sfa,
3098 					   &skip_copy, mac_proto, eth_type,
3099 					   true, log);
3100 			if (err)
3101 				return err;
3102 			break;
3103 
3104 		case OVS_ACTION_ATTR_SAMPLE: {
3105 			bool last = nla_is_last(a, rem);
3106 
3107 			err = validate_and_copy_sample(net, a, key, sfa,
3108 						       eth_type, vlan_tci,
3109 						       log, last);
3110 			if (err)
3111 				return err;
3112 			skip_copy = true;
3113 			break;
3114 		}
3115 
3116 		case OVS_ACTION_ATTR_CT:
3117 			err = ovs_ct_copy_action(net, a, key, sfa, log);
3118 			if (err)
3119 				return err;
3120 			skip_copy = true;
3121 			break;
3122 
3123 		case OVS_ACTION_ATTR_CT_CLEAR:
3124 			break;
3125 
3126 		case OVS_ACTION_ATTR_PUSH_ETH:
3127 			/* Disallow pushing an Ethernet header if one
3128 			 * is already present */
3129 			if (mac_proto != MAC_PROTO_NONE)
3130 				return -EINVAL;
3131 			mac_proto = MAC_PROTO_ETHERNET;
3132 			break;
3133 
3134 		case OVS_ACTION_ATTR_POP_ETH:
3135 			if (mac_proto != MAC_PROTO_ETHERNET)
3136 				return -EINVAL;
3137 			if (vlan_tci & htons(VLAN_CFI_MASK))
3138 				return -EINVAL;
3139 			mac_proto = MAC_PROTO_NONE;
3140 			break;
3141 
3142 		case OVS_ACTION_ATTR_PUSH_NSH:
3143 			if (mac_proto != MAC_PROTO_ETHERNET) {
3144 				u8 next_proto;
3145 
3146 				next_proto = tun_p_from_eth_p(eth_type);
3147 				if (!next_proto)
3148 					return -EINVAL;
3149 			}
3150 			mac_proto = MAC_PROTO_NONE;
3151 			if (!validate_nsh(nla_data(a), false, true, true))
3152 				return -EINVAL;
3153 			break;
3154 
3155 		case OVS_ACTION_ATTR_POP_NSH: {
3156 			__be16 inner_proto;
3157 
3158 			if (eth_type != htons(ETH_P_NSH))
3159 				return -EINVAL;
3160 			inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3161 			if (!inner_proto)
3162 				return -EINVAL;
3163 			if (key->nsh.base.np == TUN_P_ETHERNET)
3164 				mac_proto = MAC_PROTO_ETHERNET;
3165 			else
3166 				mac_proto = MAC_PROTO_NONE;
3167 			break;
3168 		}
3169 
3170 		case OVS_ACTION_ATTR_METER:
3171 			/* Non-existent meters are simply ignored.  */
3172 			break;
3173 
3174 		case OVS_ACTION_ATTR_CLONE: {
3175 			bool last = nla_is_last(a, rem);
3176 
3177 			err = validate_and_copy_clone(net, a, key, sfa,
3178 						      eth_type, vlan_tci,
3179 						      log, last);
3180 			if (err)
3181 				return err;
3182 			skip_copy = true;
3183 			break;
3184 		}
3185 
3186 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3187 			bool last = nla_is_last(a, rem);
3188 
3189 			err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3190 							      eth_type,
3191 							      vlan_tci, log,
3192 							      last);
3193 			if (err)
3194 				return err;
3195 			skip_copy = true;
3196 			break;
3197 		}
3198 
3199 		default:
3200 			OVS_NLERR(log, "Unknown Action type %d", type);
3201 			return -EINVAL;
3202 		}
3203 		if (!skip_copy) {
3204 			err = copy_action(a, sfa, log);
3205 			if (err)
3206 				return err;
3207 		}
3208 	}
3209 
3210 	if (rem > 0)
3211 		return -EINVAL;
3212 
3213 	return 0;
3214 }
3215 
3216 /* 'key' must be the masked key. */
3217 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3218 			 const struct sw_flow_key *key,
3219 			 struct sw_flow_actions **sfa, bool log)
3220 {
3221 	int err;
3222 
3223 	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3224 	if (IS_ERR(*sfa))
3225 		return PTR_ERR(*sfa);
3226 
3227 	(*sfa)->orig_len = nla_len(attr);
3228 	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3229 				     key->eth.vlan.tci, log);
3230 	if (err)
3231 		ovs_nla_free_flow_actions(*sfa);
3232 
3233 	return err;
3234 }
3235 
3236 static int sample_action_to_attr(const struct nlattr *attr,
3237 				 struct sk_buff *skb)
3238 {
3239 	struct nlattr *start, *ac_start = NULL, *sample_arg;
3240 	int err = 0, rem = nla_len(attr);
3241 	const struct sample_arg *arg;
3242 	struct nlattr *actions;
3243 
3244 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3245 	if (!start)
3246 		return -EMSGSIZE;
3247 
3248 	sample_arg = nla_data(attr);
3249 	arg = nla_data(sample_arg);
3250 	actions = nla_next(sample_arg, &rem);
3251 
3252 	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3253 		err = -EMSGSIZE;
3254 		goto out;
3255 	}
3256 
3257 	ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3258 	if (!ac_start) {
3259 		err = -EMSGSIZE;
3260 		goto out;
3261 	}
3262 
3263 	err = ovs_nla_put_actions(actions, rem, skb);
3264 
3265 out:
3266 	if (err) {
3267 		nla_nest_cancel(skb, ac_start);
3268 		nla_nest_cancel(skb, start);
3269 	} else {
3270 		nla_nest_end(skb, ac_start);
3271 		nla_nest_end(skb, start);
3272 	}
3273 
3274 	return err;
3275 }
3276 
3277 static int clone_action_to_attr(const struct nlattr *attr,
3278 				struct sk_buff *skb)
3279 {
3280 	struct nlattr *start;
3281 	int err = 0, rem = nla_len(attr);
3282 
3283 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3284 	if (!start)
3285 		return -EMSGSIZE;
3286 
3287 	err = ovs_nla_put_actions(nla_data(attr), rem, skb);
3288 
3289 	if (err)
3290 		nla_nest_cancel(skb, start);
3291 	else
3292 		nla_nest_end(skb, start);
3293 
3294 	return err;
3295 }
3296 
3297 static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3298 					struct sk_buff *skb)
3299 {
3300 	struct nlattr *start, *ac_start = NULL;
3301 	const struct check_pkt_len_arg *arg;
3302 	const struct nlattr *a, *cpl_arg;
3303 	int err = 0, rem = nla_len(attr);
3304 
3305 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3306 	if (!start)
3307 		return -EMSGSIZE;
3308 
3309 	/* The first nested attribute in 'attr' is always
3310 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3311 	 */
3312 	cpl_arg = nla_data(attr);
3313 	arg = nla_data(cpl_arg);
3314 
3315 	if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3316 		err = -EMSGSIZE;
3317 		goto out;
3318 	}
3319 
3320 	/* Second nested attribute in 'attr' is always
3321 	 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3322 	 */
3323 	a = nla_next(cpl_arg, &rem);
3324 	ac_start =  nla_nest_start_noflag(skb,
3325 					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3326 	if (!ac_start) {
3327 		err = -EMSGSIZE;
3328 		goto out;
3329 	}
3330 
3331 	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3332 	if (err) {
3333 		nla_nest_cancel(skb, ac_start);
3334 		goto out;
3335 	} else {
3336 		nla_nest_end(skb, ac_start);
3337 	}
3338 
3339 	/* Third nested attribute in 'attr' is always
3340 	 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3341 	 */
3342 	a = nla_next(a, &rem);
3343 	ac_start =  nla_nest_start_noflag(skb,
3344 					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3345 	if (!ac_start) {
3346 		err = -EMSGSIZE;
3347 		goto out;
3348 	}
3349 
3350 	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3351 	if (err) {
3352 		nla_nest_cancel(skb, ac_start);
3353 		goto out;
3354 	} else {
3355 		nla_nest_end(skb, ac_start);
3356 	}
3357 
3358 	nla_nest_end(skb, start);
3359 	return 0;
3360 
3361 out:
3362 	nla_nest_cancel(skb, start);
3363 	return err;
3364 }
3365 
3366 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3367 {
3368 	const struct nlattr *ovs_key = nla_data(a);
3369 	int key_type = nla_type(ovs_key);
3370 	struct nlattr *start;
3371 	int err;
3372 
3373 	switch (key_type) {
3374 	case OVS_KEY_ATTR_TUNNEL_INFO: {
3375 		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3376 		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3377 
3378 		start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3379 		if (!start)
3380 			return -EMSGSIZE;
3381 
3382 		err =  ip_tun_to_nlattr(skb, &tun_info->key,
3383 					ip_tunnel_info_opts(tun_info),
3384 					tun_info->options_len,
3385 					ip_tunnel_info_af(tun_info), tun_info->mode);
3386 		if (err)
3387 			return err;
3388 		nla_nest_end(skb, start);
3389 		break;
3390 	}
3391 	default:
3392 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3393 			return -EMSGSIZE;
3394 		break;
3395 	}
3396 
3397 	return 0;
3398 }
3399 
3400 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3401 						struct sk_buff *skb)
3402 {
3403 	const struct nlattr *ovs_key = nla_data(a);
3404 	struct nlattr *nla;
3405 	size_t key_len = nla_len(ovs_key) / 2;
3406 
3407 	/* Revert the conversion we did from a non-masked set action to
3408 	 * masked set action.
3409 	 */
3410 	nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3411 	if (!nla)
3412 		return -EMSGSIZE;
3413 
3414 	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3415 		return -EMSGSIZE;
3416 
3417 	nla_nest_end(skb, nla);
3418 	return 0;
3419 }
3420 
3421 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3422 {
3423 	const struct nlattr *a;
3424 	int rem, err;
3425 
3426 	nla_for_each_attr(a, attr, len, rem) {
3427 		int type = nla_type(a);
3428 
3429 		switch (type) {
3430 		case OVS_ACTION_ATTR_SET:
3431 			err = set_action_to_attr(a, skb);
3432 			if (err)
3433 				return err;
3434 			break;
3435 
3436 		case OVS_ACTION_ATTR_SET_TO_MASKED:
3437 			err = masked_set_action_to_set_action_attr(a, skb);
3438 			if (err)
3439 				return err;
3440 			break;
3441 
3442 		case OVS_ACTION_ATTR_SAMPLE:
3443 			err = sample_action_to_attr(a, skb);
3444 			if (err)
3445 				return err;
3446 			break;
3447 
3448 		case OVS_ACTION_ATTR_CT:
3449 			err = ovs_ct_action_to_attr(nla_data(a), skb);
3450 			if (err)
3451 				return err;
3452 			break;
3453 
3454 		case OVS_ACTION_ATTR_CLONE:
3455 			err = clone_action_to_attr(a, skb);
3456 			if (err)
3457 				return err;
3458 			break;
3459 
3460 		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3461 			err = check_pkt_len_action_to_attr(a, skb);
3462 			if (err)
3463 				return err;
3464 			break;
3465 
3466 		default:
3467 			if (nla_put(skb, type, nla_len(a), nla_data(a)))
3468 				return -EMSGSIZE;
3469 			break;
3470 		}
3471 	}
3472 
3473 	return 0;
3474 }
3475