1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include <linux/uaccess.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/if_ether.h> 23 #include <linux/if_vlan.h> 24 #include <net/llc_pdu.h> 25 #include <linux/kernel.h> 26 #include <linux/jhash.h> 27 #include <linux/jiffies.h> 28 #include <linux/llc.h> 29 #include <linux/module.h> 30 #include <linux/in.h> 31 #include <linux/rcupdate.h> 32 #include <linux/cpumask.h> 33 #include <linux/if_arp.h> 34 #include <linux/ip.h> 35 #include <linux/ipv6.h> 36 #include <linux/mpls.h> 37 #include <linux/sctp.h> 38 #include <linux/smp.h> 39 #include <linux/tcp.h> 40 #include <linux/udp.h> 41 #include <linux/icmp.h> 42 #include <linux/icmpv6.h> 43 #include <linux/rculist.h> 44 #include <net/ip.h> 45 #include <net/ip_tunnels.h> 46 #include <net/ipv6.h> 47 #include <net/mpls.h> 48 #include <net/ndisc.h> 49 #include <net/nsh.h> 50 51 #include "conntrack.h" 52 #include "datapath.h" 53 #include "flow.h" 54 #include "flow_netlink.h" 55 #include "vport.h" 56 57 u64 ovs_flow_used_time(unsigned long flow_jiffies) 58 { 59 struct timespec64 cur_ts; 60 u64 cur_ms, idle_ms; 61 62 ktime_get_ts64(&cur_ts); 63 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 64 cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC + 65 cur_ts.tv_nsec / NSEC_PER_MSEC; 66 67 return cur_ms - idle_ms; 68 } 69 70 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF)) 71 72 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags, 73 const struct sk_buff *skb) 74 { 75 struct flow_stats *stats; 76 unsigned int cpu = smp_processor_id(); 77 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0); 78 79 stats = rcu_dereference(flow->stats[cpu]); 80 81 /* Check if already have CPU-specific stats. */ 82 if (likely(stats)) { 83 spin_lock(&stats->lock); 84 /* Mark if we write on the pre-allocated stats. */ 85 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu)) 86 flow->stats_last_writer = cpu; 87 } else { 88 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */ 89 spin_lock(&stats->lock); 90 91 /* If the current CPU is the only writer on the 92 * pre-allocated stats keep using them. 93 */ 94 if (unlikely(flow->stats_last_writer != cpu)) { 95 /* A previous locker may have already allocated the 96 * stats, so we need to check again. If CPU-specific 97 * stats were already allocated, we update the pre- 98 * allocated stats as we have already locked them. 99 */ 100 if (likely(flow->stats_last_writer != -1) && 101 likely(!rcu_access_pointer(flow->stats[cpu]))) { 102 /* Try to allocate CPU-specific stats. */ 103 struct flow_stats *new_stats; 104 105 new_stats = 106 kmem_cache_alloc_node(flow_stats_cache, 107 GFP_NOWAIT | 108 __GFP_THISNODE | 109 __GFP_NOWARN | 110 __GFP_NOMEMALLOC, 111 numa_node_id()); 112 if (likely(new_stats)) { 113 new_stats->used = jiffies; 114 new_stats->packet_count = 1; 115 new_stats->byte_count = len; 116 new_stats->tcp_flags = tcp_flags; 117 spin_lock_init(&new_stats->lock); 118 119 rcu_assign_pointer(flow->stats[cpu], 120 new_stats); 121 cpumask_set_cpu(cpu, &flow->cpu_used_mask); 122 goto unlock; 123 } 124 } 125 flow->stats_last_writer = cpu; 126 } 127 } 128 129 stats->used = jiffies; 130 stats->packet_count++; 131 stats->byte_count += len; 132 stats->tcp_flags |= tcp_flags; 133 unlock: 134 spin_unlock(&stats->lock); 135 } 136 137 /* Must be called with rcu_read_lock or ovs_mutex. */ 138 void ovs_flow_stats_get(const struct sw_flow *flow, 139 struct ovs_flow_stats *ovs_stats, 140 unsigned long *used, __be16 *tcp_flags) 141 { 142 int cpu; 143 144 *used = 0; 145 *tcp_flags = 0; 146 memset(ovs_stats, 0, sizeof(*ovs_stats)); 147 148 /* We open code this to make sure cpu 0 is always considered */ 149 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) { 150 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]); 151 152 if (stats) { 153 /* Local CPU may write on non-local stats, so we must 154 * block bottom-halves here. 155 */ 156 spin_lock_bh(&stats->lock); 157 if (!*used || time_after(stats->used, *used)) 158 *used = stats->used; 159 *tcp_flags |= stats->tcp_flags; 160 ovs_stats->n_packets += stats->packet_count; 161 ovs_stats->n_bytes += stats->byte_count; 162 spin_unlock_bh(&stats->lock); 163 } 164 } 165 } 166 167 /* Called with ovs_mutex. */ 168 void ovs_flow_stats_clear(struct sw_flow *flow) 169 { 170 int cpu; 171 172 /* We open code this to make sure cpu 0 is always considered */ 173 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) { 174 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]); 175 176 if (stats) { 177 spin_lock_bh(&stats->lock); 178 stats->used = 0; 179 stats->packet_count = 0; 180 stats->byte_count = 0; 181 stats->tcp_flags = 0; 182 spin_unlock_bh(&stats->lock); 183 } 184 } 185 } 186 187 static int check_header(struct sk_buff *skb, int len) 188 { 189 if (unlikely(skb->len < len)) 190 return -EINVAL; 191 if (unlikely(!pskb_may_pull(skb, len))) 192 return -ENOMEM; 193 return 0; 194 } 195 196 static bool arphdr_ok(struct sk_buff *skb) 197 { 198 return pskb_may_pull(skb, skb_network_offset(skb) + 199 sizeof(struct arp_eth_header)); 200 } 201 202 static int check_iphdr(struct sk_buff *skb) 203 { 204 unsigned int nh_ofs = skb_network_offset(skb); 205 unsigned int ip_len; 206 int err; 207 208 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 209 if (unlikely(err)) 210 return err; 211 212 ip_len = ip_hdrlen(skb); 213 if (unlikely(ip_len < sizeof(struct iphdr) || 214 skb->len < nh_ofs + ip_len)) 215 return -EINVAL; 216 217 skb_set_transport_header(skb, nh_ofs + ip_len); 218 return 0; 219 } 220 221 static bool tcphdr_ok(struct sk_buff *skb) 222 { 223 int th_ofs = skb_transport_offset(skb); 224 int tcp_len; 225 226 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 227 return false; 228 229 tcp_len = tcp_hdrlen(skb); 230 if (unlikely(tcp_len < sizeof(struct tcphdr) || 231 skb->len < th_ofs + tcp_len)) 232 return false; 233 234 return true; 235 } 236 237 static bool udphdr_ok(struct sk_buff *skb) 238 { 239 return pskb_may_pull(skb, skb_transport_offset(skb) + 240 sizeof(struct udphdr)); 241 } 242 243 static bool sctphdr_ok(struct sk_buff *skb) 244 { 245 return pskb_may_pull(skb, skb_transport_offset(skb) + 246 sizeof(struct sctphdr)); 247 } 248 249 static bool icmphdr_ok(struct sk_buff *skb) 250 { 251 return pskb_may_pull(skb, skb_transport_offset(skb) + 252 sizeof(struct icmphdr)); 253 } 254 255 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) 256 { 257 unsigned int nh_ofs = skb_network_offset(skb); 258 unsigned int nh_len; 259 int payload_ofs; 260 struct ipv6hdr *nh; 261 uint8_t nexthdr; 262 __be16 frag_off; 263 int err; 264 265 err = check_header(skb, nh_ofs + sizeof(*nh)); 266 if (unlikely(err)) 267 return err; 268 269 nh = ipv6_hdr(skb); 270 nexthdr = nh->nexthdr; 271 payload_ofs = (u8 *)(nh + 1) - skb->data; 272 273 key->ip.proto = NEXTHDR_NONE; 274 key->ip.tos = ipv6_get_dsfield(nh); 275 key->ip.ttl = nh->hop_limit; 276 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 277 key->ipv6.addr.src = nh->saddr; 278 key->ipv6.addr.dst = nh->daddr; 279 280 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); 281 282 if (frag_off) { 283 if (frag_off & htons(~0x7)) 284 key->ip.frag = OVS_FRAG_TYPE_LATER; 285 else 286 key->ip.frag = OVS_FRAG_TYPE_FIRST; 287 } else { 288 key->ip.frag = OVS_FRAG_TYPE_NONE; 289 } 290 291 /* Delayed handling of error in ipv6_skip_exthdr() as it 292 * always sets frag_off to a valid value which may be 293 * used to set key->ip.frag above. 294 */ 295 if (unlikely(payload_ofs < 0)) 296 return -EPROTO; 297 298 nh_len = payload_ofs - nh_ofs; 299 skb_set_transport_header(skb, nh_ofs + nh_len); 300 key->ip.proto = nexthdr; 301 return nh_len; 302 } 303 304 static bool icmp6hdr_ok(struct sk_buff *skb) 305 { 306 return pskb_may_pull(skb, skb_transport_offset(skb) + 307 sizeof(struct icmp6hdr)); 308 } 309 310 /** 311 * Parse vlan tag from vlan header. 312 * Returns ERROR on memory error. 313 * Returns 0 if it encounters a non-vlan or incomplete packet. 314 * Returns 1 after successfully parsing vlan tag. 315 */ 316 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh, 317 bool untag_vlan) 318 { 319 struct vlan_head *vh = (struct vlan_head *)skb->data; 320 321 if (likely(!eth_type_vlan(vh->tpid))) 322 return 0; 323 324 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16))) 325 return 0; 326 327 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) + 328 sizeof(__be16)))) 329 return -ENOMEM; 330 331 vh = (struct vlan_head *)skb->data; 332 key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT); 333 key_vh->tpid = vh->tpid; 334 335 if (unlikely(untag_vlan)) { 336 int offset = skb->data - skb_mac_header(skb); 337 u16 tci; 338 int err; 339 340 __skb_push(skb, offset); 341 err = __skb_vlan_pop(skb, &tci); 342 __skb_pull(skb, offset); 343 if (err) 344 return err; 345 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci); 346 } else { 347 __skb_pull(skb, sizeof(struct vlan_head)); 348 } 349 return 1; 350 } 351 352 static void clear_vlan(struct sw_flow_key *key) 353 { 354 key->eth.vlan.tci = 0; 355 key->eth.vlan.tpid = 0; 356 key->eth.cvlan.tci = 0; 357 key->eth.cvlan.tpid = 0; 358 } 359 360 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 361 { 362 int res; 363 364 if (skb_vlan_tag_present(skb)) { 365 key->eth.vlan.tci = htons(skb->vlan_tci); 366 key->eth.vlan.tpid = skb->vlan_proto; 367 } else { 368 /* Parse outer vlan tag in the non-accelerated case. */ 369 res = parse_vlan_tag(skb, &key->eth.vlan, true); 370 if (res <= 0) 371 return res; 372 } 373 374 /* Parse inner vlan tag. */ 375 res = parse_vlan_tag(skb, &key->eth.cvlan, false); 376 if (res <= 0) 377 return res; 378 379 return 0; 380 } 381 382 static __be16 parse_ethertype(struct sk_buff *skb) 383 { 384 struct llc_snap_hdr { 385 u8 dsap; /* Always 0xAA */ 386 u8 ssap; /* Always 0xAA */ 387 u8 ctrl; 388 u8 oui[3]; 389 __be16 ethertype; 390 }; 391 struct llc_snap_hdr *llc; 392 __be16 proto; 393 394 proto = *(__be16 *) skb->data; 395 __skb_pull(skb, sizeof(__be16)); 396 397 if (eth_proto_is_802_3(proto)) 398 return proto; 399 400 if (skb->len < sizeof(struct llc_snap_hdr)) 401 return htons(ETH_P_802_2); 402 403 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 404 return htons(0); 405 406 llc = (struct llc_snap_hdr *) skb->data; 407 if (llc->dsap != LLC_SAP_SNAP || 408 llc->ssap != LLC_SAP_SNAP || 409 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 410 return htons(ETH_P_802_2); 411 412 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 413 414 if (eth_proto_is_802_3(llc->ethertype)) 415 return llc->ethertype; 416 417 return htons(ETH_P_802_2); 418 } 419 420 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 421 int nh_len) 422 { 423 struct icmp6hdr *icmp = icmp6_hdr(skb); 424 425 /* The ICMPv6 type and code fields use the 16-bit transport port 426 * fields, so we need to store them in 16-bit network byte order. 427 */ 428 key->tp.src = htons(icmp->icmp6_type); 429 key->tp.dst = htons(icmp->icmp6_code); 430 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd)); 431 432 if (icmp->icmp6_code == 0 && 433 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 434 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 435 int icmp_len = skb->len - skb_transport_offset(skb); 436 struct nd_msg *nd; 437 int offset; 438 439 /* In order to process neighbor discovery options, we need the 440 * entire packet. 441 */ 442 if (unlikely(icmp_len < sizeof(*nd))) 443 return 0; 444 445 if (unlikely(skb_linearize(skb))) 446 return -ENOMEM; 447 448 nd = (struct nd_msg *)skb_transport_header(skb); 449 key->ipv6.nd.target = nd->target; 450 451 icmp_len -= sizeof(*nd); 452 offset = 0; 453 while (icmp_len >= 8) { 454 struct nd_opt_hdr *nd_opt = 455 (struct nd_opt_hdr *)(nd->opt + offset); 456 int opt_len = nd_opt->nd_opt_len * 8; 457 458 if (unlikely(!opt_len || opt_len > icmp_len)) 459 return 0; 460 461 /* Store the link layer address if the appropriate 462 * option is provided. It is considered an error if 463 * the same link layer option is specified twice. 464 */ 465 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 466 && opt_len == 8) { 467 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 468 goto invalid; 469 ether_addr_copy(key->ipv6.nd.sll, 470 &nd->opt[offset+sizeof(*nd_opt)]); 471 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 472 && opt_len == 8) { 473 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 474 goto invalid; 475 ether_addr_copy(key->ipv6.nd.tll, 476 &nd->opt[offset+sizeof(*nd_opt)]); 477 } 478 479 icmp_len -= opt_len; 480 offset += opt_len; 481 } 482 } 483 484 return 0; 485 486 invalid: 487 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 488 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 489 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 490 491 return 0; 492 } 493 494 static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key) 495 { 496 struct nshhdr *nh; 497 unsigned int nh_ofs = skb_network_offset(skb); 498 u8 version, length; 499 int err; 500 501 err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN); 502 if (unlikely(err)) 503 return err; 504 505 nh = nsh_hdr(skb); 506 version = nsh_get_ver(nh); 507 length = nsh_hdr_len(nh); 508 509 if (version != 0) 510 return -EINVAL; 511 512 err = check_header(skb, nh_ofs + length); 513 if (unlikely(err)) 514 return err; 515 516 nh = nsh_hdr(skb); 517 key->nsh.base.flags = nsh_get_flags(nh); 518 key->nsh.base.ttl = nsh_get_ttl(nh); 519 key->nsh.base.mdtype = nh->mdtype; 520 key->nsh.base.np = nh->np; 521 key->nsh.base.path_hdr = nh->path_hdr; 522 switch (key->nsh.base.mdtype) { 523 case NSH_M_TYPE1: 524 if (length != NSH_M_TYPE1_LEN) 525 return -EINVAL; 526 memcpy(key->nsh.context, nh->md1.context, 527 sizeof(nh->md1)); 528 break; 529 case NSH_M_TYPE2: 530 memset(key->nsh.context, 0, 531 sizeof(nh->md1)); 532 break; 533 default: 534 return -EINVAL; 535 } 536 537 return 0; 538 } 539 540 /** 541 * key_extract - extracts a flow key from an Ethernet frame. 542 * @skb: sk_buff that contains the frame, with skb->data pointing to the 543 * Ethernet header 544 * @key: output flow key 545 * 546 * The caller must ensure that skb->len >= ETH_HLEN. 547 * 548 * Returns 0 if successful, otherwise a negative errno value. 549 * 550 * Initializes @skb header fields as follows: 551 * 552 * - skb->mac_header: the L2 header. 553 * 554 * - skb->network_header: just past the L2 header, or just past the 555 * VLAN header, to the first byte of the L2 payload. 556 * 557 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 558 * on output, then just past the IP header, if one is present and 559 * of a correct length, otherwise the same as skb->network_header. 560 * For other key->eth.type values it is left untouched. 561 * 562 * - skb->protocol: the type of the data starting at skb->network_header. 563 * Equals to key->eth.type. 564 */ 565 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key) 566 { 567 int error; 568 struct ethhdr *eth; 569 570 /* Flags are always used as part of stats */ 571 key->tp.flags = 0; 572 573 skb_reset_mac_header(skb); 574 575 /* Link layer. */ 576 clear_vlan(key); 577 if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) { 578 if (unlikely(eth_type_vlan(skb->protocol))) 579 return -EINVAL; 580 581 skb_reset_network_header(skb); 582 key->eth.type = skb->protocol; 583 } else { 584 eth = eth_hdr(skb); 585 ether_addr_copy(key->eth.src, eth->h_source); 586 ether_addr_copy(key->eth.dst, eth->h_dest); 587 588 __skb_pull(skb, 2 * ETH_ALEN); 589 /* We are going to push all headers that we pull, so no need to 590 * update skb->csum here. 591 */ 592 593 if (unlikely(parse_vlan(skb, key))) 594 return -ENOMEM; 595 596 key->eth.type = parse_ethertype(skb); 597 if (unlikely(key->eth.type == htons(0))) 598 return -ENOMEM; 599 600 /* Multiple tagged packets need to retain TPID to satisfy 601 * skb_vlan_pop(), which will later shift the ethertype into 602 * skb->protocol. 603 */ 604 if (key->eth.cvlan.tci & htons(VLAN_TAG_PRESENT)) 605 skb->protocol = key->eth.cvlan.tpid; 606 else 607 skb->protocol = key->eth.type; 608 609 skb_reset_network_header(skb); 610 __skb_push(skb, skb->data - skb_mac_header(skb)); 611 } 612 skb_reset_mac_len(skb); 613 614 /* Network layer. */ 615 if (key->eth.type == htons(ETH_P_IP)) { 616 struct iphdr *nh; 617 __be16 offset; 618 619 error = check_iphdr(skb); 620 if (unlikely(error)) { 621 memset(&key->ip, 0, sizeof(key->ip)); 622 memset(&key->ipv4, 0, sizeof(key->ipv4)); 623 if (error == -EINVAL) { 624 skb->transport_header = skb->network_header; 625 error = 0; 626 } 627 return error; 628 } 629 630 nh = ip_hdr(skb); 631 key->ipv4.addr.src = nh->saddr; 632 key->ipv4.addr.dst = nh->daddr; 633 634 key->ip.proto = nh->protocol; 635 key->ip.tos = nh->tos; 636 key->ip.ttl = nh->ttl; 637 638 offset = nh->frag_off & htons(IP_OFFSET); 639 if (offset) { 640 key->ip.frag = OVS_FRAG_TYPE_LATER; 641 return 0; 642 } 643 if (nh->frag_off & htons(IP_MF) || 644 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 645 key->ip.frag = OVS_FRAG_TYPE_FIRST; 646 else 647 key->ip.frag = OVS_FRAG_TYPE_NONE; 648 649 /* Transport layer. */ 650 if (key->ip.proto == IPPROTO_TCP) { 651 if (tcphdr_ok(skb)) { 652 struct tcphdr *tcp = tcp_hdr(skb); 653 key->tp.src = tcp->source; 654 key->tp.dst = tcp->dest; 655 key->tp.flags = TCP_FLAGS_BE16(tcp); 656 } else { 657 memset(&key->tp, 0, sizeof(key->tp)); 658 } 659 660 } else if (key->ip.proto == IPPROTO_UDP) { 661 if (udphdr_ok(skb)) { 662 struct udphdr *udp = udp_hdr(skb); 663 key->tp.src = udp->source; 664 key->tp.dst = udp->dest; 665 } else { 666 memset(&key->tp, 0, sizeof(key->tp)); 667 } 668 } else if (key->ip.proto == IPPROTO_SCTP) { 669 if (sctphdr_ok(skb)) { 670 struct sctphdr *sctp = sctp_hdr(skb); 671 key->tp.src = sctp->source; 672 key->tp.dst = sctp->dest; 673 } else { 674 memset(&key->tp, 0, sizeof(key->tp)); 675 } 676 } else if (key->ip.proto == IPPROTO_ICMP) { 677 if (icmphdr_ok(skb)) { 678 struct icmphdr *icmp = icmp_hdr(skb); 679 /* The ICMP type and code fields use the 16-bit 680 * transport port fields, so we need to store 681 * them in 16-bit network byte order. */ 682 key->tp.src = htons(icmp->type); 683 key->tp.dst = htons(icmp->code); 684 } else { 685 memset(&key->tp, 0, sizeof(key->tp)); 686 } 687 } 688 689 } else if (key->eth.type == htons(ETH_P_ARP) || 690 key->eth.type == htons(ETH_P_RARP)) { 691 struct arp_eth_header *arp; 692 bool arp_available = arphdr_ok(skb); 693 694 arp = (struct arp_eth_header *)skb_network_header(skb); 695 696 if (arp_available && 697 arp->ar_hrd == htons(ARPHRD_ETHER) && 698 arp->ar_pro == htons(ETH_P_IP) && 699 arp->ar_hln == ETH_ALEN && 700 arp->ar_pln == 4) { 701 702 /* We only match on the lower 8 bits of the opcode. */ 703 if (ntohs(arp->ar_op) <= 0xff) 704 key->ip.proto = ntohs(arp->ar_op); 705 else 706 key->ip.proto = 0; 707 708 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 709 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 710 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha); 711 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha); 712 } else { 713 memset(&key->ip, 0, sizeof(key->ip)); 714 memset(&key->ipv4, 0, sizeof(key->ipv4)); 715 } 716 } else if (eth_p_mpls(key->eth.type)) { 717 size_t stack_len = MPLS_HLEN; 718 719 skb_set_inner_network_header(skb, skb->mac_len); 720 while (1) { 721 __be32 lse; 722 723 error = check_header(skb, skb->mac_len + stack_len); 724 if (unlikely(error)) 725 return 0; 726 727 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN); 728 729 if (stack_len == MPLS_HLEN) 730 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN); 731 732 skb_set_inner_network_header(skb, skb->mac_len + stack_len); 733 if (lse & htonl(MPLS_LS_S_MASK)) 734 break; 735 736 stack_len += MPLS_HLEN; 737 } 738 } else if (key->eth.type == htons(ETH_P_IPV6)) { 739 int nh_len; /* IPv6 Header + Extensions */ 740 741 nh_len = parse_ipv6hdr(skb, key); 742 if (unlikely(nh_len < 0)) { 743 switch (nh_len) { 744 case -EINVAL: 745 memset(&key->ip, 0, sizeof(key->ip)); 746 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr)); 747 /* fall-through */ 748 case -EPROTO: 749 skb->transport_header = skb->network_header; 750 error = 0; 751 break; 752 default: 753 error = nh_len; 754 } 755 return error; 756 } 757 758 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 759 return 0; 760 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 761 key->ip.frag = OVS_FRAG_TYPE_FIRST; 762 763 /* Transport layer. */ 764 if (key->ip.proto == NEXTHDR_TCP) { 765 if (tcphdr_ok(skb)) { 766 struct tcphdr *tcp = tcp_hdr(skb); 767 key->tp.src = tcp->source; 768 key->tp.dst = tcp->dest; 769 key->tp.flags = TCP_FLAGS_BE16(tcp); 770 } else { 771 memset(&key->tp, 0, sizeof(key->tp)); 772 } 773 } else if (key->ip.proto == NEXTHDR_UDP) { 774 if (udphdr_ok(skb)) { 775 struct udphdr *udp = udp_hdr(skb); 776 key->tp.src = udp->source; 777 key->tp.dst = udp->dest; 778 } else { 779 memset(&key->tp, 0, sizeof(key->tp)); 780 } 781 } else if (key->ip.proto == NEXTHDR_SCTP) { 782 if (sctphdr_ok(skb)) { 783 struct sctphdr *sctp = sctp_hdr(skb); 784 key->tp.src = sctp->source; 785 key->tp.dst = sctp->dest; 786 } else { 787 memset(&key->tp, 0, sizeof(key->tp)); 788 } 789 } else if (key->ip.proto == NEXTHDR_ICMP) { 790 if (icmp6hdr_ok(skb)) { 791 error = parse_icmpv6(skb, key, nh_len); 792 if (error) 793 return error; 794 } else { 795 memset(&key->tp, 0, sizeof(key->tp)); 796 } 797 } 798 } else if (key->eth.type == htons(ETH_P_NSH)) { 799 error = parse_nsh(skb, key); 800 if (error) 801 return error; 802 } 803 return 0; 804 } 805 806 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key) 807 { 808 int res; 809 810 res = key_extract(skb, key); 811 if (!res) 812 key->mac_proto &= ~SW_FLOW_KEY_INVALID; 813 814 return res; 815 } 816 817 static int key_extract_mac_proto(struct sk_buff *skb) 818 { 819 switch (skb->dev->type) { 820 case ARPHRD_ETHER: 821 return MAC_PROTO_ETHERNET; 822 case ARPHRD_NONE: 823 if (skb->protocol == htons(ETH_P_TEB)) 824 return MAC_PROTO_ETHERNET; 825 return MAC_PROTO_NONE; 826 } 827 WARN_ON_ONCE(1); 828 return -EINVAL; 829 } 830 831 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info, 832 struct sk_buff *skb, struct sw_flow_key *key) 833 { 834 int res, err; 835 836 /* Extract metadata from packet. */ 837 if (tun_info) { 838 key->tun_proto = ip_tunnel_info_af(tun_info); 839 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key)); 840 841 if (tun_info->options_len) { 842 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) * 843 8)) - 1 844 > sizeof(key->tun_opts)); 845 846 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len), 847 tun_info); 848 key->tun_opts_len = tun_info->options_len; 849 } else { 850 key->tun_opts_len = 0; 851 } 852 } else { 853 key->tun_proto = 0; 854 key->tun_opts_len = 0; 855 memset(&key->tun_key, 0, sizeof(key->tun_key)); 856 } 857 858 key->phy.priority = skb->priority; 859 key->phy.in_port = OVS_CB(skb)->input_vport->port_no; 860 key->phy.skb_mark = skb->mark; 861 key->ovs_flow_hash = 0; 862 res = key_extract_mac_proto(skb); 863 if (res < 0) 864 return res; 865 key->mac_proto = res; 866 key->recirc_id = 0; 867 868 err = key_extract(skb, key); 869 if (!err) 870 ovs_ct_fill_key(skb, key); /* Must be after key_extract(). */ 871 return err; 872 } 873 874 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr, 875 struct sk_buff *skb, 876 struct sw_flow_key *key, bool log) 877 { 878 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 879 u64 attrs = 0; 880 int err; 881 882 err = parse_flow_nlattrs(attr, a, &attrs, log); 883 if (err) 884 return -EINVAL; 885 886 /* Extract metadata from netlink attributes. */ 887 err = ovs_nla_get_flow_metadata(net, a, attrs, key, log); 888 if (err) 889 return err; 890 891 /* key_extract assumes that skb->protocol is set-up for 892 * layer 3 packets which is the case for other callers, 893 * in particular packets received from the network stack. 894 * Here the correct value can be set from the metadata 895 * extracted above. 896 * For L2 packet key eth type would be zero. skb protocol 897 * would be set to correct value later during key-extact. 898 */ 899 900 skb->protocol = key->eth.type; 901 err = key_extract(skb, key); 902 if (err) 903 return err; 904 905 /* Check that we have conntrack original direction tuple metadata only 906 * for packets for which it makes sense. Otherwise the key may be 907 * corrupted due to overlapping key fields. 908 */ 909 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) && 910 key->eth.type != htons(ETH_P_IP)) 911 return -EINVAL; 912 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) && 913 (key->eth.type != htons(ETH_P_IPV6) || 914 sw_flow_key_is_nd(key))) 915 return -EINVAL; 916 917 return 0; 918 } 919