1 /* 2 * Copyright (c) 2015 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/openvswitch.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/sctp.h> 19 #include <net/ip.h> 20 #include <net/netfilter/nf_conntrack_core.h> 21 #include <net/netfilter/nf_conntrack_helper.h> 22 #include <net/netfilter/nf_conntrack_labels.h> 23 #include <net/netfilter/nf_conntrack_seqadj.h> 24 #include <net/netfilter/nf_conntrack_zones.h> 25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 26 27 #ifdef CONFIG_NF_NAT_NEEDED 28 #include <linux/netfilter/nf_nat.h> 29 #include <net/netfilter/nf_nat_core.h> 30 #include <net/netfilter/nf_nat_l3proto.h> 31 #endif 32 33 #include "datapath.h" 34 #include "conntrack.h" 35 #include "flow.h" 36 #include "flow_netlink.h" 37 38 struct ovs_ct_len_tbl { 39 int maxlen; 40 int minlen; 41 }; 42 43 /* Metadata mark for masked write to conntrack mark */ 44 struct md_mark { 45 u32 value; 46 u32 mask; 47 }; 48 49 /* Metadata label for masked write to conntrack label. */ 50 struct md_labels { 51 struct ovs_key_ct_labels value; 52 struct ovs_key_ct_labels mask; 53 }; 54 55 enum ovs_ct_nat { 56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 59 }; 60 61 /* Conntrack action context for execution. */ 62 struct ovs_conntrack_info { 63 struct nf_conntrack_helper *helper; 64 struct nf_conntrack_zone zone; 65 struct nf_conn *ct; 66 u8 commit : 1; 67 u8 nat : 3; /* enum ovs_ct_nat */ 68 u16 family; 69 struct md_mark mark; 70 struct md_labels labels; 71 #ifdef CONFIG_NF_NAT_NEEDED 72 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */ 73 #endif 74 }; 75 76 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 77 78 static u16 key_to_nfproto(const struct sw_flow_key *key) 79 { 80 switch (ntohs(key->eth.type)) { 81 case ETH_P_IP: 82 return NFPROTO_IPV4; 83 case ETH_P_IPV6: 84 return NFPROTO_IPV6; 85 default: 86 return NFPROTO_UNSPEC; 87 } 88 } 89 90 /* Map SKB connection state into the values used by flow definition. */ 91 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 92 { 93 u8 ct_state = OVS_CS_F_TRACKED; 94 95 switch (ctinfo) { 96 case IP_CT_ESTABLISHED_REPLY: 97 case IP_CT_RELATED_REPLY: 98 ct_state |= OVS_CS_F_REPLY_DIR; 99 break; 100 default: 101 break; 102 } 103 104 switch (ctinfo) { 105 case IP_CT_ESTABLISHED: 106 case IP_CT_ESTABLISHED_REPLY: 107 ct_state |= OVS_CS_F_ESTABLISHED; 108 break; 109 case IP_CT_RELATED: 110 case IP_CT_RELATED_REPLY: 111 ct_state |= OVS_CS_F_RELATED; 112 break; 113 case IP_CT_NEW: 114 ct_state |= OVS_CS_F_NEW; 115 break; 116 default: 117 break; 118 } 119 120 return ct_state; 121 } 122 123 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 124 { 125 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 126 return ct ? ct->mark : 0; 127 #else 128 return 0; 129 #endif 130 } 131 132 static void ovs_ct_get_labels(const struct nf_conn *ct, 133 struct ovs_key_ct_labels *labels) 134 { 135 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; 136 137 if (cl) { 138 size_t len = cl->words * sizeof(long); 139 140 if (len > OVS_CT_LABELS_LEN) 141 len = OVS_CT_LABELS_LEN; 142 else if (len < OVS_CT_LABELS_LEN) 143 memset(labels, 0, OVS_CT_LABELS_LEN); 144 memcpy(labels, cl->bits, len); 145 } else { 146 memset(labels, 0, OVS_CT_LABELS_LEN); 147 } 148 } 149 150 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 151 const struct nf_conntrack_zone *zone, 152 const struct nf_conn *ct) 153 { 154 key->ct.state = state; 155 key->ct.zone = zone->id; 156 key->ct.mark = ovs_ct_get_mark(ct); 157 ovs_ct_get_labels(ct, &key->ct.labels); 158 } 159 160 /* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has 161 * previously sent the packet to conntrack via the ct action. If 162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 163 * initialized from the connection status. 164 */ 165 static void ovs_ct_update_key(const struct sk_buff *skb, 166 const struct ovs_conntrack_info *info, 167 struct sw_flow_key *key, bool post_ct, 168 bool keep_nat_flags) 169 { 170 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 171 enum ip_conntrack_info ctinfo; 172 struct nf_conn *ct; 173 u8 state = 0; 174 175 ct = nf_ct_get(skb, &ctinfo); 176 if (ct) { 177 state = ovs_ct_get_state(ctinfo); 178 /* All unconfirmed entries are NEW connections. */ 179 if (!nf_ct_is_confirmed(ct)) 180 state |= OVS_CS_F_NEW; 181 /* OVS persists the related flag for the duration of the 182 * connection. 183 */ 184 if (ct->master) 185 state |= OVS_CS_F_RELATED; 186 if (keep_nat_flags) { 187 state |= key->ct.state & OVS_CS_F_NAT_MASK; 188 } else { 189 if (ct->status & IPS_SRC_NAT) 190 state |= OVS_CS_F_SRC_NAT; 191 if (ct->status & IPS_DST_NAT) 192 state |= OVS_CS_F_DST_NAT; 193 } 194 zone = nf_ct_zone(ct); 195 } else if (post_ct) { 196 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 197 if (info) 198 zone = &info->zone; 199 } 200 __ovs_ct_update_key(key, state, zone, ct); 201 } 202 203 /* This is called to initialize CT key fields possibly coming in from the local 204 * stack. 205 */ 206 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) 207 { 208 ovs_ct_update_key(skb, NULL, key, false, false); 209 } 210 211 int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb) 212 { 213 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state)) 214 return -EMSGSIZE; 215 216 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 217 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone)) 218 return -EMSGSIZE; 219 220 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 221 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark)) 222 return -EMSGSIZE; 223 224 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 225 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels), 226 &key->ct.labels)) 227 return -EMSGSIZE; 228 229 return 0; 230 } 231 232 static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key, 233 u32 ct_mark, u32 mask) 234 { 235 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 236 enum ip_conntrack_info ctinfo; 237 struct nf_conn *ct; 238 u32 new_mark; 239 240 /* The connection could be invalid, in which case set_mark is no-op. */ 241 ct = nf_ct_get(skb, &ctinfo); 242 if (!ct) 243 return 0; 244 245 new_mark = ct_mark | (ct->mark & ~(mask)); 246 if (ct->mark != new_mark) { 247 ct->mark = new_mark; 248 nf_conntrack_event_cache(IPCT_MARK, ct); 249 key->ct.mark = new_mark; 250 } 251 252 return 0; 253 #else 254 return -ENOTSUPP; 255 #endif 256 } 257 258 static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key, 259 const struct ovs_key_ct_labels *labels, 260 const struct ovs_key_ct_labels *mask) 261 { 262 enum ip_conntrack_info ctinfo; 263 struct nf_conn_labels *cl; 264 struct nf_conn *ct; 265 int err; 266 267 /* The connection could be invalid, in which case set_label is no-op.*/ 268 ct = nf_ct_get(skb, &ctinfo); 269 if (!ct) 270 return 0; 271 272 cl = nf_ct_labels_find(ct); 273 if (!cl) { 274 nf_ct_labels_ext_add(ct); 275 cl = nf_ct_labels_find(ct); 276 } 277 if (!cl || cl->words * sizeof(long) < OVS_CT_LABELS_LEN) 278 return -ENOSPC; 279 280 err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask, 281 OVS_CT_LABELS_LEN / sizeof(u32)); 282 if (err) 283 return err; 284 285 ovs_ct_get_labels(ct, &key->ct.labels); 286 return 0; 287 } 288 289 /* 'skb' should already be pulled to nh_ofs. */ 290 static int ovs_ct_helper(struct sk_buff *skb, u16 proto) 291 { 292 const struct nf_conntrack_helper *helper; 293 const struct nf_conn_help *help; 294 enum ip_conntrack_info ctinfo; 295 unsigned int protoff; 296 struct nf_conn *ct; 297 int err; 298 299 ct = nf_ct_get(skb, &ctinfo); 300 if (!ct || ctinfo == IP_CT_RELATED_REPLY) 301 return NF_ACCEPT; 302 303 help = nfct_help(ct); 304 if (!help) 305 return NF_ACCEPT; 306 307 helper = rcu_dereference(help->helper); 308 if (!helper) 309 return NF_ACCEPT; 310 311 switch (proto) { 312 case NFPROTO_IPV4: 313 protoff = ip_hdrlen(skb); 314 break; 315 case NFPROTO_IPV6: { 316 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 317 __be16 frag_off; 318 int ofs; 319 320 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, 321 &frag_off); 322 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) { 323 pr_debug("proto header not found\n"); 324 return NF_ACCEPT; 325 } 326 protoff = ofs; 327 break; 328 } 329 default: 330 WARN_ONCE(1, "helper invoked on non-IP family!"); 331 return NF_DROP; 332 } 333 334 err = helper->help(skb, protoff, ct, ctinfo); 335 if (err != NF_ACCEPT) 336 return err; 337 338 /* Adjust seqs after helper. This is needed due to some helpers (e.g., 339 * FTP with NAT) adusting the TCP payload size when mangling IP 340 * addresses and/or port numbers in the text-based control connection. 341 */ 342 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && 343 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) 344 return NF_DROP; 345 return NF_ACCEPT; 346 } 347 348 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 349 * value if 'skb' is freed. 350 */ 351 static int handle_fragments(struct net *net, struct sw_flow_key *key, 352 u16 zone, struct sk_buff *skb) 353 { 354 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 355 int err; 356 357 if (key->eth.type == htons(ETH_P_IP)) { 358 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 359 360 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 361 err = ip_defrag(net, skb, user); 362 if (err) 363 return err; 364 365 ovs_cb.mru = IPCB(skb)->frag_max_size; 366 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 367 } else if (key->eth.type == htons(ETH_P_IPV6)) { 368 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 369 370 skb_orphan(skb); 371 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 372 err = nf_ct_frag6_gather(net, skb, user); 373 if (err) 374 return err; 375 376 key->ip.proto = ipv6_hdr(skb)->nexthdr; 377 ovs_cb.mru = IP6CB(skb)->frag_max_size; 378 #endif 379 } else { 380 kfree_skb(skb); 381 return -EPFNOSUPPORT; 382 } 383 384 key->ip.frag = OVS_FRAG_TYPE_NONE; 385 skb_clear_hash(skb); 386 skb->ignore_df = 1; 387 *OVS_CB(skb) = ovs_cb; 388 389 return 0; 390 } 391 392 static struct nf_conntrack_expect * 393 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, 394 u16 proto, const struct sk_buff *skb) 395 { 396 struct nf_conntrack_tuple tuple; 397 398 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) 399 return NULL; 400 return __nf_ct_expect_find(net, zone, &tuple); 401 } 402 403 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 404 static enum ip_conntrack_info 405 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 406 { 407 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 408 409 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 410 return IP_CT_ESTABLISHED_REPLY; 411 /* Once we've had two way comms, always ESTABLISHED. */ 412 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 413 return IP_CT_ESTABLISHED; 414 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 415 return IP_CT_RELATED; 416 return IP_CT_NEW; 417 } 418 419 /* Find an existing connection which this packet belongs to without 420 * re-attributing statistics or modifying the connection state. This allows an 421 * skb->nfct lost due to an upcall to be recovered during actions execution. 422 * 423 * Must be called with rcu_read_lock. 424 * 425 * On success, populates skb->nfct and skb->nfctinfo, and returns the 426 * connection. Returns NULL if there is no existing entry. 427 */ 428 static struct nf_conn * 429 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 430 u8 l3num, struct sk_buff *skb) 431 { 432 struct nf_conntrack_l3proto *l3proto; 433 struct nf_conntrack_l4proto *l4proto; 434 struct nf_conntrack_tuple tuple; 435 struct nf_conntrack_tuple_hash *h; 436 enum ip_conntrack_info ctinfo; 437 struct nf_conn *ct; 438 unsigned int dataoff; 439 u8 protonum; 440 441 l3proto = __nf_ct_l3proto_find(l3num); 442 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff, 443 &protonum) <= 0) { 444 pr_debug("ovs_ct_find_existing: Can't get protonum\n"); 445 return NULL; 446 } 447 l4proto = __nf_ct_l4proto_find(l3num, protonum); 448 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num, 449 protonum, net, &tuple, l3proto, l4proto)) { 450 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 451 return NULL; 452 } 453 454 /* look for tuple match */ 455 h = nf_conntrack_find_get(net, zone, &tuple); 456 if (!h) 457 return NULL; /* Not found. */ 458 459 ct = nf_ct_tuplehash_to_ctrack(h); 460 461 ctinfo = ovs_ct_get_info(h); 462 if (ctinfo == IP_CT_NEW) { 463 /* This should not happen. */ 464 WARN_ONCE(1, "ovs_ct_find_existing: new packet for %p\n", ct); 465 } 466 skb->nfct = &ct->ct_general; 467 skb->nfctinfo = ctinfo; 468 return ct; 469 } 470 471 /* Determine whether skb->nfct is equal to the result of conntrack lookup. */ 472 static bool skb_nfct_cached(struct net *net, 473 const struct sw_flow_key *key, 474 const struct ovs_conntrack_info *info, 475 struct sk_buff *skb) 476 { 477 enum ip_conntrack_info ctinfo; 478 struct nf_conn *ct; 479 480 ct = nf_ct_get(skb, &ctinfo); 481 /* If no ct, check if we have evidence that an existing conntrack entry 482 * might be found for this skb. This happens when we lose a skb->nfct 483 * due to an upcall. If the connection was not confirmed, it is not 484 * cached and needs to be run through conntrack again. 485 */ 486 if (!ct && key->ct.state & OVS_CS_F_TRACKED && 487 !(key->ct.state & OVS_CS_F_INVALID) && 488 key->ct.zone == info->zone.id) 489 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb); 490 if (!ct) 491 return false; 492 if (!net_eq(net, read_pnet(&ct->ct_net))) 493 return false; 494 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 495 return false; 496 if (info->helper) { 497 struct nf_conn_help *help; 498 499 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 500 if (help && rcu_access_pointer(help->helper) != info->helper) 501 return false; 502 } 503 504 return true; 505 } 506 507 #ifdef CONFIG_NF_NAT_NEEDED 508 /* Modelled after nf_nat_ipv[46]_fn(). 509 * range is only used for new, uninitialized NAT state. 510 * Returns either NF_ACCEPT or NF_DROP. 511 */ 512 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 513 enum ip_conntrack_info ctinfo, 514 const struct nf_nat_range *range, 515 enum nf_nat_manip_type maniptype) 516 { 517 int hooknum, nh_off, err = NF_ACCEPT; 518 519 nh_off = skb_network_offset(skb); 520 skb_pull(skb, nh_off); 521 522 /* See HOOK2MANIP(). */ 523 if (maniptype == NF_NAT_MANIP_SRC) 524 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 525 else 526 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 527 528 switch (ctinfo) { 529 case IP_CT_RELATED: 530 case IP_CT_RELATED_REPLY: 531 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 532 skb->protocol == htons(ETH_P_IP) && 533 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 534 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 535 hooknum)) 536 err = NF_DROP; 537 goto push; 538 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 539 skb->protocol == htons(ETH_P_IPV6)) { 540 __be16 frag_off; 541 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 542 int hdrlen = ipv6_skip_exthdr(skb, 543 sizeof(struct ipv6hdr), 544 &nexthdr, &frag_off); 545 546 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 547 if (!nf_nat_icmpv6_reply_translation(skb, ct, 548 ctinfo, 549 hooknum, 550 hdrlen)) 551 err = NF_DROP; 552 goto push; 553 } 554 } 555 /* Non-ICMP, fall thru to initialize if needed. */ 556 case IP_CT_NEW: 557 /* Seen it before? This can happen for loopback, retrans, 558 * or local packets. 559 */ 560 if (!nf_nat_initialized(ct, maniptype)) { 561 /* Initialize according to the NAT action. */ 562 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 563 /* Action is set up to establish a new 564 * mapping. 565 */ 566 ? nf_nat_setup_info(ct, range, maniptype) 567 : nf_nat_alloc_null_binding(ct, hooknum); 568 if (err != NF_ACCEPT) 569 goto push; 570 } 571 break; 572 573 case IP_CT_ESTABLISHED: 574 case IP_CT_ESTABLISHED_REPLY: 575 break; 576 577 default: 578 err = NF_DROP; 579 goto push; 580 } 581 582 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 583 push: 584 skb_push(skb, nh_off); 585 586 return err; 587 } 588 589 static void ovs_nat_update_key(struct sw_flow_key *key, 590 const struct sk_buff *skb, 591 enum nf_nat_manip_type maniptype) 592 { 593 if (maniptype == NF_NAT_MANIP_SRC) { 594 __be16 src; 595 596 key->ct.state |= OVS_CS_F_SRC_NAT; 597 if (key->eth.type == htons(ETH_P_IP)) 598 key->ipv4.addr.src = ip_hdr(skb)->saddr; 599 else if (key->eth.type == htons(ETH_P_IPV6)) 600 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 601 sizeof(key->ipv6.addr.src)); 602 else 603 return; 604 605 if (key->ip.proto == IPPROTO_UDP) 606 src = udp_hdr(skb)->source; 607 else if (key->ip.proto == IPPROTO_TCP) 608 src = tcp_hdr(skb)->source; 609 else if (key->ip.proto == IPPROTO_SCTP) 610 src = sctp_hdr(skb)->source; 611 else 612 return; 613 614 key->tp.src = src; 615 } else { 616 __be16 dst; 617 618 key->ct.state |= OVS_CS_F_DST_NAT; 619 if (key->eth.type == htons(ETH_P_IP)) 620 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 621 else if (key->eth.type == htons(ETH_P_IPV6)) 622 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 623 sizeof(key->ipv6.addr.dst)); 624 else 625 return; 626 627 if (key->ip.proto == IPPROTO_UDP) 628 dst = udp_hdr(skb)->dest; 629 else if (key->ip.proto == IPPROTO_TCP) 630 dst = tcp_hdr(skb)->dest; 631 else if (key->ip.proto == IPPROTO_SCTP) 632 dst = sctp_hdr(skb)->dest; 633 else 634 return; 635 636 key->tp.dst = dst; 637 } 638 } 639 640 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 641 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 642 const struct ovs_conntrack_info *info, 643 struct sk_buff *skb, struct nf_conn *ct, 644 enum ip_conntrack_info ctinfo) 645 { 646 enum nf_nat_manip_type maniptype; 647 int err; 648 649 if (nf_ct_is_untracked(ct)) { 650 /* A NAT action may only be performed on tracked packets. */ 651 return NF_ACCEPT; 652 } 653 654 /* Add NAT extension if not confirmed yet. */ 655 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 656 return NF_ACCEPT; /* Can't NAT. */ 657 658 /* Determine NAT type. 659 * Check if the NAT type can be deduced from the tracked connection. 660 * Make sure new expected connections (IP_CT_RELATED) are NATted only 661 * when committing. 662 */ 663 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW && 664 ct->status & IPS_NAT_MASK && 665 (ctinfo != IP_CT_RELATED || info->commit)) { 666 /* NAT an established or related connection like before. */ 667 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 668 /* This is the REPLY direction for a connection 669 * for which NAT was applied in the forward 670 * direction. Do the reverse NAT. 671 */ 672 maniptype = ct->status & IPS_SRC_NAT 673 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 674 else 675 maniptype = ct->status & IPS_SRC_NAT 676 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 677 } else if (info->nat & OVS_CT_SRC_NAT) { 678 maniptype = NF_NAT_MANIP_SRC; 679 } else if (info->nat & OVS_CT_DST_NAT) { 680 maniptype = NF_NAT_MANIP_DST; 681 } else { 682 return NF_ACCEPT; /* Connection is not NATed. */ 683 } 684 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype); 685 686 /* Mark NAT done if successful and update the flow key. */ 687 if (err == NF_ACCEPT) 688 ovs_nat_update_key(key, skb, maniptype); 689 690 return err; 691 } 692 #else /* !CONFIG_NF_NAT_NEEDED */ 693 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 694 const struct ovs_conntrack_info *info, 695 struct sk_buff *skb, struct nf_conn *ct, 696 enum ip_conntrack_info ctinfo) 697 { 698 return NF_ACCEPT; 699 } 700 #endif 701 702 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 703 * not done already. Update key with new CT state after passing the packet 704 * through conntrack. 705 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be 706 * set to NULL and 0 will be returned. 707 */ 708 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 709 const struct ovs_conntrack_info *info, 710 struct sk_buff *skb) 711 { 712 /* If we are recirculating packets to match on conntrack fields and 713 * committing with a separate conntrack action, then we don't need to 714 * actually run the packet through conntrack twice unless it's for a 715 * different zone. 716 */ 717 bool cached = skb_nfct_cached(net, key, info, skb); 718 enum ip_conntrack_info ctinfo; 719 struct nf_conn *ct; 720 721 if (!cached) { 722 struct nf_conn *tmpl = info->ct; 723 int err; 724 725 /* Associate skb with specified zone. */ 726 if (tmpl) { 727 if (skb->nfct) 728 nf_conntrack_put(skb->nfct); 729 nf_conntrack_get(&tmpl->ct_general); 730 skb->nfct = &tmpl->ct_general; 731 skb->nfctinfo = IP_CT_NEW; 732 } 733 734 /* Repeat if requested, see nf_iterate(). */ 735 do { 736 err = nf_conntrack_in(net, info->family, 737 NF_INET_PRE_ROUTING, skb); 738 } while (err == NF_REPEAT); 739 740 if (err != NF_ACCEPT) 741 return -ENOENT; 742 743 /* Clear CT state NAT flags to mark that we have not yet done 744 * NAT after the nf_conntrack_in() call. We can actually clear 745 * the whole state, as it will be re-initialized below. 746 */ 747 key->ct.state = 0; 748 749 /* Update the key, but keep the NAT flags. */ 750 ovs_ct_update_key(skb, info, key, true, true); 751 } 752 753 ct = nf_ct_get(skb, &ctinfo); 754 if (ct) { 755 /* Packets starting a new connection must be NATted before the 756 * helper, so that the helper knows about the NAT. We enforce 757 * this by delaying both NAT and helper calls for unconfirmed 758 * connections until the committing CT action. For later 759 * packets NAT and Helper may be called in either order. 760 * 761 * NAT will be done only if the CT action has NAT, and only 762 * once per packet (per zone), as guarded by the NAT bits in 763 * the key->ct.state. 764 */ 765 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) && 766 (nf_ct_is_confirmed(ct) || info->commit) && 767 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 768 return -EINVAL; 769 } 770 771 /* Userspace may decide to perform a ct lookup without a helper 772 * specified followed by a (recirculate and) commit with one. 773 * Therefore, for unconfirmed connections which we will commit, 774 * we need to attach the helper here. 775 */ 776 if (!nf_ct_is_confirmed(ct) && info->commit && 777 info->helper && !nfct_help(ct)) { 778 int err = __nf_ct_try_assign_helper(ct, info->ct, 779 GFP_ATOMIC); 780 if (err) 781 return err; 782 } 783 784 /* Call the helper only if: 785 * - nf_conntrack_in() was executed above ("!cached") for a 786 * confirmed connection, or 787 * - When committing an unconfirmed connection. 788 */ 789 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) && 790 ovs_ct_helper(skb, info->family) != NF_ACCEPT) { 791 return -EINVAL; 792 } 793 } 794 795 return 0; 796 } 797 798 /* Lookup connection and read fields into key. */ 799 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 800 const struct ovs_conntrack_info *info, 801 struct sk_buff *skb) 802 { 803 struct nf_conntrack_expect *exp; 804 805 /* If we pass an expected packet through nf_conntrack_in() the 806 * expectation is typically removed, but the packet could still be 807 * lost in upcall processing. To prevent this from happening we 808 * perform an explicit expectation lookup. Expected connections are 809 * always new, and will be passed through conntrack only when they are 810 * committed, as it is OK to remove the expectation at that time. 811 */ 812 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); 813 if (exp) { 814 u8 state; 815 816 /* NOTE: New connections are NATted and Helped only when 817 * committed, so we are not calling into NAT here. 818 */ 819 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; 820 __ovs_ct_update_key(key, state, &info->zone, exp->master); 821 } else { 822 struct nf_conn *ct; 823 int err; 824 825 err = __ovs_ct_lookup(net, key, info, skb); 826 if (err) 827 return err; 828 829 ct = (struct nf_conn *)skb->nfct; 830 if (ct) 831 nf_ct_deliver_cached_events(ct); 832 } 833 834 return 0; 835 } 836 837 /* Lookup connection and confirm if unconfirmed. */ 838 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 839 const struct ovs_conntrack_info *info, 840 struct sk_buff *skb) 841 { 842 int err; 843 844 err = __ovs_ct_lookup(net, key, info, skb); 845 if (err) 846 return err; 847 /* This is a no-op if the connection has already been confirmed. */ 848 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 849 return -EINVAL; 850 851 return 0; 852 } 853 854 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 855 { 856 size_t i; 857 858 for (i = 0; i < sizeof(*labels); i++) 859 if (labels->ct_labels[i]) 860 return true; 861 862 return false; 863 } 864 865 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 866 * value if 'skb' is freed. 867 */ 868 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 869 struct sw_flow_key *key, 870 const struct ovs_conntrack_info *info) 871 { 872 int nh_ofs; 873 int err; 874 875 /* The conntrack module expects to be working at L3. */ 876 nh_ofs = skb_network_offset(skb); 877 skb_pull(skb, nh_ofs); 878 879 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 880 err = handle_fragments(net, key, info->zone.id, skb); 881 if (err) 882 return err; 883 } 884 885 if (info->commit) 886 err = ovs_ct_commit(net, key, info, skb); 887 else 888 err = ovs_ct_lookup(net, key, info, skb); 889 if (err) 890 goto err; 891 892 if (info->mark.mask) { 893 err = ovs_ct_set_mark(skb, key, info->mark.value, 894 info->mark.mask); 895 if (err) 896 goto err; 897 } 898 if (labels_nonzero(&info->labels.mask)) 899 err = ovs_ct_set_labels(skb, key, &info->labels.value, 900 &info->labels.mask); 901 err: 902 skb_push(skb, nh_ofs); 903 if (err) 904 kfree_skb(skb); 905 return err; 906 } 907 908 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, 909 const struct sw_flow_key *key, bool log) 910 { 911 struct nf_conntrack_helper *helper; 912 struct nf_conn_help *help; 913 914 helper = nf_conntrack_helper_try_module_get(name, info->family, 915 key->ip.proto); 916 if (!helper) { 917 OVS_NLERR(log, "Unknown helper \"%s\"", name); 918 return -EINVAL; 919 } 920 921 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL); 922 if (!help) { 923 module_put(helper->me); 924 return -ENOMEM; 925 } 926 927 rcu_assign_pointer(help->helper, helper); 928 info->helper = helper; 929 return 0; 930 } 931 932 #ifdef CONFIG_NF_NAT_NEEDED 933 static int parse_nat(const struct nlattr *attr, 934 struct ovs_conntrack_info *info, bool log) 935 { 936 struct nlattr *a; 937 int rem; 938 bool have_ip_max = false; 939 bool have_proto_max = false; 940 bool ip_vers = (info->family == NFPROTO_IPV6); 941 942 nla_for_each_nested(a, attr, rem) { 943 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 944 [OVS_NAT_ATTR_SRC] = {0, 0}, 945 [OVS_NAT_ATTR_DST] = {0, 0}, 946 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 947 sizeof(struct in6_addr)}, 948 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 949 sizeof(struct in6_addr)}, 950 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 951 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 952 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 953 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 954 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 955 }; 956 int type = nla_type(a); 957 958 if (type > OVS_NAT_ATTR_MAX) { 959 OVS_NLERR(log, 960 "Unknown NAT attribute (type=%d, max=%d).\n", 961 type, OVS_NAT_ATTR_MAX); 962 return -EINVAL; 963 } 964 965 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 966 OVS_NLERR(log, 967 "NAT attribute type %d has unexpected length (%d != %d).\n", 968 type, nla_len(a), 969 ovs_nat_attr_lens[type][ip_vers]); 970 return -EINVAL; 971 } 972 973 switch (type) { 974 case OVS_NAT_ATTR_SRC: 975 case OVS_NAT_ATTR_DST: 976 if (info->nat) { 977 OVS_NLERR(log, 978 "Only one type of NAT may be specified.\n" 979 ); 980 return -ERANGE; 981 } 982 info->nat |= OVS_CT_NAT; 983 info->nat |= ((type == OVS_NAT_ATTR_SRC) 984 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 985 break; 986 987 case OVS_NAT_ATTR_IP_MIN: 988 nla_memcpy(&info->range.min_addr, a, 989 sizeof(info->range.min_addr)); 990 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 991 break; 992 993 case OVS_NAT_ATTR_IP_MAX: 994 have_ip_max = true; 995 nla_memcpy(&info->range.max_addr, a, 996 sizeof(info->range.max_addr)); 997 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 998 break; 999 1000 case OVS_NAT_ATTR_PROTO_MIN: 1001 info->range.min_proto.all = htons(nla_get_u16(a)); 1002 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1003 break; 1004 1005 case OVS_NAT_ATTR_PROTO_MAX: 1006 have_proto_max = true; 1007 info->range.max_proto.all = htons(nla_get_u16(a)); 1008 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1009 break; 1010 1011 case OVS_NAT_ATTR_PERSISTENT: 1012 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 1013 break; 1014 1015 case OVS_NAT_ATTR_PROTO_HASH: 1016 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1017 break; 1018 1019 case OVS_NAT_ATTR_PROTO_RANDOM: 1020 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1021 break; 1022 1023 default: 1024 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type); 1025 return -EINVAL; 1026 } 1027 } 1028 1029 if (rem > 0) { 1030 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem); 1031 return -EINVAL; 1032 } 1033 if (!info->nat) { 1034 /* Do not allow flags if no type is given. */ 1035 if (info->range.flags) { 1036 OVS_NLERR(log, 1037 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n" 1038 ); 1039 return -EINVAL; 1040 } 1041 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1042 } else if (!info->commit) { 1043 OVS_NLERR(log, 1044 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n" 1045 ); 1046 return -EINVAL; 1047 } 1048 /* Allow missing IP_MAX. */ 1049 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1050 memcpy(&info->range.max_addr, &info->range.min_addr, 1051 sizeof(info->range.max_addr)); 1052 } 1053 /* Allow missing PROTO_MAX. */ 1054 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1055 !have_proto_max) { 1056 info->range.max_proto.all = info->range.min_proto.all; 1057 } 1058 return 0; 1059 } 1060 #endif 1061 1062 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1063 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1064 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1065 .maxlen = sizeof(u16) }, 1066 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1067 .maxlen = sizeof(struct md_mark) }, 1068 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1069 .maxlen = sizeof(struct md_labels) }, 1070 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1071 .maxlen = NF_CT_HELPER_NAME_LEN }, 1072 #ifdef CONFIG_NF_NAT_NEEDED 1073 /* NAT length is checked when parsing the nested attributes. */ 1074 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1075 #endif 1076 }; 1077 1078 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1079 const char **helper, bool log) 1080 { 1081 struct nlattr *a; 1082 int rem; 1083 1084 nla_for_each_nested(a, attr, rem) { 1085 int type = nla_type(a); 1086 int maxlen = ovs_ct_attr_lens[type].maxlen; 1087 int minlen = ovs_ct_attr_lens[type].minlen; 1088 1089 if (type > OVS_CT_ATTR_MAX) { 1090 OVS_NLERR(log, 1091 "Unknown conntrack attr (type=%d, max=%d)", 1092 type, OVS_CT_ATTR_MAX); 1093 return -EINVAL; 1094 } 1095 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1096 OVS_NLERR(log, 1097 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1098 type, nla_len(a), maxlen); 1099 return -EINVAL; 1100 } 1101 1102 switch (type) { 1103 case OVS_CT_ATTR_COMMIT: 1104 info->commit = true; 1105 break; 1106 #ifdef CONFIG_NF_CONNTRACK_ZONES 1107 case OVS_CT_ATTR_ZONE: 1108 info->zone.id = nla_get_u16(a); 1109 break; 1110 #endif 1111 #ifdef CONFIG_NF_CONNTRACK_MARK 1112 case OVS_CT_ATTR_MARK: { 1113 struct md_mark *mark = nla_data(a); 1114 1115 if (!mark->mask) { 1116 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1117 return -EINVAL; 1118 } 1119 info->mark = *mark; 1120 break; 1121 } 1122 #endif 1123 #ifdef CONFIG_NF_CONNTRACK_LABELS 1124 case OVS_CT_ATTR_LABELS: { 1125 struct md_labels *labels = nla_data(a); 1126 1127 if (!labels_nonzero(&labels->mask)) { 1128 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1129 return -EINVAL; 1130 } 1131 info->labels = *labels; 1132 break; 1133 } 1134 #endif 1135 case OVS_CT_ATTR_HELPER: 1136 *helper = nla_data(a); 1137 if (!memchr(*helper, '\0', nla_len(a))) { 1138 OVS_NLERR(log, "Invalid conntrack helper"); 1139 return -EINVAL; 1140 } 1141 break; 1142 #ifdef CONFIG_NF_NAT_NEEDED 1143 case OVS_CT_ATTR_NAT: { 1144 int err = parse_nat(a, info, log); 1145 1146 if (err) 1147 return err; 1148 break; 1149 } 1150 #endif 1151 default: 1152 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1153 type); 1154 return -EINVAL; 1155 } 1156 } 1157 1158 if (rem > 0) { 1159 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1160 return -EINVAL; 1161 } 1162 1163 return 0; 1164 } 1165 1166 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1167 { 1168 if (attr == OVS_KEY_ATTR_CT_STATE) 1169 return true; 1170 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1171 attr == OVS_KEY_ATTR_CT_ZONE) 1172 return true; 1173 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1174 attr == OVS_KEY_ATTR_CT_MARK) 1175 return true; 1176 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1177 attr == OVS_KEY_ATTR_CT_LABELS) { 1178 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1179 1180 return ovs_net->xt_label; 1181 } 1182 1183 return false; 1184 } 1185 1186 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1187 const struct sw_flow_key *key, 1188 struct sw_flow_actions **sfa, bool log) 1189 { 1190 struct ovs_conntrack_info ct_info; 1191 const char *helper = NULL; 1192 u16 family; 1193 int err; 1194 1195 family = key_to_nfproto(key); 1196 if (family == NFPROTO_UNSPEC) { 1197 OVS_NLERR(log, "ct family unspecified"); 1198 return -EINVAL; 1199 } 1200 1201 memset(&ct_info, 0, sizeof(ct_info)); 1202 ct_info.family = family; 1203 1204 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1205 NF_CT_DEFAULT_ZONE_DIR, 0); 1206 1207 err = parse_ct(attr, &ct_info, &helper, log); 1208 if (err) 1209 return err; 1210 1211 /* Set up template for tracking connections in specific zones. */ 1212 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1213 if (!ct_info.ct) { 1214 OVS_NLERR(log, "Failed to allocate conntrack template"); 1215 return -ENOMEM; 1216 } 1217 1218 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1219 nf_conntrack_get(&ct_info.ct->ct_general); 1220 1221 if (helper) { 1222 err = ovs_ct_add_helper(&ct_info, helper, key, log); 1223 if (err) 1224 goto err_free_ct; 1225 } 1226 1227 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1228 sizeof(ct_info), log); 1229 if (err) 1230 goto err_free_ct; 1231 1232 return 0; 1233 err_free_ct: 1234 __ovs_ct_free_action(&ct_info); 1235 return err; 1236 } 1237 1238 #ifdef CONFIG_NF_NAT_NEEDED 1239 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1240 struct sk_buff *skb) 1241 { 1242 struct nlattr *start; 1243 1244 start = nla_nest_start(skb, OVS_CT_ATTR_NAT); 1245 if (!start) 1246 return false; 1247 1248 if (info->nat & OVS_CT_SRC_NAT) { 1249 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1250 return false; 1251 } else if (info->nat & OVS_CT_DST_NAT) { 1252 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1253 return false; 1254 } else { 1255 goto out; 1256 } 1257 1258 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1259 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 1260 info->family == NFPROTO_IPV4) { 1261 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1262 info->range.min_addr.ip) || 1263 (info->range.max_addr.ip 1264 != info->range.min_addr.ip && 1265 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1266 info->range.max_addr.ip)))) 1267 return false; 1268 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 1269 info->family == NFPROTO_IPV6) { 1270 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1271 &info->range.min_addr.in6) || 1272 (memcmp(&info->range.max_addr.in6, 1273 &info->range.min_addr.in6, 1274 sizeof(info->range.max_addr.in6)) && 1275 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1276 &info->range.max_addr.in6)))) 1277 return false; 1278 } else { 1279 return false; 1280 } 1281 } 1282 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1283 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1284 ntohs(info->range.min_proto.all)) || 1285 (info->range.max_proto.all != info->range.min_proto.all && 1286 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1287 ntohs(info->range.max_proto.all))))) 1288 return false; 1289 1290 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1291 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1292 return false; 1293 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1294 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1295 return false; 1296 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1297 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1298 return false; 1299 out: 1300 nla_nest_end(skb, start); 1301 1302 return true; 1303 } 1304 #endif 1305 1306 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1307 struct sk_buff *skb) 1308 { 1309 struct nlattr *start; 1310 1311 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT); 1312 if (!start) 1313 return -EMSGSIZE; 1314 1315 if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT)) 1316 return -EMSGSIZE; 1317 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1318 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1319 return -EMSGSIZE; 1320 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1321 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1322 &ct_info->mark)) 1323 return -EMSGSIZE; 1324 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1325 labels_nonzero(&ct_info->labels.mask) && 1326 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1327 &ct_info->labels)) 1328 return -EMSGSIZE; 1329 if (ct_info->helper) { 1330 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1331 ct_info->helper->name)) 1332 return -EMSGSIZE; 1333 } 1334 #ifdef CONFIG_NF_NAT_NEEDED 1335 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1336 return -EMSGSIZE; 1337 #endif 1338 nla_nest_end(skb, start); 1339 1340 return 0; 1341 } 1342 1343 void ovs_ct_free_action(const struct nlattr *a) 1344 { 1345 struct ovs_conntrack_info *ct_info = nla_data(a); 1346 1347 __ovs_ct_free_action(ct_info); 1348 } 1349 1350 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1351 { 1352 if (ct_info->helper) 1353 module_put(ct_info->helper->me); 1354 if (ct_info->ct) 1355 nf_ct_put(ct_info->ct); 1356 } 1357 1358 void ovs_ct_init(struct net *net) 1359 { 1360 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 1361 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1362 1363 if (nf_connlabels_get(net, n_bits - 1)) { 1364 ovs_net->xt_label = false; 1365 OVS_NLERR(true, "Failed to set connlabel length"); 1366 } else { 1367 ovs_net->xt_label = true; 1368 } 1369 } 1370 1371 void ovs_ct_exit(struct net *net) 1372 { 1373 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1374 1375 if (ovs_net->xt_label) 1376 nf_connlabels_put(net); 1377 } 1378