1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include <linux/uaccess.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/if_ether.h> 23 #include <linux/if_vlan.h> 24 #include <net/llc_pdu.h> 25 #include <linux/kernel.h> 26 #include <linux/jhash.h> 27 #include <linux/jiffies.h> 28 #include <linux/llc.h> 29 #include <linux/module.h> 30 #include <linux/in.h> 31 #include <linux/rcupdate.h> 32 #include <linux/if_arp.h> 33 #include <linux/ip.h> 34 #include <linux/ipv6.h> 35 #include <linux/mpls.h> 36 #include <linux/sctp.h> 37 #include <linux/smp.h> 38 #include <linux/tcp.h> 39 #include <linux/udp.h> 40 #include <linux/icmp.h> 41 #include <linux/icmpv6.h> 42 #include <linux/rculist.h> 43 #include <net/ip.h> 44 #include <net/ip_tunnels.h> 45 #include <net/ipv6.h> 46 #include <net/mpls.h> 47 #include <net/ndisc.h> 48 49 #include "datapath.h" 50 #include "flow.h" 51 #include "flow_netlink.h" 52 53 u64 ovs_flow_used_time(unsigned long flow_jiffies) 54 { 55 struct timespec cur_ts; 56 u64 cur_ms, idle_ms; 57 58 ktime_get_ts(&cur_ts); 59 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 60 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + 61 cur_ts.tv_nsec / NSEC_PER_MSEC; 62 63 return cur_ms - idle_ms; 64 } 65 66 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF)) 67 68 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags, 69 const struct sk_buff *skb) 70 { 71 struct flow_stats *stats; 72 int node = numa_node_id(); 73 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0); 74 75 stats = rcu_dereference(flow->stats[node]); 76 77 /* Check if already have node-specific stats. */ 78 if (likely(stats)) { 79 spin_lock(&stats->lock); 80 /* Mark if we write on the pre-allocated stats. */ 81 if (node == 0 && unlikely(flow->stats_last_writer != node)) 82 flow->stats_last_writer = node; 83 } else { 84 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */ 85 spin_lock(&stats->lock); 86 87 /* If the current NUMA-node is the only writer on the 88 * pre-allocated stats keep using them. 89 */ 90 if (unlikely(flow->stats_last_writer != node)) { 91 /* A previous locker may have already allocated the 92 * stats, so we need to check again. If node-specific 93 * stats were already allocated, we update the pre- 94 * allocated stats as we have already locked them. 95 */ 96 if (likely(flow->stats_last_writer != NUMA_NO_NODE) 97 && likely(!rcu_access_pointer(flow->stats[node]))) { 98 /* Try to allocate node-specific stats. */ 99 struct flow_stats *new_stats; 100 101 new_stats = 102 kmem_cache_alloc_node(flow_stats_cache, 103 GFP_NOWAIT | 104 __GFP_THISNODE | 105 __GFP_NOWARN | 106 __GFP_NOMEMALLOC, 107 node); 108 if (likely(new_stats)) { 109 new_stats->used = jiffies; 110 new_stats->packet_count = 1; 111 new_stats->byte_count = len; 112 new_stats->tcp_flags = tcp_flags; 113 spin_lock_init(&new_stats->lock); 114 115 rcu_assign_pointer(flow->stats[node], 116 new_stats); 117 goto unlock; 118 } 119 } 120 flow->stats_last_writer = node; 121 } 122 } 123 124 stats->used = jiffies; 125 stats->packet_count++; 126 stats->byte_count += len; 127 stats->tcp_flags |= tcp_flags; 128 unlock: 129 spin_unlock(&stats->lock); 130 } 131 132 /* Must be called with rcu_read_lock or ovs_mutex. */ 133 void ovs_flow_stats_get(const struct sw_flow *flow, 134 struct ovs_flow_stats *ovs_stats, 135 unsigned long *used, __be16 *tcp_flags) 136 { 137 int node; 138 139 *used = 0; 140 *tcp_flags = 0; 141 memset(ovs_stats, 0, sizeof(*ovs_stats)); 142 143 for_each_node(node) { 144 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]); 145 146 if (stats) { 147 /* Local CPU may write on non-local stats, so we must 148 * block bottom-halves here. 149 */ 150 spin_lock_bh(&stats->lock); 151 if (!*used || time_after(stats->used, *used)) 152 *used = stats->used; 153 *tcp_flags |= stats->tcp_flags; 154 ovs_stats->n_packets += stats->packet_count; 155 ovs_stats->n_bytes += stats->byte_count; 156 spin_unlock_bh(&stats->lock); 157 } 158 } 159 } 160 161 /* Called with ovs_mutex. */ 162 void ovs_flow_stats_clear(struct sw_flow *flow) 163 { 164 int node; 165 166 for_each_node(node) { 167 struct flow_stats *stats = ovsl_dereference(flow->stats[node]); 168 169 if (stats) { 170 spin_lock_bh(&stats->lock); 171 stats->used = 0; 172 stats->packet_count = 0; 173 stats->byte_count = 0; 174 stats->tcp_flags = 0; 175 spin_unlock_bh(&stats->lock); 176 } 177 } 178 } 179 180 static int check_header(struct sk_buff *skb, int len) 181 { 182 if (unlikely(skb->len < len)) 183 return -EINVAL; 184 if (unlikely(!pskb_may_pull(skb, len))) 185 return -ENOMEM; 186 return 0; 187 } 188 189 static bool arphdr_ok(struct sk_buff *skb) 190 { 191 return pskb_may_pull(skb, skb_network_offset(skb) + 192 sizeof(struct arp_eth_header)); 193 } 194 195 static int check_iphdr(struct sk_buff *skb) 196 { 197 unsigned int nh_ofs = skb_network_offset(skb); 198 unsigned int ip_len; 199 int err; 200 201 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 202 if (unlikely(err)) 203 return err; 204 205 ip_len = ip_hdrlen(skb); 206 if (unlikely(ip_len < sizeof(struct iphdr) || 207 skb->len < nh_ofs + ip_len)) 208 return -EINVAL; 209 210 skb_set_transport_header(skb, nh_ofs + ip_len); 211 return 0; 212 } 213 214 static bool tcphdr_ok(struct sk_buff *skb) 215 { 216 int th_ofs = skb_transport_offset(skb); 217 int tcp_len; 218 219 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 220 return false; 221 222 tcp_len = tcp_hdrlen(skb); 223 if (unlikely(tcp_len < sizeof(struct tcphdr) || 224 skb->len < th_ofs + tcp_len)) 225 return false; 226 227 return true; 228 } 229 230 static bool udphdr_ok(struct sk_buff *skb) 231 { 232 return pskb_may_pull(skb, skb_transport_offset(skb) + 233 sizeof(struct udphdr)); 234 } 235 236 static bool sctphdr_ok(struct sk_buff *skb) 237 { 238 return pskb_may_pull(skb, skb_transport_offset(skb) + 239 sizeof(struct sctphdr)); 240 } 241 242 static bool icmphdr_ok(struct sk_buff *skb) 243 { 244 return pskb_may_pull(skb, skb_transport_offset(skb) + 245 sizeof(struct icmphdr)); 246 } 247 248 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) 249 { 250 unsigned int nh_ofs = skb_network_offset(skb); 251 unsigned int nh_len; 252 int payload_ofs; 253 struct ipv6hdr *nh; 254 uint8_t nexthdr; 255 __be16 frag_off; 256 int err; 257 258 err = check_header(skb, nh_ofs + sizeof(*nh)); 259 if (unlikely(err)) 260 return err; 261 262 nh = ipv6_hdr(skb); 263 nexthdr = nh->nexthdr; 264 payload_ofs = (u8 *)(nh + 1) - skb->data; 265 266 key->ip.proto = NEXTHDR_NONE; 267 key->ip.tos = ipv6_get_dsfield(nh); 268 key->ip.ttl = nh->hop_limit; 269 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 270 key->ipv6.addr.src = nh->saddr; 271 key->ipv6.addr.dst = nh->daddr; 272 273 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); 274 if (unlikely(payload_ofs < 0)) 275 return -EINVAL; 276 277 if (frag_off) { 278 if (frag_off & htons(~0x7)) 279 key->ip.frag = OVS_FRAG_TYPE_LATER; 280 else 281 key->ip.frag = OVS_FRAG_TYPE_FIRST; 282 } else { 283 key->ip.frag = OVS_FRAG_TYPE_NONE; 284 } 285 286 nh_len = payload_ofs - nh_ofs; 287 skb_set_transport_header(skb, nh_ofs + nh_len); 288 key->ip.proto = nexthdr; 289 return nh_len; 290 } 291 292 static bool icmp6hdr_ok(struct sk_buff *skb) 293 { 294 return pskb_may_pull(skb, skb_transport_offset(skb) + 295 sizeof(struct icmp6hdr)); 296 } 297 298 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 299 { 300 struct qtag_prefix { 301 __be16 eth_type; /* ETH_P_8021Q */ 302 __be16 tci; 303 }; 304 struct qtag_prefix *qp; 305 306 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) 307 return 0; 308 309 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + 310 sizeof(__be16)))) 311 return -ENOMEM; 312 313 qp = (struct qtag_prefix *) skb->data; 314 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); 315 __skb_pull(skb, sizeof(struct qtag_prefix)); 316 317 return 0; 318 } 319 320 static __be16 parse_ethertype(struct sk_buff *skb) 321 { 322 struct llc_snap_hdr { 323 u8 dsap; /* Always 0xAA */ 324 u8 ssap; /* Always 0xAA */ 325 u8 ctrl; 326 u8 oui[3]; 327 __be16 ethertype; 328 }; 329 struct llc_snap_hdr *llc; 330 __be16 proto; 331 332 proto = *(__be16 *) skb->data; 333 __skb_pull(skb, sizeof(__be16)); 334 335 if (eth_proto_is_802_3(proto)) 336 return proto; 337 338 if (skb->len < sizeof(struct llc_snap_hdr)) 339 return htons(ETH_P_802_2); 340 341 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 342 return htons(0); 343 344 llc = (struct llc_snap_hdr *) skb->data; 345 if (llc->dsap != LLC_SAP_SNAP || 346 llc->ssap != LLC_SAP_SNAP || 347 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 348 return htons(ETH_P_802_2); 349 350 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 351 352 if (eth_proto_is_802_3(llc->ethertype)) 353 return llc->ethertype; 354 355 return htons(ETH_P_802_2); 356 } 357 358 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 359 int nh_len) 360 { 361 struct icmp6hdr *icmp = icmp6_hdr(skb); 362 363 /* The ICMPv6 type and code fields use the 16-bit transport port 364 * fields, so we need to store them in 16-bit network byte order. 365 */ 366 key->tp.src = htons(icmp->icmp6_type); 367 key->tp.dst = htons(icmp->icmp6_code); 368 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd)); 369 370 if (icmp->icmp6_code == 0 && 371 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 372 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 373 int icmp_len = skb->len - skb_transport_offset(skb); 374 struct nd_msg *nd; 375 int offset; 376 377 /* In order to process neighbor discovery options, we need the 378 * entire packet. 379 */ 380 if (unlikely(icmp_len < sizeof(*nd))) 381 return 0; 382 383 if (unlikely(skb_linearize(skb))) 384 return -ENOMEM; 385 386 nd = (struct nd_msg *)skb_transport_header(skb); 387 key->ipv6.nd.target = nd->target; 388 389 icmp_len -= sizeof(*nd); 390 offset = 0; 391 while (icmp_len >= 8) { 392 struct nd_opt_hdr *nd_opt = 393 (struct nd_opt_hdr *)(nd->opt + offset); 394 int opt_len = nd_opt->nd_opt_len * 8; 395 396 if (unlikely(!opt_len || opt_len > icmp_len)) 397 return 0; 398 399 /* Store the link layer address if the appropriate 400 * option is provided. It is considered an error if 401 * the same link layer option is specified twice. 402 */ 403 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 404 && opt_len == 8) { 405 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 406 goto invalid; 407 ether_addr_copy(key->ipv6.nd.sll, 408 &nd->opt[offset+sizeof(*nd_opt)]); 409 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 410 && opt_len == 8) { 411 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 412 goto invalid; 413 ether_addr_copy(key->ipv6.nd.tll, 414 &nd->opt[offset+sizeof(*nd_opt)]); 415 } 416 417 icmp_len -= opt_len; 418 offset += opt_len; 419 } 420 } 421 422 return 0; 423 424 invalid: 425 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 426 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 427 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 428 429 return 0; 430 } 431 432 /** 433 * key_extract - extracts a flow key from an Ethernet frame. 434 * @skb: sk_buff that contains the frame, with skb->data pointing to the 435 * Ethernet header 436 * @key: output flow key 437 * 438 * The caller must ensure that skb->len >= ETH_HLEN. 439 * 440 * Returns 0 if successful, otherwise a negative errno value. 441 * 442 * Initializes @skb header pointers as follows: 443 * 444 * - skb->mac_header: the Ethernet header. 445 * 446 * - skb->network_header: just past the Ethernet header, or just past the 447 * VLAN header, to the first byte of the Ethernet payload. 448 * 449 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 450 * on output, then just past the IP header, if one is present and 451 * of a correct length, otherwise the same as skb->network_header. 452 * For other key->eth.type values it is left untouched. 453 */ 454 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key) 455 { 456 int error; 457 struct ethhdr *eth; 458 459 /* Flags are always used as part of stats */ 460 key->tp.flags = 0; 461 462 skb_reset_mac_header(skb); 463 464 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet 465 * header in the linear data area. 466 */ 467 eth = eth_hdr(skb); 468 ether_addr_copy(key->eth.src, eth->h_source); 469 ether_addr_copy(key->eth.dst, eth->h_dest); 470 471 __skb_pull(skb, 2 * ETH_ALEN); 472 /* We are going to push all headers that we pull, so no need to 473 * update skb->csum here. 474 */ 475 476 key->eth.tci = 0; 477 if (skb_vlan_tag_present(skb)) 478 key->eth.tci = htons(skb->vlan_tci); 479 else if (eth->h_proto == htons(ETH_P_8021Q)) 480 if (unlikely(parse_vlan(skb, key))) 481 return -ENOMEM; 482 483 key->eth.type = parse_ethertype(skb); 484 if (unlikely(key->eth.type == htons(0))) 485 return -ENOMEM; 486 487 skb_reset_network_header(skb); 488 skb_reset_mac_len(skb); 489 __skb_push(skb, skb->data - skb_mac_header(skb)); 490 491 /* Network layer. */ 492 if (key->eth.type == htons(ETH_P_IP)) { 493 struct iphdr *nh; 494 __be16 offset; 495 496 error = check_iphdr(skb); 497 if (unlikely(error)) { 498 memset(&key->ip, 0, sizeof(key->ip)); 499 memset(&key->ipv4, 0, sizeof(key->ipv4)); 500 if (error == -EINVAL) { 501 skb->transport_header = skb->network_header; 502 error = 0; 503 } 504 return error; 505 } 506 507 nh = ip_hdr(skb); 508 key->ipv4.addr.src = nh->saddr; 509 key->ipv4.addr.dst = nh->daddr; 510 511 key->ip.proto = nh->protocol; 512 key->ip.tos = nh->tos; 513 key->ip.ttl = nh->ttl; 514 515 offset = nh->frag_off & htons(IP_OFFSET); 516 if (offset) { 517 key->ip.frag = OVS_FRAG_TYPE_LATER; 518 return 0; 519 } 520 if (nh->frag_off & htons(IP_MF) || 521 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 522 key->ip.frag = OVS_FRAG_TYPE_FIRST; 523 else 524 key->ip.frag = OVS_FRAG_TYPE_NONE; 525 526 /* Transport layer. */ 527 if (key->ip.proto == IPPROTO_TCP) { 528 if (tcphdr_ok(skb)) { 529 struct tcphdr *tcp = tcp_hdr(skb); 530 key->tp.src = tcp->source; 531 key->tp.dst = tcp->dest; 532 key->tp.flags = TCP_FLAGS_BE16(tcp); 533 } else { 534 memset(&key->tp, 0, sizeof(key->tp)); 535 } 536 537 } else if (key->ip.proto == IPPROTO_UDP) { 538 if (udphdr_ok(skb)) { 539 struct udphdr *udp = udp_hdr(skb); 540 key->tp.src = udp->source; 541 key->tp.dst = udp->dest; 542 } else { 543 memset(&key->tp, 0, sizeof(key->tp)); 544 } 545 } else if (key->ip.proto == IPPROTO_SCTP) { 546 if (sctphdr_ok(skb)) { 547 struct sctphdr *sctp = sctp_hdr(skb); 548 key->tp.src = sctp->source; 549 key->tp.dst = sctp->dest; 550 } else { 551 memset(&key->tp, 0, sizeof(key->tp)); 552 } 553 } else if (key->ip.proto == IPPROTO_ICMP) { 554 if (icmphdr_ok(skb)) { 555 struct icmphdr *icmp = icmp_hdr(skb); 556 /* The ICMP type and code fields use the 16-bit 557 * transport port fields, so we need to store 558 * them in 16-bit network byte order. */ 559 key->tp.src = htons(icmp->type); 560 key->tp.dst = htons(icmp->code); 561 } else { 562 memset(&key->tp, 0, sizeof(key->tp)); 563 } 564 } 565 566 } else if (key->eth.type == htons(ETH_P_ARP) || 567 key->eth.type == htons(ETH_P_RARP)) { 568 struct arp_eth_header *arp; 569 bool arp_available = arphdr_ok(skb); 570 571 arp = (struct arp_eth_header *)skb_network_header(skb); 572 573 if (arp_available && 574 arp->ar_hrd == htons(ARPHRD_ETHER) && 575 arp->ar_pro == htons(ETH_P_IP) && 576 arp->ar_hln == ETH_ALEN && 577 arp->ar_pln == 4) { 578 579 /* We only match on the lower 8 bits of the opcode. */ 580 if (ntohs(arp->ar_op) <= 0xff) 581 key->ip.proto = ntohs(arp->ar_op); 582 else 583 key->ip.proto = 0; 584 585 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 586 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 587 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha); 588 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha); 589 } else { 590 memset(&key->ip, 0, sizeof(key->ip)); 591 memset(&key->ipv4, 0, sizeof(key->ipv4)); 592 } 593 } else if (eth_p_mpls(key->eth.type)) { 594 size_t stack_len = MPLS_HLEN; 595 596 /* In the presence of an MPLS label stack the end of the L2 597 * header and the beginning of the L3 header differ. 598 * 599 * Advance network_header to the beginning of the L3 600 * header. mac_len corresponds to the end of the L2 header. 601 */ 602 while (1) { 603 __be32 lse; 604 605 error = check_header(skb, skb->mac_len + stack_len); 606 if (unlikely(error)) 607 return 0; 608 609 memcpy(&lse, skb_network_header(skb), MPLS_HLEN); 610 611 if (stack_len == MPLS_HLEN) 612 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN); 613 614 skb_set_network_header(skb, skb->mac_len + stack_len); 615 if (lse & htonl(MPLS_LS_S_MASK)) 616 break; 617 618 stack_len += MPLS_HLEN; 619 } 620 } else if (key->eth.type == htons(ETH_P_IPV6)) { 621 int nh_len; /* IPv6 Header + Extensions */ 622 623 nh_len = parse_ipv6hdr(skb, key); 624 if (unlikely(nh_len < 0)) { 625 memset(&key->ip, 0, sizeof(key->ip)); 626 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr)); 627 if (nh_len == -EINVAL) { 628 skb->transport_header = skb->network_header; 629 error = 0; 630 } else { 631 error = nh_len; 632 } 633 return error; 634 } 635 636 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 637 return 0; 638 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 639 key->ip.frag = OVS_FRAG_TYPE_FIRST; 640 641 /* Transport layer. */ 642 if (key->ip.proto == NEXTHDR_TCP) { 643 if (tcphdr_ok(skb)) { 644 struct tcphdr *tcp = tcp_hdr(skb); 645 key->tp.src = tcp->source; 646 key->tp.dst = tcp->dest; 647 key->tp.flags = TCP_FLAGS_BE16(tcp); 648 } else { 649 memset(&key->tp, 0, sizeof(key->tp)); 650 } 651 } else if (key->ip.proto == NEXTHDR_UDP) { 652 if (udphdr_ok(skb)) { 653 struct udphdr *udp = udp_hdr(skb); 654 key->tp.src = udp->source; 655 key->tp.dst = udp->dest; 656 } else { 657 memset(&key->tp, 0, sizeof(key->tp)); 658 } 659 } else if (key->ip.proto == NEXTHDR_SCTP) { 660 if (sctphdr_ok(skb)) { 661 struct sctphdr *sctp = sctp_hdr(skb); 662 key->tp.src = sctp->source; 663 key->tp.dst = sctp->dest; 664 } else { 665 memset(&key->tp, 0, sizeof(key->tp)); 666 } 667 } else if (key->ip.proto == NEXTHDR_ICMP) { 668 if (icmp6hdr_ok(skb)) { 669 error = parse_icmpv6(skb, key, nh_len); 670 if (error) 671 return error; 672 } else { 673 memset(&key->tp, 0, sizeof(key->tp)); 674 } 675 } 676 } 677 return 0; 678 } 679 680 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key) 681 { 682 return key_extract(skb, key); 683 } 684 685 int ovs_flow_key_extract(const struct ovs_tunnel_info *tun_info, 686 struct sk_buff *skb, struct sw_flow_key *key) 687 { 688 /* Extract metadata from packet. */ 689 if (tun_info) { 690 memcpy(&key->tun_key, &tun_info->tunnel, sizeof(key->tun_key)); 691 692 if (tun_info->options) { 693 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) * 694 8)) - 1 695 > sizeof(key->tun_opts)); 696 memcpy(TUN_METADATA_OPTS(key, tun_info->options_len), 697 tun_info->options, tun_info->options_len); 698 key->tun_opts_len = tun_info->options_len; 699 } else { 700 key->tun_opts_len = 0; 701 } 702 } else { 703 key->tun_opts_len = 0; 704 memset(&key->tun_key, 0, sizeof(key->tun_key)); 705 } 706 707 key->phy.priority = skb->priority; 708 key->phy.in_port = OVS_CB(skb)->input_vport->port_no; 709 key->phy.skb_mark = skb->mark; 710 key->ovs_flow_hash = 0; 711 key->recirc_id = 0; 712 713 return key_extract(skb, key); 714 } 715 716 int ovs_flow_key_extract_userspace(const struct nlattr *attr, 717 struct sk_buff *skb, 718 struct sw_flow_key *key, bool log) 719 { 720 int err; 721 722 memset(key, 0, OVS_SW_FLOW_KEY_METADATA_SIZE); 723 724 /* Extract metadata from netlink attributes. */ 725 err = ovs_nla_get_flow_metadata(attr, key, log); 726 if (err) 727 return err; 728 729 return key_extract(skb, key); 730 } 731