xref: /linux/net/openvswitch/flow.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/if_arp.h>
33 #include <linux/ip.h>
34 #include <linux/ipv6.h>
35 #include <linux/mpls.h>
36 #include <linux/sctp.h>
37 #include <linux/smp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/ip.h>
44 #include <net/ip_tunnels.h>
45 #include <net/ipv6.h>
46 #include <net/mpls.h>
47 #include <net/ndisc.h>
48 
49 #include "datapath.h"
50 #include "flow.h"
51 #include "flow_netlink.h"
52 
53 u64 ovs_flow_used_time(unsigned long flow_jiffies)
54 {
55 	struct timespec cur_ts;
56 	u64 cur_ms, idle_ms;
57 
58 	ktime_get_ts(&cur_ts);
59 	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
60 	cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
61 		 cur_ts.tv_nsec / NSEC_PER_MSEC;
62 
63 	return cur_ms - idle_ms;
64 }
65 
66 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
67 
68 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
69 			   const struct sk_buff *skb)
70 {
71 	struct flow_stats *stats;
72 	int node = numa_node_id();
73 	int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
74 
75 	stats = rcu_dereference(flow->stats[node]);
76 
77 	/* Check if already have node-specific stats. */
78 	if (likely(stats)) {
79 		spin_lock(&stats->lock);
80 		/* Mark if we write on the pre-allocated stats. */
81 		if (node == 0 && unlikely(flow->stats_last_writer != node))
82 			flow->stats_last_writer = node;
83 	} else {
84 		stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
85 		spin_lock(&stats->lock);
86 
87 		/* If the current NUMA-node is the only writer on the
88 		 * pre-allocated stats keep using them.
89 		 */
90 		if (unlikely(flow->stats_last_writer != node)) {
91 			/* A previous locker may have already allocated the
92 			 * stats, so we need to check again.  If node-specific
93 			 * stats were already allocated, we update the pre-
94 			 * allocated stats as we have already locked them.
95 			 */
96 			if (likely(flow->stats_last_writer != NUMA_NO_NODE)
97 			    && likely(!rcu_access_pointer(flow->stats[node]))) {
98 				/* Try to allocate node-specific stats. */
99 				struct flow_stats *new_stats;
100 
101 				new_stats =
102 					kmem_cache_alloc_node(flow_stats_cache,
103 							      GFP_THISNODE |
104 							      __GFP_NOMEMALLOC,
105 							      node);
106 				if (likely(new_stats)) {
107 					new_stats->used = jiffies;
108 					new_stats->packet_count = 1;
109 					new_stats->byte_count = len;
110 					new_stats->tcp_flags = tcp_flags;
111 					spin_lock_init(&new_stats->lock);
112 
113 					rcu_assign_pointer(flow->stats[node],
114 							   new_stats);
115 					goto unlock;
116 				}
117 			}
118 			flow->stats_last_writer = node;
119 		}
120 	}
121 
122 	stats->used = jiffies;
123 	stats->packet_count++;
124 	stats->byte_count += len;
125 	stats->tcp_flags |= tcp_flags;
126 unlock:
127 	spin_unlock(&stats->lock);
128 }
129 
130 /* Must be called with rcu_read_lock or ovs_mutex. */
131 void ovs_flow_stats_get(const struct sw_flow *flow,
132 			struct ovs_flow_stats *ovs_stats,
133 			unsigned long *used, __be16 *tcp_flags)
134 {
135 	int node;
136 
137 	*used = 0;
138 	*tcp_flags = 0;
139 	memset(ovs_stats, 0, sizeof(*ovs_stats));
140 
141 	for_each_node(node) {
142 		struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]);
143 
144 		if (stats) {
145 			/* Local CPU may write on non-local stats, so we must
146 			 * block bottom-halves here.
147 			 */
148 			spin_lock_bh(&stats->lock);
149 			if (!*used || time_after(stats->used, *used))
150 				*used = stats->used;
151 			*tcp_flags |= stats->tcp_flags;
152 			ovs_stats->n_packets += stats->packet_count;
153 			ovs_stats->n_bytes += stats->byte_count;
154 			spin_unlock_bh(&stats->lock);
155 		}
156 	}
157 }
158 
159 /* Called with ovs_mutex. */
160 void ovs_flow_stats_clear(struct sw_flow *flow)
161 {
162 	int node;
163 
164 	for_each_node(node) {
165 		struct flow_stats *stats = ovsl_dereference(flow->stats[node]);
166 
167 		if (stats) {
168 			spin_lock_bh(&stats->lock);
169 			stats->used = 0;
170 			stats->packet_count = 0;
171 			stats->byte_count = 0;
172 			stats->tcp_flags = 0;
173 			spin_unlock_bh(&stats->lock);
174 		}
175 	}
176 }
177 
178 static int check_header(struct sk_buff *skb, int len)
179 {
180 	if (unlikely(skb->len < len))
181 		return -EINVAL;
182 	if (unlikely(!pskb_may_pull(skb, len)))
183 		return -ENOMEM;
184 	return 0;
185 }
186 
187 static bool arphdr_ok(struct sk_buff *skb)
188 {
189 	return pskb_may_pull(skb, skb_network_offset(skb) +
190 				  sizeof(struct arp_eth_header));
191 }
192 
193 static int check_iphdr(struct sk_buff *skb)
194 {
195 	unsigned int nh_ofs = skb_network_offset(skb);
196 	unsigned int ip_len;
197 	int err;
198 
199 	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
200 	if (unlikely(err))
201 		return err;
202 
203 	ip_len = ip_hdrlen(skb);
204 	if (unlikely(ip_len < sizeof(struct iphdr) ||
205 		     skb->len < nh_ofs + ip_len))
206 		return -EINVAL;
207 
208 	skb_set_transport_header(skb, nh_ofs + ip_len);
209 	return 0;
210 }
211 
212 static bool tcphdr_ok(struct sk_buff *skb)
213 {
214 	int th_ofs = skb_transport_offset(skb);
215 	int tcp_len;
216 
217 	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
218 		return false;
219 
220 	tcp_len = tcp_hdrlen(skb);
221 	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
222 		     skb->len < th_ofs + tcp_len))
223 		return false;
224 
225 	return true;
226 }
227 
228 static bool udphdr_ok(struct sk_buff *skb)
229 {
230 	return pskb_may_pull(skb, skb_transport_offset(skb) +
231 				  sizeof(struct udphdr));
232 }
233 
234 static bool sctphdr_ok(struct sk_buff *skb)
235 {
236 	return pskb_may_pull(skb, skb_transport_offset(skb) +
237 				  sizeof(struct sctphdr));
238 }
239 
240 static bool icmphdr_ok(struct sk_buff *skb)
241 {
242 	return pskb_may_pull(skb, skb_transport_offset(skb) +
243 				  sizeof(struct icmphdr));
244 }
245 
246 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
247 {
248 	unsigned int nh_ofs = skb_network_offset(skb);
249 	unsigned int nh_len;
250 	int payload_ofs;
251 	struct ipv6hdr *nh;
252 	uint8_t nexthdr;
253 	__be16 frag_off;
254 	int err;
255 
256 	err = check_header(skb, nh_ofs + sizeof(*nh));
257 	if (unlikely(err))
258 		return err;
259 
260 	nh = ipv6_hdr(skb);
261 	nexthdr = nh->nexthdr;
262 	payload_ofs = (u8 *)(nh + 1) - skb->data;
263 
264 	key->ip.proto = NEXTHDR_NONE;
265 	key->ip.tos = ipv6_get_dsfield(nh);
266 	key->ip.ttl = nh->hop_limit;
267 	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
268 	key->ipv6.addr.src = nh->saddr;
269 	key->ipv6.addr.dst = nh->daddr;
270 
271 	payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
272 	if (unlikely(payload_ofs < 0))
273 		return -EINVAL;
274 
275 	if (frag_off) {
276 		if (frag_off & htons(~0x7))
277 			key->ip.frag = OVS_FRAG_TYPE_LATER;
278 		else
279 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
280 	} else {
281 		key->ip.frag = OVS_FRAG_TYPE_NONE;
282 	}
283 
284 	nh_len = payload_ofs - nh_ofs;
285 	skb_set_transport_header(skb, nh_ofs + nh_len);
286 	key->ip.proto = nexthdr;
287 	return nh_len;
288 }
289 
290 static bool icmp6hdr_ok(struct sk_buff *skb)
291 {
292 	return pskb_may_pull(skb, skb_transport_offset(skb) +
293 				  sizeof(struct icmp6hdr));
294 }
295 
296 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
297 {
298 	struct qtag_prefix {
299 		__be16 eth_type; /* ETH_P_8021Q */
300 		__be16 tci;
301 	};
302 	struct qtag_prefix *qp;
303 
304 	if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
305 		return 0;
306 
307 	if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
308 					 sizeof(__be16))))
309 		return -ENOMEM;
310 
311 	qp = (struct qtag_prefix *) skb->data;
312 	key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
313 	__skb_pull(skb, sizeof(struct qtag_prefix));
314 
315 	return 0;
316 }
317 
318 static __be16 parse_ethertype(struct sk_buff *skb)
319 {
320 	struct llc_snap_hdr {
321 		u8  dsap;  /* Always 0xAA */
322 		u8  ssap;  /* Always 0xAA */
323 		u8  ctrl;
324 		u8  oui[3];
325 		__be16 ethertype;
326 	};
327 	struct llc_snap_hdr *llc;
328 	__be16 proto;
329 
330 	proto = *(__be16 *) skb->data;
331 	__skb_pull(skb, sizeof(__be16));
332 
333 	if (ntohs(proto) >= ETH_P_802_3_MIN)
334 		return proto;
335 
336 	if (skb->len < sizeof(struct llc_snap_hdr))
337 		return htons(ETH_P_802_2);
338 
339 	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
340 		return htons(0);
341 
342 	llc = (struct llc_snap_hdr *) skb->data;
343 	if (llc->dsap != LLC_SAP_SNAP ||
344 	    llc->ssap != LLC_SAP_SNAP ||
345 	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
346 		return htons(ETH_P_802_2);
347 
348 	__skb_pull(skb, sizeof(struct llc_snap_hdr));
349 
350 	if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
351 		return llc->ethertype;
352 
353 	return htons(ETH_P_802_2);
354 }
355 
356 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
357 			int nh_len)
358 {
359 	struct icmp6hdr *icmp = icmp6_hdr(skb);
360 
361 	/* The ICMPv6 type and code fields use the 16-bit transport port
362 	 * fields, so we need to store them in 16-bit network byte order.
363 	 */
364 	key->tp.src = htons(icmp->icmp6_type);
365 	key->tp.dst = htons(icmp->icmp6_code);
366 	memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
367 
368 	if (icmp->icmp6_code == 0 &&
369 	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
370 	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
371 		int icmp_len = skb->len - skb_transport_offset(skb);
372 		struct nd_msg *nd;
373 		int offset;
374 
375 		/* In order to process neighbor discovery options, we need the
376 		 * entire packet.
377 		 */
378 		if (unlikely(icmp_len < sizeof(*nd)))
379 			return 0;
380 
381 		if (unlikely(skb_linearize(skb)))
382 			return -ENOMEM;
383 
384 		nd = (struct nd_msg *)skb_transport_header(skb);
385 		key->ipv6.nd.target = nd->target;
386 
387 		icmp_len -= sizeof(*nd);
388 		offset = 0;
389 		while (icmp_len >= 8) {
390 			struct nd_opt_hdr *nd_opt =
391 				 (struct nd_opt_hdr *)(nd->opt + offset);
392 			int opt_len = nd_opt->nd_opt_len * 8;
393 
394 			if (unlikely(!opt_len || opt_len > icmp_len))
395 				return 0;
396 
397 			/* Store the link layer address if the appropriate
398 			 * option is provided.  It is considered an error if
399 			 * the same link layer option is specified twice.
400 			 */
401 			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
402 			    && opt_len == 8) {
403 				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
404 					goto invalid;
405 				ether_addr_copy(key->ipv6.nd.sll,
406 						&nd->opt[offset+sizeof(*nd_opt)]);
407 			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
408 				   && opt_len == 8) {
409 				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
410 					goto invalid;
411 				ether_addr_copy(key->ipv6.nd.tll,
412 						&nd->opt[offset+sizeof(*nd_opt)]);
413 			}
414 
415 			icmp_len -= opt_len;
416 			offset += opt_len;
417 		}
418 	}
419 
420 	return 0;
421 
422 invalid:
423 	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
424 	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
425 	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
426 
427 	return 0;
428 }
429 
430 /**
431  * key_extract - extracts a flow key from an Ethernet frame.
432  * @skb: sk_buff that contains the frame, with skb->data pointing to the
433  * Ethernet header
434  * @key: output flow key
435  *
436  * The caller must ensure that skb->len >= ETH_HLEN.
437  *
438  * Returns 0 if successful, otherwise a negative errno value.
439  *
440  * Initializes @skb header pointers as follows:
441  *
442  *    - skb->mac_header: the Ethernet header.
443  *
444  *    - skb->network_header: just past the Ethernet header, or just past the
445  *      VLAN header, to the first byte of the Ethernet payload.
446  *
447  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
448  *      on output, then just past the IP header, if one is present and
449  *      of a correct length, otherwise the same as skb->network_header.
450  *      For other key->eth.type values it is left untouched.
451  */
452 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
453 {
454 	int error;
455 	struct ethhdr *eth;
456 
457 	/* Flags are always used as part of stats */
458 	key->tp.flags = 0;
459 
460 	skb_reset_mac_header(skb);
461 
462 	/* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
463 	 * header in the linear data area.
464 	 */
465 	eth = eth_hdr(skb);
466 	ether_addr_copy(key->eth.src, eth->h_source);
467 	ether_addr_copy(key->eth.dst, eth->h_dest);
468 
469 	__skb_pull(skb, 2 * ETH_ALEN);
470 	/* We are going to push all headers that we pull, so no need to
471 	 * update skb->csum here.
472 	 */
473 
474 	key->eth.tci = 0;
475 	if (skb_vlan_tag_present(skb))
476 		key->eth.tci = htons(skb->vlan_tci);
477 	else if (eth->h_proto == htons(ETH_P_8021Q))
478 		if (unlikely(parse_vlan(skb, key)))
479 			return -ENOMEM;
480 
481 	key->eth.type = parse_ethertype(skb);
482 	if (unlikely(key->eth.type == htons(0)))
483 		return -ENOMEM;
484 
485 	skb_reset_network_header(skb);
486 	skb_reset_mac_len(skb);
487 	__skb_push(skb, skb->data - skb_mac_header(skb));
488 
489 	/* Network layer. */
490 	if (key->eth.type == htons(ETH_P_IP)) {
491 		struct iphdr *nh;
492 		__be16 offset;
493 
494 		error = check_iphdr(skb);
495 		if (unlikely(error)) {
496 			memset(&key->ip, 0, sizeof(key->ip));
497 			memset(&key->ipv4, 0, sizeof(key->ipv4));
498 			if (error == -EINVAL) {
499 				skb->transport_header = skb->network_header;
500 				error = 0;
501 			}
502 			return error;
503 		}
504 
505 		nh = ip_hdr(skb);
506 		key->ipv4.addr.src = nh->saddr;
507 		key->ipv4.addr.dst = nh->daddr;
508 
509 		key->ip.proto = nh->protocol;
510 		key->ip.tos = nh->tos;
511 		key->ip.ttl = nh->ttl;
512 
513 		offset = nh->frag_off & htons(IP_OFFSET);
514 		if (offset) {
515 			key->ip.frag = OVS_FRAG_TYPE_LATER;
516 			return 0;
517 		}
518 		if (nh->frag_off & htons(IP_MF) ||
519 			skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
520 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
521 		else
522 			key->ip.frag = OVS_FRAG_TYPE_NONE;
523 
524 		/* Transport layer. */
525 		if (key->ip.proto == IPPROTO_TCP) {
526 			if (tcphdr_ok(skb)) {
527 				struct tcphdr *tcp = tcp_hdr(skb);
528 				key->tp.src = tcp->source;
529 				key->tp.dst = tcp->dest;
530 				key->tp.flags = TCP_FLAGS_BE16(tcp);
531 			} else {
532 				memset(&key->tp, 0, sizeof(key->tp));
533 			}
534 
535 		} else if (key->ip.proto == IPPROTO_UDP) {
536 			if (udphdr_ok(skb)) {
537 				struct udphdr *udp = udp_hdr(skb);
538 				key->tp.src = udp->source;
539 				key->tp.dst = udp->dest;
540 			} else {
541 				memset(&key->tp, 0, sizeof(key->tp));
542 			}
543 		} else if (key->ip.proto == IPPROTO_SCTP) {
544 			if (sctphdr_ok(skb)) {
545 				struct sctphdr *sctp = sctp_hdr(skb);
546 				key->tp.src = sctp->source;
547 				key->tp.dst = sctp->dest;
548 			} else {
549 				memset(&key->tp, 0, sizeof(key->tp));
550 			}
551 		} else if (key->ip.proto == IPPROTO_ICMP) {
552 			if (icmphdr_ok(skb)) {
553 				struct icmphdr *icmp = icmp_hdr(skb);
554 				/* The ICMP type and code fields use the 16-bit
555 				 * transport port fields, so we need to store
556 				 * them in 16-bit network byte order. */
557 				key->tp.src = htons(icmp->type);
558 				key->tp.dst = htons(icmp->code);
559 			} else {
560 				memset(&key->tp, 0, sizeof(key->tp));
561 			}
562 		}
563 
564 	} else if (key->eth.type == htons(ETH_P_ARP) ||
565 		   key->eth.type == htons(ETH_P_RARP)) {
566 		struct arp_eth_header *arp;
567 		bool arp_available = arphdr_ok(skb);
568 
569 		arp = (struct arp_eth_header *)skb_network_header(skb);
570 
571 		if (arp_available &&
572 		    arp->ar_hrd == htons(ARPHRD_ETHER) &&
573 		    arp->ar_pro == htons(ETH_P_IP) &&
574 		    arp->ar_hln == ETH_ALEN &&
575 		    arp->ar_pln == 4) {
576 
577 			/* We only match on the lower 8 bits of the opcode. */
578 			if (ntohs(arp->ar_op) <= 0xff)
579 				key->ip.proto = ntohs(arp->ar_op);
580 			else
581 				key->ip.proto = 0;
582 
583 			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
584 			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
585 			ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
586 			ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
587 		} else {
588 			memset(&key->ip, 0, sizeof(key->ip));
589 			memset(&key->ipv4, 0, sizeof(key->ipv4));
590 		}
591 	} else if (eth_p_mpls(key->eth.type)) {
592 		size_t stack_len = MPLS_HLEN;
593 
594 		/* In the presence of an MPLS label stack the end of the L2
595 		 * header and the beginning of the L3 header differ.
596 		 *
597 		 * Advance network_header to the beginning of the L3
598 		 * header. mac_len corresponds to the end of the L2 header.
599 		 */
600 		while (1) {
601 			__be32 lse;
602 
603 			error = check_header(skb, skb->mac_len + stack_len);
604 			if (unlikely(error))
605 				return 0;
606 
607 			memcpy(&lse, skb_network_header(skb), MPLS_HLEN);
608 
609 			if (stack_len == MPLS_HLEN)
610 				memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
611 
612 			skb_set_network_header(skb, skb->mac_len + stack_len);
613 			if (lse & htonl(MPLS_LS_S_MASK))
614 				break;
615 
616 			stack_len += MPLS_HLEN;
617 		}
618 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
619 		int nh_len;             /* IPv6 Header + Extensions */
620 
621 		nh_len = parse_ipv6hdr(skb, key);
622 		if (unlikely(nh_len < 0)) {
623 			memset(&key->ip, 0, sizeof(key->ip));
624 			memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
625 			if (nh_len == -EINVAL) {
626 				skb->transport_header = skb->network_header;
627 				error = 0;
628 			} else {
629 				error = nh_len;
630 			}
631 			return error;
632 		}
633 
634 		if (key->ip.frag == OVS_FRAG_TYPE_LATER)
635 			return 0;
636 		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
637 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
638 
639 		/* Transport layer. */
640 		if (key->ip.proto == NEXTHDR_TCP) {
641 			if (tcphdr_ok(skb)) {
642 				struct tcphdr *tcp = tcp_hdr(skb);
643 				key->tp.src = tcp->source;
644 				key->tp.dst = tcp->dest;
645 				key->tp.flags = TCP_FLAGS_BE16(tcp);
646 			} else {
647 				memset(&key->tp, 0, sizeof(key->tp));
648 			}
649 		} else if (key->ip.proto == NEXTHDR_UDP) {
650 			if (udphdr_ok(skb)) {
651 				struct udphdr *udp = udp_hdr(skb);
652 				key->tp.src = udp->source;
653 				key->tp.dst = udp->dest;
654 			} else {
655 				memset(&key->tp, 0, sizeof(key->tp));
656 			}
657 		} else if (key->ip.proto == NEXTHDR_SCTP) {
658 			if (sctphdr_ok(skb)) {
659 				struct sctphdr *sctp = sctp_hdr(skb);
660 				key->tp.src = sctp->source;
661 				key->tp.dst = sctp->dest;
662 			} else {
663 				memset(&key->tp, 0, sizeof(key->tp));
664 			}
665 		} else if (key->ip.proto == NEXTHDR_ICMP) {
666 			if (icmp6hdr_ok(skb)) {
667 				error = parse_icmpv6(skb, key, nh_len);
668 				if (error)
669 					return error;
670 			} else {
671 				memset(&key->tp, 0, sizeof(key->tp));
672 			}
673 		}
674 	}
675 	return 0;
676 }
677 
678 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
679 {
680 	return key_extract(skb, key);
681 }
682 
683 int ovs_flow_key_extract(const struct ovs_tunnel_info *tun_info,
684 			 struct sk_buff *skb, struct sw_flow_key *key)
685 {
686 	/* Extract metadata from packet. */
687 	if (tun_info) {
688 		memcpy(&key->tun_key, &tun_info->tunnel, sizeof(key->tun_key));
689 
690 		if (tun_info->options) {
691 			BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
692 						   8)) - 1
693 					> sizeof(key->tun_opts));
694 			memcpy(TUN_METADATA_OPTS(key, tun_info->options_len),
695 			       tun_info->options, tun_info->options_len);
696 			key->tun_opts_len = tun_info->options_len;
697 		} else {
698 			key->tun_opts_len = 0;
699 		}
700 	} else  {
701 		key->tun_opts_len = 0;
702 		memset(&key->tun_key, 0, sizeof(key->tun_key));
703 	}
704 
705 	key->phy.priority = skb->priority;
706 	key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
707 	key->phy.skb_mark = skb->mark;
708 	key->ovs_flow_hash = 0;
709 	key->recirc_id = 0;
710 
711 	return key_extract(skb, key);
712 }
713 
714 int ovs_flow_key_extract_userspace(const struct nlattr *attr,
715 				   struct sk_buff *skb,
716 				   struct sw_flow_key *key, bool log)
717 {
718 	int err;
719 
720 	memset(key, 0, OVS_SW_FLOW_KEY_METADATA_SIZE);
721 
722 	/* Extract metadata from netlink attributes. */
723 	err = ovs_nla_get_flow_metadata(attr, key, log);
724 	if (err)
725 		return err;
726 
727 	return key_extract(skb, key);
728 }
729