xref: /linux/net/openvswitch/conntrack.c (revision d6869352cb3c3cf3450637a52349e2e87c1354aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 Nicira, Inc.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/openvswitch.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/sctp.h>
11 #include <linux/static_key.h>
12 #include <net/ip.h>
13 #include <net/genetlink.h>
14 #include <net/netfilter/nf_conntrack_core.h>
15 #include <net/netfilter/nf_conntrack_count.h>
16 #include <net/netfilter/nf_conntrack_helper.h>
17 #include <net/netfilter/nf_conntrack_labels.h>
18 #include <net/netfilter/nf_conntrack_seqadj.h>
19 #include <net/netfilter/nf_conntrack_timeout.h>
20 #include <net/netfilter/nf_conntrack_zones.h>
21 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
22 #include <net/ipv6_frag.h>
23 
24 #if IS_ENABLED(CONFIG_NF_NAT)
25 #include <net/netfilter/nf_nat.h>
26 #endif
27 
28 #include "datapath.h"
29 #include "conntrack.h"
30 #include "flow.h"
31 #include "flow_netlink.h"
32 
33 struct ovs_ct_len_tbl {
34 	int maxlen;
35 	int minlen;
36 };
37 
38 /* Metadata mark for masked write to conntrack mark */
39 struct md_mark {
40 	u32 value;
41 	u32 mask;
42 };
43 
44 /* Metadata label for masked write to conntrack label. */
45 struct md_labels {
46 	struct ovs_key_ct_labels value;
47 	struct ovs_key_ct_labels mask;
48 };
49 
50 enum ovs_ct_nat {
51 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
52 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
53 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
54 };
55 
56 /* Conntrack action context for execution. */
57 struct ovs_conntrack_info {
58 	struct nf_conntrack_helper *helper;
59 	struct nf_conntrack_zone zone;
60 	struct nf_conn *ct;
61 	u8 commit : 1;
62 	u8 nat : 3;                 /* enum ovs_ct_nat */
63 	u8 force : 1;
64 	u8 have_eventmask : 1;
65 	u16 family;
66 	u32 eventmask;              /* Mask of 1 << IPCT_*. */
67 	struct md_mark mark;
68 	struct md_labels labels;
69 	char timeout[CTNL_TIMEOUT_NAME_MAX];
70 #if IS_ENABLED(CONFIG_NF_NAT)
71 	struct nf_nat_range2 range;  /* Only present for SRC NAT and DST NAT. */
72 #endif
73 };
74 
75 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
76 #define OVS_CT_LIMIT_UNLIMITED	0
77 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
78 #define CT_LIMIT_HASH_BUCKETS 512
79 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
80 
81 struct ovs_ct_limit {
82 	/* Elements in ovs_ct_limit_info->limits hash table */
83 	struct hlist_node hlist_node;
84 	struct rcu_head rcu;
85 	u16 zone;
86 	u32 limit;
87 };
88 
89 struct ovs_ct_limit_info {
90 	u32 default_limit;
91 	struct hlist_head *limits;
92 	struct nf_conncount_data *data;
93 };
94 
95 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
96 	[OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
97 };
98 #endif
99 
100 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
101 
102 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
103 
104 static u16 key_to_nfproto(const struct sw_flow_key *key)
105 {
106 	switch (ntohs(key->eth.type)) {
107 	case ETH_P_IP:
108 		return NFPROTO_IPV4;
109 	case ETH_P_IPV6:
110 		return NFPROTO_IPV6;
111 	default:
112 		return NFPROTO_UNSPEC;
113 	}
114 }
115 
116 /* Map SKB connection state into the values used by flow definition. */
117 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
118 {
119 	u8 ct_state = OVS_CS_F_TRACKED;
120 
121 	switch (ctinfo) {
122 	case IP_CT_ESTABLISHED_REPLY:
123 	case IP_CT_RELATED_REPLY:
124 		ct_state |= OVS_CS_F_REPLY_DIR;
125 		break;
126 	default:
127 		break;
128 	}
129 
130 	switch (ctinfo) {
131 	case IP_CT_ESTABLISHED:
132 	case IP_CT_ESTABLISHED_REPLY:
133 		ct_state |= OVS_CS_F_ESTABLISHED;
134 		break;
135 	case IP_CT_RELATED:
136 	case IP_CT_RELATED_REPLY:
137 		ct_state |= OVS_CS_F_RELATED;
138 		break;
139 	case IP_CT_NEW:
140 		ct_state |= OVS_CS_F_NEW;
141 		break;
142 	default:
143 		break;
144 	}
145 
146 	return ct_state;
147 }
148 
149 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
150 {
151 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
152 	return ct ? ct->mark : 0;
153 #else
154 	return 0;
155 #endif
156 }
157 
158 /* Guard against conntrack labels max size shrinking below 128 bits. */
159 #if NF_CT_LABELS_MAX_SIZE < 16
160 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
161 #endif
162 
163 static void ovs_ct_get_labels(const struct nf_conn *ct,
164 			      struct ovs_key_ct_labels *labels)
165 {
166 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
167 
168 	if (cl)
169 		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
170 	else
171 		memset(labels, 0, OVS_CT_LABELS_LEN);
172 }
173 
174 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
175 					const struct nf_conntrack_tuple *orig,
176 					u8 icmp_proto)
177 {
178 	key->ct_orig_proto = orig->dst.protonum;
179 	if (orig->dst.protonum == icmp_proto) {
180 		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
181 		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
182 	} else {
183 		key->ct.orig_tp.src = orig->src.u.all;
184 		key->ct.orig_tp.dst = orig->dst.u.all;
185 	}
186 }
187 
188 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
189 				const struct nf_conntrack_zone *zone,
190 				const struct nf_conn *ct)
191 {
192 	key->ct_state = state;
193 	key->ct_zone = zone->id;
194 	key->ct.mark = ovs_ct_get_mark(ct);
195 	ovs_ct_get_labels(ct, &key->ct.labels);
196 
197 	if (ct) {
198 		const struct nf_conntrack_tuple *orig;
199 
200 		/* Use the master if we have one. */
201 		if (ct->master)
202 			ct = ct->master;
203 		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
204 
205 		/* IP version must match with the master connection. */
206 		if (key->eth.type == htons(ETH_P_IP) &&
207 		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
208 			key->ipv4.ct_orig.src = orig->src.u3.ip;
209 			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
210 			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
211 			return;
212 		} else if (key->eth.type == htons(ETH_P_IPV6) &&
213 			   !sw_flow_key_is_nd(key) &&
214 			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
215 			key->ipv6.ct_orig.src = orig->src.u3.in6;
216 			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
217 			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
218 			return;
219 		}
220 	}
221 	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
222 	 * original direction key fields.
223 	 */
224 	key->ct_orig_proto = 0;
225 }
226 
227 /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
228  * previously sent the packet to conntrack via the ct action.  If
229  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
230  * initialized from the connection status.
231  */
232 static void ovs_ct_update_key(const struct sk_buff *skb,
233 			      const struct ovs_conntrack_info *info,
234 			      struct sw_flow_key *key, bool post_ct,
235 			      bool keep_nat_flags)
236 {
237 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
238 	enum ip_conntrack_info ctinfo;
239 	struct nf_conn *ct;
240 	u8 state = 0;
241 
242 	ct = nf_ct_get(skb, &ctinfo);
243 	if (ct) {
244 		state = ovs_ct_get_state(ctinfo);
245 		/* All unconfirmed entries are NEW connections. */
246 		if (!nf_ct_is_confirmed(ct))
247 			state |= OVS_CS_F_NEW;
248 		/* OVS persists the related flag for the duration of the
249 		 * connection.
250 		 */
251 		if (ct->master)
252 			state |= OVS_CS_F_RELATED;
253 		if (keep_nat_flags) {
254 			state |= key->ct_state & OVS_CS_F_NAT_MASK;
255 		} else {
256 			if (ct->status & IPS_SRC_NAT)
257 				state |= OVS_CS_F_SRC_NAT;
258 			if (ct->status & IPS_DST_NAT)
259 				state |= OVS_CS_F_DST_NAT;
260 		}
261 		zone = nf_ct_zone(ct);
262 	} else if (post_ct) {
263 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
264 		if (info)
265 			zone = &info->zone;
266 	}
267 	__ovs_ct_update_key(key, state, zone, ct);
268 }
269 
270 /* This is called to initialize CT key fields possibly coming in from the local
271  * stack.
272  */
273 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
274 {
275 	ovs_ct_update_key(skb, NULL, key, false, false);
276 }
277 
278 #define IN6_ADDR_INITIALIZER(ADDR) \
279 	{ (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
280 	  (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
281 
282 int ovs_ct_put_key(const struct sw_flow_key *swkey,
283 		   const struct sw_flow_key *output, struct sk_buff *skb)
284 {
285 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
286 		return -EMSGSIZE;
287 
288 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
289 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
290 		return -EMSGSIZE;
291 
292 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
293 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
294 		return -EMSGSIZE;
295 
296 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
297 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
298 		    &output->ct.labels))
299 		return -EMSGSIZE;
300 
301 	if (swkey->ct_orig_proto) {
302 		if (swkey->eth.type == htons(ETH_P_IP)) {
303 			struct ovs_key_ct_tuple_ipv4 orig = {
304 				output->ipv4.ct_orig.src,
305 				output->ipv4.ct_orig.dst,
306 				output->ct.orig_tp.src,
307 				output->ct.orig_tp.dst,
308 				output->ct_orig_proto,
309 			};
310 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
311 				    sizeof(orig), &orig))
312 				return -EMSGSIZE;
313 		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
314 			struct ovs_key_ct_tuple_ipv6 orig = {
315 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
316 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
317 				output->ct.orig_tp.src,
318 				output->ct.orig_tp.dst,
319 				output->ct_orig_proto,
320 			};
321 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
322 				    sizeof(orig), &orig))
323 				return -EMSGSIZE;
324 		}
325 	}
326 
327 	return 0;
328 }
329 
330 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
331 			   u32 ct_mark, u32 mask)
332 {
333 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
334 	u32 new_mark;
335 
336 	new_mark = ct_mark | (ct->mark & ~(mask));
337 	if (ct->mark != new_mark) {
338 		ct->mark = new_mark;
339 		if (nf_ct_is_confirmed(ct))
340 			nf_conntrack_event_cache(IPCT_MARK, ct);
341 		key->ct.mark = new_mark;
342 	}
343 
344 	return 0;
345 #else
346 	return -ENOTSUPP;
347 #endif
348 }
349 
350 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
351 {
352 	struct nf_conn_labels *cl;
353 
354 	cl = nf_ct_labels_find(ct);
355 	if (!cl) {
356 		nf_ct_labels_ext_add(ct);
357 		cl = nf_ct_labels_find(ct);
358 	}
359 
360 	return cl;
361 }
362 
363 /* Initialize labels for a new, yet to be committed conntrack entry.  Note that
364  * since the new connection is not yet confirmed, and thus no-one else has
365  * access to it's labels, we simply write them over.
366  */
367 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
368 			      const struct ovs_key_ct_labels *labels,
369 			      const struct ovs_key_ct_labels *mask)
370 {
371 	struct nf_conn_labels *cl, *master_cl;
372 	bool have_mask = labels_nonzero(mask);
373 
374 	/* Inherit master's labels to the related connection? */
375 	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
376 
377 	if (!master_cl && !have_mask)
378 		return 0;   /* Nothing to do. */
379 
380 	cl = ovs_ct_get_conn_labels(ct);
381 	if (!cl)
382 		return -ENOSPC;
383 
384 	/* Inherit the master's labels, if any. */
385 	if (master_cl)
386 		*cl = *master_cl;
387 
388 	if (have_mask) {
389 		u32 *dst = (u32 *)cl->bits;
390 		int i;
391 
392 		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
393 			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
394 				(labels->ct_labels_32[i]
395 				 & mask->ct_labels_32[i]);
396 	}
397 
398 	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
399 	 * IPCT_LABEL bit is set in the event cache.
400 	 */
401 	nf_conntrack_event_cache(IPCT_LABEL, ct);
402 
403 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
404 
405 	return 0;
406 }
407 
408 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
409 			     const struct ovs_key_ct_labels *labels,
410 			     const struct ovs_key_ct_labels *mask)
411 {
412 	struct nf_conn_labels *cl;
413 	int err;
414 
415 	cl = ovs_ct_get_conn_labels(ct);
416 	if (!cl)
417 		return -ENOSPC;
418 
419 	err = nf_connlabels_replace(ct, labels->ct_labels_32,
420 				    mask->ct_labels_32,
421 				    OVS_CT_LABELS_LEN_32);
422 	if (err)
423 		return err;
424 
425 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
426 
427 	return 0;
428 }
429 
430 /* 'skb' should already be pulled to nh_ofs. */
431 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
432 {
433 	const struct nf_conntrack_helper *helper;
434 	const struct nf_conn_help *help;
435 	enum ip_conntrack_info ctinfo;
436 	unsigned int protoff;
437 	struct nf_conn *ct;
438 	int err;
439 
440 	ct = nf_ct_get(skb, &ctinfo);
441 	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
442 		return NF_ACCEPT;
443 
444 	help = nfct_help(ct);
445 	if (!help)
446 		return NF_ACCEPT;
447 
448 	helper = rcu_dereference(help->helper);
449 	if (!helper)
450 		return NF_ACCEPT;
451 
452 	switch (proto) {
453 	case NFPROTO_IPV4:
454 		protoff = ip_hdrlen(skb);
455 		break;
456 	case NFPROTO_IPV6: {
457 		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
458 		__be16 frag_off;
459 		int ofs;
460 
461 		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
462 				       &frag_off);
463 		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
464 			pr_debug("proto header not found\n");
465 			return NF_ACCEPT;
466 		}
467 		protoff = ofs;
468 		break;
469 	}
470 	default:
471 		WARN_ONCE(1, "helper invoked on non-IP family!");
472 		return NF_DROP;
473 	}
474 
475 	err = helper->help(skb, protoff, ct, ctinfo);
476 	if (err != NF_ACCEPT)
477 		return err;
478 
479 	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
480 	 * FTP with NAT) adusting the TCP payload size when mangling IP
481 	 * addresses and/or port numbers in the text-based control connection.
482 	 */
483 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
484 	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
485 		return NF_DROP;
486 	return NF_ACCEPT;
487 }
488 
489 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
490  * value if 'skb' is freed.
491  */
492 static int handle_fragments(struct net *net, struct sw_flow_key *key,
493 			    u16 zone, struct sk_buff *skb)
494 {
495 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
496 	int err;
497 
498 	if (key->eth.type == htons(ETH_P_IP)) {
499 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
500 
501 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
502 		err = ip_defrag(net, skb, user);
503 		if (err)
504 			return err;
505 
506 		ovs_cb.mru = IPCB(skb)->frag_max_size;
507 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
508 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
509 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
510 
511 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
512 		err = nf_ct_frag6_gather(net, skb, user);
513 		if (err) {
514 			if (err != -EINPROGRESS)
515 				kfree_skb(skb);
516 			return err;
517 		}
518 
519 		key->ip.proto = ipv6_hdr(skb)->nexthdr;
520 		ovs_cb.mru = IP6CB(skb)->frag_max_size;
521 #endif
522 	} else {
523 		kfree_skb(skb);
524 		return -EPFNOSUPPORT;
525 	}
526 
527 	key->ip.frag = OVS_FRAG_TYPE_NONE;
528 	skb_clear_hash(skb);
529 	skb->ignore_df = 1;
530 	*OVS_CB(skb) = ovs_cb;
531 
532 	return 0;
533 }
534 
535 static struct nf_conntrack_expect *
536 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
537 		   u16 proto, const struct sk_buff *skb)
538 {
539 	struct nf_conntrack_tuple tuple;
540 	struct nf_conntrack_expect *exp;
541 
542 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
543 		return NULL;
544 
545 	exp = __nf_ct_expect_find(net, zone, &tuple);
546 	if (exp) {
547 		struct nf_conntrack_tuple_hash *h;
548 
549 		/* Delete existing conntrack entry, if it clashes with the
550 		 * expectation.  This can happen since conntrack ALGs do not
551 		 * check for clashes between (new) expectations and existing
552 		 * conntrack entries.  nf_conntrack_in() will check the
553 		 * expectations only if a conntrack entry can not be found,
554 		 * which can lead to OVS finding the expectation (here) in the
555 		 * init direction, but which will not be removed by the
556 		 * nf_conntrack_in() call, if a matching conntrack entry is
557 		 * found instead.  In this case all init direction packets
558 		 * would be reported as new related packets, while reply
559 		 * direction packets would be reported as un-related
560 		 * established packets.
561 		 */
562 		h = nf_conntrack_find_get(net, zone, &tuple);
563 		if (h) {
564 			struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
565 
566 			nf_ct_delete(ct, 0, 0);
567 			nf_conntrack_put(&ct->ct_general);
568 		}
569 	}
570 
571 	return exp;
572 }
573 
574 /* This replicates logic from nf_conntrack_core.c that is not exported. */
575 static enum ip_conntrack_info
576 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
577 {
578 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
579 
580 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
581 		return IP_CT_ESTABLISHED_REPLY;
582 	/* Once we've had two way comms, always ESTABLISHED. */
583 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
584 		return IP_CT_ESTABLISHED;
585 	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
586 		return IP_CT_RELATED;
587 	return IP_CT_NEW;
588 }
589 
590 /* Find an existing connection which this packet belongs to without
591  * re-attributing statistics or modifying the connection state.  This allows an
592  * skb->_nfct lost due to an upcall to be recovered during actions execution.
593  *
594  * Must be called with rcu_read_lock.
595  *
596  * On success, populates skb->_nfct and returns the connection.  Returns NULL
597  * if there is no existing entry.
598  */
599 static struct nf_conn *
600 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
601 		     u8 l3num, struct sk_buff *skb, bool natted)
602 {
603 	struct nf_conntrack_tuple tuple;
604 	struct nf_conntrack_tuple_hash *h;
605 	struct nf_conn *ct;
606 
607 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
608 			       net, &tuple)) {
609 		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
610 		return NULL;
611 	}
612 
613 	/* Must invert the tuple if skb has been transformed by NAT. */
614 	if (natted) {
615 		struct nf_conntrack_tuple inverse;
616 
617 		if (!nf_ct_invert_tuple(&inverse, &tuple)) {
618 			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
619 			return NULL;
620 		}
621 		tuple = inverse;
622 	}
623 
624 	/* look for tuple match */
625 	h = nf_conntrack_find_get(net, zone, &tuple);
626 	if (!h)
627 		return NULL;   /* Not found. */
628 
629 	ct = nf_ct_tuplehash_to_ctrack(h);
630 
631 	/* Inverted packet tuple matches the reverse direction conntrack tuple,
632 	 * select the other tuplehash to get the right 'ctinfo' bits for this
633 	 * packet.
634 	 */
635 	if (natted)
636 		h = &ct->tuplehash[!h->tuple.dst.dir];
637 
638 	nf_ct_set(skb, ct, ovs_ct_get_info(h));
639 	return ct;
640 }
641 
642 static
643 struct nf_conn *ovs_ct_executed(struct net *net,
644 				const struct sw_flow_key *key,
645 				const struct ovs_conntrack_info *info,
646 				struct sk_buff *skb,
647 				bool *ct_executed)
648 {
649 	struct nf_conn *ct = NULL;
650 
651 	/* If no ct, check if we have evidence that an existing conntrack entry
652 	 * might be found for this skb.  This happens when we lose a skb->_nfct
653 	 * due to an upcall, or if the direction is being forced.  If the
654 	 * connection was not confirmed, it is not cached and needs to be run
655 	 * through conntrack again.
656 	 */
657 	*ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
658 		       !(key->ct_state & OVS_CS_F_INVALID) &&
659 		       (key->ct_zone == info->zone.id);
660 
661 	if (*ct_executed || (!key->ct_state && info->force)) {
662 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
663 					  !!(key->ct_state &
664 					  OVS_CS_F_NAT_MASK));
665 	}
666 
667 	return ct;
668 }
669 
670 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
671 static bool skb_nfct_cached(struct net *net,
672 			    const struct sw_flow_key *key,
673 			    const struct ovs_conntrack_info *info,
674 			    struct sk_buff *skb)
675 {
676 	enum ip_conntrack_info ctinfo;
677 	struct nf_conn *ct;
678 	bool ct_executed = true;
679 
680 	ct = nf_ct_get(skb, &ctinfo);
681 	if (!ct)
682 		ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
683 
684 	if (ct)
685 		nf_ct_get(skb, &ctinfo);
686 	else
687 		return false;
688 
689 	if (!net_eq(net, read_pnet(&ct->ct_net)))
690 		return false;
691 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
692 		return false;
693 	if (info->helper) {
694 		struct nf_conn_help *help;
695 
696 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
697 		if (help && rcu_access_pointer(help->helper) != info->helper)
698 			return false;
699 	}
700 	/* Force conntrack entry direction to the current packet? */
701 	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
702 		/* Delete the conntrack entry if confirmed, else just release
703 		 * the reference.
704 		 */
705 		if (nf_ct_is_confirmed(ct))
706 			nf_ct_delete(ct, 0, 0);
707 
708 		nf_conntrack_put(&ct->ct_general);
709 		nf_ct_set(skb, NULL, 0);
710 		return false;
711 	}
712 
713 	return ct_executed;
714 }
715 
716 #if IS_ENABLED(CONFIG_NF_NAT)
717 /* Modelled after nf_nat_ipv[46]_fn().
718  * range is only used for new, uninitialized NAT state.
719  * Returns either NF_ACCEPT or NF_DROP.
720  */
721 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
722 			      enum ip_conntrack_info ctinfo,
723 			      const struct nf_nat_range2 *range,
724 			      enum nf_nat_manip_type maniptype)
725 {
726 	int hooknum, nh_off, err = NF_ACCEPT;
727 
728 	nh_off = skb_network_offset(skb);
729 	skb_pull_rcsum(skb, nh_off);
730 
731 	/* See HOOK2MANIP(). */
732 	if (maniptype == NF_NAT_MANIP_SRC)
733 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
734 	else
735 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
736 
737 	switch (ctinfo) {
738 	case IP_CT_RELATED:
739 	case IP_CT_RELATED_REPLY:
740 		if (IS_ENABLED(CONFIG_NF_NAT) &&
741 		    skb->protocol == htons(ETH_P_IP) &&
742 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
743 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
744 							   hooknum))
745 				err = NF_DROP;
746 			goto push;
747 		} else if (IS_ENABLED(CONFIG_IPV6) &&
748 			   skb->protocol == htons(ETH_P_IPV6)) {
749 			__be16 frag_off;
750 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
751 			int hdrlen = ipv6_skip_exthdr(skb,
752 						      sizeof(struct ipv6hdr),
753 						      &nexthdr, &frag_off);
754 
755 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
756 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
757 								     ctinfo,
758 								     hooknum,
759 								     hdrlen))
760 					err = NF_DROP;
761 				goto push;
762 			}
763 		}
764 		/* Non-ICMP, fall thru to initialize if needed. */
765 		/* fall through */
766 	case IP_CT_NEW:
767 		/* Seen it before?  This can happen for loopback, retrans,
768 		 * or local packets.
769 		 */
770 		if (!nf_nat_initialized(ct, maniptype)) {
771 			/* Initialize according to the NAT action. */
772 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
773 				/* Action is set up to establish a new
774 				 * mapping.
775 				 */
776 				? nf_nat_setup_info(ct, range, maniptype)
777 				: nf_nat_alloc_null_binding(ct, hooknum);
778 			if (err != NF_ACCEPT)
779 				goto push;
780 		}
781 		break;
782 
783 	case IP_CT_ESTABLISHED:
784 	case IP_CT_ESTABLISHED_REPLY:
785 		break;
786 
787 	default:
788 		err = NF_DROP;
789 		goto push;
790 	}
791 
792 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
793 push:
794 	skb_push(skb, nh_off);
795 	skb_postpush_rcsum(skb, skb->data, nh_off);
796 
797 	return err;
798 }
799 
800 static void ovs_nat_update_key(struct sw_flow_key *key,
801 			       const struct sk_buff *skb,
802 			       enum nf_nat_manip_type maniptype)
803 {
804 	if (maniptype == NF_NAT_MANIP_SRC) {
805 		__be16 src;
806 
807 		key->ct_state |= OVS_CS_F_SRC_NAT;
808 		if (key->eth.type == htons(ETH_P_IP))
809 			key->ipv4.addr.src = ip_hdr(skb)->saddr;
810 		else if (key->eth.type == htons(ETH_P_IPV6))
811 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
812 			       sizeof(key->ipv6.addr.src));
813 		else
814 			return;
815 
816 		if (key->ip.proto == IPPROTO_UDP)
817 			src = udp_hdr(skb)->source;
818 		else if (key->ip.proto == IPPROTO_TCP)
819 			src = tcp_hdr(skb)->source;
820 		else if (key->ip.proto == IPPROTO_SCTP)
821 			src = sctp_hdr(skb)->source;
822 		else
823 			return;
824 
825 		key->tp.src = src;
826 	} else {
827 		__be16 dst;
828 
829 		key->ct_state |= OVS_CS_F_DST_NAT;
830 		if (key->eth.type == htons(ETH_P_IP))
831 			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
832 		else if (key->eth.type == htons(ETH_P_IPV6))
833 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
834 			       sizeof(key->ipv6.addr.dst));
835 		else
836 			return;
837 
838 		if (key->ip.proto == IPPROTO_UDP)
839 			dst = udp_hdr(skb)->dest;
840 		else if (key->ip.proto == IPPROTO_TCP)
841 			dst = tcp_hdr(skb)->dest;
842 		else if (key->ip.proto == IPPROTO_SCTP)
843 			dst = sctp_hdr(skb)->dest;
844 		else
845 			return;
846 
847 		key->tp.dst = dst;
848 	}
849 }
850 
851 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
852 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
853 		      const struct ovs_conntrack_info *info,
854 		      struct sk_buff *skb, struct nf_conn *ct,
855 		      enum ip_conntrack_info ctinfo)
856 {
857 	enum nf_nat_manip_type maniptype;
858 	int err;
859 
860 	/* Add NAT extension if not confirmed yet. */
861 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
862 		return NF_ACCEPT;   /* Can't NAT. */
863 
864 	/* Determine NAT type.
865 	 * Check if the NAT type can be deduced from the tracked connection.
866 	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
867 	 * when committing.
868 	 */
869 	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
870 	    ct->status & IPS_NAT_MASK &&
871 	    (ctinfo != IP_CT_RELATED || info->commit)) {
872 		/* NAT an established or related connection like before. */
873 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
874 			/* This is the REPLY direction for a connection
875 			 * for which NAT was applied in the forward
876 			 * direction.  Do the reverse NAT.
877 			 */
878 			maniptype = ct->status & IPS_SRC_NAT
879 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
880 		else
881 			maniptype = ct->status & IPS_SRC_NAT
882 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
883 	} else if (info->nat & OVS_CT_SRC_NAT) {
884 		maniptype = NF_NAT_MANIP_SRC;
885 	} else if (info->nat & OVS_CT_DST_NAT) {
886 		maniptype = NF_NAT_MANIP_DST;
887 	} else {
888 		return NF_ACCEPT; /* Connection is not NATed. */
889 	}
890 	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
891 
892 	/* Mark NAT done if successful and update the flow key. */
893 	if (err == NF_ACCEPT)
894 		ovs_nat_update_key(key, skb, maniptype);
895 
896 	return err;
897 }
898 #else /* !CONFIG_NF_NAT */
899 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
900 		      const struct ovs_conntrack_info *info,
901 		      struct sk_buff *skb, struct nf_conn *ct,
902 		      enum ip_conntrack_info ctinfo)
903 {
904 	return NF_ACCEPT;
905 }
906 #endif
907 
908 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
909  * not done already.  Update key with new CT state after passing the packet
910  * through conntrack.
911  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
912  * set to NULL and 0 will be returned.
913  */
914 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
915 			   const struct ovs_conntrack_info *info,
916 			   struct sk_buff *skb)
917 {
918 	/* If we are recirculating packets to match on conntrack fields and
919 	 * committing with a separate conntrack action,  then we don't need to
920 	 * actually run the packet through conntrack twice unless it's for a
921 	 * different zone.
922 	 */
923 	bool cached = skb_nfct_cached(net, key, info, skb);
924 	enum ip_conntrack_info ctinfo;
925 	struct nf_conn *ct;
926 
927 	if (!cached) {
928 		struct nf_hook_state state = {
929 			.hook = NF_INET_PRE_ROUTING,
930 			.pf = info->family,
931 			.net = net,
932 		};
933 		struct nf_conn *tmpl = info->ct;
934 		int err;
935 
936 		/* Associate skb with specified zone. */
937 		if (tmpl) {
938 			if (skb_nfct(skb))
939 				nf_conntrack_put(skb_nfct(skb));
940 			nf_conntrack_get(&tmpl->ct_general);
941 			nf_ct_set(skb, tmpl, IP_CT_NEW);
942 		}
943 
944 		err = nf_conntrack_in(skb, &state);
945 		if (err != NF_ACCEPT)
946 			return -ENOENT;
947 
948 		/* Clear CT state NAT flags to mark that we have not yet done
949 		 * NAT after the nf_conntrack_in() call.  We can actually clear
950 		 * the whole state, as it will be re-initialized below.
951 		 */
952 		key->ct_state = 0;
953 
954 		/* Update the key, but keep the NAT flags. */
955 		ovs_ct_update_key(skb, info, key, true, true);
956 	}
957 
958 	ct = nf_ct_get(skb, &ctinfo);
959 	if (ct) {
960 		/* Packets starting a new connection must be NATted before the
961 		 * helper, so that the helper knows about the NAT.  We enforce
962 		 * this by delaying both NAT and helper calls for unconfirmed
963 		 * connections until the committing CT action.  For later
964 		 * packets NAT and Helper may be called in either order.
965 		 *
966 		 * NAT will be done only if the CT action has NAT, and only
967 		 * once per packet (per zone), as guarded by the NAT bits in
968 		 * the key->ct_state.
969 		 */
970 		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
971 		    (nf_ct_is_confirmed(ct) || info->commit) &&
972 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
973 			return -EINVAL;
974 		}
975 
976 		/* Userspace may decide to perform a ct lookup without a helper
977 		 * specified followed by a (recirculate and) commit with one.
978 		 * Therefore, for unconfirmed connections which we will commit,
979 		 * we need to attach the helper here.
980 		 */
981 		if (!nf_ct_is_confirmed(ct) && info->commit &&
982 		    info->helper && !nfct_help(ct)) {
983 			int err = __nf_ct_try_assign_helper(ct, info->ct,
984 							    GFP_ATOMIC);
985 			if (err)
986 				return err;
987 
988 			/* helper installed, add seqadj if NAT is required */
989 			if (info->nat && !nfct_seqadj(ct)) {
990 				if (!nfct_seqadj_ext_add(ct))
991 					return -EINVAL;
992 			}
993 		}
994 
995 		/* Call the helper only if:
996 		 * - nf_conntrack_in() was executed above ("!cached") for a
997 		 *   confirmed connection, or
998 		 * - When committing an unconfirmed connection.
999 		 */
1000 		if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
1001 		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1002 			return -EINVAL;
1003 		}
1004 	}
1005 
1006 	return 0;
1007 }
1008 
1009 /* Lookup connection and read fields into key. */
1010 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1011 			 const struct ovs_conntrack_info *info,
1012 			 struct sk_buff *skb)
1013 {
1014 	struct nf_conntrack_expect *exp;
1015 
1016 	/* If we pass an expected packet through nf_conntrack_in() the
1017 	 * expectation is typically removed, but the packet could still be
1018 	 * lost in upcall processing.  To prevent this from happening we
1019 	 * perform an explicit expectation lookup.  Expected connections are
1020 	 * always new, and will be passed through conntrack only when they are
1021 	 * committed, as it is OK to remove the expectation at that time.
1022 	 */
1023 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1024 	if (exp) {
1025 		u8 state;
1026 
1027 		/* NOTE: New connections are NATted and Helped only when
1028 		 * committed, so we are not calling into NAT here.
1029 		 */
1030 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1031 		__ovs_ct_update_key(key, state, &info->zone, exp->master);
1032 	} else {
1033 		struct nf_conn *ct;
1034 		int err;
1035 
1036 		err = __ovs_ct_lookup(net, key, info, skb);
1037 		if (err)
1038 			return err;
1039 
1040 		ct = (struct nf_conn *)skb_nfct(skb);
1041 		if (ct)
1042 			nf_ct_deliver_cached_events(ct);
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1049 {
1050 	size_t i;
1051 
1052 	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1053 		if (labels->ct_labels_32[i])
1054 			return true;
1055 
1056 	return false;
1057 }
1058 
1059 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1060 static struct hlist_head *ct_limit_hash_bucket(
1061 	const struct ovs_ct_limit_info *info, u16 zone)
1062 {
1063 	return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1064 }
1065 
1066 /* Call with ovs_mutex */
1067 static void ct_limit_set(const struct ovs_ct_limit_info *info,
1068 			 struct ovs_ct_limit *new_ct_limit)
1069 {
1070 	struct ovs_ct_limit *ct_limit;
1071 	struct hlist_head *head;
1072 
1073 	head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1074 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1075 		if (ct_limit->zone == new_ct_limit->zone) {
1076 			hlist_replace_rcu(&ct_limit->hlist_node,
1077 					  &new_ct_limit->hlist_node);
1078 			kfree_rcu(ct_limit, rcu);
1079 			return;
1080 		}
1081 	}
1082 
1083 	hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1084 }
1085 
1086 /* Call with ovs_mutex */
1087 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1088 {
1089 	struct ovs_ct_limit *ct_limit;
1090 	struct hlist_head *head;
1091 	struct hlist_node *n;
1092 
1093 	head = ct_limit_hash_bucket(info, zone);
1094 	hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1095 		if (ct_limit->zone == zone) {
1096 			hlist_del_rcu(&ct_limit->hlist_node);
1097 			kfree_rcu(ct_limit, rcu);
1098 			return;
1099 		}
1100 	}
1101 }
1102 
1103 /* Call with RCU read lock */
1104 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1105 {
1106 	struct ovs_ct_limit *ct_limit;
1107 	struct hlist_head *head;
1108 
1109 	head = ct_limit_hash_bucket(info, zone);
1110 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1111 		if (ct_limit->zone == zone)
1112 			return ct_limit->limit;
1113 	}
1114 
1115 	return info->default_limit;
1116 }
1117 
1118 static int ovs_ct_check_limit(struct net *net,
1119 			      const struct ovs_conntrack_info *info,
1120 			      const struct nf_conntrack_tuple *tuple)
1121 {
1122 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1123 	const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1124 	u32 per_zone_limit, connections;
1125 	u32 conncount_key;
1126 
1127 	conncount_key = info->zone.id;
1128 
1129 	per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1130 	if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1131 		return 0;
1132 
1133 	connections = nf_conncount_count(net, ct_limit_info->data,
1134 					 &conncount_key, tuple, &info->zone);
1135 	if (connections > per_zone_limit)
1136 		return -ENOMEM;
1137 
1138 	return 0;
1139 }
1140 #endif
1141 
1142 /* Lookup connection and confirm if unconfirmed. */
1143 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1144 			 const struct ovs_conntrack_info *info,
1145 			 struct sk_buff *skb)
1146 {
1147 	enum ip_conntrack_info ctinfo;
1148 	struct nf_conn *ct;
1149 	int err;
1150 
1151 	err = __ovs_ct_lookup(net, key, info, skb);
1152 	if (err)
1153 		return err;
1154 
1155 	/* The connection could be invalid, in which case this is a no-op.*/
1156 	ct = nf_ct_get(skb, &ctinfo);
1157 	if (!ct)
1158 		return 0;
1159 
1160 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1161 	if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1162 		if (!nf_ct_is_confirmed(ct)) {
1163 			err = ovs_ct_check_limit(net, info,
1164 				&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1165 			if (err) {
1166 				net_warn_ratelimited("openvswitch: zone: %u "
1167 					"exceeds conntrack limit\n",
1168 					info->zone.id);
1169 				return err;
1170 			}
1171 		}
1172 	}
1173 #endif
1174 
1175 	/* Set the conntrack event mask if given.  NEW and DELETE events have
1176 	 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1177 	 * typically would receive many kinds of updates.  Setting the event
1178 	 * mask allows those events to be filtered.  The set event mask will
1179 	 * remain in effect for the lifetime of the connection unless changed
1180 	 * by a further CT action with both the commit flag and the eventmask
1181 	 * option. */
1182 	if (info->have_eventmask) {
1183 		struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1184 
1185 		if (cache)
1186 			cache->ctmask = info->eventmask;
1187 	}
1188 
1189 	/* Apply changes before confirming the connection so that the initial
1190 	 * conntrack NEW netlink event carries the values given in the CT
1191 	 * action.
1192 	 */
1193 	if (info->mark.mask) {
1194 		err = ovs_ct_set_mark(ct, key, info->mark.value,
1195 				      info->mark.mask);
1196 		if (err)
1197 			return err;
1198 	}
1199 	if (!nf_ct_is_confirmed(ct)) {
1200 		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1201 					 &info->labels.mask);
1202 		if (err)
1203 			return err;
1204 	} else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1205 		   labels_nonzero(&info->labels.mask)) {
1206 		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1207 					&info->labels.mask);
1208 		if (err)
1209 			return err;
1210 	}
1211 	/* This will take care of sending queued events even if the connection
1212 	 * is already confirmed.
1213 	 */
1214 	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1215 		return -EINVAL;
1216 
1217 	return 0;
1218 }
1219 
1220 /* Trim the skb to the length specified by the IP/IPv6 header,
1221  * removing any trailing lower-layer padding. This prepares the skb
1222  * for higher-layer processing that assumes skb->len excludes padding
1223  * (such as nf_ip_checksum). The caller needs to pull the skb to the
1224  * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1225  */
1226 static int ovs_skb_network_trim(struct sk_buff *skb)
1227 {
1228 	unsigned int len;
1229 	int err;
1230 
1231 	switch (skb->protocol) {
1232 	case htons(ETH_P_IP):
1233 		len = ntohs(ip_hdr(skb)->tot_len);
1234 		break;
1235 	case htons(ETH_P_IPV6):
1236 		len = sizeof(struct ipv6hdr)
1237 			+ ntohs(ipv6_hdr(skb)->payload_len);
1238 		break;
1239 	default:
1240 		len = skb->len;
1241 	}
1242 
1243 	err = pskb_trim_rcsum(skb, len);
1244 	if (err)
1245 		kfree_skb(skb);
1246 
1247 	return err;
1248 }
1249 
1250 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1251  * value if 'skb' is freed.
1252  */
1253 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1254 		   struct sw_flow_key *key,
1255 		   const struct ovs_conntrack_info *info)
1256 {
1257 	int nh_ofs;
1258 	int err;
1259 
1260 	/* The conntrack module expects to be working at L3. */
1261 	nh_ofs = skb_network_offset(skb);
1262 	skb_pull_rcsum(skb, nh_ofs);
1263 
1264 	err = ovs_skb_network_trim(skb);
1265 	if (err)
1266 		return err;
1267 
1268 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1269 		err = handle_fragments(net, key, info->zone.id, skb);
1270 		if (err)
1271 			return err;
1272 	}
1273 
1274 	if (info->commit)
1275 		err = ovs_ct_commit(net, key, info, skb);
1276 	else
1277 		err = ovs_ct_lookup(net, key, info, skb);
1278 
1279 	skb_push(skb, nh_ofs);
1280 	skb_postpush_rcsum(skb, skb->data, nh_ofs);
1281 	if (err)
1282 		kfree_skb(skb);
1283 	return err;
1284 }
1285 
1286 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1287 {
1288 	if (skb_nfct(skb)) {
1289 		nf_conntrack_put(skb_nfct(skb));
1290 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1291 		ovs_ct_fill_key(skb, key);
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1298 			     const struct sw_flow_key *key, bool log)
1299 {
1300 	struct nf_conntrack_helper *helper;
1301 	struct nf_conn_help *help;
1302 	int ret = 0;
1303 
1304 	helper = nf_conntrack_helper_try_module_get(name, info->family,
1305 						    key->ip.proto);
1306 	if (!helper) {
1307 		OVS_NLERR(log, "Unknown helper \"%s\"", name);
1308 		return -EINVAL;
1309 	}
1310 
1311 	help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1312 	if (!help) {
1313 		nf_conntrack_helper_put(helper);
1314 		return -ENOMEM;
1315 	}
1316 
1317 #if IS_ENABLED(CONFIG_NF_NAT)
1318 	if (info->nat) {
1319 		ret = nf_nat_helper_try_module_get(name, info->family,
1320 						   key->ip.proto);
1321 		if (ret) {
1322 			nf_conntrack_helper_put(helper);
1323 			OVS_NLERR(log, "Failed to load \"%s\" NAT helper, error: %d",
1324 				  name, ret);
1325 			return ret;
1326 		}
1327 	}
1328 #endif
1329 	rcu_assign_pointer(help->helper, helper);
1330 	info->helper = helper;
1331 	return ret;
1332 }
1333 
1334 #if IS_ENABLED(CONFIG_NF_NAT)
1335 static int parse_nat(const struct nlattr *attr,
1336 		     struct ovs_conntrack_info *info, bool log)
1337 {
1338 	struct nlattr *a;
1339 	int rem;
1340 	bool have_ip_max = false;
1341 	bool have_proto_max = false;
1342 	bool ip_vers = (info->family == NFPROTO_IPV6);
1343 
1344 	nla_for_each_nested(a, attr, rem) {
1345 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1346 			[OVS_NAT_ATTR_SRC] = {0, 0},
1347 			[OVS_NAT_ATTR_DST] = {0, 0},
1348 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1349 						 sizeof(struct in6_addr)},
1350 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1351 						 sizeof(struct in6_addr)},
1352 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1353 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1354 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1355 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1356 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1357 		};
1358 		int type = nla_type(a);
1359 
1360 		if (type > OVS_NAT_ATTR_MAX) {
1361 			OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1362 				  type, OVS_NAT_ATTR_MAX);
1363 			return -EINVAL;
1364 		}
1365 
1366 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1367 			OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1368 				  type, nla_len(a),
1369 				  ovs_nat_attr_lens[type][ip_vers]);
1370 			return -EINVAL;
1371 		}
1372 
1373 		switch (type) {
1374 		case OVS_NAT_ATTR_SRC:
1375 		case OVS_NAT_ATTR_DST:
1376 			if (info->nat) {
1377 				OVS_NLERR(log, "Only one type of NAT may be specified");
1378 				return -ERANGE;
1379 			}
1380 			info->nat |= OVS_CT_NAT;
1381 			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1382 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1383 			break;
1384 
1385 		case OVS_NAT_ATTR_IP_MIN:
1386 			nla_memcpy(&info->range.min_addr, a,
1387 				   sizeof(info->range.min_addr));
1388 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1389 			break;
1390 
1391 		case OVS_NAT_ATTR_IP_MAX:
1392 			have_ip_max = true;
1393 			nla_memcpy(&info->range.max_addr, a,
1394 				   sizeof(info->range.max_addr));
1395 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1396 			break;
1397 
1398 		case OVS_NAT_ATTR_PROTO_MIN:
1399 			info->range.min_proto.all = htons(nla_get_u16(a));
1400 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1401 			break;
1402 
1403 		case OVS_NAT_ATTR_PROTO_MAX:
1404 			have_proto_max = true;
1405 			info->range.max_proto.all = htons(nla_get_u16(a));
1406 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1407 			break;
1408 
1409 		case OVS_NAT_ATTR_PERSISTENT:
1410 			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1411 			break;
1412 
1413 		case OVS_NAT_ATTR_PROTO_HASH:
1414 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1415 			break;
1416 
1417 		case OVS_NAT_ATTR_PROTO_RANDOM:
1418 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1419 			break;
1420 
1421 		default:
1422 			OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1423 			return -EINVAL;
1424 		}
1425 	}
1426 
1427 	if (rem > 0) {
1428 		OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1429 		return -EINVAL;
1430 	}
1431 	if (!info->nat) {
1432 		/* Do not allow flags if no type is given. */
1433 		if (info->range.flags) {
1434 			OVS_NLERR(log,
1435 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1436 				  );
1437 			return -EINVAL;
1438 		}
1439 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1440 	} else if (!info->commit) {
1441 		OVS_NLERR(log,
1442 			  "NAT attributes may be specified only when CT COMMIT flag is also specified."
1443 			  );
1444 		return -EINVAL;
1445 	}
1446 	/* Allow missing IP_MAX. */
1447 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1448 		memcpy(&info->range.max_addr, &info->range.min_addr,
1449 		       sizeof(info->range.max_addr));
1450 	}
1451 	/* Allow missing PROTO_MAX. */
1452 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1453 	    !have_proto_max) {
1454 		info->range.max_proto.all = info->range.min_proto.all;
1455 	}
1456 	return 0;
1457 }
1458 #endif
1459 
1460 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1461 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1462 	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1463 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1464 				    .maxlen = sizeof(u16) },
1465 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1466 				    .maxlen = sizeof(struct md_mark) },
1467 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1468 				    .maxlen = sizeof(struct md_labels) },
1469 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1470 				    .maxlen = NF_CT_HELPER_NAME_LEN },
1471 #if IS_ENABLED(CONFIG_NF_NAT)
1472 	/* NAT length is checked when parsing the nested attributes. */
1473 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1474 #endif
1475 	[OVS_CT_ATTR_EVENTMASK]	= { .minlen = sizeof(u32),
1476 				    .maxlen = sizeof(u32) },
1477 	[OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1478 				  .maxlen = CTNL_TIMEOUT_NAME_MAX },
1479 };
1480 
1481 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1482 		    const char **helper, bool log)
1483 {
1484 	struct nlattr *a;
1485 	int rem;
1486 
1487 	nla_for_each_nested(a, attr, rem) {
1488 		int type = nla_type(a);
1489 		int maxlen;
1490 		int minlen;
1491 
1492 		if (type > OVS_CT_ATTR_MAX) {
1493 			OVS_NLERR(log,
1494 				  "Unknown conntrack attr (type=%d, max=%d)",
1495 				  type, OVS_CT_ATTR_MAX);
1496 			return -EINVAL;
1497 		}
1498 
1499 		maxlen = ovs_ct_attr_lens[type].maxlen;
1500 		minlen = ovs_ct_attr_lens[type].minlen;
1501 		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1502 			OVS_NLERR(log,
1503 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1504 				  type, nla_len(a), maxlen);
1505 			return -EINVAL;
1506 		}
1507 
1508 		switch (type) {
1509 		case OVS_CT_ATTR_FORCE_COMMIT:
1510 			info->force = true;
1511 			/* fall through. */
1512 		case OVS_CT_ATTR_COMMIT:
1513 			info->commit = true;
1514 			break;
1515 #ifdef CONFIG_NF_CONNTRACK_ZONES
1516 		case OVS_CT_ATTR_ZONE:
1517 			info->zone.id = nla_get_u16(a);
1518 			break;
1519 #endif
1520 #ifdef CONFIG_NF_CONNTRACK_MARK
1521 		case OVS_CT_ATTR_MARK: {
1522 			struct md_mark *mark = nla_data(a);
1523 
1524 			if (!mark->mask) {
1525 				OVS_NLERR(log, "ct_mark mask cannot be 0");
1526 				return -EINVAL;
1527 			}
1528 			info->mark = *mark;
1529 			break;
1530 		}
1531 #endif
1532 #ifdef CONFIG_NF_CONNTRACK_LABELS
1533 		case OVS_CT_ATTR_LABELS: {
1534 			struct md_labels *labels = nla_data(a);
1535 
1536 			if (!labels_nonzero(&labels->mask)) {
1537 				OVS_NLERR(log, "ct_labels mask cannot be 0");
1538 				return -EINVAL;
1539 			}
1540 			info->labels = *labels;
1541 			break;
1542 		}
1543 #endif
1544 		case OVS_CT_ATTR_HELPER:
1545 			*helper = nla_data(a);
1546 			if (!memchr(*helper, '\0', nla_len(a))) {
1547 				OVS_NLERR(log, "Invalid conntrack helper");
1548 				return -EINVAL;
1549 			}
1550 			break;
1551 #if IS_ENABLED(CONFIG_NF_NAT)
1552 		case OVS_CT_ATTR_NAT: {
1553 			int err = parse_nat(a, info, log);
1554 
1555 			if (err)
1556 				return err;
1557 			break;
1558 		}
1559 #endif
1560 		case OVS_CT_ATTR_EVENTMASK:
1561 			info->have_eventmask = true;
1562 			info->eventmask = nla_get_u32(a);
1563 			break;
1564 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1565 		case OVS_CT_ATTR_TIMEOUT:
1566 			memcpy(info->timeout, nla_data(a), nla_len(a));
1567 			if (!memchr(info->timeout, '\0', nla_len(a))) {
1568 				OVS_NLERR(log, "Invalid conntrack helper");
1569 				return -EINVAL;
1570 			}
1571 			break;
1572 #endif
1573 
1574 		default:
1575 			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1576 				  type);
1577 			return -EINVAL;
1578 		}
1579 	}
1580 
1581 #ifdef CONFIG_NF_CONNTRACK_MARK
1582 	if (!info->commit && info->mark.mask) {
1583 		OVS_NLERR(log,
1584 			  "Setting conntrack mark requires 'commit' flag.");
1585 		return -EINVAL;
1586 	}
1587 #endif
1588 #ifdef CONFIG_NF_CONNTRACK_LABELS
1589 	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1590 		OVS_NLERR(log,
1591 			  "Setting conntrack labels requires 'commit' flag.");
1592 		return -EINVAL;
1593 	}
1594 #endif
1595 	if (rem > 0) {
1596 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1597 		return -EINVAL;
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1604 {
1605 	if (attr == OVS_KEY_ATTR_CT_STATE)
1606 		return true;
1607 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1608 	    attr == OVS_KEY_ATTR_CT_ZONE)
1609 		return true;
1610 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1611 	    attr == OVS_KEY_ATTR_CT_MARK)
1612 		return true;
1613 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1614 	    attr == OVS_KEY_ATTR_CT_LABELS) {
1615 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1616 
1617 		return ovs_net->xt_label;
1618 	}
1619 
1620 	return false;
1621 }
1622 
1623 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1624 		       const struct sw_flow_key *key,
1625 		       struct sw_flow_actions **sfa,  bool log)
1626 {
1627 	struct ovs_conntrack_info ct_info;
1628 	const char *helper = NULL;
1629 	u16 family;
1630 	int err;
1631 
1632 	family = key_to_nfproto(key);
1633 	if (family == NFPROTO_UNSPEC) {
1634 		OVS_NLERR(log, "ct family unspecified");
1635 		return -EINVAL;
1636 	}
1637 
1638 	memset(&ct_info, 0, sizeof(ct_info));
1639 	ct_info.family = family;
1640 
1641 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1642 			NF_CT_DEFAULT_ZONE_DIR, 0);
1643 
1644 	err = parse_ct(attr, &ct_info, &helper, log);
1645 	if (err)
1646 		return err;
1647 
1648 	/* Set up template for tracking connections in specific zones. */
1649 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1650 	if (!ct_info.ct) {
1651 		OVS_NLERR(log, "Failed to allocate conntrack template");
1652 		return -ENOMEM;
1653 	}
1654 
1655 	if (ct_info.timeout[0]) {
1656 		if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1657 				      ct_info.timeout))
1658 			pr_info_ratelimited("Failed to associated timeout "
1659 					    "policy `%s'\n", ct_info.timeout);
1660 	}
1661 
1662 	if (helper) {
1663 		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1664 		if (err)
1665 			goto err_free_ct;
1666 	}
1667 
1668 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1669 				 sizeof(ct_info), log);
1670 	if (err)
1671 		goto err_free_ct;
1672 
1673 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1674 	nf_conntrack_get(&ct_info.ct->ct_general);
1675 	return 0;
1676 err_free_ct:
1677 	__ovs_ct_free_action(&ct_info);
1678 	return err;
1679 }
1680 
1681 #if IS_ENABLED(CONFIG_NF_NAT)
1682 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1683 			       struct sk_buff *skb)
1684 {
1685 	struct nlattr *start;
1686 
1687 	start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1688 	if (!start)
1689 		return false;
1690 
1691 	if (info->nat & OVS_CT_SRC_NAT) {
1692 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1693 			return false;
1694 	} else if (info->nat & OVS_CT_DST_NAT) {
1695 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1696 			return false;
1697 	} else {
1698 		goto out;
1699 	}
1700 
1701 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1702 		if (IS_ENABLED(CONFIG_NF_NAT) &&
1703 		    info->family == NFPROTO_IPV4) {
1704 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1705 					    info->range.min_addr.ip) ||
1706 			    (info->range.max_addr.ip
1707 			     != info->range.min_addr.ip &&
1708 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1709 					      info->range.max_addr.ip))))
1710 				return false;
1711 		} else if (IS_ENABLED(CONFIG_IPV6) &&
1712 			   info->family == NFPROTO_IPV6) {
1713 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1714 					     &info->range.min_addr.in6) ||
1715 			    (memcmp(&info->range.max_addr.in6,
1716 				    &info->range.min_addr.in6,
1717 				    sizeof(info->range.max_addr.in6)) &&
1718 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1719 					       &info->range.max_addr.in6))))
1720 				return false;
1721 		} else {
1722 			return false;
1723 		}
1724 	}
1725 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1726 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1727 			 ntohs(info->range.min_proto.all)) ||
1728 	     (info->range.max_proto.all != info->range.min_proto.all &&
1729 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1730 			  ntohs(info->range.max_proto.all)))))
1731 		return false;
1732 
1733 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1734 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1735 		return false;
1736 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1737 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1738 		return false;
1739 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1740 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1741 		return false;
1742 out:
1743 	nla_nest_end(skb, start);
1744 
1745 	return true;
1746 }
1747 #endif
1748 
1749 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1750 			  struct sk_buff *skb)
1751 {
1752 	struct nlattr *start;
1753 
1754 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1755 	if (!start)
1756 		return -EMSGSIZE;
1757 
1758 	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1759 					    ? OVS_CT_ATTR_FORCE_COMMIT
1760 					    : OVS_CT_ATTR_COMMIT))
1761 		return -EMSGSIZE;
1762 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1763 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1764 		return -EMSGSIZE;
1765 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1766 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1767 		    &ct_info->mark))
1768 		return -EMSGSIZE;
1769 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1770 	    labels_nonzero(&ct_info->labels.mask) &&
1771 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1772 		    &ct_info->labels))
1773 		return -EMSGSIZE;
1774 	if (ct_info->helper) {
1775 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1776 				   ct_info->helper->name))
1777 			return -EMSGSIZE;
1778 	}
1779 	if (ct_info->have_eventmask &&
1780 	    nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1781 		return -EMSGSIZE;
1782 	if (ct_info->timeout[0]) {
1783 		if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1784 			return -EMSGSIZE;
1785 	}
1786 
1787 #if IS_ENABLED(CONFIG_NF_NAT)
1788 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1789 		return -EMSGSIZE;
1790 #endif
1791 	nla_nest_end(skb, start);
1792 
1793 	return 0;
1794 }
1795 
1796 void ovs_ct_free_action(const struct nlattr *a)
1797 {
1798 	struct ovs_conntrack_info *ct_info = nla_data(a);
1799 
1800 	__ovs_ct_free_action(ct_info);
1801 }
1802 
1803 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1804 {
1805 	if (ct_info->helper) {
1806 #if IS_ENABLED(CONFIG_NF_NAT)
1807 		if (ct_info->nat)
1808 			nf_nat_helper_put(ct_info->helper);
1809 #endif
1810 		nf_conntrack_helper_put(ct_info->helper);
1811 	}
1812 	if (ct_info->ct) {
1813 		if (ct_info->timeout[0])
1814 			nf_ct_destroy_timeout(ct_info->ct);
1815 		nf_ct_tmpl_free(ct_info->ct);
1816 	}
1817 }
1818 
1819 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1820 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1821 {
1822 	int i, err;
1823 
1824 	ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1825 					 GFP_KERNEL);
1826 	if (!ovs_net->ct_limit_info)
1827 		return -ENOMEM;
1828 
1829 	ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1830 	ovs_net->ct_limit_info->limits =
1831 		kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1832 			      GFP_KERNEL);
1833 	if (!ovs_net->ct_limit_info->limits) {
1834 		kfree(ovs_net->ct_limit_info);
1835 		return -ENOMEM;
1836 	}
1837 
1838 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1839 		INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1840 
1841 	ovs_net->ct_limit_info->data =
1842 		nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1843 
1844 	if (IS_ERR(ovs_net->ct_limit_info->data)) {
1845 		err = PTR_ERR(ovs_net->ct_limit_info->data);
1846 		kfree(ovs_net->ct_limit_info->limits);
1847 		kfree(ovs_net->ct_limit_info);
1848 		pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1849 		return err;
1850 	}
1851 	return 0;
1852 }
1853 
1854 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1855 {
1856 	const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1857 	int i;
1858 
1859 	nf_conncount_destroy(net, NFPROTO_INET, info->data);
1860 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1861 		struct hlist_head *head = &info->limits[i];
1862 		struct ovs_ct_limit *ct_limit;
1863 
1864 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node)
1865 			kfree_rcu(ct_limit, rcu);
1866 	}
1867 	kfree(ovs_net->ct_limit_info->limits);
1868 	kfree(ovs_net->ct_limit_info);
1869 }
1870 
1871 static struct sk_buff *
1872 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1873 			     struct ovs_header **ovs_reply_header)
1874 {
1875 	struct ovs_header *ovs_header = info->userhdr;
1876 	struct sk_buff *skb;
1877 
1878 	skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1879 	if (!skb)
1880 		return ERR_PTR(-ENOMEM);
1881 
1882 	*ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1883 					info->snd_seq,
1884 					&dp_ct_limit_genl_family, 0, cmd);
1885 
1886 	if (!*ovs_reply_header) {
1887 		nlmsg_free(skb);
1888 		return ERR_PTR(-EMSGSIZE);
1889 	}
1890 	(*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1891 
1892 	return skb;
1893 }
1894 
1895 static bool check_zone_id(int zone_id, u16 *pzone)
1896 {
1897 	if (zone_id >= 0 && zone_id <= 65535) {
1898 		*pzone = (u16)zone_id;
1899 		return true;
1900 	}
1901 	return false;
1902 }
1903 
1904 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1905 				       struct ovs_ct_limit_info *info)
1906 {
1907 	struct ovs_zone_limit *zone_limit;
1908 	int rem;
1909 	u16 zone;
1910 
1911 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1912 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1913 
1914 	while (rem >= sizeof(*zone_limit)) {
1915 		if (unlikely(zone_limit->zone_id ==
1916 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1917 			ovs_lock();
1918 			info->default_limit = zone_limit->limit;
1919 			ovs_unlock();
1920 		} else if (unlikely(!check_zone_id(
1921 				zone_limit->zone_id, &zone))) {
1922 			OVS_NLERR(true, "zone id is out of range");
1923 		} else {
1924 			struct ovs_ct_limit *ct_limit;
1925 
1926 			ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1927 			if (!ct_limit)
1928 				return -ENOMEM;
1929 
1930 			ct_limit->zone = zone;
1931 			ct_limit->limit = zone_limit->limit;
1932 
1933 			ovs_lock();
1934 			ct_limit_set(info, ct_limit);
1935 			ovs_unlock();
1936 		}
1937 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1938 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1939 				NLA_ALIGN(sizeof(*zone_limit)));
1940 	}
1941 
1942 	if (rem)
1943 		OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1944 
1945 	return 0;
1946 }
1947 
1948 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1949 				       struct ovs_ct_limit_info *info)
1950 {
1951 	struct ovs_zone_limit *zone_limit;
1952 	int rem;
1953 	u16 zone;
1954 
1955 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1956 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1957 
1958 	while (rem >= sizeof(*zone_limit)) {
1959 		if (unlikely(zone_limit->zone_id ==
1960 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1961 			ovs_lock();
1962 			info->default_limit = OVS_CT_LIMIT_DEFAULT;
1963 			ovs_unlock();
1964 		} else if (unlikely(!check_zone_id(
1965 				zone_limit->zone_id, &zone))) {
1966 			OVS_NLERR(true, "zone id is out of range");
1967 		} else {
1968 			ovs_lock();
1969 			ct_limit_del(info, zone);
1970 			ovs_unlock();
1971 		}
1972 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1973 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1974 				NLA_ALIGN(sizeof(*zone_limit)));
1975 	}
1976 
1977 	if (rem)
1978 		OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
1979 
1980 	return 0;
1981 }
1982 
1983 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
1984 					  struct sk_buff *reply)
1985 {
1986 	struct ovs_zone_limit zone_limit;
1987 	int err;
1988 
1989 	zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE;
1990 	zone_limit.limit = info->default_limit;
1991 	err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1992 	if (err)
1993 		return err;
1994 
1995 	return 0;
1996 }
1997 
1998 static int __ovs_ct_limit_get_zone_limit(struct net *net,
1999 					 struct nf_conncount_data *data,
2000 					 u16 zone_id, u32 limit,
2001 					 struct sk_buff *reply)
2002 {
2003 	struct nf_conntrack_zone ct_zone;
2004 	struct ovs_zone_limit zone_limit;
2005 	u32 conncount_key = zone_id;
2006 
2007 	zone_limit.zone_id = zone_id;
2008 	zone_limit.limit = limit;
2009 	nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
2010 
2011 	zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
2012 					      &ct_zone);
2013 	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2014 }
2015 
2016 static int ovs_ct_limit_get_zone_limit(struct net *net,
2017 				       struct nlattr *nla_zone_limit,
2018 				       struct ovs_ct_limit_info *info,
2019 				       struct sk_buff *reply)
2020 {
2021 	struct ovs_zone_limit *zone_limit;
2022 	int rem, err;
2023 	u32 limit;
2024 	u16 zone;
2025 
2026 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
2027 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2028 
2029 	while (rem >= sizeof(*zone_limit)) {
2030 		if (unlikely(zone_limit->zone_id ==
2031 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2032 			err = ovs_ct_limit_get_default_limit(info, reply);
2033 			if (err)
2034 				return err;
2035 		} else if (unlikely(!check_zone_id(zone_limit->zone_id,
2036 							&zone))) {
2037 			OVS_NLERR(true, "zone id is out of range");
2038 		} else {
2039 			rcu_read_lock();
2040 			limit = ct_limit_get(info, zone);
2041 			rcu_read_unlock();
2042 
2043 			err = __ovs_ct_limit_get_zone_limit(
2044 				net, info->data, zone, limit, reply);
2045 			if (err)
2046 				return err;
2047 		}
2048 		rem -= NLA_ALIGN(sizeof(*zone_limit));
2049 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2050 				NLA_ALIGN(sizeof(*zone_limit)));
2051 	}
2052 
2053 	if (rem)
2054 		OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2055 
2056 	return 0;
2057 }
2058 
2059 static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2060 					   struct ovs_ct_limit_info *info,
2061 					   struct sk_buff *reply)
2062 {
2063 	struct ovs_ct_limit *ct_limit;
2064 	struct hlist_head *head;
2065 	int i, err = 0;
2066 
2067 	err = ovs_ct_limit_get_default_limit(info, reply);
2068 	if (err)
2069 		return err;
2070 
2071 	rcu_read_lock();
2072 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2073 		head = &info->limits[i];
2074 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2075 			err = __ovs_ct_limit_get_zone_limit(net, info->data,
2076 				ct_limit->zone, ct_limit->limit, reply);
2077 			if (err)
2078 				goto exit_err;
2079 		}
2080 	}
2081 
2082 exit_err:
2083 	rcu_read_unlock();
2084 	return err;
2085 }
2086 
2087 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2088 {
2089 	struct nlattr **a = info->attrs;
2090 	struct sk_buff *reply;
2091 	struct ovs_header *ovs_reply_header;
2092 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2093 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2094 	int err;
2095 
2096 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2097 					     &ovs_reply_header);
2098 	if (IS_ERR(reply))
2099 		return PTR_ERR(reply);
2100 
2101 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2102 		err = -EINVAL;
2103 		goto exit_err;
2104 	}
2105 
2106 	err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2107 					  ct_limit_info);
2108 	if (err)
2109 		goto exit_err;
2110 
2111 	static_branch_enable(&ovs_ct_limit_enabled);
2112 
2113 	genlmsg_end(reply, ovs_reply_header);
2114 	return genlmsg_reply(reply, info);
2115 
2116 exit_err:
2117 	nlmsg_free(reply);
2118 	return err;
2119 }
2120 
2121 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2122 {
2123 	struct nlattr **a = info->attrs;
2124 	struct sk_buff *reply;
2125 	struct ovs_header *ovs_reply_header;
2126 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2127 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2128 	int err;
2129 
2130 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2131 					     &ovs_reply_header);
2132 	if (IS_ERR(reply))
2133 		return PTR_ERR(reply);
2134 
2135 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2136 		err = -EINVAL;
2137 		goto exit_err;
2138 	}
2139 
2140 	err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2141 					  ct_limit_info);
2142 	if (err)
2143 		goto exit_err;
2144 
2145 	genlmsg_end(reply, ovs_reply_header);
2146 	return genlmsg_reply(reply, info);
2147 
2148 exit_err:
2149 	nlmsg_free(reply);
2150 	return err;
2151 }
2152 
2153 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2154 {
2155 	struct nlattr **a = info->attrs;
2156 	struct nlattr *nla_reply;
2157 	struct sk_buff *reply;
2158 	struct ovs_header *ovs_reply_header;
2159 	struct net *net = sock_net(skb->sk);
2160 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2161 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2162 	int err;
2163 
2164 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2165 					     &ovs_reply_header);
2166 	if (IS_ERR(reply))
2167 		return PTR_ERR(reply);
2168 
2169 	nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2170 	if (!nla_reply) {
2171 		err = -EMSGSIZE;
2172 		goto exit_err;
2173 	}
2174 
2175 	if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2176 		err = ovs_ct_limit_get_zone_limit(
2177 			net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2178 			reply);
2179 		if (err)
2180 			goto exit_err;
2181 	} else {
2182 		err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2183 						      reply);
2184 		if (err)
2185 			goto exit_err;
2186 	}
2187 
2188 	nla_nest_end(reply, nla_reply);
2189 	genlmsg_end(reply, ovs_reply_header);
2190 	return genlmsg_reply(reply, info);
2191 
2192 exit_err:
2193 	nlmsg_free(reply);
2194 	return err;
2195 }
2196 
2197 static struct genl_ops ct_limit_genl_ops[] = {
2198 	{ .cmd = OVS_CT_LIMIT_CMD_SET,
2199 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2200 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2201 					   * privilege. */
2202 		.doit = ovs_ct_limit_cmd_set,
2203 	},
2204 	{ .cmd = OVS_CT_LIMIT_CMD_DEL,
2205 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2206 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2207 					   * privilege. */
2208 		.doit = ovs_ct_limit_cmd_del,
2209 	},
2210 	{ .cmd = OVS_CT_LIMIT_CMD_GET,
2211 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2212 		.flags = 0,		  /* OK for unprivileged users. */
2213 		.doit = ovs_ct_limit_cmd_get,
2214 	},
2215 };
2216 
2217 static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2218 	.name = OVS_CT_LIMIT_MCGROUP,
2219 };
2220 
2221 struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2222 	.hdrsize = sizeof(struct ovs_header),
2223 	.name = OVS_CT_LIMIT_FAMILY,
2224 	.version = OVS_CT_LIMIT_VERSION,
2225 	.maxattr = OVS_CT_LIMIT_ATTR_MAX,
2226 	.policy = ct_limit_policy,
2227 	.netnsok = true,
2228 	.parallel_ops = true,
2229 	.ops = ct_limit_genl_ops,
2230 	.n_ops = ARRAY_SIZE(ct_limit_genl_ops),
2231 	.mcgrps = &ovs_ct_limit_multicast_group,
2232 	.n_mcgrps = 1,
2233 	.module = THIS_MODULE,
2234 };
2235 #endif
2236 
2237 int ovs_ct_init(struct net *net)
2238 {
2239 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2240 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2241 
2242 	if (nf_connlabels_get(net, n_bits - 1)) {
2243 		ovs_net->xt_label = false;
2244 		OVS_NLERR(true, "Failed to set connlabel length");
2245 	} else {
2246 		ovs_net->xt_label = true;
2247 	}
2248 
2249 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2250 	return ovs_ct_limit_init(net, ovs_net);
2251 #else
2252 	return 0;
2253 #endif
2254 }
2255 
2256 void ovs_ct_exit(struct net *net)
2257 {
2258 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2259 
2260 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2261 	ovs_ct_limit_exit(net, ovs_net);
2262 #endif
2263 
2264 	if (ovs_net->xt_label)
2265 		nf_connlabels_put(net);
2266 }
2267