1 /* 2 * Copyright (c) 2015 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/openvswitch.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/sctp.h> 19 #include <net/ip.h> 20 #include <net/netfilter/nf_conntrack_core.h> 21 #include <net/netfilter/nf_conntrack_helper.h> 22 #include <net/netfilter/nf_conntrack_labels.h> 23 #include <net/netfilter/nf_conntrack_seqadj.h> 24 #include <net/netfilter/nf_conntrack_zones.h> 25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 26 27 #ifdef CONFIG_NF_NAT_NEEDED 28 #include <linux/netfilter/nf_nat.h> 29 #include <net/netfilter/nf_nat_core.h> 30 #include <net/netfilter/nf_nat_l3proto.h> 31 #endif 32 33 #include "datapath.h" 34 #include "conntrack.h" 35 #include "flow.h" 36 #include "flow_netlink.h" 37 38 struct ovs_ct_len_tbl { 39 int maxlen; 40 int minlen; 41 }; 42 43 /* Metadata mark for masked write to conntrack mark */ 44 struct md_mark { 45 u32 value; 46 u32 mask; 47 }; 48 49 /* Metadata label for masked write to conntrack label. */ 50 struct md_labels { 51 struct ovs_key_ct_labels value; 52 struct ovs_key_ct_labels mask; 53 }; 54 55 enum ovs_ct_nat { 56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 59 }; 60 61 /* Conntrack action context for execution. */ 62 struct ovs_conntrack_info { 63 struct nf_conntrack_helper *helper; 64 struct nf_conntrack_zone zone; 65 struct nf_conn *ct; 66 u8 commit : 1; 67 u8 nat : 3; /* enum ovs_ct_nat */ 68 u8 force : 1; 69 u8 have_eventmask : 1; 70 u16 family; 71 u32 eventmask; /* Mask of 1 << IPCT_*. */ 72 struct md_mark mark; 73 struct md_labels labels; 74 #ifdef CONFIG_NF_NAT_NEEDED 75 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */ 76 #endif 77 }; 78 79 static bool labels_nonzero(const struct ovs_key_ct_labels *labels); 80 81 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 82 83 static u16 key_to_nfproto(const struct sw_flow_key *key) 84 { 85 switch (ntohs(key->eth.type)) { 86 case ETH_P_IP: 87 return NFPROTO_IPV4; 88 case ETH_P_IPV6: 89 return NFPROTO_IPV6; 90 default: 91 return NFPROTO_UNSPEC; 92 } 93 } 94 95 /* Map SKB connection state into the values used by flow definition. */ 96 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 97 { 98 u8 ct_state = OVS_CS_F_TRACKED; 99 100 switch (ctinfo) { 101 case IP_CT_ESTABLISHED_REPLY: 102 case IP_CT_RELATED_REPLY: 103 ct_state |= OVS_CS_F_REPLY_DIR; 104 break; 105 default: 106 break; 107 } 108 109 switch (ctinfo) { 110 case IP_CT_ESTABLISHED: 111 case IP_CT_ESTABLISHED_REPLY: 112 ct_state |= OVS_CS_F_ESTABLISHED; 113 break; 114 case IP_CT_RELATED: 115 case IP_CT_RELATED_REPLY: 116 ct_state |= OVS_CS_F_RELATED; 117 break; 118 case IP_CT_NEW: 119 ct_state |= OVS_CS_F_NEW; 120 break; 121 default: 122 break; 123 } 124 125 return ct_state; 126 } 127 128 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 129 { 130 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 131 return ct ? ct->mark : 0; 132 #else 133 return 0; 134 #endif 135 } 136 137 /* Guard against conntrack labels max size shrinking below 128 bits. */ 138 #if NF_CT_LABELS_MAX_SIZE < 16 139 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes 140 #endif 141 142 static void ovs_ct_get_labels(const struct nf_conn *ct, 143 struct ovs_key_ct_labels *labels) 144 { 145 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; 146 147 if (cl) 148 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN); 149 else 150 memset(labels, 0, OVS_CT_LABELS_LEN); 151 } 152 153 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key, 154 const struct nf_conntrack_tuple *orig, 155 u8 icmp_proto) 156 { 157 key->ct_orig_proto = orig->dst.protonum; 158 if (orig->dst.protonum == icmp_proto) { 159 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type); 160 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code); 161 } else { 162 key->ct.orig_tp.src = orig->src.u.all; 163 key->ct.orig_tp.dst = orig->dst.u.all; 164 } 165 } 166 167 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 168 const struct nf_conntrack_zone *zone, 169 const struct nf_conn *ct) 170 { 171 key->ct_state = state; 172 key->ct_zone = zone->id; 173 key->ct.mark = ovs_ct_get_mark(ct); 174 ovs_ct_get_labels(ct, &key->ct.labels); 175 176 if (ct) { 177 const struct nf_conntrack_tuple *orig; 178 179 /* Use the master if we have one. */ 180 if (ct->master) 181 ct = ct->master; 182 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; 183 184 /* IP version must match with the master connection. */ 185 if (key->eth.type == htons(ETH_P_IP) && 186 nf_ct_l3num(ct) == NFPROTO_IPV4) { 187 key->ipv4.ct_orig.src = orig->src.u3.ip; 188 key->ipv4.ct_orig.dst = orig->dst.u3.ip; 189 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP); 190 return; 191 } else if (key->eth.type == htons(ETH_P_IPV6) && 192 !sw_flow_key_is_nd(key) && 193 nf_ct_l3num(ct) == NFPROTO_IPV6) { 194 key->ipv6.ct_orig.src = orig->src.u3.in6; 195 key->ipv6.ct_orig.dst = orig->dst.u3.in6; 196 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP); 197 return; 198 } 199 } 200 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack 201 * original direction key fields. 202 */ 203 key->ct_orig_proto = 0; 204 } 205 206 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has 207 * previously sent the packet to conntrack via the ct action. If 208 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 209 * initialized from the connection status. 210 */ 211 static void ovs_ct_update_key(const struct sk_buff *skb, 212 const struct ovs_conntrack_info *info, 213 struct sw_flow_key *key, bool post_ct, 214 bool keep_nat_flags) 215 { 216 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 217 enum ip_conntrack_info ctinfo; 218 struct nf_conn *ct; 219 u8 state = 0; 220 221 ct = nf_ct_get(skb, &ctinfo); 222 if (ct) { 223 state = ovs_ct_get_state(ctinfo); 224 /* All unconfirmed entries are NEW connections. */ 225 if (!nf_ct_is_confirmed(ct)) 226 state |= OVS_CS_F_NEW; 227 /* OVS persists the related flag for the duration of the 228 * connection. 229 */ 230 if (ct->master) 231 state |= OVS_CS_F_RELATED; 232 if (keep_nat_flags) { 233 state |= key->ct_state & OVS_CS_F_NAT_MASK; 234 } else { 235 if (ct->status & IPS_SRC_NAT) 236 state |= OVS_CS_F_SRC_NAT; 237 if (ct->status & IPS_DST_NAT) 238 state |= OVS_CS_F_DST_NAT; 239 } 240 zone = nf_ct_zone(ct); 241 } else if (post_ct) { 242 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 243 if (info) 244 zone = &info->zone; 245 } 246 __ovs_ct_update_key(key, state, zone, ct); 247 } 248 249 /* This is called to initialize CT key fields possibly coming in from the local 250 * stack. 251 */ 252 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) 253 { 254 ovs_ct_update_key(skb, NULL, key, false, false); 255 } 256 257 #define IN6_ADDR_INITIALIZER(ADDR) \ 258 { (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \ 259 (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] } 260 261 int ovs_ct_put_key(const struct sw_flow_key *swkey, 262 const struct sw_flow_key *output, struct sk_buff *skb) 263 { 264 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state)) 265 return -EMSGSIZE; 266 267 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 268 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone)) 269 return -EMSGSIZE; 270 271 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 272 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark)) 273 return -EMSGSIZE; 274 275 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 276 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels), 277 &output->ct.labels)) 278 return -EMSGSIZE; 279 280 if (swkey->ct_orig_proto) { 281 if (swkey->eth.type == htons(ETH_P_IP)) { 282 struct ovs_key_ct_tuple_ipv4 orig = { 283 output->ipv4.ct_orig.src, 284 output->ipv4.ct_orig.dst, 285 output->ct.orig_tp.src, 286 output->ct.orig_tp.dst, 287 output->ct_orig_proto, 288 }; 289 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4, 290 sizeof(orig), &orig)) 291 return -EMSGSIZE; 292 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 293 struct ovs_key_ct_tuple_ipv6 orig = { 294 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src), 295 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst), 296 output->ct.orig_tp.src, 297 output->ct.orig_tp.dst, 298 output->ct_orig_proto, 299 }; 300 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6, 301 sizeof(orig), &orig)) 302 return -EMSGSIZE; 303 } 304 } 305 306 return 0; 307 } 308 309 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key, 310 u32 ct_mark, u32 mask) 311 { 312 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 313 u32 new_mark; 314 315 new_mark = ct_mark | (ct->mark & ~(mask)); 316 if (ct->mark != new_mark) { 317 ct->mark = new_mark; 318 if (nf_ct_is_confirmed(ct)) 319 nf_conntrack_event_cache(IPCT_MARK, ct); 320 key->ct.mark = new_mark; 321 } 322 323 return 0; 324 #else 325 return -ENOTSUPP; 326 #endif 327 } 328 329 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct) 330 { 331 struct nf_conn_labels *cl; 332 333 cl = nf_ct_labels_find(ct); 334 if (!cl) { 335 nf_ct_labels_ext_add(ct); 336 cl = nf_ct_labels_find(ct); 337 } 338 339 return cl; 340 } 341 342 /* Initialize labels for a new, yet to be committed conntrack entry. Note that 343 * since the new connection is not yet confirmed, and thus no-one else has 344 * access to it's labels, we simply write them over. 345 */ 346 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key, 347 const struct ovs_key_ct_labels *labels, 348 const struct ovs_key_ct_labels *mask) 349 { 350 struct nf_conn_labels *cl, *master_cl; 351 bool have_mask = labels_nonzero(mask); 352 353 /* Inherit master's labels to the related connection? */ 354 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL; 355 356 if (!master_cl && !have_mask) 357 return 0; /* Nothing to do. */ 358 359 cl = ovs_ct_get_conn_labels(ct); 360 if (!cl) 361 return -ENOSPC; 362 363 /* Inherit the master's labels, if any. */ 364 if (master_cl) 365 *cl = *master_cl; 366 367 if (have_mask) { 368 u32 *dst = (u32 *)cl->bits; 369 int i; 370 371 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 372 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) | 373 (labels->ct_labels_32[i] 374 & mask->ct_labels_32[i]); 375 } 376 377 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the 378 * IPCT_LABEL bit is set in the event cache. 379 */ 380 nf_conntrack_event_cache(IPCT_LABEL, ct); 381 382 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 383 384 return 0; 385 } 386 387 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key, 388 const struct ovs_key_ct_labels *labels, 389 const struct ovs_key_ct_labels *mask) 390 { 391 struct nf_conn_labels *cl; 392 int err; 393 394 cl = ovs_ct_get_conn_labels(ct); 395 if (!cl) 396 return -ENOSPC; 397 398 err = nf_connlabels_replace(ct, labels->ct_labels_32, 399 mask->ct_labels_32, 400 OVS_CT_LABELS_LEN_32); 401 if (err) 402 return err; 403 404 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 405 406 return 0; 407 } 408 409 /* 'skb' should already be pulled to nh_ofs. */ 410 static int ovs_ct_helper(struct sk_buff *skb, u16 proto) 411 { 412 const struct nf_conntrack_helper *helper; 413 const struct nf_conn_help *help; 414 enum ip_conntrack_info ctinfo; 415 unsigned int protoff; 416 struct nf_conn *ct; 417 int err; 418 419 ct = nf_ct_get(skb, &ctinfo); 420 if (!ct || ctinfo == IP_CT_RELATED_REPLY) 421 return NF_ACCEPT; 422 423 help = nfct_help(ct); 424 if (!help) 425 return NF_ACCEPT; 426 427 helper = rcu_dereference(help->helper); 428 if (!helper) 429 return NF_ACCEPT; 430 431 switch (proto) { 432 case NFPROTO_IPV4: 433 protoff = ip_hdrlen(skb); 434 break; 435 case NFPROTO_IPV6: { 436 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 437 __be16 frag_off; 438 int ofs; 439 440 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, 441 &frag_off); 442 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) { 443 pr_debug("proto header not found\n"); 444 return NF_ACCEPT; 445 } 446 protoff = ofs; 447 break; 448 } 449 default: 450 WARN_ONCE(1, "helper invoked on non-IP family!"); 451 return NF_DROP; 452 } 453 454 err = helper->help(skb, protoff, ct, ctinfo); 455 if (err != NF_ACCEPT) 456 return err; 457 458 /* Adjust seqs after helper. This is needed due to some helpers (e.g., 459 * FTP with NAT) adusting the TCP payload size when mangling IP 460 * addresses and/or port numbers in the text-based control connection. 461 */ 462 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && 463 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) 464 return NF_DROP; 465 return NF_ACCEPT; 466 } 467 468 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 469 * value if 'skb' is freed. 470 */ 471 static int handle_fragments(struct net *net, struct sw_flow_key *key, 472 u16 zone, struct sk_buff *skb) 473 { 474 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 475 int err; 476 477 if (key->eth.type == htons(ETH_P_IP)) { 478 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 479 480 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 481 err = ip_defrag(net, skb, user); 482 if (err) 483 return err; 484 485 ovs_cb.mru = IPCB(skb)->frag_max_size; 486 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 487 } else if (key->eth.type == htons(ETH_P_IPV6)) { 488 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 489 490 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 491 err = nf_ct_frag6_gather(net, skb, user); 492 if (err) { 493 if (err != -EINPROGRESS) 494 kfree_skb(skb); 495 return err; 496 } 497 498 key->ip.proto = ipv6_hdr(skb)->nexthdr; 499 ovs_cb.mru = IP6CB(skb)->frag_max_size; 500 #endif 501 } else { 502 kfree_skb(skb); 503 return -EPFNOSUPPORT; 504 } 505 506 key->ip.frag = OVS_FRAG_TYPE_NONE; 507 skb_clear_hash(skb); 508 skb->ignore_df = 1; 509 *OVS_CB(skb) = ovs_cb; 510 511 return 0; 512 } 513 514 static struct nf_conntrack_expect * 515 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, 516 u16 proto, const struct sk_buff *skb) 517 { 518 struct nf_conntrack_tuple tuple; 519 struct nf_conntrack_expect *exp; 520 521 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) 522 return NULL; 523 524 exp = __nf_ct_expect_find(net, zone, &tuple); 525 if (exp) { 526 struct nf_conntrack_tuple_hash *h; 527 528 /* Delete existing conntrack entry, if it clashes with the 529 * expectation. This can happen since conntrack ALGs do not 530 * check for clashes between (new) expectations and existing 531 * conntrack entries. nf_conntrack_in() will check the 532 * expectations only if a conntrack entry can not be found, 533 * which can lead to OVS finding the expectation (here) in the 534 * init direction, but which will not be removed by the 535 * nf_conntrack_in() call, if a matching conntrack entry is 536 * found instead. In this case all init direction packets 537 * would be reported as new related packets, while reply 538 * direction packets would be reported as un-related 539 * established packets. 540 */ 541 h = nf_conntrack_find_get(net, zone, &tuple); 542 if (h) { 543 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 544 545 nf_ct_delete(ct, 0, 0); 546 nf_conntrack_put(&ct->ct_general); 547 } 548 } 549 550 return exp; 551 } 552 553 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 554 static enum ip_conntrack_info 555 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 556 { 557 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 558 559 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 560 return IP_CT_ESTABLISHED_REPLY; 561 /* Once we've had two way comms, always ESTABLISHED. */ 562 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 563 return IP_CT_ESTABLISHED; 564 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 565 return IP_CT_RELATED; 566 return IP_CT_NEW; 567 } 568 569 /* Find an existing connection which this packet belongs to without 570 * re-attributing statistics or modifying the connection state. This allows an 571 * skb->_nfct lost due to an upcall to be recovered during actions execution. 572 * 573 * Must be called with rcu_read_lock. 574 * 575 * On success, populates skb->_nfct and returns the connection. Returns NULL 576 * if there is no existing entry. 577 */ 578 static struct nf_conn * 579 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 580 u8 l3num, struct sk_buff *skb, bool natted) 581 { 582 struct nf_conntrack_l3proto *l3proto; 583 struct nf_conntrack_l4proto *l4proto; 584 struct nf_conntrack_tuple tuple; 585 struct nf_conntrack_tuple_hash *h; 586 struct nf_conn *ct; 587 unsigned int dataoff; 588 u8 protonum; 589 590 l3proto = __nf_ct_l3proto_find(l3num); 591 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff, 592 &protonum) <= 0) { 593 pr_debug("ovs_ct_find_existing: Can't get protonum\n"); 594 return NULL; 595 } 596 l4proto = __nf_ct_l4proto_find(l3num, protonum); 597 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num, 598 protonum, net, &tuple, l3proto, l4proto)) { 599 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 600 return NULL; 601 } 602 603 /* Must invert the tuple if skb has been transformed by NAT. */ 604 if (natted) { 605 struct nf_conntrack_tuple inverse; 606 607 if (!nf_ct_invert_tuple(&inverse, &tuple, l3proto, l4proto)) { 608 pr_debug("ovs_ct_find_existing: Inversion failed!\n"); 609 return NULL; 610 } 611 tuple = inverse; 612 } 613 614 /* look for tuple match */ 615 h = nf_conntrack_find_get(net, zone, &tuple); 616 if (!h) 617 return NULL; /* Not found. */ 618 619 ct = nf_ct_tuplehash_to_ctrack(h); 620 621 /* Inverted packet tuple matches the reverse direction conntrack tuple, 622 * select the other tuplehash to get the right 'ctinfo' bits for this 623 * packet. 624 */ 625 if (natted) 626 h = &ct->tuplehash[!h->tuple.dst.dir]; 627 628 nf_ct_set(skb, ct, ovs_ct_get_info(h)); 629 return ct; 630 } 631 632 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 633 static bool skb_nfct_cached(struct net *net, 634 const struct sw_flow_key *key, 635 const struct ovs_conntrack_info *info, 636 struct sk_buff *skb) 637 { 638 enum ip_conntrack_info ctinfo; 639 struct nf_conn *ct; 640 641 ct = nf_ct_get(skb, &ctinfo); 642 /* If no ct, check if we have evidence that an existing conntrack entry 643 * might be found for this skb. This happens when we lose a skb->_nfct 644 * due to an upcall. If the connection was not confirmed, it is not 645 * cached and needs to be run through conntrack again. 646 */ 647 if (!ct && key->ct_state & OVS_CS_F_TRACKED && 648 !(key->ct_state & OVS_CS_F_INVALID) && 649 key->ct_zone == info->zone.id) { 650 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb, 651 !!(key->ct_state 652 & OVS_CS_F_NAT_MASK)); 653 if (ct) 654 nf_ct_get(skb, &ctinfo); 655 } 656 if (!ct) 657 return false; 658 if (!net_eq(net, read_pnet(&ct->ct_net))) 659 return false; 660 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 661 return false; 662 if (info->helper) { 663 struct nf_conn_help *help; 664 665 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 666 if (help && rcu_access_pointer(help->helper) != info->helper) 667 return false; 668 } 669 /* Force conntrack entry direction to the current packet? */ 670 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 671 /* Delete the conntrack entry if confirmed, else just release 672 * the reference. 673 */ 674 if (nf_ct_is_confirmed(ct)) 675 nf_ct_delete(ct, 0, 0); 676 677 nf_conntrack_put(&ct->ct_general); 678 nf_ct_set(skb, NULL, 0); 679 return false; 680 } 681 682 return true; 683 } 684 685 #ifdef CONFIG_NF_NAT_NEEDED 686 /* Modelled after nf_nat_ipv[46]_fn(). 687 * range is only used for new, uninitialized NAT state. 688 * Returns either NF_ACCEPT or NF_DROP. 689 */ 690 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 691 enum ip_conntrack_info ctinfo, 692 const struct nf_nat_range *range, 693 enum nf_nat_manip_type maniptype) 694 { 695 int hooknum, nh_off, err = NF_ACCEPT; 696 697 nh_off = skb_network_offset(skb); 698 skb_pull_rcsum(skb, nh_off); 699 700 /* See HOOK2MANIP(). */ 701 if (maniptype == NF_NAT_MANIP_SRC) 702 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 703 else 704 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 705 706 switch (ctinfo) { 707 case IP_CT_RELATED: 708 case IP_CT_RELATED_REPLY: 709 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 710 skb->protocol == htons(ETH_P_IP) && 711 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 712 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 713 hooknum)) 714 err = NF_DROP; 715 goto push; 716 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 717 skb->protocol == htons(ETH_P_IPV6)) { 718 __be16 frag_off; 719 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 720 int hdrlen = ipv6_skip_exthdr(skb, 721 sizeof(struct ipv6hdr), 722 &nexthdr, &frag_off); 723 724 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 725 if (!nf_nat_icmpv6_reply_translation(skb, ct, 726 ctinfo, 727 hooknum, 728 hdrlen)) 729 err = NF_DROP; 730 goto push; 731 } 732 } 733 /* Non-ICMP, fall thru to initialize if needed. */ 734 case IP_CT_NEW: 735 /* Seen it before? This can happen for loopback, retrans, 736 * or local packets. 737 */ 738 if (!nf_nat_initialized(ct, maniptype)) { 739 /* Initialize according to the NAT action. */ 740 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 741 /* Action is set up to establish a new 742 * mapping. 743 */ 744 ? nf_nat_setup_info(ct, range, maniptype) 745 : nf_nat_alloc_null_binding(ct, hooknum); 746 if (err != NF_ACCEPT) 747 goto push; 748 } 749 break; 750 751 case IP_CT_ESTABLISHED: 752 case IP_CT_ESTABLISHED_REPLY: 753 break; 754 755 default: 756 err = NF_DROP; 757 goto push; 758 } 759 760 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 761 push: 762 skb_push(skb, nh_off); 763 skb_postpush_rcsum(skb, skb->data, nh_off); 764 765 return err; 766 } 767 768 static void ovs_nat_update_key(struct sw_flow_key *key, 769 const struct sk_buff *skb, 770 enum nf_nat_manip_type maniptype) 771 { 772 if (maniptype == NF_NAT_MANIP_SRC) { 773 __be16 src; 774 775 key->ct_state |= OVS_CS_F_SRC_NAT; 776 if (key->eth.type == htons(ETH_P_IP)) 777 key->ipv4.addr.src = ip_hdr(skb)->saddr; 778 else if (key->eth.type == htons(ETH_P_IPV6)) 779 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 780 sizeof(key->ipv6.addr.src)); 781 else 782 return; 783 784 if (key->ip.proto == IPPROTO_UDP) 785 src = udp_hdr(skb)->source; 786 else if (key->ip.proto == IPPROTO_TCP) 787 src = tcp_hdr(skb)->source; 788 else if (key->ip.proto == IPPROTO_SCTP) 789 src = sctp_hdr(skb)->source; 790 else 791 return; 792 793 key->tp.src = src; 794 } else { 795 __be16 dst; 796 797 key->ct_state |= OVS_CS_F_DST_NAT; 798 if (key->eth.type == htons(ETH_P_IP)) 799 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 800 else if (key->eth.type == htons(ETH_P_IPV6)) 801 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 802 sizeof(key->ipv6.addr.dst)); 803 else 804 return; 805 806 if (key->ip.proto == IPPROTO_UDP) 807 dst = udp_hdr(skb)->dest; 808 else if (key->ip.proto == IPPROTO_TCP) 809 dst = tcp_hdr(skb)->dest; 810 else if (key->ip.proto == IPPROTO_SCTP) 811 dst = sctp_hdr(skb)->dest; 812 else 813 return; 814 815 key->tp.dst = dst; 816 } 817 } 818 819 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 820 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 821 const struct ovs_conntrack_info *info, 822 struct sk_buff *skb, struct nf_conn *ct, 823 enum ip_conntrack_info ctinfo) 824 { 825 enum nf_nat_manip_type maniptype; 826 int err; 827 828 /* Add NAT extension if not confirmed yet. */ 829 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 830 return NF_ACCEPT; /* Can't NAT. */ 831 832 /* Determine NAT type. 833 * Check if the NAT type can be deduced from the tracked connection. 834 * Make sure new expected connections (IP_CT_RELATED) are NATted only 835 * when committing. 836 */ 837 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW && 838 ct->status & IPS_NAT_MASK && 839 (ctinfo != IP_CT_RELATED || info->commit)) { 840 /* NAT an established or related connection like before. */ 841 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 842 /* This is the REPLY direction for a connection 843 * for which NAT was applied in the forward 844 * direction. Do the reverse NAT. 845 */ 846 maniptype = ct->status & IPS_SRC_NAT 847 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 848 else 849 maniptype = ct->status & IPS_SRC_NAT 850 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 851 } else if (info->nat & OVS_CT_SRC_NAT) { 852 maniptype = NF_NAT_MANIP_SRC; 853 } else if (info->nat & OVS_CT_DST_NAT) { 854 maniptype = NF_NAT_MANIP_DST; 855 } else { 856 return NF_ACCEPT; /* Connection is not NATed. */ 857 } 858 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype); 859 860 /* Mark NAT done if successful and update the flow key. */ 861 if (err == NF_ACCEPT) 862 ovs_nat_update_key(key, skb, maniptype); 863 864 return err; 865 } 866 #else /* !CONFIG_NF_NAT_NEEDED */ 867 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 868 const struct ovs_conntrack_info *info, 869 struct sk_buff *skb, struct nf_conn *ct, 870 enum ip_conntrack_info ctinfo) 871 { 872 return NF_ACCEPT; 873 } 874 #endif 875 876 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 877 * not done already. Update key with new CT state after passing the packet 878 * through conntrack. 879 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be 880 * set to NULL and 0 will be returned. 881 */ 882 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 883 const struct ovs_conntrack_info *info, 884 struct sk_buff *skb) 885 { 886 /* If we are recirculating packets to match on conntrack fields and 887 * committing with a separate conntrack action, then we don't need to 888 * actually run the packet through conntrack twice unless it's for a 889 * different zone. 890 */ 891 bool cached = skb_nfct_cached(net, key, info, skb); 892 enum ip_conntrack_info ctinfo; 893 struct nf_conn *ct; 894 895 if (!cached) { 896 struct nf_conn *tmpl = info->ct; 897 int err; 898 899 /* Associate skb with specified zone. */ 900 if (tmpl) { 901 if (skb_nfct(skb)) 902 nf_conntrack_put(skb_nfct(skb)); 903 nf_conntrack_get(&tmpl->ct_general); 904 nf_ct_set(skb, tmpl, IP_CT_NEW); 905 } 906 907 err = nf_conntrack_in(net, info->family, 908 NF_INET_PRE_ROUTING, skb); 909 if (err != NF_ACCEPT) 910 return -ENOENT; 911 912 /* Clear CT state NAT flags to mark that we have not yet done 913 * NAT after the nf_conntrack_in() call. We can actually clear 914 * the whole state, as it will be re-initialized below. 915 */ 916 key->ct_state = 0; 917 918 /* Update the key, but keep the NAT flags. */ 919 ovs_ct_update_key(skb, info, key, true, true); 920 } 921 922 ct = nf_ct_get(skb, &ctinfo); 923 if (ct) { 924 /* Packets starting a new connection must be NATted before the 925 * helper, so that the helper knows about the NAT. We enforce 926 * this by delaying both NAT and helper calls for unconfirmed 927 * connections until the committing CT action. For later 928 * packets NAT and Helper may be called in either order. 929 * 930 * NAT will be done only if the CT action has NAT, and only 931 * once per packet (per zone), as guarded by the NAT bits in 932 * the key->ct_state. 933 */ 934 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) && 935 (nf_ct_is_confirmed(ct) || info->commit) && 936 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 937 return -EINVAL; 938 } 939 940 /* Userspace may decide to perform a ct lookup without a helper 941 * specified followed by a (recirculate and) commit with one. 942 * Therefore, for unconfirmed connections which we will commit, 943 * we need to attach the helper here. 944 */ 945 if (!nf_ct_is_confirmed(ct) && info->commit && 946 info->helper && !nfct_help(ct)) { 947 int err = __nf_ct_try_assign_helper(ct, info->ct, 948 GFP_ATOMIC); 949 if (err) 950 return err; 951 } 952 953 /* Call the helper only if: 954 * - nf_conntrack_in() was executed above ("!cached") for a 955 * confirmed connection, or 956 * - When committing an unconfirmed connection. 957 */ 958 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) && 959 ovs_ct_helper(skb, info->family) != NF_ACCEPT) { 960 return -EINVAL; 961 } 962 } 963 964 return 0; 965 } 966 967 /* Lookup connection and read fields into key. */ 968 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 969 const struct ovs_conntrack_info *info, 970 struct sk_buff *skb) 971 { 972 struct nf_conntrack_expect *exp; 973 974 /* If we pass an expected packet through nf_conntrack_in() the 975 * expectation is typically removed, but the packet could still be 976 * lost in upcall processing. To prevent this from happening we 977 * perform an explicit expectation lookup. Expected connections are 978 * always new, and will be passed through conntrack only when they are 979 * committed, as it is OK to remove the expectation at that time. 980 */ 981 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); 982 if (exp) { 983 u8 state; 984 985 /* NOTE: New connections are NATted and Helped only when 986 * committed, so we are not calling into NAT here. 987 */ 988 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; 989 __ovs_ct_update_key(key, state, &info->zone, exp->master); 990 } else { 991 struct nf_conn *ct; 992 int err; 993 994 err = __ovs_ct_lookup(net, key, info, skb); 995 if (err) 996 return err; 997 998 ct = (struct nf_conn *)skb_nfct(skb); 999 if (ct) 1000 nf_ct_deliver_cached_events(ct); 1001 } 1002 1003 return 0; 1004 } 1005 1006 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 1007 { 1008 size_t i; 1009 1010 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 1011 if (labels->ct_labels_32[i]) 1012 return true; 1013 1014 return false; 1015 } 1016 1017 /* Lookup connection and confirm if unconfirmed. */ 1018 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 1019 const struct ovs_conntrack_info *info, 1020 struct sk_buff *skb) 1021 { 1022 enum ip_conntrack_info ctinfo; 1023 struct nf_conn *ct; 1024 int err; 1025 1026 err = __ovs_ct_lookup(net, key, info, skb); 1027 if (err) 1028 return err; 1029 1030 /* The connection could be invalid, in which case this is a no-op.*/ 1031 ct = nf_ct_get(skb, &ctinfo); 1032 if (!ct) 1033 return 0; 1034 1035 /* Set the conntrack event mask if given. NEW and DELETE events have 1036 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener 1037 * typically would receive many kinds of updates. Setting the event 1038 * mask allows those events to be filtered. The set event mask will 1039 * remain in effect for the lifetime of the connection unless changed 1040 * by a further CT action with both the commit flag and the eventmask 1041 * option. */ 1042 if (info->have_eventmask) { 1043 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct); 1044 1045 if (cache) 1046 cache->ctmask = info->eventmask; 1047 } 1048 1049 /* Apply changes before confirming the connection so that the initial 1050 * conntrack NEW netlink event carries the values given in the CT 1051 * action. 1052 */ 1053 if (info->mark.mask) { 1054 err = ovs_ct_set_mark(ct, key, info->mark.value, 1055 info->mark.mask); 1056 if (err) 1057 return err; 1058 } 1059 if (!nf_ct_is_confirmed(ct)) { 1060 err = ovs_ct_init_labels(ct, key, &info->labels.value, 1061 &info->labels.mask); 1062 if (err) 1063 return err; 1064 } else if (labels_nonzero(&info->labels.mask)) { 1065 err = ovs_ct_set_labels(ct, key, &info->labels.value, 1066 &info->labels.mask); 1067 if (err) 1068 return err; 1069 } 1070 /* This will take care of sending queued events even if the connection 1071 * is already confirmed. 1072 */ 1073 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 1074 return -EINVAL; 1075 1076 return 0; 1077 } 1078 1079 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 1080 * value if 'skb' is freed. 1081 */ 1082 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 1083 struct sw_flow_key *key, 1084 const struct ovs_conntrack_info *info) 1085 { 1086 int nh_ofs; 1087 int err; 1088 1089 /* The conntrack module expects to be working at L3. */ 1090 nh_ofs = skb_network_offset(skb); 1091 skb_pull_rcsum(skb, nh_ofs); 1092 1093 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 1094 err = handle_fragments(net, key, info->zone.id, skb); 1095 if (err) 1096 return err; 1097 } 1098 1099 if (info->commit) 1100 err = ovs_ct_commit(net, key, info, skb); 1101 else 1102 err = ovs_ct_lookup(net, key, info, skb); 1103 1104 skb_push(skb, nh_ofs); 1105 skb_postpush_rcsum(skb, skb->data, nh_ofs); 1106 if (err) 1107 kfree_skb(skb); 1108 return err; 1109 } 1110 1111 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, 1112 const struct sw_flow_key *key, bool log) 1113 { 1114 struct nf_conntrack_helper *helper; 1115 struct nf_conn_help *help; 1116 1117 helper = nf_conntrack_helper_try_module_get(name, info->family, 1118 key->ip.proto); 1119 if (!helper) { 1120 OVS_NLERR(log, "Unknown helper \"%s\"", name); 1121 return -EINVAL; 1122 } 1123 1124 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL); 1125 if (!help) { 1126 nf_conntrack_helper_put(helper); 1127 return -ENOMEM; 1128 } 1129 1130 rcu_assign_pointer(help->helper, helper); 1131 info->helper = helper; 1132 return 0; 1133 } 1134 1135 #ifdef CONFIG_NF_NAT_NEEDED 1136 static int parse_nat(const struct nlattr *attr, 1137 struct ovs_conntrack_info *info, bool log) 1138 { 1139 struct nlattr *a; 1140 int rem; 1141 bool have_ip_max = false; 1142 bool have_proto_max = false; 1143 bool ip_vers = (info->family == NFPROTO_IPV6); 1144 1145 nla_for_each_nested(a, attr, rem) { 1146 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 1147 [OVS_NAT_ATTR_SRC] = {0, 0}, 1148 [OVS_NAT_ATTR_DST] = {0, 0}, 1149 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 1150 sizeof(struct in6_addr)}, 1151 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 1152 sizeof(struct in6_addr)}, 1153 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 1154 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 1155 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 1156 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 1157 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 1158 }; 1159 int type = nla_type(a); 1160 1161 if (type > OVS_NAT_ATTR_MAX) { 1162 OVS_NLERR(log, 1163 "Unknown NAT attribute (type=%d, max=%d).\n", 1164 type, OVS_NAT_ATTR_MAX); 1165 return -EINVAL; 1166 } 1167 1168 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 1169 OVS_NLERR(log, 1170 "NAT attribute type %d has unexpected length (%d != %d).\n", 1171 type, nla_len(a), 1172 ovs_nat_attr_lens[type][ip_vers]); 1173 return -EINVAL; 1174 } 1175 1176 switch (type) { 1177 case OVS_NAT_ATTR_SRC: 1178 case OVS_NAT_ATTR_DST: 1179 if (info->nat) { 1180 OVS_NLERR(log, 1181 "Only one type of NAT may be specified.\n" 1182 ); 1183 return -ERANGE; 1184 } 1185 info->nat |= OVS_CT_NAT; 1186 info->nat |= ((type == OVS_NAT_ATTR_SRC) 1187 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 1188 break; 1189 1190 case OVS_NAT_ATTR_IP_MIN: 1191 nla_memcpy(&info->range.min_addr, a, 1192 sizeof(info->range.min_addr)); 1193 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1194 break; 1195 1196 case OVS_NAT_ATTR_IP_MAX: 1197 have_ip_max = true; 1198 nla_memcpy(&info->range.max_addr, a, 1199 sizeof(info->range.max_addr)); 1200 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1201 break; 1202 1203 case OVS_NAT_ATTR_PROTO_MIN: 1204 info->range.min_proto.all = htons(nla_get_u16(a)); 1205 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1206 break; 1207 1208 case OVS_NAT_ATTR_PROTO_MAX: 1209 have_proto_max = true; 1210 info->range.max_proto.all = htons(nla_get_u16(a)); 1211 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1212 break; 1213 1214 case OVS_NAT_ATTR_PERSISTENT: 1215 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 1216 break; 1217 1218 case OVS_NAT_ATTR_PROTO_HASH: 1219 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1220 break; 1221 1222 case OVS_NAT_ATTR_PROTO_RANDOM: 1223 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1224 break; 1225 1226 default: 1227 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type); 1228 return -EINVAL; 1229 } 1230 } 1231 1232 if (rem > 0) { 1233 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem); 1234 return -EINVAL; 1235 } 1236 if (!info->nat) { 1237 /* Do not allow flags if no type is given. */ 1238 if (info->range.flags) { 1239 OVS_NLERR(log, 1240 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n" 1241 ); 1242 return -EINVAL; 1243 } 1244 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1245 } else if (!info->commit) { 1246 OVS_NLERR(log, 1247 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n" 1248 ); 1249 return -EINVAL; 1250 } 1251 /* Allow missing IP_MAX. */ 1252 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1253 memcpy(&info->range.max_addr, &info->range.min_addr, 1254 sizeof(info->range.max_addr)); 1255 } 1256 /* Allow missing PROTO_MAX. */ 1257 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1258 !have_proto_max) { 1259 info->range.max_proto.all = info->range.min_proto.all; 1260 } 1261 return 0; 1262 } 1263 #endif 1264 1265 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1266 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1267 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1268 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1269 .maxlen = sizeof(u16) }, 1270 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1271 .maxlen = sizeof(struct md_mark) }, 1272 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1273 .maxlen = sizeof(struct md_labels) }, 1274 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1275 .maxlen = NF_CT_HELPER_NAME_LEN }, 1276 #ifdef CONFIG_NF_NAT_NEEDED 1277 /* NAT length is checked when parsing the nested attributes. */ 1278 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1279 #endif 1280 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32), 1281 .maxlen = sizeof(u32) }, 1282 }; 1283 1284 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1285 const char **helper, bool log) 1286 { 1287 struct nlattr *a; 1288 int rem; 1289 1290 nla_for_each_nested(a, attr, rem) { 1291 int type = nla_type(a); 1292 int maxlen = ovs_ct_attr_lens[type].maxlen; 1293 int minlen = ovs_ct_attr_lens[type].minlen; 1294 1295 if (type > OVS_CT_ATTR_MAX) { 1296 OVS_NLERR(log, 1297 "Unknown conntrack attr (type=%d, max=%d)", 1298 type, OVS_CT_ATTR_MAX); 1299 return -EINVAL; 1300 } 1301 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1302 OVS_NLERR(log, 1303 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1304 type, nla_len(a), maxlen); 1305 return -EINVAL; 1306 } 1307 1308 switch (type) { 1309 case OVS_CT_ATTR_FORCE_COMMIT: 1310 info->force = true; 1311 /* fall through. */ 1312 case OVS_CT_ATTR_COMMIT: 1313 info->commit = true; 1314 break; 1315 #ifdef CONFIG_NF_CONNTRACK_ZONES 1316 case OVS_CT_ATTR_ZONE: 1317 info->zone.id = nla_get_u16(a); 1318 break; 1319 #endif 1320 #ifdef CONFIG_NF_CONNTRACK_MARK 1321 case OVS_CT_ATTR_MARK: { 1322 struct md_mark *mark = nla_data(a); 1323 1324 if (!mark->mask) { 1325 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1326 return -EINVAL; 1327 } 1328 info->mark = *mark; 1329 break; 1330 } 1331 #endif 1332 #ifdef CONFIG_NF_CONNTRACK_LABELS 1333 case OVS_CT_ATTR_LABELS: { 1334 struct md_labels *labels = nla_data(a); 1335 1336 if (!labels_nonzero(&labels->mask)) { 1337 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1338 return -EINVAL; 1339 } 1340 info->labels = *labels; 1341 break; 1342 } 1343 #endif 1344 case OVS_CT_ATTR_HELPER: 1345 *helper = nla_data(a); 1346 if (!memchr(*helper, '\0', nla_len(a))) { 1347 OVS_NLERR(log, "Invalid conntrack helper"); 1348 return -EINVAL; 1349 } 1350 break; 1351 #ifdef CONFIG_NF_NAT_NEEDED 1352 case OVS_CT_ATTR_NAT: { 1353 int err = parse_nat(a, info, log); 1354 1355 if (err) 1356 return err; 1357 break; 1358 } 1359 #endif 1360 case OVS_CT_ATTR_EVENTMASK: 1361 info->have_eventmask = true; 1362 info->eventmask = nla_get_u32(a); 1363 break; 1364 1365 default: 1366 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1367 type); 1368 return -EINVAL; 1369 } 1370 } 1371 1372 #ifdef CONFIG_NF_CONNTRACK_MARK 1373 if (!info->commit && info->mark.mask) { 1374 OVS_NLERR(log, 1375 "Setting conntrack mark requires 'commit' flag."); 1376 return -EINVAL; 1377 } 1378 #endif 1379 #ifdef CONFIG_NF_CONNTRACK_LABELS 1380 if (!info->commit && labels_nonzero(&info->labels.mask)) { 1381 OVS_NLERR(log, 1382 "Setting conntrack labels requires 'commit' flag."); 1383 return -EINVAL; 1384 } 1385 #endif 1386 if (rem > 0) { 1387 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1388 return -EINVAL; 1389 } 1390 1391 return 0; 1392 } 1393 1394 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1395 { 1396 if (attr == OVS_KEY_ATTR_CT_STATE) 1397 return true; 1398 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1399 attr == OVS_KEY_ATTR_CT_ZONE) 1400 return true; 1401 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1402 attr == OVS_KEY_ATTR_CT_MARK) 1403 return true; 1404 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1405 attr == OVS_KEY_ATTR_CT_LABELS) { 1406 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1407 1408 return ovs_net->xt_label; 1409 } 1410 1411 return false; 1412 } 1413 1414 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1415 const struct sw_flow_key *key, 1416 struct sw_flow_actions **sfa, bool log) 1417 { 1418 struct ovs_conntrack_info ct_info; 1419 const char *helper = NULL; 1420 u16 family; 1421 int err; 1422 1423 family = key_to_nfproto(key); 1424 if (family == NFPROTO_UNSPEC) { 1425 OVS_NLERR(log, "ct family unspecified"); 1426 return -EINVAL; 1427 } 1428 1429 memset(&ct_info, 0, sizeof(ct_info)); 1430 ct_info.family = family; 1431 1432 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1433 NF_CT_DEFAULT_ZONE_DIR, 0); 1434 1435 err = parse_ct(attr, &ct_info, &helper, log); 1436 if (err) 1437 return err; 1438 1439 /* Set up template for tracking connections in specific zones. */ 1440 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1441 if (!ct_info.ct) { 1442 OVS_NLERR(log, "Failed to allocate conntrack template"); 1443 return -ENOMEM; 1444 } 1445 1446 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1447 nf_conntrack_get(&ct_info.ct->ct_general); 1448 1449 if (helper) { 1450 err = ovs_ct_add_helper(&ct_info, helper, key, log); 1451 if (err) 1452 goto err_free_ct; 1453 } 1454 1455 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1456 sizeof(ct_info), log); 1457 if (err) 1458 goto err_free_ct; 1459 1460 return 0; 1461 err_free_ct: 1462 __ovs_ct_free_action(&ct_info); 1463 return err; 1464 } 1465 1466 #ifdef CONFIG_NF_NAT_NEEDED 1467 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1468 struct sk_buff *skb) 1469 { 1470 struct nlattr *start; 1471 1472 start = nla_nest_start(skb, OVS_CT_ATTR_NAT); 1473 if (!start) 1474 return false; 1475 1476 if (info->nat & OVS_CT_SRC_NAT) { 1477 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1478 return false; 1479 } else if (info->nat & OVS_CT_DST_NAT) { 1480 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1481 return false; 1482 } else { 1483 goto out; 1484 } 1485 1486 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1487 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 1488 info->family == NFPROTO_IPV4) { 1489 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1490 info->range.min_addr.ip) || 1491 (info->range.max_addr.ip 1492 != info->range.min_addr.ip && 1493 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1494 info->range.max_addr.ip)))) 1495 return false; 1496 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 1497 info->family == NFPROTO_IPV6) { 1498 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1499 &info->range.min_addr.in6) || 1500 (memcmp(&info->range.max_addr.in6, 1501 &info->range.min_addr.in6, 1502 sizeof(info->range.max_addr.in6)) && 1503 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1504 &info->range.max_addr.in6)))) 1505 return false; 1506 } else { 1507 return false; 1508 } 1509 } 1510 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1511 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1512 ntohs(info->range.min_proto.all)) || 1513 (info->range.max_proto.all != info->range.min_proto.all && 1514 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1515 ntohs(info->range.max_proto.all))))) 1516 return false; 1517 1518 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1519 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1520 return false; 1521 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1522 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1523 return false; 1524 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1525 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1526 return false; 1527 out: 1528 nla_nest_end(skb, start); 1529 1530 return true; 1531 } 1532 #endif 1533 1534 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1535 struct sk_buff *skb) 1536 { 1537 struct nlattr *start; 1538 1539 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT); 1540 if (!start) 1541 return -EMSGSIZE; 1542 1543 if (ct_info->commit && nla_put_flag(skb, ct_info->force 1544 ? OVS_CT_ATTR_FORCE_COMMIT 1545 : OVS_CT_ATTR_COMMIT)) 1546 return -EMSGSIZE; 1547 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1548 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1549 return -EMSGSIZE; 1550 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1551 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1552 &ct_info->mark)) 1553 return -EMSGSIZE; 1554 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1555 labels_nonzero(&ct_info->labels.mask) && 1556 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1557 &ct_info->labels)) 1558 return -EMSGSIZE; 1559 if (ct_info->helper) { 1560 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1561 ct_info->helper->name)) 1562 return -EMSGSIZE; 1563 } 1564 if (ct_info->have_eventmask && 1565 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask)) 1566 return -EMSGSIZE; 1567 1568 #ifdef CONFIG_NF_NAT_NEEDED 1569 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1570 return -EMSGSIZE; 1571 #endif 1572 nla_nest_end(skb, start); 1573 1574 return 0; 1575 } 1576 1577 void ovs_ct_free_action(const struct nlattr *a) 1578 { 1579 struct ovs_conntrack_info *ct_info = nla_data(a); 1580 1581 __ovs_ct_free_action(ct_info); 1582 } 1583 1584 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1585 { 1586 if (ct_info->helper) 1587 nf_conntrack_helper_put(ct_info->helper); 1588 if (ct_info->ct) 1589 nf_ct_tmpl_free(ct_info->ct); 1590 } 1591 1592 void ovs_ct_init(struct net *net) 1593 { 1594 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 1595 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1596 1597 if (nf_connlabels_get(net, n_bits - 1)) { 1598 ovs_net->xt_label = false; 1599 OVS_NLERR(true, "Failed to set connlabel length"); 1600 } else { 1601 ovs_net->xt_label = true; 1602 } 1603 } 1604 1605 void ovs_ct_exit(struct net *net) 1606 { 1607 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1608 1609 if (ovs_net->xt_label) 1610 nf_connlabels_put(net); 1611 } 1612