xref: /linux/net/openvswitch/conntrack.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 /*
2  * Copyright (c) 2015 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/openvswitch.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/sctp.h>
19 #include <linux/static_key.h>
20 #include <net/ip.h>
21 #include <net/genetlink.h>
22 #include <net/netfilter/nf_conntrack_core.h>
23 #include <net/netfilter/nf_conntrack_count.h>
24 #include <net/netfilter/nf_conntrack_helper.h>
25 #include <net/netfilter/nf_conntrack_labels.h>
26 #include <net/netfilter/nf_conntrack_seqadj.h>
27 #include <net/netfilter/nf_conntrack_zones.h>
28 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
29 
30 #ifdef CONFIG_NF_NAT_NEEDED
31 #include <linux/netfilter/nf_nat.h>
32 #include <net/netfilter/nf_nat_core.h>
33 #include <net/netfilter/nf_nat_l3proto.h>
34 #endif
35 
36 #include "datapath.h"
37 #include "conntrack.h"
38 #include "flow.h"
39 #include "flow_netlink.h"
40 
41 struct ovs_ct_len_tbl {
42 	int maxlen;
43 	int minlen;
44 };
45 
46 /* Metadata mark for masked write to conntrack mark */
47 struct md_mark {
48 	u32 value;
49 	u32 mask;
50 };
51 
52 /* Metadata label for masked write to conntrack label. */
53 struct md_labels {
54 	struct ovs_key_ct_labels value;
55 	struct ovs_key_ct_labels mask;
56 };
57 
58 enum ovs_ct_nat {
59 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
60 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
61 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
62 };
63 
64 /* Conntrack action context for execution. */
65 struct ovs_conntrack_info {
66 	struct nf_conntrack_helper *helper;
67 	struct nf_conntrack_zone zone;
68 	struct nf_conn *ct;
69 	u8 commit : 1;
70 	u8 nat : 3;                 /* enum ovs_ct_nat */
71 	u8 force : 1;
72 	u8 have_eventmask : 1;
73 	u16 family;
74 	u32 eventmask;              /* Mask of 1 << IPCT_*. */
75 	struct md_mark mark;
76 	struct md_labels labels;
77 #ifdef CONFIG_NF_NAT_NEEDED
78 	struct nf_nat_range2 range;  /* Only present for SRC NAT and DST NAT. */
79 #endif
80 };
81 
82 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
83 #define OVS_CT_LIMIT_UNLIMITED	0
84 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
85 #define CT_LIMIT_HASH_BUCKETS 512
86 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
87 
88 struct ovs_ct_limit {
89 	/* Elements in ovs_ct_limit_info->limits hash table */
90 	struct hlist_node hlist_node;
91 	struct rcu_head rcu;
92 	u16 zone;
93 	u32 limit;
94 };
95 
96 struct ovs_ct_limit_info {
97 	u32 default_limit;
98 	struct hlist_head *limits;
99 	struct nf_conncount_data *data;
100 };
101 
102 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
103 	[OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
104 };
105 #endif
106 
107 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
108 
109 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
110 
111 static u16 key_to_nfproto(const struct sw_flow_key *key)
112 {
113 	switch (ntohs(key->eth.type)) {
114 	case ETH_P_IP:
115 		return NFPROTO_IPV4;
116 	case ETH_P_IPV6:
117 		return NFPROTO_IPV6;
118 	default:
119 		return NFPROTO_UNSPEC;
120 	}
121 }
122 
123 /* Map SKB connection state into the values used by flow definition. */
124 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
125 {
126 	u8 ct_state = OVS_CS_F_TRACKED;
127 
128 	switch (ctinfo) {
129 	case IP_CT_ESTABLISHED_REPLY:
130 	case IP_CT_RELATED_REPLY:
131 		ct_state |= OVS_CS_F_REPLY_DIR;
132 		break;
133 	default:
134 		break;
135 	}
136 
137 	switch (ctinfo) {
138 	case IP_CT_ESTABLISHED:
139 	case IP_CT_ESTABLISHED_REPLY:
140 		ct_state |= OVS_CS_F_ESTABLISHED;
141 		break;
142 	case IP_CT_RELATED:
143 	case IP_CT_RELATED_REPLY:
144 		ct_state |= OVS_CS_F_RELATED;
145 		break;
146 	case IP_CT_NEW:
147 		ct_state |= OVS_CS_F_NEW;
148 		break;
149 	default:
150 		break;
151 	}
152 
153 	return ct_state;
154 }
155 
156 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
157 {
158 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
159 	return ct ? ct->mark : 0;
160 #else
161 	return 0;
162 #endif
163 }
164 
165 /* Guard against conntrack labels max size shrinking below 128 bits. */
166 #if NF_CT_LABELS_MAX_SIZE < 16
167 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
168 #endif
169 
170 static void ovs_ct_get_labels(const struct nf_conn *ct,
171 			      struct ovs_key_ct_labels *labels)
172 {
173 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
174 
175 	if (cl)
176 		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
177 	else
178 		memset(labels, 0, OVS_CT_LABELS_LEN);
179 }
180 
181 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
182 					const struct nf_conntrack_tuple *orig,
183 					u8 icmp_proto)
184 {
185 	key->ct_orig_proto = orig->dst.protonum;
186 	if (orig->dst.protonum == icmp_proto) {
187 		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
188 		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
189 	} else {
190 		key->ct.orig_tp.src = orig->src.u.all;
191 		key->ct.orig_tp.dst = orig->dst.u.all;
192 	}
193 }
194 
195 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
196 				const struct nf_conntrack_zone *zone,
197 				const struct nf_conn *ct)
198 {
199 	key->ct_state = state;
200 	key->ct_zone = zone->id;
201 	key->ct.mark = ovs_ct_get_mark(ct);
202 	ovs_ct_get_labels(ct, &key->ct.labels);
203 
204 	if (ct) {
205 		const struct nf_conntrack_tuple *orig;
206 
207 		/* Use the master if we have one. */
208 		if (ct->master)
209 			ct = ct->master;
210 		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
211 
212 		/* IP version must match with the master connection. */
213 		if (key->eth.type == htons(ETH_P_IP) &&
214 		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
215 			key->ipv4.ct_orig.src = orig->src.u3.ip;
216 			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
217 			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
218 			return;
219 		} else if (key->eth.type == htons(ETH_P_IPV6) &&
220 			   !sw_flow_key_is_nd(key) &&
221 			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
222 			key->ipv6.ct_orig.src = orig->src.u3.in6;
223 			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
224 			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
225 			return;
226 		}
227 	}
228 	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
229 	 * original direction key fields.
230 	 */
231 	key->ct_orig_proto = 0;
232 }
233 
234 /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
235  * previously sent the packet to conntrack via the ct action.  If
236  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
237  * initialized from the connection status.
238  */
239 static void ovs_ct_update_key(const struct sk_buff *skb,
240 			      const struct ovs_conntrack_info *info,
241 			      struct sw_flow_key *key, bool post_ct,
242 			      bool keep_nat_flags)
243 {
244 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
245 	enum ip_conntrack_info ctinfo;
246 	struct nf_conn *ct;
247 	u8 state = 0;
248 
249 	ct = nf_ct_get(skb, &ctinfo);
250 	if (ct) {
251 		state = ovs_ct_get_state(ctinfo);
252 		/* All unconfirmed entries are NEW connections. */
253 		if (!nf_ct_is_confirmed(ct))
254 			state |= OVS_CS_F_NEW;
255 		/* OVS persists the related flag for the duration of the
256 		 * connection.
257 		 */
258 		if (ct->master)
259 			state |= OVS_CS_F_RELATED;
260 		if (keep_nat_flags) {
261 			state |= key->ct_state & OVS_CS_F_NAT_MASK;
262 		} else {
263 			if (ct->status & IPS_SRC_NAT)
264 				state |= OVS_CS_F_SRC_NAT;
265 			if (ct->status & IPS_DST_NAT)
266 				state |= OVS_CS_F_DST_NAT;
267 		}
268 		zone = nf_ct_zone(ct);
269 	} else if (post_ct) {
270 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
271 		if (info)
272 			zone = &info->zone;
273 	}
274 	__ovs_ct_update_key(key, state, zone, ct);
275 }
276 
277 /* This is called to initialize CT key fields possibly coming in from the local
278  * stack.
279  */
280 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
281 {
282 	ovs_ct_update_key(skb, NULL, key, false, false);
283 }
284 
285 #define IN6_ADDR_INITIALIZER(ADDR) \
286 	{ (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
287 	  (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
288 
289 int ovs_ct_put_key(const struct sw_flow_key *swkey,
290 		   const struct sw_flow_key *output, struct sk_buff *skb)
291 {
292 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
293 		return -EMSGSIZE;
294 
295 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
296 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
297 		return -EMSGSIZE;
298 
299 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
300 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
301 		return -EMSGSIZE;
302 
303 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
304 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
305 		    &output->ct.labels))
306 		return -EMSGSIZE;
307 
308 	if (swkey->ct_orig_proto) {
309 		if (swkey->eth.type == htons(ETH_P_IP)) {
310 			struct ovs_key_ct_tuple_ipv4 orig = {
311 				output->ipv4.ct_orig.src,
312 				output->ipv4.ct_orig.dst,
313 				output->ct.orig_tp.src,
314 				output->ct.orig_tp.dst,
315 				output->ct_orig_proto,
316 			};
317 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
318 				    sizeof(orig), &orig))
319 				return -EMSGSIZE;
320 		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
321 			struct ovs_key_ct_tuple_ipv6 orig = {
322 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
323 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
324 				output->ct.orig_tp.src,
325 				output->ct.orig_tp.dst,
326 				output->ct_orig_proto,
327 			};
328 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
329 				    sizeof(orig), &orig))
330 				return -EMSGSIZE;
331 		}
332 	}
333 
334 	return 0;
335 }
336 
337 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
338 			   u32 ct_mark, u32 mask)
339 {
340 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
341 	u32 new_mark;
342 
343 	new_mark = ct_mark | (ct->mark & ~(mask));
344 	if (ct->mark != new_mark) {
345 		ct->mark = new_mark;
346 		if (nf_ct_is_confirmed(ct))
347 			nf_conntrack_event_cache(IPCT_MARK, ct);
348 		key->ct.mark = new_mark;
349 	}
350 
351 	return 0;
352 #else
353 	return -ENOTSUPP;
354 #endif
355 }
356 
357 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
358 {
359 	struct nf_conn_labels *cl;
360 
361 	cl = nf_ct_labels_find(ct);
362 	if (!cl) {
363 		nf_ct_labels_ext_add(ct);
364 		cl = nf_ct_labels_find(ct);
365 	}
366 
367 	return cl;
368 }
369 
370 /* Initialize labels for a new, yet to be committed conntrack entry.  Note that
371  * since the new connection is not yet confirmed, and thus no-one else has
372  * access to it's labels, we simply write them over.
373  */
374 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
375 			      const struct ovs_key_ct_labels *labels,
376 			      const struct ovs_key_ct_labels *mask)
377 {
378 	struct nf_conn_labels *cl, *master_cl;
379 	bool have_mask = labels_nonzero(mask);
380 
381 	/* Inherit master's labels to the related connection? */
382 	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
383 
384 	if (!master_cl && !have_mask)
385 		return 0;   /* Nothing to do. */
386 
387 	cl = ovs_ct_get_conn_labels(ct);
388 	if (!cl)
389 		return -ENOSPC;
390 
391 	/* Inherit the master's labels, if any. */
392 	if (master_cl)
393 		*cl = *master_cl;
394 
395 	if (have_mask) {
396 		u32 *dst = (u32 *)cl->bits;
397 		int i;
398 
399 		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
400 			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
401 				(labels->ct_labels_32[i]
402 				 & mask->ct_labels_32[i]);
403 	}
404 
405 	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
406 	 * IPCT_LABEL bit is set in the event cache.
407 	 */
408 	nf_conntrack_event_cache(IPCT_LABEL, ct);
409 
410 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
411 
412 	return 0;
413 }
414 
415 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
416 			     const struct ovs_key_ct_labels *labels,
417 			     const struct ovs_key_ct_labels *mask)
418 {
419 	struct nf_conn_labels *cl;
420 	int err;
421 
422 	cl = ovs_ct_get_conn_labels(ct);
423 	if (!cl)
424 		return -ENOSPC;
425 
426 	err = nf_connlabels_replace(ct, labels->ct_labels_32,
427 				    mask->ct_labels_32,
428 				    OVS_CT_LABELS_LEN_32);
429 	if (err)
430 		return err;
431 
432 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
433 
434 	return 0;
435 }
436 
437 /* 'skb' should already be pulled to nh_ofs. */
438 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
439 {
440 	const struct nf_conntrack_helper *helper;
441 	const struct nf_conn_help *help;
442 	enum ip_conntrack_info ctinfo;
443 	unsigned int protoff;
444 	struct nf_conn *ct;
445 	int err;
446 
447 	ct = nf_ct_get(skb, &ctinfo);
448 	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
449 		return NF_ACCEPT;
450 
451 	help = nfct_help(ct);
452 	if (!help)
453 		return NF_ACCEPT;
454 
455 	helper = rcu_dereference(help->helper);
456 	if (!helper)
457 		return NF_ACCEPT;
458 
459 	switch (proto) {
460 	case NFPROTO_IPV4:
461 		protoff = ip_hdrlen(skb);
462 		break;
463 	case NFPROTO_IPV6: {
464 		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
465 		__be16 frag_off;
466 		int ofs;
467 
468 		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
469 				       &frag_off);
470 		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
471 			pr_debug("proto header not found\n");
472 			return NF_ACCEPT;
473 		}
474 		protoff = ofs;
475 		break;
476 	}
477 	default:
478 		WARN_ONCE(1, "helper invoked on non-IP family!");
479 		return NF_DROP;
480 	}
481 
482 	err = helper->help(skb, protoff, ct, ctinfo);
483 	if (err != NF_ACCEPT)
484 		return err;
485 
486 	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
487 	 * FTP with NAT) adusting the TCP payload size when mangling IP
488 	 * addresses and/or port numbers in the text-based control connection.
489 	 */
490 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
491 	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
492 		return NF_DROP;
493 	return NF_ACCEPT;
494 }
495 
496 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
497  * value if 'skb' is freed.
498  */
499 static int handle_fragments(struct net *net, struct sw_flow_key *key,
500 			    u16 zone, struct sk_buff *skb)
501 {
502 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
503 	int err;
504 
505 	if (key->eth.type == htons(ETH_P_IP)) {
506 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
507 
508 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
509 		err = ip_defrag(net, skb, user);
510 		if (err)
511 			return err;
512 
513 		ovs_cb.mru = IPCB(skb)->frag_max_size;
514 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
515 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
516 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
517 
518 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
519 		err = nf_ct_frag6_gather(net, skb, user);
520 		if (err) {
521 			if (err != -EINPROGRESS)
522 				kfree_skb(skb);
523 			return err;
524 		}
525 
526 		key->ip.proto = ipv6_hdr(skb)->nexthdr;
527 		ovs_cb.mru = IP6CB(skb)->frag_max_size;
528 #endif
529 	} else {
530 		kfree_skb(skb);
531 		return -EPFNOSUPPORT;
532 	}
533 
534 	key->ip.frag = OVS_FRAG_TYPE_NONE;
535 	skb_clear_hash(skb);
536 	skb->ignore_df = 1;
537 	*OVS_CB(skb) = ovs_cb;
538 
539 	return 0;
540 }
541 
542 static struct nf_conntrack_expect *
543 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
544 		   u16 proto, const struct sk_buff *skb)
545 {
546 	struct nf_conntrack_tuple tuple;
547 	struct nf_conntrack_expect *exp;
548 
549 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
550 		return NULL;
551 
552 	exp = __nf_ct_expect_find(net, zone, &tuple);
553 	if (exp) {
554 		struct nf_conntrack_tuple_hash *h;
555 
556 		/* Delete existing conntrack entry, if it clashes with the
557 		 * expectation.  This can happen since conntrack ALGs do not
558 		 * check for clashes between (new) expectations and existing
559 		 * conntrack entries.  nf_conntrack_in() will check the
560 		 * expectations only if a conntrack entry can not be found,
561 		 * which can lead to OVS finding the expectation (here) in the
562 		 * init direction, but which will not be removed by the
563 		 * nf_conntrack_in() call, if a matching conntrack entry is
564 		 * found instead.  In this case all init direction packets
565 		 * would be reported as new related packets, while reply
566 		 * direction packets would be reported as un-related
567 		 * established packets.
568 		 */
569 		h = nf_conntrack_find_get(net, zone, &tuple);
570 		if (h) {
571 			struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
572 
573 			nf_ct_delete(ct, 0, 0);
574 			nf_conntrack_put(&ct->ct_general);
575 		}
576 	}
577 
578 	return exp;
579 }
580 
581 /* This replicates logic from nf_conntrack_core.c that is not exported. */
582 static enum ip_conntrack_info
583 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
584 {
585 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
586 
587 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
588 		return IP_CT_ESTABLISHED_REPLY;
589 	/* Once we've had two way comms, always ESTABLISHED. */
590 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
591 		return IP_CT_ESTABLISHED;
592 	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
593 		return IP_CT_RELATED;
594 	return IP_CT_NEW;
595 }
596 
597 /* Find an existing connection which this packet belongs to without
598  * re-attributing statistics or modifying the connection state.  This allows an
599  * skb->_nfct lost due to an upcall to be recovered during actions execution.
600  *
601  * Must be called with rcu_read_lock.
602  *
603  * On success, populates skb->_nfct and returns the connection.  Returns NULL
604  * if there is no existing entry.
605  */
606 static struct nf_conn *
607 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
608 		     u8 l3num, struct sk_buff *skb, bool natted)
609 {
610 	struct nf_conntrack_tuple tuple;
611 	struct nf_conntrack_tuple_hash *h;
612 	struct nf_conn *ct;
613 
614 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
615 			       net, &tuple)) {
616 		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
617 		return NULL;
618 	}
619 
620 	/* Must invert the tuple if skb has been transformed by NAT. */
621 	if (natted) {
622 		struct nf_conntrack_tuple inverse;
623 
624 		if (!nf_ct_invert_tuplepr(&inverse, &tuple)) {
625 			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
626 			return NULL;
627 		}
628 		tuple = inverse;
629 	}
630 
631 	/* look for tuple match */
632 	h = nf_conntrack_find_get(net, zone, &tuple);
633 	if (!h)
634 		return NULL;   /* Not found. */
635 
636 	ct = nf_ct_tuplehash_to_ctrack(h);
637 
638 	/* Inverted packet tuple matches the reverse direction conntrack tuple,
639 	 * select the other tuplehash to get the right 'ctinfo' bits for this
640 	 * packet.
641 	 */
642 	if (natted)
643 		h = &ct->tuplehash[!h->tuple.dst.dir];
644 
645 	nf_ct_set(skb, ct, ovs_ct_get_info(h));
646 	return ct;
647 }
648 
649 static
650 struct nf_conn *ovs_ct_executed(struct net *net,
651 				const struct sw_flow_key *key,
652 				const struct ovs_conntrack_info *info,
653 				struct sk_buff *skb,
654 				bool *ct_executed)
655 {
656 	struct nf_conn *ct = NULL;
657 
658 	/* If no ct, check if we have evidence that an existing conntrack entry
659 	 * might be found for this skb.  This happens when we lose a skb->_nfct
660 	 * due to an upcall, or if the direction is being forced.  If the
661 	 * connection was not confirmed, it is not cached and needs to be run
662 	 * through conntrack again.
663 	 */
664 	*ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
665 		       !(key->ct_state & OVS_CS_F_INVALID) &&
666 		       (key->ct_zone == info->zone.id);
667 
668 	if (*ct_executed || (!key->ct_state && info->force)) {
669 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
670 					  !!(key->ct_state &
671 					  OVS_CS_F_NAT_MASK));
672 	}
673 
674 	return ct;
675 }
676 
677 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
678 static bool skb_nfct_cached(struct net *net,
679 			    const struct sw_flow_key *key,
680 			    const struct ovs_conntrack_info *info,
681 			    struct sk_buff *skb)
682 {
683 	enum ip_conntrack_info ctinfo;
684 	struct nf_conn *ct;
685 	bool ct_executed = true;
686 
687 	ct = nf_ct_get(skb, &ctinfo);
688 	if (!ct)
689 		ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
690 
691 	if (ct)
692 		nf_ct_get(skb, &ctinfo);
693 	else
694 		return false;
695 
696 	if (!net_eq(net, read_pnet(&ct->ct_net)))
697 		return false;
698 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
699 		return false;
700 	if (info->helper) {
701 		struct nf_conn_help *help;
702 
703 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
704 		if (help && rcu_access_pointer(help->helper) != info->helper)
705 			return false;
706 	}
707 	/* Force conntrack entry direction to the current packet? */
708 	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
709 		/* Delete the conntrack entry if confirmed, else just release
710 		 * the reference.
711 		 */
712 		if (nf_ct_is_confirmed(ct))
713 			nf_ct_delete(ct, 0, 0);
714 
715 		nf_conntrack_put(&ct->ct_general);
716 		nf_ct_set(skb, NULL, 0);
717 		return false;
718 	}
719 
720 	return ct_executed;
721 }
722 
723 #ifdef CONFIG_NF_NAT_NEEDED
724 /* Modelled after nf_nat_ipv[46]_fn().
725  * range is only used for new, uninitialized NAT state.
726  * Returns either NF_ACCEPT or NF_DROP.
727  */
728 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
729 			      enum ip_conntrack_info ctinfo,
730 			      const struct nf_nat_range2 *range,
731 			      enum nf_nat_manip_type maniptype)
732 {
733 	int hooknum, nh_off, err = NF_ACCEPT;
734 
735 	nh_off = skb_network_offset(skb);
736 	skb_pull_rcsum(skb, nh_off);
737 
738 	/* See HOOK2MANIP(). */
739 	if (maniptype == NF_NAT_MANIP_SRC)
740 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
741 	else
742 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
743 
744 	switch (ctinfo) {
745 	case IP_CT_RELATED:
746 	case IP_CT_RELATED_REPLY:
747 		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
748 		    skb->protocol == htons(ETH_P_IP) &&
749 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
750 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
751 							   hooknum))
752 				err = NF_DROP;
753 			goto push;
754 		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
755 			   skb->protocol == htons(ETH_P_IPV6)) {
756 			__be16 frag_off;
757 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
758 			int hdrlen = ipv6_skip_exthdr(skb,
759 						      sizeof(struct ipv6hdr),
760 						      &nexthdr, &frag_off);
761 
762 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
763 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
764 								     ctinfo,
765 								     hooknum,
766 								     hdrlen))
767 					err = NF_DROP;
768 				goto push;
769 			}
770 		}
771 		/* Non-ICMP, fall thru to initialize if needed. */
772 		/* fall through */
773 	case IP_CT_NEW:
774 		/* Seen it before?  This can happen for loopback, retrans,
775 		 * or local packets.
776 		 */
777 		if (!nf_nat_initialized(ct, maniptype)) {
778 			/* Initialize according to the NAT action. */
779 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
780 				/* Action is set up to establish a new
781 				 * mapping.
782 				 */
783 				? nf_nat_setup_info(ct, range, maniptype)
784 				: nf_nat_alloc_null_binding(ct, hooknum);
785 			if (err != NF_ACCEPT)
786 				goto push;
787 		}
788 		break;
789 
790 	case IP_CT_ESTABLISHED:
791 	case IP_CT_ESTABLISHED_REPLY:
792 		break;
793 
794 	default:
795 		err = NF_DROP;
796 		goto push;
797 	}
798 
799 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
800 push:
801 	skb_push(skb, nh_off);
802 	skb_postpush_rcsum(skb, skb->data, nh_off);
803 
804 	return err;
805 }
806 
807 static void ovs_nat_update_key(struct sw_flow_key *key,
808 			       const struct sk_buff *skb,
809 			       enum nf_nat_manip_type maniptype)
810 {
811 	if (maniptype == NF_NAT_MANIP_SRC) {
812 		__be16 src;
813 
814 		key->ct_state |= OVS_CS_F_SRC_NAT;
815 		if (key->eth.type == htons(ETH_P_IP))
816 			key->ipv4.addr.src = ip_hdr(skb)->saddr;
817 		else if (key->eth.type == htons(ETH_P_IPV6))
818 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
819 			       sizeof(key->ipv6.addr.src));
820 		else
821 			return;
822 
823 		if (key->ip.proto == IPPROTO_UDP)
824 			src = udp_hdr(skb)->source;
825 		else if (key->ip.proto == IPPROTO_TCP)
826 			src = tcp_hdr(skb)->source;
827 		else if (key->ip.proto == IPPROTO_SCTP)
828 			src = sctp_hdr(skb)->source;
829 		else
830 			return;
831 
832 		key->tp.src = src;
833 	} else {
834 		__be16 dst;
835 
836 		key->ct_state |= OVS_CS_F_DST_NAT;
837 		if (key->eth.type == htons(ETH_P_IP))
838 			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
839 		else if (key->eth.type == htons(ETH_P_IPV6))
840 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
841 			       sizeof(key->ipv6.addr.dst));
842 		else
843 			return;
844 
845 		if (key->ip.proto == IPPROTO_UDP)
846 			dst = udp_hdr(skb)->dest;
847 		else if (key->ip.proto == IPPROTO_TCP)
848 			dst = tcp_hdr(skb)->dest;
849 		else if (key->ip.proto == IPPROTO_SCTP)
850 			dst = sctp_hdr(skb)->dest;
851 		else
852 			return;
853 
854 		key->tp.dst = dst;
855 	}
856 }
857 
858 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
859 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
860 		      const struct ovs_conntrack_info *info,
861 		      struct sk_buff *skb, struct nf_conn *ct,
862 		      enum ip_conntrack_info ctinfo)
863 {
864 	enum nf_nat_manip_type maniptype;
865 	int err;
866 
867 	/* Add NAT extension if not confirmed yet. */
868 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
869 		return NF_ACCEPT;   /* Can't NAT. */
870 
871 	/* Determine NAT type.
872 	 * Check if the NAT type can be deduced from the tracked connection.
873 	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
874 	 * when committing.
875 	 */
876 	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
877 	    ct->status & IPS_NAT_MASK &&
878 	    (ctinfo != IP_CT_RELATED || info->commit)) {
879 		/* NAT an established or related connection like before. */
880 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
881 			/* This is the REPLY direction for a connection
882 			 * for which NAT was applied in the forward
883 			 * direction.  Do the reverse NAT.
884 			 */
885 			maniptype = ct->status & IPS_SRC_NAT
886 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
887 		else
888 			maniptype = ct->status & IPS_SRC_NAT
889 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
890 	} else if (info->nat & OVS_CT_SRC_NAT) {
891 		maniptype = NF_NAT_MANIP_SRC;
892 	} else if (info->nat & OVS_CT_DST_NAT) {
893 		maniptype = NF_NAT_MANIP_DST;
894 	} else {
895 		return NF_ACCEPT; /* Connection is not NATed. */
896 	}
897 	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
898 
899 	/* Mark NAT done if successful and update the flow key. */
900 	if (err == NF_ACCEPT)
901 		ovs_nat_update_key(key, skb, maniptype);
902 
903 	return err;
904 }
905 #else /* !CONFIG_NF_NAT_NEEDED */
906 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
907 		      const struct ovs_conntrack_info *info,
908 		      struct sk_buff *skb, struct nf_conn *ct,
909 		      enum ip_conntrack_info ctinfo)
910 {
911 	return NF_ACCEPT;
912 }
913 #endif
914 
915 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
916  * not done already.  Update key with new CT state after passing the packet
917  * through conntrack.
918  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
919  * set to NULL and 0 will be returned.
920  */
921 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
922 			   const struct ovs_conntrack_info *info,
923 			   struct sk_buff *skb)
924 {
925 	/* If we are recirculating packets to match on conntrack fields and
926 	 * committing with a separate conntrack action,  then we don't need to
927 	 * actually run the packet through conntrack twice unless it's for a
928 	 * different zone.
929 	 */
930 	bool cached = skb_nfct_cached(net, key, info, skb);
931 	enum ip_conntrack_info ctinfo;
932 	struct nf_conn *ct;
933 
934 	if (!cached) {
935 		struct nf_conn *tmpl = info->ct;
936 		int err;
937 
938 		/* Associate skb with specified zone. */
939 		if (tmpl) {
940 			if (skb_nfct(skb))
941 				nf_conntrack_put(skb_nfct(skb));
942 			nf_conntrack_get(&tmpl->ct_general);
943 			nf_ct_set(skb, tmpl, IP_CT_NEW);
944 		}
945 
946 		err = nf_conntrack_in(net, info->family,
947 				      NF_INET_PRE_ROUTING, skb);
948 		if (err != NF_ACCEPT)
949 			return -ENOENT;
950 
951 		/* Clear CT state NAT flags to mark that we have not yet done
952 		 * NAT after the nf_conntrack_in() call.  We can actually clear
953 		 * the whole state, as it will be re-initialized below.
954 		 */
955 		key->ct_state = 0;
956 
957 		/* Update the key, but keep the NAT flags. */
958 		ovs_ct_update_key(skb, info, key, true, true);
959 	}
960 
961 	ct = nf_ct_get(skb, &ctinfo);
962 	if (ct) {
963 		/* Packets starting a new connection must be NATted before the
964 		 * helper, so that the helper knows about the NAT.  We enforce
965 		 * this by delaying both NAT and helper calls for unconfirmed
966 		 * connections until the committing CT action.  For later
967 		 * packets NAT and Helper may be called in either order.
968 		 *
969 		 * NAT will be done only if the CT action has NAT, and only
970 		 * once per packet (per zone), as guarded by the NAT bits in
971 		 * the key->ct_state.
972 		 */
973 		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
974 		    (nf_ct_is_confirmed(ct) || info->commit) &&
975 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
976 			return -EINVAL;
977 		}
978 
979 		/* Userspace may decide to perform a ct lookup without a helper
980 		 * specified followed by a (recirculate and) commit with one.
981 		 * Therefore, for unconfirmed connections which we will commit,
982 		 * we need to attach the helper here.
983 		 */
984 		if (!nf_ct_is_confirmed(ct) && info->commit &&
985 		    info->helper && !nfct_help(ct)) {
986 			int err = __nf_ct_try_assign_helper(ct, info->ct,
987 							    GFP_ATOMIC);
988 			if (err)
989 				return err;
990 		}
991 
992 		/* Call the helper only if:
993 		 * - nf_conntrack_in() was executed above ("!cached") for a
994 		 *   confirmed connection, or
995 		 * - When committing an unconfirmed connection.
996 		 */
997 		if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
998 		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
999 			return -EINVAL;
1000 		}
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 /* Lookup connection and read fields into key. */
1007 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1008 			 const struct ovs_conntrack_info *info,
1009 			 struct sk_buff *skb)
1010 {
1011 	struct nf_conntrack_expect *exp;
1012 
1013 	/* If we pass an expected packet through nf_conntrack_in() the
1014 	 * expectation is typically removed, but the packet could still be
1015 	 * lost in upcall processing.  To prevent this from happening we
1016 	 * perform an explicit expectation lookup.  Expected connections are
1017 	 * always new, and will be passed through conntrack only when they are
1018 	 * committed, as it is OK to remove the expectation at that time.
1019 	 */
1020 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1021 	if (exp) {
1022 		u8 state;
1023 
1024 		/* NOTE: New connections are NATted and Helped only when
1025 		 * committed, so we are not calling into NAT here.
1026 		 */
1027 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1028 		__ovs_ct_update_key(key, state, &info->zone, exp->master);
1029 	} else {
1030 		struct nf_conn *ct;
1031 		int err;
1032 
1033 		err = __ovs_ct_lookup(net, key, info, skb);
1034 		if (err)
1035 			return err;
1036 
1037 		ct = (struct nf_conn *)skb_nfct(skb);
1038 		if (ct)
1039 			nf_ct_deliver_cached_events(ct);
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1046 {
1047 	size_t i;
1048 
1049 	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1050 		if (labels->ct_labels_32[i])
1051 			return true;
1052 
1053 	return false;
1054 }
1055 
1056 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1057 static struct hlist_head *ct_limit_hash_bucket(
1058 	const struct ovs_ct_limit_info *info, u16 zone)
1059 {
1060 	return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1061 }
1062 
1063 /* Call with ovs_mutex */
1064 static void ct_limit_set(const struct ovs_ct_limit_info *info,
1065 			 struct ovs_ct_limit *new_ct_limit)
1066 {
1067 	struct ovs_ct_limit *ct_limit;
1068 	struct hlist_head *head;
1069 
1070 	head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1071 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1072 		if (ct_limit->zone == new_ct_limit->zone) {
1073 			hlist_replace_rcu(&ct_limit->hlist_node,
1074 					  &new_ct_limit->hlist_node);
1075 			kfree_rcu(ct_limit, rcu);
1076 			return;
1077 		}
1078 	}
1079 
1080 	hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1081 }
1082 
1083 /* Call with ovs_mutex */
1084 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1085 {
1086 	struct ovs_ct_limit *ct_limit;
1087 	struct hlist_head *head;
1088 	struct hlist_node *n;
1089 
1090 	head = ct_limit_hash_bucket(info, zone);
1091 	hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1092 		if (ct_limit->zone == zone) {
1093 			hlist_del_rcu(&ct_limit->hlist_node);
1094 			kfree_rcu(ct_limit, rcu);
1095 			return;
1096 		}
1097 	}
1098 }
1099 
1100 /* Call with RCU read lock */
1101 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1102 {
1103 	struct ovs_ct_limit *ct_limit;
1104 	struct hlist_head *head;
1105 
1106 	head = ct_limit_hash_bucket(info, zone);
1107 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1108 		if (ct_limit->zone == zone)
1109 			return ct_limit->limit;
1110 	}
1111 
1112 	return info->default_limit;
1113 }
1114 
1115 static int ovs_ct_check_limit(struct net *net,
1116 			      const struct ovs_conntrack_info *info,
1117 			      const struct nf_conntrack_tuple *tuple)
1118 {
1119 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1120 	const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1121 	u32 per_zone_limit, connections;
1122 	u32 conncount_key;
1123 
1124 	conncount_key = info->zone.id;
1125 
1126 	per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1127 	if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1128 		return 0;
1129 
1130 	connections = nf_conncount_count(net, ct_limit_info->data,
1131 					 &conncount_key, tuple, &info->zone);
1132 	if (connections > per_zone_limit)
1133 		return -ENOMEM;
1134 
1135 	return 0;
1136 }
1137 #endif
1138 
1139 /* Lookup connection and confirm if unconfirmed. */
1140 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1141 			 const struct ovs_conntrack_info *info,
1142 			 struct sk_buff *skb)
1143 {
1144 	enum ip_conntrack_info ctinfo;
1145 	struct nf_conn *ct;
1146 	int err;
1147 
1148 	err = __ovs_ct_lookup(net, key, info, skb);
1149 	if (err)
1150 		return err;
1151 
1152 	/* The connection could be invalid, in which case this is a no-op.*/
1153 	ct = nf_ct_get(skb, &ctinfo);
1154 	if (!ct)
1155 		return 0;
1156 
1157 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1158 	if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1159 		if (!nf_ct_is_confirmed(ct)) {
1160 			err = ovs_ct_check_limit(net, info,
1161 				&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1162 			if (err) {
1163 				net_warn_ratelimited("openvswitch: zone: %u "
1164 					"execeeds conntrack limit\n",
1165 					info->zone.id);
1166 				return err;
1167 			}
1168 		}
1169 	}
1170 #endif
1171 
1172 	/* Set the conntrack event mask if given.  NEW and DELETE events have
1173 	 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1174 	 * typically would receive many kinds of updates.  Setting the event
1175 	 * mask allows those events to be filtered.  The set event mask will
1176 	 * remain in effect for the lifetime of the connection unless changed
1177 	 * by a further CT action with both the commit flag and the eventmask
1178 	 * option. */
1179 	if (info->have_eventmask) {
1180 		struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1181 
1182 		if (cache)
1183 			cache->ctmask = info->eventmask;
1184 	}
1185 
1186 	/* Apply changes before confirming the connection so that the initial
1187 	 * conntrack NEW netlink event carries the values given in the CT
1188 	 * action.
1189 	 */
1190 	if (info->mark.mask) {
1191 		err = ovs_ct_set_mark(ct, key, info->mark.value,
1192 				      info->mark.mask);
1193 		if (err)
1194 			return err;
1195 	}
1196 	if (!nf_ct_is_confirmed(ct)) {
1197 		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1198 					 &info->labels.mask);
1199 		if (err)
1200 			return err;
1201 	} else if (labels_nonzero(&info->labels.mask)) {
1202 		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1203 					&info->labels.mask);
1204 		if (err)
1205 			return err;
1206 	}
1207 	/* This will take care of sending queued events even if the connection
1208 	 * is already confirmed.
1209 	 */
1210 	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1211 		return -EINVAL;
1212 
1213 	return 0;
1214 }
1215 
1216 /* Trim the skb to the length specified by the IP/IPv6 header,
1217  * removing any trailing lower-layer padding. This prepares the skb
1218  * for higher-layer processing that assumes skb->len excludes padding
1219  * (such as nf_ip_checksum). The caller needs to pull the skb to the
1220  * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1221  */
1222 static int ovs_skb_network_trim(struct sk_buff *skb)
1223 {
1224 	unsigned int len;
1225 	int err;
1226 
1227 	switch (skb->protocol) {
1228 	case htons(ETH_P_IP):
1229 		len = ntohs(ip_hdr(skb)->tot_len);
1230 		break;
1231 	case htons(ETH_P_IPV6):
1232 		len = sizeof(struct ipv6hdr)
1233 			+ ntohs(ipv6_hdr(skb)->payload_len);
1234 		break;
1235 	default:
1236 		len = skb->len;
1237 	}
1238 
1239 	err = pskb_trim_rcsum(skb, len);
1240 	if (err)
1241 		kfree_skb(skb);
1242 
1243 	return err;
1244 }
1245 
1246 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1247  * value if 'skb' is freed.
1248  */
1249 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1250 		   struct sw_flow_key *key,
1251 		   const struct ovs_conntrack_info *info)
1252 {
1253 	int nh_ofs;
1254 	int err;
1255 
1256 	/* The conntrack module expects to be working at L3. */
1257 	nh_ofs = skb_network_offset(skb);
1258 	skb_pull_rcsum(skb, nh_ofs);
1259 
1260 	err = ovs_skb_network_trim(skb);
1261 	if (err)
1262 		return err;
1263 
1264 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1265 		err = handle_fragments(net, key, info->zone.id, skb);
1266 		if (err)
1267 			return err;
1268 	}
1269 
1270 	if (info->commit)
1271 		err = ovs_ct_commit(net, key, info, skb);
1272 	else
1273 		err = ovs_ct_lookup(net, key, info, skb);
1274 
1275 	skb_push(skb, nh_ofs);
1276 	skb_postpush_rcsum(skb, skb->data, nh_ofs);
1277 	if (err)
1278 		kfree_skb(skb);
1279 	return err;
1280 }
1281 
1282 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1283 {
1284 	if (skb_nfct(skb)) {
1285 		nf_conntrack_put(skb_nfct(skb));
1286 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1287 		ovs_ct_fill_key(skb, key);
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1294 			     const struct sw_flow_key *key, bool log)
1295 {
1296 	struct nf_conntrack_helper *helper;
1297 	struct nf_conn_help *help;
1298 
1299 	helper = nf_conntrack_helper_try_module_get(name, info->family,
1300 						    key->ip.proto);
1301 	if (!helper) {
1302 		OVS_NLERR(log, "Unknown helper \"%s\"", name);
1303 		return -EINVAL;
1304 	}
1305 
1306 	help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
1307 	if (!help) {
1308 		nf_conntrack_helper_put(helper);
1309 		return -ENOMEM;
1310 	}
1311 
1312 	rcu_assign_pointer(help->helper, helper);
1313 	info->helper = helper;
1314 	return 0;
1315 }
1316 
1317 #ifdef CONFIG_NF_NAT_NEEDED
1318 static int parse_nat(const struct nlattr *attr,
1319 		     struct ovs_conntrack_info *info, bool log)
1320 {
1321 	struct nlattr *a;
1322 	int rem;
1323 	bool have_ip_max = false;
1324 	bool have_proto_max = false;
1325 	bool ip_vers = (info->family == NFPROTO_IPV6);
1326 
1327 	nla_for_each_nested(a, attr, rem) {
1328 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1329 			[OVS_NAT_ATTR_SRC] = {0, 0},
1330 			[OVS_NAT_ATTR_DST] = {0, 0},
1331 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1332 						 sizeof(struct in6_addr)},
1333 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1334 						 sizeof(struct in6_addr)},
1335 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1336 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1337 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1338 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1339 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1340 		};
1341 		int type = nla_type(a);
1342 
1343 		if (type > OVS_NAT_ATTR_MAX) {
1344 			OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1345 				  type, OVS_NAT_ATTR_MAX);
1346 			return -EINVAL;
1347 		}
1348 
1349 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1350 			OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1351 				  type, nla_len(a),
1352 				  ovs_nat_attr_lens[type][ip_vers]);
1353 			return -EINVAL;
1354 		}
1355 
1356 		switch (type) {
1357 		case OVS_NAT_ATTR_SRC:
1358 		case OVS_NAT_ATTR_DST:
1359 			if (info->nat) {
1360 				OVS_NLERR(log, "Only one type of NAT may be specified");
1361 				return -ERANGE;
1362 			}
1363 			info->nat |= OVS_CT_NAT;
1364 			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1365 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1366 			break;
1367 
1368 		case OVS_NAT_ATTR_IP_MIN:
1369 			nla_memcpy(&info->range.min_addr, a,
1370 				   sizeof(info->range.min_addr));
1371 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1372 			break;
1373 
1374 		case OVS_NAT_ATTR_IP_MAX:
1375 			have_ip_max = true;
1376 			nla_memcpy(&info->range.max_addr, a,
1377 				   sizeof(info->range.max_addr));
1378 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1379 			break;
1380 
1381 		case OVS_NAT_ATTR_PROTO_MIN:
1382 			info->range.min_proto.all = htons(nla_get_u16(a));
1383 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1384 			break;
1385 
1386 		case OVS_NAT_ATTR_PROTO_MAX:
1387 			have_proto_max = true;
1388 			info->range.max_proto.all = htons(nla_get_u16(a));
1389 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1390 			break;
1391 
1392 		case OVS_NAT_ATTR_PERSISTENT:
1393 			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1394 			break;
1395 
1396 		case OVS_NAT_ATTR_PROTO_HASH:
1397 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1398 			break;
1399 
1400 		case OVS_NAT_ATTR_PROTO_RANDOM:
1401 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1402 			break;
1403 
1404 		default:
1405 			OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1406 			return -EINVAL;
1407 		}
1408 	}
1409 
1410 	if (rem > 0) {
1411 		OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1412 		return -EINVAL;
1413 	}
1414 	if (!info->nat) {
1415 		/* Do not allow flags if no type is given. */
1416 		if (info->range.flags) {
1417 			OVS_NLERR(log,
1418 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1419 				  );
1420 			return -EINVAL;
1421 		}
1422 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1423 	} else if (!info->commit) {
1424 		OVS_NLERR(log,
1425 			  "NAT attributes may be specified only when CT COMMIT flag is also specified."
1426 			  );
1427 		return -EINVAL;
1428 	}
1429 	/* Allow missing IP_MAX. */
1430 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1431 		memcpy(&info->range.max_addr, &info->range.min_addr,
1432 		       sizeof(info->range.max_addr));
1433 	}
1434 	/* Allow missing PROTO_MAX. */
1435 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1436 	    !have_proto_max) {
1437 		info->range.max_proto.all = info->range.min_proto.all;
1438 	}
1439 	return 0;
1440 }
1441 #endif
1442 
1443 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1444 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1445 	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1446 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1447 				    .maxlen = sizeof(u16) },
1448 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1449 				    .maxlen = sizeof(struct md_mark) },
1450 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1451 				    .maxlen = sizeof(struct md_labels) },
1452 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1453 				    .maxlen = NF_CT_HELPER_NAME_LEN },
1454 #ifdef CONFIG_NF_NAT_NEEDED
1455 	/* NAT length is checked when parsing the nested attributes. */
1456 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1457 #endif
1458 	[OVS_CT_ATTR_EVENTMASK]	= { .minlen = sizeof(u32),
1459 				    .maxlen = sizeof(u32) },
1460 };
1461 
1462 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1463 		    const char **helper, bool log)
1464 {
1465 	struct nlattr *a;
1466 	int rem;
1467 
1468 	nla_for_each_nested(a, attr, rem) {
1469 		int type = nla_type(a);
1470 		int maxlen;
1471 		int minlen;
1472 
1473 		if (type > OVS_CT_ATTR_MAX) {
1474 			OVS_NLERR(log,
1475 				  "Unknown conntrack attr (type=%d, max=%d)",
1476 				  type, OVS_CT_ATTR_MAX);
1477 			return -EINVAL;
1478 		}
1479 
1480 		maxlen = ovs_ct_attr_lens[type].maxlen;
1481 		minlen = ovs_ct_attr_lens[type].minlen;
1482 		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1483 			OVS_NLERR(log,
1484 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1485 				  type, nla_len(a), maxlen);
1486 			return -EINVAL;
1487 		}
1488 
1489 		switch (type) {
1490 		case OVS_CT_ATTR_FORCE_COMMIT:
1491 			info->force = true;
1492 			/* fall through. */
1493 		case OVS_CT_ATTR_COMMIT:
1494 			info->commit = true;
1495 			break;
1496 #ifdef CONFIG_NF_CONNTRACK_ZONES
1497 		case OVS_CT_ATTR_ZONE:
1498 			info->zone.id = nla_get_u16(a);
1499 			break;
1500 #endif
1501 #ifdef CONFIG_NF_CONNTRACK_MARK
1502 		case OVS_CT_ATTR_MARK: {
1503 			struct md_mark *mark = nla_data(a);
1504 
1505 			if (!mark->mask) {
1506 				OVS_NLERR(log, "ct_mark mask cannot be 0");
1507 				return -EINVAL;
1508 			}
1509 			info->mark = *mark;
1510 			break;
1511 		}
1512 #endif
1513 #ifdef CONFIG_NF_CONNTRACK_LABELS
1514 		case OVS_CT_ATTR_LABELS: {
1515 			struct md_labels *labels = nla_data(a);
1516 
1517 			if (!labels_nonzero(&labels->mask)) {
1518 				OVS_NLERR(log, "ct_labels mask cannot be 0");
1519 				return -EINVAL;
1520 			}
1521 			info->labels = *labels;
1522 			break;
1523 		}
1524 #endif
1525 		case OVS_CT_ATTR_HELPER:
1526 			*helper = nla_data(a);
1527 			if (!memchr(*helper, '\0', nla_len(a))) {
1528 				OVS_NLERR(log, "Invalid conntrack helper");
1529 				return -EINVAL;
1530 			}
1531 			break;
1532 #ifdef CONFIG_NF_NAT_NEEDED
1533 		case OVS_CT_ATTR_NAT: {
1534 			int err = parse_nat(a, info, log);
1535 
1536 			if (err)
1537 				return err;
1538 			break;
1539 		}
1540 #endif
1541 		case OVS_CT_ATTR_EVENTMASK:
1542 			info->have_eventmask = true;
1543 			info->eventmask = nla_get_u32(a);
1544 			break;
1545 
1546 		default:
1547 			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1548 				  type);
1549 			return -EINVAL;
1550 		}
1551 	}
1552 
1553 #ifdef CONFIG_NF_CONNTRACK_MARK
1554 	if (!info->commit && info->mark.mask) {
1555 		OVS_NLERR(log,
1556 			  "Setting conntrack mark requires 'commit' flag.");
1557 		return -EINVAL;
1558 	}
1559 #endif
1560 #ifdef CONFIG_NF_CONNTRACK_LABELS
1561 	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1562 		OVS_NLERR(log,
1563 			  "Setting conntrack labels requires 'commit' flag.");
1564 		return -EINVAL;
1565 	}
1566 #endif
1567 	if (rem > 0) {
1568 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1569 		return -EINVAL;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1576 {
1577 	if (attr == OVS_KEY_ATTR_CT_STATE)
1578 		return true;
1579 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1580 	    attr == OVS_KEY_ATTR_CT_ZONE)
1581 		return true;
1582 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1583 	    attr == OVS_KEY_ATTR_CT_MARK)
1584 		return true;
1585 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1586 	    attr == OVS_KEY_ATTR_CT_LABELS) {
1587 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1588 
1589 		return ovs_net->xt_label;
1590 	}
1591 
1592 	return false;
1593 }
1594 
1595 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1596 		       const struct sw_flow_key *key,
1597 		       struct sw_flow_actions **sfa,  bool log)
1598 {
1599 	struct ovs_conntrack_info ct_info;
1600 	const char *helper = NULL;
1601 	u16 family;
1602 	int err;
1603 
1604 	family = key_to_nfproto(key);
1605 	if (family == NFPROTO_UNSPEC) {
1606 		OVS_NLERR(log, "ct family unspecified");
1607 		return -EINVAL;
1608 	}
1609 
1610 	memset(&ct_info, 0, sizeof(ct_info));
1611 	ct_info.family = family;
1612 
1613 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1614 			NF_CT_DEFAULT_ZONE_DIR, 0);
1615 
1616 	err = parse_ct(attr, &ct_info, &helper, log);
1617 	if (err)
1618 		return err;
1619 
1620 	/* Set up template for tracking connections in specific zones. */
1621 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1622 	if (!ct_info.ct) {
1623 		OVS_NLERR(log, "Failed to allocate conntrack template");
1624 		return -ENOMEM;
1625 	}
1626 
1627 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1628 	nf_conntrack_get(&ct_info.ct->ct_general);
1629 
1630 	if (helper) {
1631 		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1632 		if (err)
1633 			goto err_free_ct;
1634 	}
1635 
1636 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1637 				 sizeof(ct_info), log);
1638 	if (err)
1639 		goto err_free_ct;
1640 
1641 	return 0;
1642 err_free_ct:
1643 	__ovs_ct_free_action(&ct_info);
1644 	return err;
1645 }
1646 
1647 #ifdef CONFIG_NF_NAT_NEEDED
1648 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1649 			       struct sk_buff *skb)
1650 {
1651 	struct nlattr *start;
1652 
1653 	start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1654 	if (!start)
1655 		return false;
1656 
1657 	if (info->nat & OVS_CT_SRC_NAT) {
1658 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1659 			return false;
1660 	} else if (info->nat & OVS_CT_DST_NAT) {
1661 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1662 			return false;
1663 	} else {
1664 		goto out;
1665 	}
1666 
1667 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1668 		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1669 		    info->family == NFPROTO_IPV4) {
1670 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1671 					    info->range.min_addr.ip) ||
1672 			    (info->range.max_addr.ip
1673 			     != info->range.min_addr.ip &&
1674 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1675 					      info->range.max_addr.ip))))
1676 				return false;
1677 		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1678 			   info->family == NFPROTO_IPV6) {
1679 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1680 					     &info->range.min_addr.in6) ||
1681 			    (memcmp(&info->range.max_addr.in6,
1682 				    &info->range.min_addr.in6,
1683 				    sizeof(info->range.max_addr.in6)) &&
1684 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1685 					       &info->range.max_addr.in6))))
1686 				return false;
1687 		} else {
1688 			return false;
1689 		}
1690 	}
1691 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1692 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1693 			 ntohs(info->range.min_proto.all)) ||
1694 	     (info->range.max_proto.all != info->range.min_proto.all &&
1695 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1696 			  ntohs(info->range.max_proto.all)))))
1697 		return false;
1698 
1699 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1700 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1701 		return false;
1702 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1703 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1704 		return false;
1705 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1706 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1707 		return false;
1708 out:
1709 	nla_nest_end(skb, start);
1710 
1711 	return true;
1712 }
1713 #endif
1714 
1715 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1716 			  struct sk_buff *skb)
1717 {
1718 	struct nlattr *start;
1719 
1720 	start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1721 	if (!start)
1722 		return -EMSGSIZE;
1723 
1724 	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1725 					    ? OVS_CT_ATTR_FORCE_COMMIT
1726 					    : OVS_CT_ATTR_COMMIT))
1727 		return -EMSGSIZE;
1728 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1729 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1730 		return -EMSGSIZE;
1731 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1732 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1733 		    &ct_info->mark))
1734 		return -EMSGSIZE;
1735 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1736 	    labels_nonzero(&ct_info->labels.mask) &&
1737 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1738 		    &ct_info->labels))
1739 		return -EMSGSIZE;
1740 	if (ct_info->helper) {
1741 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1742 				   ct_info->helper->name))
1743 			return -EMSGSIZE;
1744 	}
1745 	if (ct_info->have_eventmask &&
1746 	    nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1747 		return -EMSGSIZE;
1748 
1749 #ifdef CONFIG_NF_NAT_NEEDED
1750 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1751 		return -EMSGSIZE;
1752 #endif
1753 	nla_nest_end(skb, start);
1754 
1755 	return 0;
1756 }
1757 
1758 void ovs_ct_free_action(const struct nlattr *a)
1759 {
1760 	struct ovs_conntrack_info *ct_info = nla_data(a);
1761 
1762 	__ovs_ct_free_action(ct_info);
1763 }
1764 
1765 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1766 {
1767 	if (ct_info->helper)
1768 		nf_conntrack_helper_put(ct_info->helper);
1769 	if (ct_info->ct)
1770 		nf_ct_tmpl_free(ct_info->ct);
1771 }
1772 
1773 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1774 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1775 {
1776 	int i, err;
1777 
1778 	ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1779 					 GFP_KERNEL);
1780 	if (!ovs_net->ct_limit_info)
1781 		return -ENOMEM;
1782 
1783 	ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1784 	ovs_net->ct_limit_info->limits =
1785 		kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1786 			      GFP_KERNEL);
1787 	if (!ovs_net->ct_limit_info->limits) {
1788 		kfree(ovs_net->ct_limit_info);
1789 		return -ENOMEM;
1790 	}
1791 
1792 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1793 		INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1794 
1795 	ovs_net->ct_limit_info->data =
1796 		nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1797 
1798 	if (IS_ERR(ovs_net->ct_limit_info->data)) {
1799 		err = PTR_ERR(ovs_net->ct_limit_info->data);
1800 		kfree(ovs_net->ct_limit_info->limits);
1801 		kfree(ovs_net->ct_limit_info);
1802 		pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1803 		return err;
1804 	}
1805 	return 0;
1806 }
1807 
1808 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1809 {
1810 	const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1811 	int i;
1812 
1813 	nf_conncount_destroy(net, NFPROTO_INET, info->data);
1814 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1815 		struct hlist_head *head = &info->limits[i];
1816 		struct ovs_ct_limit *ct_limit;
1817 
1818 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node)
1819 			kfree_rcu(ct_limit, rcu);
1820 	}
1821 	kfree(ovs_net->ct_limit_info->limits);
1822 	kfree(ovs_net->ct_limit_info);
1823 }
1824 
1825 static struct sk_buff *
1826 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1827 			     struct ovs_header **ovs_reply_header)
1828 {
1829 	struct ovs_header *ovs_header = info->userhdr;
1830 	struct sk_buff *skb;
1831 
1832 	skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1833 	if (!skb)
1834 		return ERR_PTR(-ENOMEM);
1835 
1836 	*ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1837 					info->snd_seq,
1838 					&dp_ct_limit_genl_family, 0, cmd);
1839 
1840 	if (!*ovs_reply_header) {
1841 		nlmsg_free(skb);
1842 		return ERR_PTR(-EMSGSIZE);
1843 	}
1844 	(*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1845 
1846 	return skb;
1847 }
1848 
1849 static bool check_zone_id(int zone_id, u16 *pzone)
1850 {
1851 	if (zone_id >= 0 && zone_id <= 65535) {
1852 		*pzone = (u16)zone_id;
1853 		return true;
1854 	}
1855 	return false;
1856 }
1857 
1858 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1859 				       struct ovs_ct_limit_info *info)
1860 {
1861 	struct ovs_zone_limit *zone_limit;
1862 	int rem;
1863 	u16 zone;
1864 
1865 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1866 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1867 
1868 	while (rem >= sizeof(*zone_limit)) {
1869 		if (unlikely(zone_limit->zone_id ==
1870 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1871 			ovs_lock();
1872 			info->default_limit = zone_limit->limit;
1873 			ovs_unlock();
1874 		} else if (unlikely(!check_zone_id(
1875 				zone_limit->zone_id, &zone))) {
1876 			OVS_NLERR(true, "zone id is out of range");
1877 		} else {
1878 			struct ovs_ct_limit *ct_limit;
1879 
1880 			ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1881 			if (!ct_limit)
1882 				return -ENOMEM;
1883 
1884 			ct_limit->zone = zone;
1885 			ct_limit->limit = zone_limit->limit;
1886 
1887 			ovs_lock();
1888 			ct_limit_set(info, ct_limit);
1889 			ovs_unlock();
1890 		}
1891 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1892 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1893 				NLA_ALIGN(sizeof(*zone_limit)));
1894 	}
1895 
1896 	if (rem)
1897 		OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1898 
1899 	return 0;
1900 }
1901 
1902 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1903 				       struct ovs_ct_limit_info *info)
1904 {
1905 	struct ovs_zone_limit *zone_limit;
1906 	int rem;
1907 	u16 zone;
1908 
1909 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1910 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1911 
1912 	while (rem >= sizeof(*zone_limit)) {
1913 		if (unlikely(zone_limit->zone_id ==
1914 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1915 			ovs_lock();
1916 			info->default_limit = OVS_CT_LIMIT_DEFAULT;
1917 			ovs_unlock();
1918 		} else if (unlikely(!check_zone_id(
1919 				zone_limit->zone_id, &zone))) {
1920 			OVS_NLERR(true, "zone id is out of range");
1921 		} else {
1922 			ovs_lock();
1923 			ct_limit_del(info, zone);
1924 			ovs_unlock();
1925 		}
1926 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1927 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1928 				NLA_ALIGN(sizeof(*zone_limit)));
1929 	}
1930 
1931 	if (rem)
1932 		OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
1933 
1934 	return 0;
1935 }
1936 
1937 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
1938 					  struct sk_buff *reply)
1939 {
1940 	struct ovs_zone_limit zone_limit;
1941 	int err;
1942 
1943 	zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE;
1944 	zone_limit.limit = info->default_limit;
1945 	err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1946 	if (err)
1947 		return err;
1948 
1949 	return 0;
1950 }
1951 
1952 static int __ovs_ct_limit_get_zone_limit(struct net *net,
1953 					 struct nf_conncount_data *data,
1954 					 u16 zone_id, u32 limit,
1955 					 struct sk_buff *reply)
1956 {
1957 	struct nf_conntrack_zone ct_zone;
1958 	struct ovs_zone_limit zone_limit;
1959 	u32 conncount_key = zone_id;
1960 
1961 	zone_limit.zone_id = zone_id;
1962 	zone_limit.limit = limit;
1963 	nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
1964 
1965 	zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
1966 					      &ct_zone);
1967 	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1968 }
1969 
1970 static int ovs_ct_limit_get_zone_limit(struct net *net,
1971 				       struct nlattr *nla_zone_limit,
1972 				       struct ovs_ct_limit_info *info,
1973 				       struct sk_buff *reply)
1974 {
1975 	struct ovs_zone_limit *zone_limit;
1976 	int rem, err;
1977 	u32 limit;
1978 	u16 zone;
1979 
1980 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1981 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1982 
1983 	while (rem >= sizeof(*zone_limit)) {
1984 		if (unlikely(zone_limit->zone_id ==
1985 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1986 			err = ovs_ct_limit_get_default_limit(info, reply);
1987 			if (err)
1988 				return err;
1989 		} else if (unlikely(!check_zone_id(zone_limit->zone_id,
1990 							&zone))) {
1991 			OVS_NLERR(true, "zone id is out of range");
1992 		} else {
1993 			rcu_read_lock();
1994 			limit = ct_limit_get(info, zone);
1995 			rcu_read_unlock();
1996 
1997 			err = __ovs_ct_limit_get_zone_limit(
1998 				net, info->data, zone, limit, reply);
1999 			if (err)
2000 				return err;
2001 		}
2002 		rem -= NLA_ALIGN(sizeof(*zone_limit));
2003 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2004 				NLA_ALIGN(sizeof(*zone_limit)));
2005 	}
2006 
2007 	if (rem)
2008 		OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2009 
2010 	return 0;
2011 }
2012 
2013 static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2014 					   struct ovs_ct_limit_info *info,
2015 					   struct sk_buff *reply)
2016 {
2017 	struct ovs_ct_limit *ct_limit;
2018 	struct hlist_head *head;
2019 	int i, err = 0;
2020 
2021 	err = ovs_ct_limit_get_default_limit(info, reply);
2022 	if (err)
2023 		return err;
2024 
2025 	rcu_read_lock();
2026 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2027 		head = &info->limits[i];
2028 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2029 			err = __ovs_ct_limit_get_zone_limit(net, info->data,
2030 				ct_limit->zone, ct_limit->limit, reply);
2031 			if (err)
2032 				goto exit_err;
2033 		}
2034 	}
2035 
2036 exit_err:
2037 	rcu_read_unlock();
2038 	return err;
2039 }
2040 
2041 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2042 {
2043 	struct nlattr **a = info->attrs;
2044 	struct sk_buff *reply;
2045 	struct ovs_header *ovs_reply_header;
2046 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2047 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2048 	int err;
2049 
2050 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2051 					     &ovs_reply_header);
2052 	if (IS_ERR(reply))
2053 		return PTR_ERR(reply);
2054 
2055 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2056 		err = -EINVAL;
2057 		goto exit_err;
2058 	}
2059 
2060 	err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2061 					  ct_limit_info);
2062 	if (err)
2063 		goto exit_err;
2064 
2065 	static_branch_enable(&ovs_ct_limit_enabled);
2066 
2067 	genlmsg_end(reply, ovs_reply_header);
2068 	return genlmsg_reply(reply, info);
2069 
2070 exit_err:
2071 	nlmsg_free(reply);
2072 	return err;
2073 }
2074 
2075 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2076 {
2077 	struct nlattr **a = info->attrs;
2078 	struct sk_buff *reply;
2079 	struct ovs_header *ovs_reply_header;
2080 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2081 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2082 	int err;
2083 
2084 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2085 					     &ovs_reply_header);
2086 	if (IS_ERR(reply))
2087 		return PTR_ERR(reply);
2088 
2089 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2090 		err = -EINVAL;
2091 		goto exit_err;
2092 	}
2093 
2094 	err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2095 					  ct_limit_info);
2096 	if (err)
2097 		goto exit_err;
2098 
2099 	genlmsg_end(reply, ovs_reply_header);
2100 	return genlmsg_reply(reply, info);
2101 
2102 exit_err:
2103 	nlmsg_free(reply);
2104 	return err;
2105 }
2106 
2107 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2108 {
2109 	struct nlattr **a = info->attrs;
2110 	struct nlattr *nla_reply;
2111 	struct sk_buff *reply;
2112 	struct ovs_header *ovs_reply_header;
2113 	struct net *net = sock_net(skb->sk);
2114 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2115 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2116 	int err;
2117 
2118 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2119 					     &ovs_reply_header);
2120 	if (IS_ERR(reply))
2121 		return PTR_ERR(reply);
2122 
2123 	nla_reply = nla_nest_start(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2124 
2125 	if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2126 		err = ovs_ct_limit_get_zone_limit(
2127 			net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2128 			reply);
2129 		if (err)
2130 			goto exit_err;
2131 	} else {
2132 		err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2133 						      reply);
2134 		if (err)
2135 			goto exit_err;
2136 	}
2137 
2138 	nla_nest_end(reply, nla_reply);
2139 	genlmsg_end(reply, ovs_reply_header);
2140 	return genlmsg_reply(reply, info);
2141 
2142 exit_err:
2143 	nlmsg_free(reply);
2144 	return err;
2145 }
2146 
2147 static struct genl_ops ct_limit_genl_ops[] = {
2148 	{ .cmd = OVS_CT_LIMIT_CMD_SET,
2149 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2150 					   * privilege. */
2151 		.policy = ct_limit_policy,
2152 		.doit = ovs_ct_limit_cmd_set,
2153 	},
2154 	{ .cmd = OVS_CT_LIMIT_CMD_DEL,
2155 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2156 					   * privilege. */
2157 		.policy = ct_limit_policy,
2158 		.doit = ovs_ct_limit_cmd_del,
2159 	},
2160 	{ .cmd = OVS_CT_LIMIT_CMD_GET,
2161 		.flags = 0,		  /* OK for unprivileged users. */
2162 		.policy = ct_limit_policy,
2163 		.doit = ovs_ct_limit_cmd_get,
2164 	},
2165 };
2166 
2167 static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2168 	.name = OVS_CT_LIMIT_MCGROUP,
2169 };
2170 
2171 struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2172 	.hdrsize = sizeof(struct ovs_header),
2173 	.name = OVS_CT_LIMIT_FAMILY,
2174 	.version = OVS_CT_LIMIT_VERSION,
2175 	.maxattr = OVS_CT_LIMIT_ATTR_MAX,
2176 	.netnsok = true,
2177 	.parallel_ops = true,
2178 	.ops = ct_limit_genl_ops,
2179 	.n_ops = ARRAY_SIZE(ct_limit_genl_ops),
2180 	.mcgrps = &ovs_ct_limit_multicast_group,
2181 	.n_mcgrps = 1,
2182 	.module = THIS_MODULE,
2183 };
2184 #endif
2185 
2186 int ovs_ct_init(struct net *net)
2187 {
2188 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2189 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2190 
2191 	if (nf_connlabels_get(net, n_bits - 1)) {
2192 		ovs_net->xt_label = false;
2193 		OVS_NLERR(true, "Failed to set connlabel length");
2194 	} else {
2195 		ovs_net->xt_label = true;
2196 	}
2197 
2198 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2199 	return ovs_ct_limit_init(net, ovs_net);
2200 #else
2201 	return 0;
2202 #endif
2203 }
2204 
2205 void ovs_ct_exit(struct net *net)
2206 {
2207 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2208 
2209 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2210 	ovs_ct_limit_exit(net, ovs_net);
2211 #endif
2212 
2213 	if (ovs_net->xt_label)
2214 		nf_connlabels_put(net);
2215 }
2216