1 /* 2 * Copyright (c) 2015 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/openvswitch.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/sctp.h> 19 #include <linux/static_key.h> 20 #include <net/ip.h> 21 #include <net/genetlink.h> 22 #include <net/netfilter/nf_conntrack_core.h> 23 #include <net/netfilter/nf_conntrack_count.h> 24 #include <net/netfilter/nf_conntrack_helper.h> 25 #include <net/netfilter/nf_conntrack_labels.h> 26 #include <net/netfilter/nf_conntrack_seqadj.h> 27 #include <net/netfilter/nf_conntrack_zones.h> 28 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 29 #include <net/ipv6_frag.h> 30 31 #ifdef CONFIG_NF_NAT_NEEDED 32 #include <linux/netfilter/nf_nat.h> 33 #include <net/netfilter/nf_nat_core.h> 34 #include <net/netfilter/nf_nat_l3proto.h> 35 #endif 36 37 #include "datapath.h" 38 #include "conntrack.h" 39 #include "flow.h" 40 #include "flow_netlink.h" 41 42 struct ovs_ct_len_tbl { 43 int maxlen; 44 int minlen; 45 }; 46 47 /* Metadata mark for masked write to conntrack mark */ 48 struct md_mark { 49 u32 value; 50 u32 mask; 51 }; 52 53 /* Metadata label for masked write to conntrack label. */ 54 struct md_labels { 55 struct ovs_key_ct_labels value; 56 struct ovs_key_ct_labels mask; 57 }; 58 59 enum ovs_ct_nat { 60 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 61 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 62 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 63 }; 64 65 /* Conntrack action context for execution. */ 66 struct ovs_conntrack_info { 67 struct nf_conntrack_helper *helper; 68 struct nf_conntrack_zone zone; 69 struct nf_conn *ct; 70 u8 commit : 1; 71 u8 nat : 3; /* enum ovs_ct_nat */ 72 u8 force : 1; 73 u8 have_eventmask : 1; 74 u16 family; 75 u32 eventmask; /* Mask of 1 << IPCT_*. */ 76 struct md_mark mark; 77 struct md_labels labels; 78 #ifdef CONFIG_NF_NAT_NEEDED 79 struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */ 80 #endif 81 }; 82 83 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 84 #define OVS_CT_LIMIT_UNLIMITED 0 85 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED 86 #define CT_LIMIT_HASH_BUCKETS 512 87 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled); 88 89 struct ovs_ct_limit { 90 /* Elements in ovs_ct_limit_info->limits hash table */ 91 struct hlist_node hlist_node; 92 struct rcu_head rcu; 93 u16 zone; 94 u32 limit; 95 }; 96 97 struct ovs_ct_limit_info { 98 u32 default_limit; 99 struct hlist_head *limits; 100 struct nf_conncount_data *data; 101 }; 102 103 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = { 104 [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, }, 105 }; 106 #endif 107 108 static bool labels_nonzero(const struct ovs_key_ct_labels *labels); 109 110 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 111 112 static u16 key_to_nfproto(const struct sw_flow_key *key) 113 { 114 switch (ntohs(key->eth.type)) { 115 case ETH_P_IP: 116 return NFPROTO_IPV4; 117 case ETH_P_IPV6: 118 return NFPROTO_IPV6; 119 default: 120 return NFPROTO_UNSPEC; 121 } 122 } 123 124 /* Map SKB connection state into the values used by flow definition. */ 125 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 126 { 127 u8 ct_state = OVS_CS_F_TRACKED; 128 129 switch (ctinfo) { 130 case IP_CT_ESTABLISHED_REPLY: 131 case IP_CT_RELATED_REPLY: 132 ct_state |= OVS_CS_F_REPLY_DIR; 133 break; 134 default: 135 break; 136 } 137 138 switch (ctinfo) { 139 case IP_CT_ESTABLISHED: 140 case IP_CT_ESTABLISHED_REPLY: 141 ct_state |= OVS_CS_F_ESTABLISHED; 142 break; 143 case IP_CT_RELATED: 144 case IP_CT_RELATED_REPLY: 145 ct_state |= OVS_CS_F_RELATED; 146 break; 147 case IP_CT_NEW: 148 ct_state |= OVS_CS_F_NEW; 149 break; 150 default: 151 break; 152 } 153 154 return ct_state; 155 } 156 157 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 158 { 159 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 160 return ct ? ct->mark : 0; 161 #else 162 return 0; 163 #endif 164 } 165 166 /* Guard against conntrack labels max size shrinking below 128 bits. */ 167 #if NF_CT_LABELS_MAX_SIZE < 16 168 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes 169 #endif 170 171 static void ovs_ct_get_labels(const struct nf_conn *ct, 172 struct ovs_key_ct_labels *labels) 173 { 174 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; 175 176 if (cl) 177 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN); 178 else 179 memset(labels, 0, OVS_CT_LABELS_LEN); 180 } 181 182 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key, 183 const struct nf_conntrack_tuple *orig, 184 u8 icmp_proto) 185 { 186 key->ct_orig_proto = orig->dst.protonum; 187 if (orig->dst.protonum == icmp_proto) { 188 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type); 189 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code); 190 } else { 191 key->ct.orig_tp.src = orig->src.u.all; 192 key->ct.orig_tp.dst = orig->dst.u.all; 193 } 194 } 195 196 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 197 const struct nf_conntrack_zone *zone, 198 const struct nf_conn *ct) 199 { 200 key->ct_state = state; 201 key->ct_zone = zone->id; 202 key->ct.mark = ovs_ct_get_mark(ct); 203 ovs_ct_get_labels(ct, &key->ct.labels); 204 205 if (ct) { 206 const struct nf_conntrack_tuple *orig; 207 208 /* Use the master if we have one. */ 209 if (ct->master) 210 ct = ct->master; 211 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; 212 213 /* IP version must match with the master connection. */ 214 if (key->eth.type == htons(ETH_P_IP) && 215 nf_ct_l3num(ct) == NFPROTO_IPV4) { 216 key->ipv4.ct_orig.src = orig->src.u3.ip; 217 key->ipv4.ct_orig.dst = orig->dst.u3.ip; 218 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP); 219 return; 220 } else if (key->eth.type == htons(ETH_P_IPV6) && 221 !sw_flow_key_is_nd(key) && 222 nf_ct_l3num(ct) == NFPROTO_IPV6) { 223 key->ipv6.ct_orig.src = orig->src.u3.in6; 224 key->ipv6.ct_orig.dst = orig->dst.u3.in6; 225 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP); 226 return; 227 } 228 } 229 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack 230 * original direction key fields. 231 */ 232 key->ct_orig_proto = 0; 233 } 234 235 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has 236 * previously sent the packet to conntrack via the ct action. If 237 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 238 * initialized from the connection status. 239 */ 240 static void ovs_ct_update_key(const struct sk_buff *skb, 241 const struct ovs_conntrack_info *info, 242 struct sw_flow_key *key, bool post_ct, 243 bool keep_nat_flags) 244 { 245 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 246 enum ip_conntrack_info ctinfo; 247 struct nf_conn *ct; 248 u8 state = 0; 249 250 ct = nf_ct_get(skb, &ctinfo); 251 if (ct) { 252 state = ovs_ct_get_state(ctinfo); 253 /* All unconfirmed entries are NEW connections. */ 254 if (!nf_ct_is_confirmed(ct)) 255 state |= OVS_CS_F_NEW; 256 /* OVS persists the related flag for the duration of the 257 * connection. 258 */ 259 if (ct->master) 260 state |= OVS_CS_F_RELATED; 261 if (keep_nat_flags) { 262 state |= key->ct_state & OVS_CS_F_NAT_MASK; 263 } else { 264 if (ct->status & IPS_SRC_NAT) 265 state |= OVS_CS_F_SRC_NAT; 266 if (ct->status & IPS_DST_NAT) 267 state |= OVS_CS_F_DST_NAT; 268 } 269 zone = nf_ct_zone(ct); 270 } else if (post_ct) { 271 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 272 if (info) 273 zone = &info->zone; 274 } 275 __ovs_ct_update_key(key, state, zone, ct); 276 } 277 278 /* This is called to initialize CT key fields possibly coming in from the local 279 * stack. 280 */ 281 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) 282 { 283 ovs_ct_update_key(skb, NULL, key, false, false); 284 } 285 286 #define IN6_ADDR_INITIALIZER(ADDR) \ 287 { (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \ 288 (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] } 289 290 int ovs_ct_put_key(const struct sw_flow_key *swkey, 291 const struct sw_flow_key *output, struct sk_buff *skb) 292 { 293 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state)) 294 return -EMSGSIZE; 295 296 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 297 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone)) 298 return -EMSGSIZE; 299 300 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 301 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark)) 302 return -EMSGSIZE; 303 304 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 305 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels), 306 &output->ct.labels)) 307 return -EMSGSIZE; 308 309 if (swkey->ct_orig_proto) { 310 if (swkey->eth.type == htons(ETH_P_IP)) { 311 struct ovs_key_ct_tuple_ipv4 orig = { 312 output->ipv4.ct_orig.src, 313 output->ipv4.ct_orig.dst, 314 output->ct.orig_tp.src, 315 output->ct.orig_tp.dst, 316 output->ct_orig_proto, 317 }; 318 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4, 319 sizeof(orig), &orig)) 320 return -EMSGSIZE; 321 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 322 struct ovs_key_ct_tuple_ipv6 orig = { 323 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src), 324 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst), 325 output->ct.orig_tp.src, 326 output->ct.orig_tp.dst, 327 output->ct_orig_proto, 328 }; 329 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6, 330 sizeof(orig), &orig)) 331 return -EMSGSIZE; 332 } 333 } 334 335 return 0; 336 } 337 338 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key, 339 u32 ct_mark, u32 mask) 340 { 341 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 342 u32 new_mark; 343 344 new_mark = ct_mark | (ct->mark & ~(mask)); 345 if (ct->mark != new_mark) { 346 ct->mark = new_mark; 347 if (nf_ct_is_confirmed(ct)) 348 nf_conntrack_event_cache(IPCT_MARK, ct); 349 key->ct.mark = new_mark; 350 } 351 352 return 0; 353 #else 354 return -ENOTSUPP; 355 #endif 356 } 357 358 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct) 359 { 360 struct nf_conn_labels *cl; 361 362 cl = nf_ct_labels_find(ct); 363 if (!cl) { 364 nf_ct_labels_ext_add(ct); 365 cl = nf_ct_labels_find(ct); 366 } 367 368 return cl; 369 } 370 371 /* Initialize labels for a new, yet to be committed conntrack entry. Note that 372 * since the new connection is not yet confirmed, and thus no-one else has 373 * access to it's labels, we simply write them over. 374 */ 375 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key, 376 const struct ovs_key_ct_labels *labels, 377 const struct ovs_key_ct_labels *mask) 378 { 379 struct nf_conn_labels *cl, *master_cl; 380 bool have_mask = labels_nonzero(mask); 381 382 /* Inherit master's labels to the related connection? */ 383 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL; 384 385 if (!master_cl && !have_mask) 386 return 0; /* Nothing to do. */ 387 388 cl = ovs_ct_get_conn_labels(ct); 389 if (!cl) 390 return -ENOSPC; 391 392 /* Inherit the master's labels, if any. */ 393 if (master_cl) 394 *cl = *master_cl; 395 396 if (have_mask) { 397 u32 *dst = (u32 *)cl->bits; 398 int i; 399 400 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 401 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) | 402 (labels->ct_labels_32[i] 403 & mask->ct_labels_32[i]); 404 } 405 406 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the 407 * IPCT_LABEL bit is set in the event cache. 408 */ 409 nf_conntrack_event_cache(IPCT_LABEL, ct); 410 411 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 412 413 return 0; 414 } 415 416 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key, 417 const struct ovs_key_ct_labels *labels, 418 const struct ovs_key_ct_labels *mask) 419 { 420 struct nf_conn_labels *cl; 421 int err; 422 423 cl = ovs_ct_get_conn_labels(ct); 424 if (!cl) 425 return -ENOSPC; 426 427 err = nf_connlabels_replace(ct, labels->ct_labels_32, 428 mask->ct_labels_32, 429 OVS_CT_LABELS_LEN_32); 430 if (err) 431 return err; 432 433 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 434 435 return 0; 436 } 437 438 /* 'skb' should already be pulled to nh_ofs. */ 439 static int ovs_ct_helper(struct sk_buff *skb, u16 proto) 440 { 441 const struct nf_conntrack_helper *helper; 442 const struct nf_conn_help *help; 443 enum ip_conntrack_info ctinfo; 444 unsigned int protoff; 445 struct nf_conn *ct; 446 int err; 447 448 ct = nf_ct_get(skb, &ctinfo); 449 if (!ct || ctinfo == IP_CT_RELATED_REPLY) 450 return NF_ACCEPT; 451 452 help = nfct_help(ct); 453 if (!help) 454 return NF_ACCEPT; 455 456 helper = rcu_dereference(help->helper); 457 if (!helper) 458 return NF_ACCEPT; 459 460 switch (proto) { 461 case NFPROTO_IPV4: 462 protoff = ip_hdrlen(skb); 463 break; 464 case NFPROTO_IPV6: { 465 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 466 __be16 frag_off; 467 int ofs; 468 469 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, 470 &frag_off); 471 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) { 472 pr_debug("proto header not found\n"); 473 return NF_ACCEPT; 474 } 475 protoff = ofs; 476 break; 477 } 478 default: 479 WARN_ONCE(1, "helper invoked on non-IP family!"); 480 return NF_DROP; 481 } 482 483 err = helper->help(skb, protoff, ct, ctinfo); 484 if (err != NF_ACCEPT) 485 return err; 486 487 /* Adjust seqs after helper. This is needed due to some helpers (e.g., 488 * FTP with NAT) adusting the TCP payload size when mangling IP 489 * addresses and/or port numbers in the text-based control connection. 490 */ 491 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && 492 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) 493 return NF_DROP; 494 return NF_ACCEPT; 495 } 496 497 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 498 * value if 'skb' is freed. 499 */ 500 static int handle_fragments(struct net *net, struct sw_flow_key *key, 501 u16 zone, struct sk_buff *skb) 502 { 503 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 504 int err; 505 506 if (key->eth.type == htons(ETH_P_IP)) { 507 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 508 509 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 510 err = ip_defrag(net, skb, user); 511 if (err) 512 return err; 513 514 ovs_cb.mru = IPCB(skb)->frag_max_size; 515 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 516 } else if (key->eth.type == htons(ETH_P_IPV6)) { 517 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 518 519 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 520 err = nf_ct_frag6_gather(net, skb, user); 521 if (err) { 522 if (err != -EINPROGRESS) 523 kfree_skb(skb); 524 return err; 525 } 526 527 key->ip.proto = ipv6_hdr(skb)->nexthdr; 528 ovs_cb.mru = IP6CB(skb)->frag_max_size; 529 #endif 530 } else { 531 kfree_skb(skb); 532 return -EPFNOSUPPORT; 533 } 534 535 key->ip.frag = OVS_FRAG_TYPE_NONE; 536 skb_clear_hash(skb); 537 skb->ignore_df = 1; 538 *OVS_CB(skb) = ovs_cb; 539 540 return 0; 541 } 542 543 static struct nf_conntrack_expect * 544 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, 545 u16 proto, const struct sk_buff *skb) 546 { 547 struct nf_conntrack_tuple tuple; 548 struct nf_conntrack_expect *exp; 549 550 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) 551 return NULL; 552 553 exp = __nf_ct_expect_find(net, zone, &tuple); 554 if (exp) { 555 struct nf_conntrack_tuple_hash *h; 556 557 /* Delete existing conntrack entry, if it clashes with the 558 * expectation. This can happen since conntrack ALGs do not 559 * check for clashes between (new) expectations and existing 560 * conntrack entries. nf_conntrack_in() will check the 561 * expectations only if a conntrack entry can not be found, 562 * which can lead to OVS finding the expectation (here) in the 563 * init direction, but which will not be removed by the 564 * nf_conntrack_in() call, if a matching conntrack entry is 565 * found instead. In this case all init direction packets 566 * would be reported as new related packets, while reply 567 * direction packets would be reported as un-related 568 * established packets. 569 */ 570 h = nf_conntrack_find_get(net, zone, &tuple); 571 if (h) { 572 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 573 574 nf_ct_delete(ct, 0, 0); 575 nf_conntrack_put(&ct->ct_general); 576 } 577 } 578 579 return exp; 580 } 581 582 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 583 static enum ip_conntrack_info 584 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 585 { 586 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 587 588 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 589 return IP_CT_ESTABLISHED_REPLY; 590 /* Once we've had two way comms, always ESTABLISHED. */ 591 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 592 return IP_CT_ESTABLISHED; 593 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 594 return IP_CT_RELATED; 595 return IP_CT_NEW; 596 } 597 598 /* Find an existing connection which this packet belongs to without 599 * re-attributing statistics or modifying the connection state. This allows an 600 * skb->_nfct lost due to an upcall to be recovered during actions execution. 601 * 602 * Must be called with rcu_read_lock. 603 * 604 * On success, populates skb->_nfct and returns the connection. Returns NULL 605 * if there is no existing entry. 606 */ 607 static struct nf_conn * 608 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 609 u8 l3num, struct sk_buff *skb, bool natted) 610 { 611 struct nf_conntrack_tuple tuple; 612 struct nf_conntrack_tuple_hash *h; 613 struct nf_conn *ct; 614 615 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num, 616 net, &tuple)) { 617 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 618 return NULL; 619 } 620 621 /* Must invert the tuple if skb has been transformed by NAT. */ 622 if (natted) { 623 struct nf_conntrack_tuple inverse; 624 625 if (!nf_ct_invert_tuplepr(&inverse, &tuple)) { 626 pr_debug("ovs_ct_find_existing: Inversion failed!\n"); 627 return NULL; 628 } 629 tuple = inverse; 630 } 631 632 /* look for tuple match */ 633 h = nf_conntrack_find_get(net, zone, &tuple); 634 if (!h) 635 return NULL; /* Not found. */ 636 637 ct = nf_ct_tuplehash_to_ctrack(h); 638 639 /* Inverted packet tuple matches the reverse direction conntrack tuple, 640 * select the other tuplehash to get the right 'ctinfo' bits for this 641 * packet. 642 */ 643 if (natted) 644 h = &ct->tuplehash[!h->tuple.dst.dir]; 645 646 nf_ct_set(skb, ct, ovs_ct_get_info(h)); 647 return ct; 648 } 649 650 static 651 struct nf_conn *ovs_ct_executed(struct net *net, 652 const struct sw_flow_key *key, 653 const struct ovs_conntrack_info *info, 654 struct sk_buff *skb, 655 bool *ct_executed) 656 { 657 struct nf_conn *ct = NULL; 658 659 /* If no ct, check if we have evidence that an existing conntrack entry 660 * might be found for this skb. This happens when we lose a skb->_nfct 661 * due to an upcall, or if the direction is being forced. If the 662 * connection was not confirmed, it is not cached and needs to be run 663 * through conntrack again. 664 */ 665 *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) && 666 !(key->ct_state & OVS_CS_F_INVALID) && 667 (key->ct_zone == info->zone.id); 668 669 if (*ct_executed || (!key->ct_state && info->force)) { 670 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb, 671 !!(key->ct_state & 672 OVS_CS_F_NAT_MASK)); 673 } 674 675 return ct; 676 } 677 678 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 679 static bool skb_nfct_cached(struct net *net, 680 const struct sw_flow_key *key, 681 const struct ovs_conntrack_info *info, 682 struct sk_buff *skb) 683 { 684 enum ip_conntrack_info ctinfo; 685 struct nf_conn *ct; 686 bool ct_executed = true; 687 688 ct = nf_ct_get(skb, &ctinfo); 689 if (!ct) 690 ct = ovs_ct_executed(net, key, info, skb, &ct_executed); 691 692 if (ct) 693 nf_ct_get(skb, &ctinfo); 694 else 695 return false; 696 697 if (!net_eq(net, read_pnet(&ct->ct_net))) 698 return false; 699 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 700 return false; 701 if (info->helper) { 702 struct nf_conn_help *help; 703 704 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 705 if (help && rcu_access_pointer(help->helper) != info->helper) 706 return false; 707 } 708 /* Force conntrack entry direction to the current packet? */ 709 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 710 /* Delete the conntrack entry if confirmed, else just release 711 * the reference. 712 */ 713 if (nf_ct_is_confirmed(ct)) 714 nf_ct_delete(ct, 0, 0); 715 716 nf_conntrack_put(&ct->ct_general); 717 nf_ct_set(skb, NULL, 0); 718 return false; 719 } 720 721 return ct_executed; 722 } 723 724 #ifdef CONFIG_NF_NAT_NEEDED 725 /* Modelled after nf_nat_ipv[46]_fn(). 726 * range is only used for new, uninitialized NAT state. 727 * Returns either NF_ACCEPT or NF_DROP. 728 */ 729 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 730 enum ip_conntrack_info ctinfo, 731 const struct nf_nat_range2 *range, 732 enum nf_nat_manip_type maniptype) 733 { 734 int hooknum, nh_off, err = NF_ACCEPT; 735 736 nh_off = skb_network_offset(skb); 737 skb_pull_rcsum(skb, nh_off); 738 739 /* See HOOK2MANIP(). */ 740 if (maniptype == NF_NAT_MANIP_SRC) 741 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 742 else 743 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 744 745 switch (ctinfo) { 746 case IP_CT_RELATED: 747 case IP_CT_RELATED_REPLY: 748 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 749 skb->protocol == htons(ETH_P_IP) && 750 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 751 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 752 hooknum)) 753 err = NF_DROP; 754 goto push; 755 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 756 skb->protocol == htons(ETH_P_IPV6)) { 757 __be16 frag_off; 758 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 759 int hdrlen = ipv6_skip_exthdr(skb, 760 sizeof(struct ipv6hdr), 761 &nexthdr, &frag_off); 762 763 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 764 if (!nf_nat_icmpv6_reply_translation(skb, ct, 765 ctinfo, 766 hooknum, 767 hdrlen)) 768 err = NF_DROP; 769 goto push; 770 } 771 } 772 /* Non-ICMP, fall thru to initialize if needed. */ 773 /* fall through */ 774 case IP_CT_NEW: 775 /* Seen it before? This can happen for loopback, retrans, 776 * or local packets. 777 */ 778 if (!nf_nat_initialized(ct, maniptype)) { 779 /* Initialize according to the NAT action. */ 780 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 781 /* Action is set up to establish a new 782 * mapping. 783 */ 784 ? nf_nat_setup_info(ct, range, maniptype) 785 : nf_nat_alloc_null_binding(ct, hooknum); 786 if (err != NF_ACCEPT) 787 goto push; 788 } 789 break; 790 791 case IP_CT_ESTABLISHED: 792 case IP_CT_ESTABLISHED_REPLY: 793 break; 794 795 default: 796 err = NF_DROP; 797 goto push; 798 } 799 800 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 801 push: 802 skb_push(skb, nh_off); 803 skb_postpush_rcsum(skb, skb->data, nh_off); 804 805 return err; 806 } 807 808 static void ovs_nat_update_key(struct sw_flow_key *key, 809 const struct sk_buff *skb, 810 enum nf_nat_manip_type maniptype) 811 { 812 if (maniptype == NF_NAT_MANIP_SRC) { 813 __be16 src; 814 815 key->ct_state |= OVS_CS_F_SRC_NAT; 816 if (key->eth.type == htons(ETH_P_IP)) 817 key->ipv4.addr.src = ip_hdr(skb)->saddr; 818 else if (key->eth.type == htons(ETH_P_IPV6)) 819 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 820 sizeof(key->ipv6.addr.src)); 821 else 822 return; 823 824 if (key->ip.proto == IPPROTO_UDP) 825 src = udp_hdr(skb)->source; 826 else if (key->ip.proto == IPPROTO_TCP) 827 src = tcp_hdr(skb)->source; 828 else if (key->ip.proto == IPPROTO_SCTP) 829 src = sctp_hdr(skb)->source; 830 else 831 return; 832 833 key->tp.src = src; 834 } else { 835 __be16 dst; 836 837 key->ct_state |= OVS_CS_F_DST_NAT; 838 if (key->eth.type == htons(ETH_P_IP)) 839 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 840 else if (key->eth.type == htons(ETH_P_IPV6)) 841 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 842 sizeof(key->ipv6.addr.dst)); 843 else 844 return; 845 846 if (key->ip.proto == IPPROTO_UDP) 847 dst = udp_hdr(skb)->dest; 848 else if (key->ip.proto == IPPROTO_TCP) 849 dst = tcp_hdr(skb)->dest; 850 else if (key->ip.proto == IPPROTO_SCTP) 851 dst = sctp_hdr(skb)->dest; 852 else 853 return; 854 855 key->tp.dst = dst; 856 } 857 } 858 859 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 860 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 861 const struct ovs_conntrack_info *info, 862 struct sk_buff *skb, struct nf_conn *ct, 863 enum ip_conntrack_info ctinfo) 864 { 865 enum nf_nat_manip_type maniptype; 866 int err; 867 868 /* Add NAT extension if not confirmed yet. */ 869 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 870 return NF_ACCEPT; /* Can't NAT. */ 871 872 /* Determine NAT type. 873 * Check if the NAT type can be deduced from the tracked connection. 874 * Make sure new expected connections (IP_CT_RELATED) are NATted only 875 * when committing. 876 */ 877 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW && 878 ct->status & IPS_NAT_MASK && 879 (ctinfo != IP_CT_RELATED || info->commit)) { 880 /* NAT an established or related connection like before. */ 881 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 882 /* This is the REPLY direction for a connection 883 * for which NAT was applied in the forward 884 * direction. Do the reverse NAT. 885 */ 886 maniptype = ct->status & IPS_SRC_NAT 887 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 888 else 889 maniptype = ct->status & IPS_SRC_NAT 890 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 891 } else if (info->nat & OVS_CT_SRC_NAT) { 892 maniptype = NF_NAT_MANIP_SRC; 893 } else if (info->nat & OVS_CT_DST_NAT) { 894 maniptype = NF_NAT_MANIP_DST; 895 } else { 896 return NF_ACCEPT; /* Connection is not NATed. */ 897 } 898 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype); 899 900 /* Mark NAT done if successful and update the flow key. */ 901 if (err == NF_ACCEPT) 902 ovs_nat_update_key(key, skb, maniptype); 903 904 return err; 905 } 906 #else /* !CONFIG_NF_NAT_NEEDED */ 907 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 908 const struct ovs_conntrack_info *info, 909 struct sk_buff *skb, struct nf_conn *ct, 910 enum ip_conntrack_info ctinfo) 911 { 912 return NF_ACCEPT; 913 } 914 #endif 915 916 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 917 * not done already. Update key with new CT state after passing the packet 918 * through conntrack. 919 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be 920 * set to NULL and 0 will be returned. 921 */ 922 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 923 const struct ovs_conntrack_info *info, 924 struct sk_buff *skb) 925 { 926 /* If we are recirculating packets to match on conntrack fields and 927 * committing with a separate conntrack action, then we don't need to 928 * actually run the packet through conntrack twice unless it's for a 929 * different zone. 930 */ 931 bool cached = skb_nfct_cached(net, key, info, skb); 932 enum ip_conntrack_info ctinfo; 933 struct nf_conn *ct; 934 935 if (!cached) { 936 struct nf_hook_state state = { 937 .hook = NF_INET_PRE_ROUTING, 938 .pf = info->family, 939 .net = net, 940 }; 941 struct nf_conn *tmpl = info->ct; 942 int err; 943 944 /* Associate skb with specified zone. */ 945 if (tmpl) { 946 if (skb_nfct(skb)) 947 nf_conntrack_put(skb_nfct(skb)); 948 nf_conntrack_get(&tmpl->ct_general); 949 nf_ct_set(skb, tmpl, IP_CT_NEW); 950 } 951 952 err = nf_conntrack_in(skb, &state); 953 if (err != NF_ACCEPT) 954 return -ENOENT; 955 956 /* Clear CT state NAT flags to mark that we have not yet done 957 * NAT after the nf_conntrack_in() call. We can actually clear 958 * the whole state, as it will be re-initialized below. 959 */ 960 key->ct_state = 0; 961 962 /* Update the key, but keep the NAT flags. */ 963 ovs_ct_update_key(skb, info, key, true, true); 964 } 965 966 ct = nf_ct_get(skb, &ctinfo); 967 if (ct) { 968 /* Packets starting a new connection must be NATted before the 969 * helper, so that the helper knows about the NAT. We enforce 970 * this by delaying both NAT and helper calls for unconfirmed 971 * connections until the committing CT action. For later 972 * packets NAT and Helper may be called in either order. 973 * 974 * NAT will be done only if the CT action has NAT, and only 975 * once per packet (per zone), as guarded by the NAT bits in 976 * the key->ct_state. 977 */ 978 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) && 979 (nf_ct_is_confirmed(ct) || info->commit) && 980 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 981 return -EINVAL; 982 } 983 984 /* Userspace may decide to perform a ct lookup without a helper 985 * specified followed by a (recirculate and) commit with one. 986 * Therefore, for unconfirmed connections which we will commit, 987 * we need to attach the helper here. 988 */ 989 if (!nf_ct_is_confirmed(ct) && info->commit && 990 info->helper && !nfct_help(ct)) { 991 int err = __nf_ct_try_assign_helper(ct, info->ct, 992 GFP_ATOMIC); 993 if (err) 994 return err; 995 } 996 997 /* Call the helper only if: 998 * - nf_conntrack_in() was executed above ("!cached") for a 999 * confirmed connection, or 1000 * - When committing an unconfirmed connection. 1001 */ 1002 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) && 1003 ovs_ct_helper(skb, info->family) != NF_ACCEPT) { 1004 return -EINVAL; 1005 } 1006 } 1007 1008 return 0; 1009 } 1010 1011 /* Lookup connection and read fields into key. */ 1012 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 1013 const struct ovs_conntrack_info *info, 1014 struct sk_buff *skb) 1015 { 1016 struct nf_conntrack_expect *exp; 1017 1018 /* If we pass an expected packet through nf_conntrack_in() the 1019 * expectation is typically removed, but the packet could still be 1020 * lost in upcall processing. To prevent this from happening we 1021 * perform an explicit expectation lookup. Expected connections are 1022 * always new, and will be passed through conntrack only when they are 1023 * committed, as it is OK to remove the expectation at that time. 1024 */ 1025 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); 1026 if (exp) { 1027 u8 state; 1028 1029 /* NOTE: New connections are NATted and Helped only when 1030 * committed, so we are not calling into NAT here. 1031 */ 1032 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; 1033 __ovs_ct_update_key(key, state, &info->zone, exp->master); 1034 } else { 1035 struct nf_conn *ct; 1036 int err; 1037 1038 err = __ovs_ct_lookup(net, key, info, skb); 1039 if (err) 1040 return err; 1041 1042 ct = (struct nf_conn *)skb_nfct(skb); 1043 if (ct) 1044 nf_ct_deliver_cached_events(ct); 1045 } 1046 1047 return 0; 1048 } 1049 1050 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 1051 { 1052 size_t i; 1053 1054 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 1055 if (labels->ct_labels_32[i]) 1056 return true; 1057 1058 return false; 1059 } 1060 1061 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 1062 static struct hlist_head *ct_limit_hash_bucket( 1063 const struct ovs_ct_limit_info *info, u16 zone) 1064 { 1065 return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)]; 1066 } 1067 1068 /* Call with ovs_mutex */ 1069 static void ct_limit_set(const struct ovs_ct_limit_info *info, 1070 struct ovs_ct_limit *new_ct_limit) 1071 { 1072 struct ovs_ct_limit *ct_limit; 1073 struct hlist_head *head; 1074 1075 head = ct_limit_hash_bucket(info, new_ct_limit->zone); 1076 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 1077 if (ct_limit->zone == new_ct_limit->zone) { 1078 hlist_replace_rcu(&ct_limit->hlist_node, 1079 &new_ct_limit->hlist_node); 1080 kfree_rcu(ct_limit, rcu); 1081 return; 1082 } 1083 } 1084 1085 hlist_add_head_rcu(&new_ct_limit->hlist_node, head); 1086 } 1087 1088 /* Call with ovs_mutex */ 1089 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone) 1090 { 1091 struct ovs_ct_limit *ct_limit; 1092 struct hlist_head *head; 1093 struct hlist_node *n; 1094 1095 head = ct_limit_hash_bucket(info, zone); 1096 hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) { 1097 if (ct_limit->zone == zone) { 1098 hlist_del_rcu(&ct_limit->hlist_node); 1099 kfree_rcu(ct_limit, rcu); 1100 return; 1101 } 1102 } 1103 } 1104 1105 /* Call with RCU read lock */ 1106 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone) 1107 { 1108 struct ovs_ct_limit *ct_limit; 1109 struct hlist_head *head; 1110 1111 head = ct_limit_hash_bucket(info, zone); 1112 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 1113 if (ct_limit->zone == zone) 1114 return ct_limit->limit; 1115 } 1116 1117 return info->default_limit; 1118 } 1119 1120 static int ovs_ct_check_limit(struct net *net, 1121 const struct ovs_conntrack_info *info, 1122 const struct nf_conntrack_tuple *tuple) 1123 { 1124 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1125 const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 1126 u32 per_zone_limit, connections; 1127 u32 conncount_key; 1128 1129 conncount_key = info->zone.id; 1130 1131 per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id); 1132 if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED) 1133 return 0; 1134 1135 connections = nf_conncount_count(net, ct_limit_info->data, 1136 &conncount_key, tuple, &info->zone); 1137 if (connections > per_zone_limit) 1138 return -ENOMEM; 1139 1140 return 0; 1141 } 1142 #endif 1143 1144 /* Lookup connection and confirm if unconfirmed. */ 1145 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 1146 const struct ovs_conntrack_info *info, 1147 struct sk_buff *skb) 1148 { 1149 enum ip_conntrack_info ctinfo; 1150 struct nf_conn *ct; 1151 int err; 1152 1153 err = __ovs_ct_lookup(net, key, info, skb); 1154 if (err) 1155 return err; 1156 1157 /* The connection could be invalid, in which case this is a no-op.*/ 1158 ct = nf_ct_get(skb, &ctinfo); 1159 if (!ct) 1160 return 0; 1161 1162 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 1163 if (static_branch_unlikely(&ovs_ct_limit_enabled)) { 1164 if (!nf_ct_is_confirmed(ct)) { 1165 err = ovs_ct_check_limit(net, info, 1166 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple); 1167 if (err) { 1168 net_warn_ratelimited("openvswitch: zone: %u " 1169 "execeeds conntrack limit\n", 1170 info->zone.id); 1171 return err; 1172 } 1173 } 1174 } 1175 #endif 1176 1177 /* Set the conntrack event mask if given. NEW and DELETE events have 1178 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener 1179 * typically would receive many kinds of updates. Setting the event 1180 * mask allows those events to be filtered. The set event mask will 1181 * remain in effect for the lifetime of the connection unless changed 1182 * by a further CT action with both the commit flag and the eventmask 1183 * option. */ 1184 if (info->have_eventmask) { 1185 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct); 1186 1187 if (cache) 1188 cache->ctmask = info->eventmask; 1189 } 1190 1191 /* Apply changes before confirming the connection so that the initial 1192 * conntrack NEW netlink event carries the values given in the CT 1193 * action. 1194 */ 1195 if (info->mark.mask) { 1196 err = ovs_ct_set_mark(ct, key, info->mark.value, 1197 info->mark.mask); 1198 if (err) 1199 return err; 1200 } 1201 if (!nf_ct_is_confirmed(ct)) { 1202 err = ovs_ct_init_labels(ct, key, &info->labels.value, 1203 &info->labels.mask); 1204 if (err) 1205 return err; 1206 } else if (labels_nonzero(&info->labels.mask)) { 1207 err = ovs_ct_set_labels(ct, key, &info->labels.value, 1208 &info->labels.mask); 1209 if (err) 1210 return err; 1211 } 1212 /* This will take care of sending queued events even if the connection 1213 * is already confirmed. 1214 */ 1215 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 1216 return -EINVAL; 1217 1218 return 0; 1219 } 1220 1221 /* Trim the skb to the length specified by the IP/IPv6 header, 1222 * removing any trailing lower-layer padding. This prepares the skb 1223 * for higher-layer processing that assumes skb->len excludes padding 1224 * (such as nf_ip_checksum). The caller needs to pull the skb to the 1225 * network header, and ensure ip_hdr/ipv6_hdr points to valid data. 1226 */ 1227 static int ovs_skb_network_trim(struct sk_buff *skb) 1228 { 1229 unsigned int len; 1230 int err; 1231 1232 switch (skb->protocol) { 1233 case htons(ETH_P_IP): 1234 len = ntohs(ip_hdr(skb)->tot_len); 1235 break; 1236 case htons(ETH_P_IPV6): 1237 len = sizeof(struct ipv6hdr) 1238 + ntohs(ipv6_hdr(skb)->payload_len); 1239 break; 1240 default: 1241 len = skb->len; 1242 } 1243 1244 err = pskb_trim_rcsum(skb, len); 1245 if (err) 1246 kfree_skb(skb); 1247 1248 return err; 1249 } 1250 1251 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 1252 * value if 'skb' is freed. 1253 */ 1254 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 1255 struct sw_flow_key *key, 1256 const struct ovs_conntrack_info *info) 1257 { 1258 int nh_ofs; 1259 int err; 1260 1261 /* The conntrack module expects to be working at L3. */ 1262 nh_ofs = skb_network_offset(skb); 1263 skb_pull_rcsum(skb, nh_ofs); 1264 1265 err = ovs_skb_network_trim(skb); 1266 if (err) 1267 return err; 1268 1269 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 1270 err = handle_fragments(net, key, info->zone.id, skb); 1271 if (err) 1272 return err; 1273 } 1274 1275 if (info->commit) 1276 err = ovs_ct_commit(net, key, info, skb); 1277 else 1278 err = ovs_ct_lookup(net, key, info, skb); 1279 1280 skb_push(skb, nh_ofs); 1281 skb_postpush_rcsum(skb, skb->data, nh_ofs); 1282 if (err) 1283 kfree_skb(skb); 1284 return err; 1285 } 1286 1287 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key) 1288 { 1289 if (skb_nfct(skb)) { 1290 nf_conntrack_put(skb_nfct(skb)); 1291 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 1292 ovs_ct_fill_key(skb, key); 1293 } 1294 1295 return 0; 1296 } 1297 1298 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, 1299 const struct sw_flow_key *key, bool log) 1300 { 1301 struct nf_conntrack_helper *helper; 1302 struct nf_conn_help *help; 1303 1304 helper = nf_conntrack_helper_try_module_get(name, info->family, 1305 key->ip.proto); 1306 if (!helper) { 1307 OVS_NLERR(log, "Unknown helper \"%s\"", name); 1308 return -EINVAL; 1309 } 1310 1311 help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL); 1312 if (!help) { 1313 nf_conntrack_helper_put(helper); 1314 return -ENOMEM; 1315 } 1316 1317 rcu_assign_pointer(help->helper, helper); 1318 info->helper = helper; 1319 return 0; 1320 } 1321 1322 #ifdef CONFIG_NF_NAT_NEEDED 1323 static int parse_nat(const struct nlattr *attr, 1324 struct ovs_conntrack_info *info, bool log) 1325 { 1326 struct nlattr *a; 1327 int rem; 1328 bool have_ip_max = false; 1329 bool have_proto_max = false; 1330 bool ip_vers = (info->family == NFPROTO_IPV6); 1331 1332 nla_for_each_nested(a, attr, rem) { 1333 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 1334 [OVS_NAT_ATTR_SRC] = {0, 0}, 1335 [OVS_NAT_ATTR_DST] = {0, 0}, 1336 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 1337 sizeof(struct in6_addr)}, 1338 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 1339 sizeof(struct in6_addr)}, 1340 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 1341 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 1342 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 1343 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 1344 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 1345 }; 1346 int type = nla_type(a); 1347 1348 if (type > OVS_NAT_ATTR_MAX) { 1349 OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)", 1350 type, OVS_NAT_ATTR_MAX); 1351 return -EINVAL; 1352 } 1353 1354 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 1355 OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)", 1356 type, nla_len(a), 1357 ovs_nat_attr_lens[type][ip_vers]); 1358 return -EINVAL; 1359 } 1360 1361 switch (type) { 1362 case OVS_NAT_ATTR_SRC: 1363 case OVS_NAT_ATTR_DST: 1364 if (info->nat) { 1365 OVS_NLERR(log, "Only one type of NAT may be specified"); 1366 return -ERANGE; 1367 } 1368 info->nat |= OVS_CT_NAT; 1369 info->nat |= ((type == OVS_NAT_ATTR_SRC) 1370 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 1371 break; 1372 1373 case OVS_NAT_ATTR_IP_MIN: 1374 nla_memcpy(&info->range.min_addr, a, 1375 sizeof(info->range.min_addr)); 1376 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1377 break; 1378 1379 case OVS_NAT_ATTR_IP_MAX: 1380 have_ip_max = true; 1381 nla_memcpy(&info->range.max_addr, a, 1382 sizeof(info->range.max_addr)); 1383 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1384 break; 1385 1386 case OVS_NAT_ATTR_PROTO_MIN: 1387 info->range.min_proto.all = htons(nla_get_u16(a)); 1388 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1389 break; 1390 1391 case OVS_NAT_ATTR_PROTO_MAX: 1392 have_proto_max = true; 1393 info->range.max_proto.all = htons(nla_get_u16(a)); 1394 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1395 break; 1396 1397 case OVS_NAT_ATTR_PERSISTENT: 1398 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 1399 break; 1400 1401 case OVS_NAT_ATTR_PROTO_HASH: 1402 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1403 break; 1404 1405 case OVS_NAT_ATTR_PROTO_RANDOM: 1406 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1407 break; 1408 1409 default: 1410 OVS_NLERR(log, "Unknown nat attribute (%d)", type); 1411 return -EINVAL; 1412 } 1413 } 1414 1415 if (rem > 0) { 1416 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem); 1417 return -EINVAL; 1418 } 1419 if (!info->nat) { 1420 /* Do not allow flags if no type is given. */ 1421 if (info->range.flags) { 1422 OVS_NLERR(log, 1423 "NAT flags may be given only when NAT range (SRC or DST) is also specified." 1424 ); 1425 return -EINVAL; 1426 } 1427 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1428 } else if (!info->commit) { 1429 OVS_NLERR(log, 1430 "NAT attributes may be specified only when CT COMMIT flag is also specified." 1431 ); 1432 return -EINVAL; 1433 } 1434 /* Allow missing IP_MAX. */ 1435 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1436 memcpy(&info->range.max_addr, &info->range.min_addr, 1437 sizeof(info->range.max_addr)); 1438 } 1439 /* Allow missing PROTO_MAX. */ 1440 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1441 !have_proto_max) { 1442 info->range.max_proto.all = info->range.min_proto.all; 1443 } 1444 return 0; 1445 } 1446 #endif 1447 1448 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1449 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1450 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1451 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1452 .maxlen = sizeof(u16) }, 1453 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1454 .maxlen = sizeof(struct md_mark) }, 1455 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1456 .maxlen = sizeof(struct md_labels) }, 1457 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1458 .maxlen = NF_CT_HELPER_NAME_LEN }, 1459 #ifdef CONFIG_NF_NAT_NEEDED 1460 /* NAT length is checked when parsing the nested attributes. */ 1461 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1462 #endif 1463 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32), 1464 .maxlen = sizeof(u32) }, 1465 }; 1466 1467 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1468 const char **helper, bool log) 1469 { 1470 struct nlattr *a; 1471 int rem; 1472 1473 nla_for_each_nested(a, attr, rem) { 1474 int type = nla_type(a); 1475 int maxlen; 1476 int minlen; 1477 1478 if (type > OVS_CT_ATTR_MAX) { 1479 OVS_NLERR(log, 1480 "Unknown conntrack attr (type=%d, max=%d)", 1481 type, OVS_CT_ATTR_MAX); 1482 return -EINVAL; 1483 } 1484 1485 maxlen = ovs_ct_attr_lens[type].maxlen; 1486 minlen = ovs_ct_attr_lens[type].minlen; 1487 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1488 OVS_NLERR(log, 1489 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1490 type, nla_len(a), maxlen); 1491 return -EINVAL; 1492 } 1493 1494 switch (type) { 1495 case OVS_CT_ATTR_FORCE_COMMIT: 1496 info->force = true; 1497 /* fall through. */ 1498 case OVS_CT_ATTR_COMMIT: 1499 info->commit = true; 1500 break; 1501 #ifdef CONFIG_NF_CONNTRACK_ZONES 1502 case OVS_CT_ATTR_ZONE: 1503 info->zone.id = nla_get_u16(a); 1504 break; 1505 #endif 1506 #ifdef CONFIG_NF_CONNTRACK_MARK 1507 case OVS_CT_ATTR_MARK: { 1508 struct md_mark *mark = nla_data(a); 1509 1510 if (!mark->mask) { 1511 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1512 return -EINVAL; 1513 } 1514 info->mark = *mark; 1515 break; 1516 } 1517 #endif 1518 #ifdef CONFIG_NF_CONNTRACK_LABELS 1519 case OVS_CT_ATTR_LABELS: { 1520 struct md_labels *labels = nla_data(a); 1521 1522 if (!labels_nonzero(&labels->mask)) { 1523 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1524 return -EINVAL; 1525 } 1526 info->labels = *labels; 1527 break; 1528 } 1529 #endif 1530 case OVS_CT_ATTR_HELPER: 1531 *helper = nla_data(a); 1532 if (!memchr(*helper, '\0', nla_len(a))) { 1533 OVS_NLERR(log, "Invalid conntrack helper"); 1534 return -EINVAL; 1535 } 1536 break; 1537 #ifdef CONFIG_NF_NAT_NEEDED 1538 case OVS_CT_ATTR_NAT: { 1539 int err = parse_nat(a, info, log); 1540 1541 if (err) 1542 return err; 1543 break; 1544 } 1545 #endif 1546 case OVS_CT_ATTR_EVENTMASK: 1547 info->have_eventmask = true; 1548 info->eventmask = nla_get_u32(a); 1549 break; 1550 1551 default: 1552 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1553 type); 1554 return -EINVAL; 1555 } 1556 } 1557 1558 #ifdef CONFIG_NF_CONNTRACK_MARK 1559 if (!info->commit && info->mark.mask) { 1560 OVS_NLERR(log, 1561 "Setting conntrack mark requires 'commit' flag."); 1562 return -EINVAL; 1563 } 1564 #endif 1565 #ifdef CONFIG_NF_CONNTRACK_LABELS 1566 if (!info->commit && labels_nonzero(&info->labels.mask)) { 1567 OVS_NLERR(log, 1568 "Setting conntrack labels requires 'commit' flag."); 1569 return -EINVAL; 1570 } 1571 #endif 1572 if (rem > 0) { 1573 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1574 return -EINVAL; 1575 } 1576 1577 return 0; 1578 } 1579 1580 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1581 { 1582 if (attr == OVS_KEY_ATTR_CT_STATE) 1583 return true; 1584 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1585 attr == OVS_KEY_ATTR_CT_ZONE) 1586 return true; 1587 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1588 attr == OVS_KEY_ATTR_CT_MARK) 1589 return true; 1590 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1591 attr == OVS_KEY_ATTR_CT_LABELS) { 1592 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1593 1594 return ovs_net->xt_label; 1595 } 1596 1597 return false; 1598 } 1599 1600 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1601 const struct sw_flow_key *key, 1602 struct sw_flow_actions **sfa, bool log) 1603 { 1604 struct ovs_conntrack_info ct_info; 1605 const char *helper = NULL; 1606 u16 family; 1607 int err; 1608 1609 family = key_to_nfproto(key); 1610 if (family == NFPROTO_UNSPEC) { 1611 OVS_NLERR(log, "ct family unspecified"); 1612 return -EINVAL; 1613 } 1614 1615 memset(&ct_info, 0, sizeof(ct_info)); 1616 ct_info.family = family; 1617 1618 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1619 NF_CT_DEFAULT_ZONE_DIR, 0); 1620 1621 err = parse_ct(attr, &ct_info, &helper, log); 1622 if (err) 1623 return err; 1624 1625 /* Set up template for tracking connections in specific zones. */ 1626 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1627 if (!ct_info.ct) { 1628 OVS_NLERR(log, "Failed to allocate conntrack template"); 1629 return -ENOMEM; 1630 } 1631 1632 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1633 nf_conntrack_get(&ct_info.ct->ct_general); 1634 1635 if (helper) { 1636 err = ovs_ct_add_helper(&ct_info, helper, key, log); 1637 if (err) 1638 goto err_free_ct; 1639 } 1640 1641 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1642 sizeof(ct_info), log); 1643 if (err) 1644 goto err_free_ct; 1645 1646 return 0; 1647 err_free_ct: 1648 __ovs_ct_free_action(&ct_info); 1649 return err; 1650 } 1651 1652 #ifdef CONFIG_NF_NAT_NEEDED 1653 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1654 struct sk_buff *skb) 1655 { 1656 struct nlattr *start; 1657 1658 start = nla_nest_start(skb, OVS_CT_ATTR_NAT); 1659 if (!start) 1660 return false; 1661 1662 if (info->nat & OVS_CT_SRC_NAT) { 1663 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1664 return false; 1665 } else if (info->nat & OVS_CT_DST_NAT) { 1666 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1667 return false; 1668 } else { 1669 goto out; 1670 } 1671 1672 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1673 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 1674 info->family == NFPROTO_IPV4) { 1675 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1676 info->range.min_addr.ip) || 1677 (info->range.max_addr.ip 1678 != info->range.min_addr.ip && 1679 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1680 info->range.max_addr.ip)))) 1681 return false; 1682 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 1683 info->family == NFPROTO_IPV6) { 1684 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1685 &info->range.min_addr.in6) || 1686 (memcmp(&info->range.max_addr.in6, 1687 &info->range.min_addr.in6, 1688 sizeof(info->range.max_addr.in6)) && 1689 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1690 &info->range.max_addr.in6)))) 1691 return false; 1692 } else { 1693 return false; 1694 } 1695 } 1696 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1697 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1698 ntohs(info->range.min_proto.all)) || 1699 (info->range.max_proto.all != info->range.min_proto.all && 1700 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1701 ntohs(info->range.max_proto.all))))) 1702 return false; 1703 1704 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1705 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1706 return false; 1707 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1708 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1709 return false; 1710 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1711 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1712 return false; 1713 out: 1714 nla_nest_end(skb, start); 1715 1716 return true; 1717 } 1718 #endif 1719 1720 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1721 struct sk_buff *skb) 1722 { 1723 struct nlattr *start; 1724 1725 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT); 1726 if (!start) 1727 return -EMSGSIZE; 1728 1729 if (ct_info->commit && nla_put_flag(skb, ct_info->force 1730 ? OVS_CT_ATTR_FORCE_COMMIT 1731 : OVS_CT_ATTR_COMMIT)) 1732 return -EMSGSIZE; 1733 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1734 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1735 return -EMSGSIZE; 1736 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1737 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1738 &ct_info->mark)) 1739 return -EMSGSIZE; 1740 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1741 labels_nonzero(&ct_info->labels.mask) && 1742 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1743 &ct_info->labels)) 1744 return -EMSGSIZE; 1745 if (ct_info->helper) { 1746 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1747 ct_info->helper->name)) 1748 return -EMSGSIZE; 1749 } 1750 if (ct_info->have_eventmask && 1751 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask)) 1752 return -EMSGSIZE; 1753 1754 #ifdef CONFIG_NF_NAT_NEEDED 1755 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1756 return -EMSGSIZE; 1757 #endif 1758 nla_nest_end(skb, start); 1759 1760 return 0; 1761 } 1762 1763 void ovs_ct_free_action(const struct nlattr *a) 1764 { 1765 struct ovs_conntrack_info *ct_info = nla_data(a); 1766 1767 __ovs_ct_free_action(ct_info); 1768 } 1769 1770 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1771 { 1772 if (ct_info->helper) 1773 nf_conntrack_helper_put(ct_info->helper); 1774 if (ct_info->ct) 1775 nf_ct_tmpl_free(ct_info->ct); 1776 } 1777 1778 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 1779 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net) 1780 { 1781 int i, err; 1782 1783 ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info), 1784 GFP_KERNEL); 1785 if (!ovs_net->ct_limit_info) 1786 return -ENOMEM; 1787 1788 ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT; 1789 ovs_net->ct_limit_info->limits = 1790 kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head), 1791 GFP_KERNEL); 1792 if (!ovs_net->ct_limit_info->limits) { 1793 kfree(ovs_net->ct_limit_info); 1794 return -ENOMEM; 1795 } 1796 1797 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++) 1798 INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]); 1799 1800 ovs_net->ct_limit_info->data = 1801 nf_conncount_init(net, NFPROTO_INET, sizeof(u32)); 1802 1803 if (IS_ERR(ovs_net->ct_limit_info->data)) { 1804 err = PTR_ERR(ovs_net->ct_limit_info->data); 1805 kfree(ovs_net->ct_limit_info->limits); 1806 kfree(ovs_net->ct_limit_info); 1807 pr_err("openvswitch: failed to init nf_conncount %d\n", err); 1808 return err; 1809 } 1810 return 0; 1811 } 1812 1813 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net) 1814 { 1815 const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info; 1816 int i; 1817 1818 nf_conncount_destroy(net, NFPROTO_INET, info->data); 1819 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { 1820 struct hlist_head *head = &info->limits[i]; 1821 struct ovs_ct_limit *ct_limit; 1822 1823 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) 1824 kfree_rcu(ct_limit, rcu); 1825 } 1826 kfree(ovs_net->ct_limit_info->limits); 1827 kfree(ovs_net->ct_limit_info); 1828 } 1829 1830 static struct sk_buff * 1831 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd, 1832 struct ovs_header **ovs_reply_header) 1833 { 1834 struct ovs_header *ovs_header = info->userhdr; 1835 struct sk_buff *skb; 1836 1837 skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); 1838 if (!skb) 1839 return ERR_PTR(-ENOMEM); 1840 1841 *ovs_reply_header = genlmsg_put(skb, info->snd_portid, 1842 info->snd_seq, 1843 &dp_ct_limit_genl_family, 0, cmd); 1844 1845 if (!*ovs_reply_header) { 1846 nlmsg_free(skb); 1847 return ERR_PTR(-EMSGSIZE); 1848 } 1849 (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex; 1850 1851 return skb; 1852 } 1853 1854 static bool check_zone_id(int zone_id, u16 *pzone) 1855 { 1856 if (zone_id >= 0 && zone_id <= 65535) { 1857 *pzone = (u16)zone_id; 1858 return true; 1859 } 1860 return false; 1861 } 1862 1863 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit, 1864 struct ovs_ct_limit_info *info) 1865 { 1866 struct ovs_zone_limit *zone_limit; 1867 int rem; 1868 u16 zone; 1869 1870 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1871 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1872 1873 while (rem >= sizeof(*zone_limit)) { 1874 if (unlikely(zone_limit->zone_id == 1875 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1876 ovs_lock(); 1877 info->default_limit = zone_limit->limit; 1878 ovs_unlock(); 1879 } else if (unlikely(!check_zone_id( 1880 zone_limit->zone_id, &zone))) { 1881 OVS_NLERR(true, "zone id is out of range"); 1882 } else { 1883 struct ovs_ct_limit *ct_limit; 1884 1885 ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL); 1886 if (!ct_limit) 1887 return -ENOMEM; 1888 1889 ct_limit->zone = zone; 1890 ct_limit->limit = zone_limit->limit; 1891 1892 ovs_lock(); 1893 ct_limit_set(info, ct_limit); 1894 ovs_unlock(); 1895 } 1896 rem -= NLA_ALIGN(sizeof(*zone_limit)); 1897 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 1898 NLA_ALIGN(sizeof(*zone_limit))); 1899 } 1900 1901 if (rem) 1902 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem); 1903 1904 return 0; 1905 } 1906 1907 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit, 1908 struct ovs_ct_limit_info *info) 1909 { 1910 struct ovs_zone_limit *zone_limit; 1911 int rem; 1912 u16 zone; 1913 1914 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1915 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1916 1917 while (rem >= sizeof(*zone_limit)) { 1918 if (unlikely(zone_limit->zone_id == 1919 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1920 ovs_lock(); 1921 info->default_limit = OVS_CT_LIMIT_DEFAULT; 1922 ovs_unlock(); 1923 } else if (unlikely(!check_zone_id( 1924 zone_limit->zone_id, &zone))) { 1925 OVS_NLERR(true, "zone id is out of range"); 1926 } else { 1927 ovs_lock(); 1928 ct_limit_del(info, zone); 1929 ovs_unlock(); 1930 } 1931 rem -= NLA_ALIGN(sizeof(*zone_limit)); 1932 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 1933 NLA_ALIGN(sizeof(*zone_limit))); 1934 } 1935 1936 if (rem) 1937 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem); 1938 1939 return 0; 1940 } 1941 1942 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info, 1943 struct sk_buff *reply) 1944 { 1945 struct ovs_zone_limit zone_limit; 1946 int err; 1947 1948 zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE; 1949 zone_limit.limit = info->default_limit; 1950 err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit); 1951 if (err) 1952 return err; 1953 1954 return 0; 1955 } 1956 1957 static int __ovs_ct_limit_get_zone_limit(struct net *net, 1958 struct nf_conncount_data *data, 1959 u16 zone_id, u32 limit, 1960 struct sk_buff *reply) 1961 { 1962 struct nf_conntrack_zone ct_zone; 1963 struct ovs_zone_limit zone_limit; 1964 u32 conncount_key = zone_id; 1965 1966 zone_limit.zone_id = zone_id; 1967 zone_limit.limit = limit; 1968 nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0); 1969 1970 zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL, 1971 &ct_zone); 1972 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit); 1973 } 1974 1975 static int ovs_ct_limit_get_zone_limit(struct net *net, 1976 struct nlattr *nla_zone_limit, 1977 struct ovs_ct_limit_info *info, 1978 struct sk_buff *reply) 1979 { 1980 struct ovs_zone_limit *zone_limit; 1981 int rem, err; 1982 u32 limit; 1983 u16 zone; 1984 1985 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1986 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1987 1988 while (rem >= sizeof(*zone_limit)) { 1989 if (unlikely(zone_limit->zone_id == 1990 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1991 err = ovs_ct_limit_get_default_limit(info, reply); 1992 if (err) 1993 return err; 1994 } else if (unlikely(!check_zone_id(zone_limit->zone_id, 1995 &zone))) { 1996 OVS_NLERR(true, "zone id is out of range"); 1997 } else { 1998 rcu_read_lock(); 1999 limit = ct_limit_get(info, zone); 2000 rcu_read_unlock(); 2001 2002 err = __ovs_ct_limit_get_zone_limit( 2003 net, info->data, zone, limit, reply); 2004 if (err) 2005 return err; 2006 } 2007 rem -= NLA_ALIGN(sizeof(*zone_limit)); 2008 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 2009 NLA_ALIGN(sizeof(*zone_limit))); 2010 } 2011 2012 if (rem) 2013 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem); 2014 2015 return 0; 2016 } 2017 2018 static int ovs_ct_limit_get_all_zone_limit(struct net *net, 2019 struct ovs_ct_limit_info *info, 2020 struct sk_buff *reply) 2021 { 2022 struct ovs_ct_limit *ct_limit; 2023 struct hlist_head *head; 2024 int i, err = 0; 2025 2026 err = ovs_ct_limit_get_default_limit(info, reply); 2027 if (err) 2028 return err; 2029 2030 rcu_read_lock(); 2031 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { 2032 head = &info->limits[i]; 2033 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 2034 err = __ovs_ct_limit_get_zone_limit(net, info->data, 2035 ct_limit->zone, ct_limit->limit, reply); 2036 if (err) 2037 goto exit_err; 2038 } 2039 } 2040 2041 exit_err: 2042 rcu_read_unlock(); 2043 return err; 2044 } 2045 2046 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info) 2047 { 2048 struct nlattr **a = info->attrs; 2049 struct sk_buff *reply; 2050 struct ovs_header *ovs_reply_header; 2051 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id); 2052 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 2053 int err; 2054 2055 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET, 2056 &ovs_reply_header); 2057 if (IS_ERR(reply)) 2058 return PTR_ERR(reply); 2059 2060 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 2061 err = -EINVAL; 2062 goto exit_err; 2063 } 2064 2065 err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], 2066 ct_limit_info); 2067 if (err) 2068 goto exit_err; 2069 2070 static_branch_enable(&ovs_ct_limit_enabled); 2071 2072 genlmsg_end(reply, ovs_reply_header); 2073 return genlmsg_reply(reply, info); 2074 2075 exit_err: 2076 nlmsg_free(reply); 2077 return err; 2078 } 2079 2080 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info) 2081 { 2082 struct nlattr **a = info->attrs; 2083 struct sk_buff *reply; 2084 struct ovs_header *ovs_reply_header; 2085 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id); 2086 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 2087 int err; 2088 2089 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL, 2090 &ovs_reply_header); 2091 if (IS_ERR(reply)) 2092 return PTR_ERR(reply); 2093 2094 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 2095 err = -EINVAL; 2096 goto exit_err; 2097 } 2098 2099 err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], 2100 ct_limit_info); 2101 if (err) 2102 goto exit_err; 2103 2104 genlmsg_end(reply, ovs_reply_header); 2105 return genlmsg_reply(reply, info); 2106 2107 exit_err: 2108 nlmsg_free(reply); 2109 return err; 2110 } 2111 2112 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info) 2113 { 2114 struct nlattr **a = info->attrs; 2115 struct nlattr *nla_reply; 2116 struct sk_buff *reply; 2117 struct ovs_header *ovs_reply_header; 2118 struct net *net = sock_net(skb->sk); 2119 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 2120 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 2121 int err; 2122 2123 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET, 2124 &ovs_reply_header); 2125 if (IS_ERR(reply)) 2126 return PTR_ERR(reply); 2127 2128 nla_reply = nla_nest_start(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT); 2129 2130 if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 2131 err = ovs_ct_limit_get_zone_limit( 2132 net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info, 2133 reply); 2134 if (err) 2135 goto exit_err; 2136 } else { 2137 err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info, 2138 reply); 2139 if (err) 2140 goto exit_err; 2141 } 2142 2143 nla_nest_end(reply, nla_reply); 2144 genlmsg_end(reply, ovs_reply_header); 2145 return genlmsg_reply(reply, info); 2146 2147 exit_err: 2148 nlmsg_free(reply); 2149 return err; 2150 } 2151 2152 static struct genl_ops ct_limit_genl_ops[] = { 2153 { .cmd = OVS_CT_LIMIT_CMD_SET, 2154 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN 2155 * privilege. */ 2156 .policy = ct_limit_policy, 2157 .doit = ovs_ct_limit_cmd_set, 2158 }, 2159 { .cmd = OVS_CT_LIMIT_CMD_DEL, 2160 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN 2161 * privilege. */ 2162 .policy = ct_limit_policy, 2163 .doit = ovs_ct_limit_cmd_del, 2164 }, 2165 { .cmd = OVS_CT_LIMIT_CMD_GET, 2166 .flags = 0, /* OK for unprivileged users. */ 2167 .policy = ct_limit_policy, 2168 .doit = ovs_ct_limit_cmd_get, 2169 }, 2170 }; 2171 2172 static const struct genl_multicast_group ovs_ct_limit_multicast_group = { 2173 .name = OVS_CT_LIMIT_MCGROUP, 2174 }; 2175 2176 struct genl_family dp_ct_limit_genl_family __ro_after_init = { 2177 .hdrsize = sizeof(struct ovs_header), 2178 .name = OVS_CT_LIMIT_FAMILY, 2179 .version = OVS_CT_LIMIT_VERSION, 2180 .maxattr = OVS_CT_LIMIT_ATTR_MAX, 2181 .netnsok = true, 2182 .parallel_ops = true, 2183 .ops = ct_limit_genl_ops, 2184 .n_ops = ARRAY_SIZE(ct_limit_genl_ops), 2185 .mcgrps = &ovs_ct_limit_multicast_group, 2186 .n_mcgrps = 1, 2187 .module = THIS_MODULE, 2188 }; 2189 #endif 2190 2191 int ovs_ct_init(struct net *net) 2192 { 2193 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 2194 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 2195 2196 if (nf_connlabels_get(net, n_bits - 1)) { 2197 ovs_net->xt_label = false; 2198 OVS_NLERR(true, "Failed to set connlabel length"); 2199 } else { 2200 ovs_net->xt_label = true; 2201 } 2202 2203 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 2204 return ovs_ct_limit_init(net, ovs_net); 2205 #else 2206 return 0; 2207 #endif 2208 } 2209 2210 void ovs_ct_exit(struct net *net) 2211 { 2212 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 2213 2214 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 2215 ovs_ct_limit_exit(net, ovs_net); 2216 #endif 2217 2218 if (ovs_net->xt_label) 2219 nf_connlabels_put(net); 2220 } 2221