xref: /linux/net/openvswitch/conntrack.c (revision 78beef629fd95be4ed853b2d37b832f766bd96ca)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 Nicira, Inc.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/openvswitch.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/sctp.h>
11 #include <linux/static_key.h>
12 #include <net/ip.h>
13 #include <net/genetlink.h>
14 #include <net/netfilter/nf_conntrack_core.h>
15 #include <net/netfilter/nf_conntrack_count.h>
16 #include <net/netfilter/nf_conntrack_helper.h>
17 #include <net/netfilter/nf_conntrack_labels.h>
18 #include <net/netfilter/nf_conntrack_seqadj.h>
19 #include <net/netfilter/nf_conntrack_timeout.h>
20 #include <net/netfilter/nf_conntrack_zones.h>
21 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
22 #include <net/ipv6_frag.h>
23 
24 #if IS_ENABLED(CONFIG_NF_NAT)
25 #include <net/netfilter/nf_nat.h>
26 #endif
27 
28 #include "datapath.h"
29 #include "conntrack.h"
30 #include "flow.h"
31 #include "flow_netlink.h"
32 
33 struct ovs_ct_len_tbl {
34 	int maxlen;
35 	int minlen;
36 };
37 
38 /* Metadata mark for masked write to conntrack mark */
39 struct md_mark {
40 	u32 value;
41 	u32 mask;
42 };
43 
44 /* Metadata label for masked write to conntrack label. */
45 struct md_labels {
46 	struct ovs_key_ct_labels value;
47 	struct ovs_key_ct_labels mask;
48 };
49 
50 enum ovs_ct_nat {
51 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
52 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
53 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
54 };
55 
56 /* Conntrack action context for execution. */
57 struct ovs_conntrack_info {
58 	struct nf_conntrack_helper *helper;
59 	struct nf_conntrack_zone zone;
60 	struct nf_conn *ct;
61 	u8 commit : 1;
62 	u8 nat : 3;                 /* enum ovs_ct_nat */
63 	u8 force : 1;
64 	u8 have_eventmask : 1;
65 	u16 family;
66 	u32 eventmask;              /* Mask of 1 << IPCT_*. */
67 	struct md_mark mark;
68 	struct md_labels labels;
69 	char timeout[CTNL_TIMEOUT_NAME_MAX];
70 	struct nf_ct_timeout *nf_ct_timeout;
71 #if IS_ENABLED(CONFIG_NF_NAT)
72 	struct nf_nat_range2 range;  /* Only present for SRC NAT and DST NAT. */
73 #endif
74 };
75 
76 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
77 #define OVS_CT_LIMIT_UNLIMITED	0
78 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
79 #define CT_LIMIT_HASH_BUCKETS 512
80 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
81 
82 struct ovs_ct_limit {
83 	/* Elements in ovs_ct_limit_info->limits hash table */
84 	struct hlist_node hlist_node;
85 	struct rcu_head rcu;
86 	u16 zone;
87 	u32 limit;
88 };
89 
90 struct ovs_ct_limit_info {
91 	u32 default_limit;
92 	struct hlist_head *limits;
93 	struct nf_conncount_data *data;
94 };
95 
96 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
97 	[OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
98 };
99 #endif
100 
101 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
102 
103 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
104 
105 static u16 key_to_nfproto(const struct sw_flow_key *key)
106 {
107 	switch (ntohs(key->eth.type)) {
108 	case ETH_P_IP:
109 		return NFPROTO_IPV4;
110 	case ETH_P_IPV6:
111 		return NFPROTO_IPV6;
112 	default:
113 		return NFPROTO_UNSPEC;
114 	}
115 }
116 
117 /* Map SKB connection state into the values used by flow definition. */
118 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
119 {
120 	u8 ct_state = OVS_CS_F_TRACKED;
121 
122 	switch (ctinfo) {
123 	case IP_CT_ESTABLISHED_REPLY:
124 	case IP_CT_RELATED_REPLY:
125 		ct_state |= OVS_CS_F_REPLY_DIR;
126 		break;
127 	default:
128 		break;
129 	}
130 
131 	switch (ctinfo) {
132 	case IP_CT_ESTABLISHED:
133 	case IP_CT_ESTABLISHED_REPLY:
134 		ct_state |= OVS_CS_F_ESTABLISHED;
135 		break;
136 	case IP_CT_RELATED:
137 	case IP_CT_RELATED_REPLY:
138 		ct_state |= OVS_CS_F_RELATED;
139 		break;
140 	case IP_CT_NEW:
141 		ct_state |= OVS_CS_F_NEW;
142 		break;
143 	default:
144 		break;
145 	}
146 
147 	return ct_state;
148 }
149 
150 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
151 {
152 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
153 	return ct ? ct->mark : 0;
154 #else
155 	return 0;
156 #endif
157 }
158 
159 /* Guard against conntrack labels max size shrinking below 128 bits. */
160 #if NF_CT_LABELS_MAX_SIZE < 16
161 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
162 #endif
163 
164 static void ovs_ct_get_labels(const struct nf_conn *ct,
165 			      struct ovs_key_ct_labels *labels)
166 {
167 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
168 
169 	if (cl)
170 		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
171 	else
172 		memset(labels, 0, OVS_CT_LABELS_LEN);
173 }
174 
175 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
176 					const struct nf_conntrack_tuple *orig,
177 					u8 icmp_proto)
178 {
179 	key->ct_orig_proto = orig->dst.protonum;
180 	if (orig->dst.protonum == icmp_proto) {
181 		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
182 		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
183 	} else {
184 		key->ct.orig_tp.src = orig->src.u.all;
185 		key->ct.orig_tp.dst = orig->dst.u.all;
186 	}
187 }
188 
189 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
190 				const struct nf_conntrack_zone *zone,
191 				const struct nf_conn *ct)
192 {
193 	key->ct_state = state;
194 	key->ct_zone = zone->id;
195 	key->ct.mark = ovs_ct_get_mark(ct);
196 	ovs_ct_get_labels(ct, &key->ct.labels);
197 
198 	if (ct) {
199 		const struct nf_conntrack_tuple *orig;
200 
201 		/* Use the master if we have one. */
202 		if (ct->master)
203 			ct = ct->master;
204 		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
205 
206 		/* IP version must match with the master connection. */
207 		if (key->eth.type == htons(ETH_P_IP) &&
208 		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
209 			key->ipv4.ct_orig.src = orig->src.u3.ip;
210 			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
211 			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
212 			return;
213 		} else if (key->eth.type == htons(ETH_P_IPV6) &&
214 			   !sw_flow_key_is_nd(key) &&
215 			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
216 			key->ipv6.ct_orig.src = orig->src.u3.in6;
217 			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
218 			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
219 			return;
220 		}
221 	}
222 	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
223 	 * original direction key fields.
224 	 */
225 	key->ct_orig_proto = 0;
226 }
227 
228 /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
229  * previously sent the packet to conntrack via the ct action.  If
230  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
231  * initialized from the connection status.
232  */
233 static void ovs_ct_update_key(const struct sk_buff *skb,
234 			      const struct ovs_conntrack_info *info,
235 			      struct sw_flow_key *key, bool post_ct,
236 			      bool keep_nat_flags)
237 {
238 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
239 	enum ip_conntrack_info ctinfo;
240 	struct nf_conn *ct;
241 	u8 state = 0;
242 
243 	ct = nf_ct_get(skb, &ctinfo);
244 	if (ct) {
245 		state = ovs_ct_get_state(ctinfo);
246 		/* All unconfirmed entries are NEW connections. */
247 		if (!nf_ct_is_confirmed(ct))
248 			state |= OVS_CS_F_NEW;
249 		/* OVS persists the related flag for the duration of the
250 		 * connection.
251 		 */
252 		if (ct->master)
253 			state |= OVS_CS_F_RELATED;
254 		if (keep_nat_flags) {
255 			state |= key->ct_state & OVS_CS_F_NAT_MASK;
256 		} else {
257 			if (ct->status & IPS_SRC_NAT)
258 				state |= OVS_CS_F_SRC_NAT;
259 			if (ct->status & IPS_DST_NAT)
260 				state |= OVS_CS_F_DST_NAT;
261 		}
262 		zone = nf_ct_zone(ct);
263 	} else if (post_ct) {
264 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
265 		if (info)
266 			zone = &info->zone;
267 	}
268 	__ovs_ct_update_key(key, state, zone, ct);
269 }
270 
271 /* This is called to initialize CT key fields possibly coming in from the local
272  * stack.
273  */
274 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
275 {
276 	ovs_ct_update_key(skb, NULL, key, false, false);
277 }
278 
279 #define IN6_ADDR_INITIALIZER(ADDR) \
280 	{ (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
281 	  (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
282 
283 int ovs_ct_put_key(const struct sw_flow_key *swkey,
284 		   const struct sw_flow_key *output, struct sk_buff *skb)
285 {
286 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
287 		return -EMSGSIZE;
288 
289 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
290 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
291 		return -EMSGSIZE;
292 
293 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
294 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
295 		return -EMSGSIZE;
296 
297 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
298 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
299 		    &output->ct.labels))
300 		return -EMSGSIZE;
301 
302 	if (swkey->ct_orig_proto) {
303 		if (swkey->eth.type == htons(ETH_P_IP)) {
304 			struct ovs_key_ct_tuple_ipv4 orig = {
305 				output->ipv4.ct_orig.src,
306 				output->ipv4.ct_orig.dst,
307 				output->ct.orig_tp.src,
308 				output->ct.orig_tp.dst,
309 				output->ct_orig_proto,
310 			};
311 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
312 				    sizeof(orig), &orig))
313 				return -EMSGSIZE;
314 		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
315 			struct ovs_key_ct_tuple_ipv6 orig = {
316 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
317 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
318 				output->ct.orig_tp.src,
319 				output->ct.orig_tp.dst,
320 				output->ct_orig_proto,
321 			};
322 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
323 				    sizeof(orig), &orig))
324 				return -EMSGSIZE;
325 		}
326 	}
327 
328 	return 0;
329 }
330 
331 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
332 			   u32 ct_mark, u32 mask)
333 {
334 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
335 	u32 new_mark;
336 
337 	new_mark = ct_mark | (ct->mark & ~(mask));
338 	if (ct->mark != new_mark) {
339 		ct->mark = new_mark;
340 		if (nf_ct_is_confirmed(ct))
341 			nf_conntrack_event_cache(IPCT_MARK, ct);
342 		key->ct.mark = new_mark;
343 	}
344 
345 	return 0;
346 #else
347 	return -ENOTSUPP;
348 #endif
349 }
350 
351 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
352 {
353 	struct nf_conn_labels *cl;
354 
355 	cl = nf_ct_labels_find(ct);
356 	if (!cl) {
357 		nf_ct_labels_ext_add(ct);
358 		cl = nf_ct_labels_find(ct);
359 	}
360 
361 	return cl;
362 }
363 
364 /* Initialize labels for a new, yet to be committed conntrack entry.  Note that
365  * since the new connection is not yet confirmed, and thus no-one else has
366  * access to it's labels, we simply write them over.
367  */
368 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
369 			      const struct ovs_key_ct_labels *labels,
370 			      const struct ovs_key_ct_labels *mask)
371 {
372 	struct nf_conn_labels *cl, *master_cl;
373 	bool have_mask = labels_nonzero(mask);
374 
375 	/* Inherit master's labels to the related connection? */
376 	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
377 
378 	if (!master_cl && !have_mask)
379 		return 0;   /* Nothing to do. */
380 
381 	cl = ovs_ct_get_conn_labels(ct);
382 	if (!cl)
383 		return -ENOSPC;
384 
385 	/* Inherit the master's labels, if any. */
386 	if (master_cl)
387 		*cl = *master_cl;
388 
389 	if (have_mask) {
390 		u32 *dst = (u32 *)cl->bits;
391 		int i;
392 
393 		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
394 			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
395 				(labels->ct_labels_32[i]
396 				 & mask->ct_labels_32[i]);
397 	}
398 
399 	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
400 	 * IPCT_LABEL bit is set in the event cache.
401 	 */
402 	nf_conntrack_event_cache(IPCT_LABEL, ct);
403 
404 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
405 
406 	return 0;
407 }
408 
409 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
410 			     const struct ovs_key_ct_labels *labels,
411 			     const struct ovs_key_ct_labels *mask)
412 {
413 	struct nf_conn_labels *cl;
414 	int err;
415 
416 	cl = ovs_ct_get_conn_labels(ct);
417 	if (!cl)
418 		return -ENOSPC;
419 
420 	err = nf_connlabels_replace(ct, labels->ct_labels_32,
421 				    mask->ct_labels_32,
422 				    OVS_CT_LABELS_LEN_32);
423 	if (err)
424 		return err;
425 
426 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
427 
428 	return 0;
429 }
430 
431 /* 'skb' should already be pulled to nh_ofs. */
432 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
433 {
434 	const struct nf_conntrack_helper *helper;
435 	const struct nf_conn_help *help;
436 	enum ip_conntrack_info ctinfo;
437 	unsigned int protoff;
438 	struct nf_conn *ct;
439 	int err;
440 
441 	ct = nf_ct_get(skb, &ctinfo);
442 	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
443 		return NF_ACCEPT;
444 
445 	help = nfct_help(ct);
446 	if (!help)
447 		return NF_ACCEPT;
448 
449 	helper = rcu_dereference(help->helper);
450 	if (!helper)
451 		return NF_ACCEPT;
452 
453 	switch (proto) {
454 	case NFPROTO_IPV4:
455 		protoff = ip_hdrlen(skb);
456 		break;
457 	case NFPROTO_IPV6: {
458 		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
459 		__be16 frag_off;
460 		int ofs;
461 
462 		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
463 				       &frag_off);
464 		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
465 			pr_debug("proto header not found\n");
466 			return NF_ACCEPT;
467 		}
468 		protoff = ofs;
469 		break;
470 	}
471 	default:
472 		WARN_ONCE(1, "helper invoked on non-IP family!");
473 		return NF_DROP;
474 	}
475 
476 	err = helper->help(skb, protoff, ct, ctinfo);
477 	if (err != NF_ACCEPT)
478 		return err;
479 
480 	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
481 	 * FTP with NAT) adusting the TCP payload size when mangling IP
482 	 * addresses and/or port numbers in the text-based control connection.
483 	 */
484 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
485 	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
486 		return NF_DROP;
487 	return NF_ACCEPT;
488 }
489 
490 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
491  * value if 'skb' is freed.
492  */
493 static int handle_fragments(struct net *net, struct sw_flow_key *key,
494 			    u16 zone, struct sk_buff *skb)
495 {
496 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
497 	int err;
498 
499 	if (key->eth.type == htons(ETH_P_IP)) {
500 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
501 
502 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
503 		err = ip_defrag(net, skb, user);
504 		if (err)
505 			return err;
506 
507 		ovs_cb.mru = IPCB(skb)->frag_max_size;
508 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
509 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
510 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
511 
512 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
513 		err = nf_ct_frag6_gather(net, skb, user);
514 		if (err) {
515 			if (err != -EINPROGRESS)
516 				kfree_skb(skb);
517 			return err;
518 		}
519 
520 		key->ip.proto = ipv6_hdr(skb)->nexthdr;
521 		ovs_cb.mru = IP6CB(skb)->frag_max_size;
522 #endif
523 	} else {
524 		kfree_skb(skb);
525 		return -EPFNOSUPPORT;
526 	}
527 
528 	/* The key extracted from the fragment that completed this datagram
529 	 * likely didn't have an L4 header, so regenerate it.
530 	 */
531 	ovs_flow_key_update_l3l4(skb, key);
532 
533 	key->ip.frag = OVS_FRAG_TYPE_NONE;
534 	skb_clear_hash(skb);
535 	skb->ignore_df = 1;
536 	*OVS_CB(skb) = ovs_cb;
537 
538 	return 0;
539 }
540 
541 static struct nf_conntrack_expect *
542 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
543 		   u16 proto, const struct sk_buff *skb)
544 {
545 	struct nf_conntrack_tuple tuple;
546 	struct nf_conntrack_expect *exp;
547 
548 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
549 		return NULL;
550 
551 	exp = __nf_ct_expect_find(net, zone, &tuple);
552 	if (exp) {
553 		struct nf_conntrack_tuple_hash *h;
554 
555 		/* Delete existing conntrack entry, if it clashes with the
556 		 * expectation.  This can happen since conntrack ALGs do not
557 		 * check for clashes between (new) expectations and existing
558 		 * conntrack entries.  nf_conntrack_in() will check the
559 		 * expectations only if a conntrack entry can not be found,
560 		 * which can lead to OVS finding the expectation (here) in the
561 		 * init direction, but which will not be removed by the
562 		 * nf_conntrack_in() call, if a matching conntrack entry is
563 		 * found instead.  In this case all init direction packets
564 		 * would be reported as new related packets, while reply
565 		 * direction packets would be reported as un-related
566 		 * established packets.
567 		 */
568 		h = nf_conntrack_find_get(net, zone, &tuple);
569 		if (h) {
570 			struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
571 
572 			nf_ct_delete(ct, 0, 0);
573 			nf_conntrack_put(&ct->ct_general);
574 		}
575 	}
576 
577 	return exp;
578 }
579 
580 /* This replicates logic from nf_conntrack_core.c that is not exported. */
581 static enum ip_conntrack_info
582 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
583 {
584 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
585 
586 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
587 		return IP_CT_ESTABLISHED_REPLY;
588 	/* Once we've had two way comms, always ESTABLISHED. */
589 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
590 		return IP_CT_ESTABLISHED;
591 	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
592 		return IP_CT_RELATED;
593 	return IP_CT_NEW;
594 }
595 
596 /* Find an existing connection which this packet belongs to without
597  * re-attributing statistics or modifying the connection state.  This allows an
598  * skb->_nfct lost due to an upcall to be recovered during actions execution.
599  *
600  * Must be called with rcu_read_lock.
601  *
602  * On success, populates skb->_nfct and returns the connection.  Returns NULL
603  * if there is no existing entry.
604  */
605 static struct nf_conn *
606 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
607 		     u8 l3num, struct sk_buff *skb, bool natted)
608 {
609 	struct nf_conntrack_tuple tuple;
610 	struct nf_conntrack_tuple_hash *h;
611 	struct nf_conn *ct;
612 
613 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
614 			       net, &tuple)) {
615 		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
616 		return NULL;
617 	}
618 
619 	/* Must invert the tuple if skb has been transformed by NAT. */
620 	if (natted) {
621 		struct nf_conntrack_tuple inverse;
622 
623 		if (!nf_ct_invert_tuple(&inverse, &tuple)) {
624 			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
625 			return NULL;
626 		}
627 		tuple = inverse;
628 	}
629 
630 	/* look for tuple match */
631 	h = nf_conntrack_find_get(net, zone, &tuple);
632 	if (!h)
633 		return NULL;   /* Not found. */
634 
635 	ct = nf_ct_tuplehash_to_ctrack(h);
636 
637 	/* Inverted packet tuple matches the reverse direction conntrack tuple,
638 	 * select the other tuplehash to get the right 'ctinfo' bits for this
639 	 * packet.
640 	 */
641 	if (natted)
642 		h = &ct->tuplehash[!h->tuple.dst.dir];
643 
644 	nf_ct_set(skb, ct, ovs_ct_get_info(h));
645 	return ct;
646 }
647 
648 static
649 struct nf_conn *ovs_ct_executed(struct net *net,
650 				const struct sw_flow_key *key,
651 				const struct ovs_conntrack_info *info,
652 				struct sk_buff *skb,
653 				bool *ct_executed)
654 {
655 	struct nf_conn *ct = NULL;
656 
657 	/* If no ct, check if we have evidence that an existing conntrack entry
658 	 * might be found for this skb.  This happens when we lose a skb->_nfct
659 	 * due to an upcall, or if the direction is being forced.  If the
660 	 * connection was not confirmed, it is not cached and needs to be run
661 	 * through conntrack again.
662 	 */
663 	*ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
664 		       !(key->ct_state & OVS_CS_F_INVALID) &&
665 		       (key->ct_zone == info->zone.id);
666 
667 	if (*ct_executed || (!key->ct_state && info->force)) {
668 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
669 					  !!(key->ct_state &
670 					  OVS_CS_F_NAT_MASK));
671 	}
672 
673 	return ct;
674 }
675 
676 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
677 static bool skb_nfct_cached(struct net *net,
678 			    const struct sw_flow_key *key,
679 			    const struct ovs_conntrack_info *info,
680 			    struct sk_buff *skb)
681 {
682 	enum ip_conntrack_info ctinfo;
683 	struct nf_conn *ct;
684 	bool ct_executed = true;
685 
686 	ct = nf_ct_get(skb, &ctinfo);
687 	if (!ct)
688 		ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
689 
690 	if (ct)
691 		nf_ct_get(skb, &ctinfo);
692 	else
693 		return false;
694 
695 	if (!net_eq(net, read_pnet(&ct->ct_net)))
696 		return false;
697 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
698 		return false;
699 	if (info->helper) {
700 		struct nf_conn_help *help;
701 
702 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
703 		if (help && rcu_access_pointer(help->helper) != info->helper)
704 			return false;
705 	}
706 	if (info->nf_ct_timeout) {
707 		struct nf_conn_timeout *timeout_ext;
708 
709 		timeout_ext = nf_ct_timeout_find(ct);
710 		if (!timeout_ext || info->nf_ct_timeout !=
711 		    rcu_dereference(timeout_ext->timeout))
712 			return false;
713 	}
714 	/* Force conntrack entry direction to the current packet? */
715 	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
716 		/* Delete the conntrack entry if confirmed, else just release
717 		 * the reference.
718 		 */
719 		if (nf_ct_is_confirmed(ct))
720 			nf_ct_delete(ct, 0, 0);
721 
722 		nf_conntrack_put(&ct->ct_general);
723 		nf_ct_set(skb, NULL, 0);
724 		return false;
725 	}
726 
727 	return ct_executed;
728 }
729 
730 #if IS_ENABLED(CONFIG_NF_NAT)
731 /* Modelled after nf_nat_ipv[46]_fn().
732  * range is only used for new, uninitialized NAT state.
733  * Returns either NF_ACCEPT or NF_DROP.
734  */
735 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
736 			      enum ip_conntrack_info ctinfo,
737 			      const struct nf_nat_range2 *range,
738 			      enum nf_nat_manip_type maniptype)
739 {
740 	int hooknum, nh_off, err = NF_ACCEPT;
741 
742 	nh_off = skb_network_offset(skb);
743 	skb_pull_rcsum(skb, nh_off);
744 
745 	/* See HOOK2MANIP(). */
746 	if (maniptype == NF_NAT_MANIP_SRC)
747 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
748 	else
749 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
750 
751 	switch (ctinfo) {
752 	case IP_CT_RELATED:
753 	case IP_CT_RELATED_REPLY:
754 		if (IS_ENABLED(CONFIG_NF_NAT) &&
755 		    skb->protocol == htons(ETH_P_IP) &&
756 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
757 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
758 							   hooknum))
759 				err = NF_DROP;
760 			goto push;
761 		} else if (IS_ENABLED(CONFIG_IPV6) &&
762 			   skb->protocol == htons(ETH_P_IPV6)) {
763 			__be16 frag_off;
764 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
765 			int hdrlen = ipv6_skip_exthdr(skb,
766 						      sizeof(struct ipv6hdr),
767 						      &nexthdr, &frag_off);
768 
769 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
770 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
771 								     ctinfo,
772 								     hooknum,
773 								     hdrlen))
774 					err = NF_DROP;
775 				goto push;
776 			}
777 		}
778 		/* Non-ICMP, fall thru to initialize if needed. */
779 		/* fall through */
780 	case IP_CT_NEW:
781 		/* Seen it before?  This can happen for loopback, retrans,
782 		 * or local packets.
783 		 */
784 		if (!nf_nat_initialized(ct, maniptype)) {
785 			/* Initialize according to the NAT action. */
786 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
787 				/* Action is set up to establish a new
788 				 * mapping.
789 				 */
790 				? nf_nat_setup_info(ct, range, maniptype)
791 				: nf_nat_alloc_null_binding(ct, hooknum);
792 			if (err != NF_ACCEPT)
793 				goto push;
794 		}
795 		break;
796 
797 	case IP_CT_ESTABLISHED:
798 	case IP_CT_ESTABLISHED_REPLY:
799 		break;
800 
801 	default:
802 		err = NF_DROP;
803 		goto push;
804 	}
805 
806 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
807 push:
808 	skb_push(skb, nh_off);
809 	skb_postpush_rcsum(skb, skb->data, nh_off);
810 
811 	return err;
812 }
813 
814 static void ovs_nat_update_key(struct sw_flow_key *key,
815 			       const struct sk_buff *skb,
816 			       enum nf_nat_manip_type maniptype)
817 {
818 	if (maniptype == NF_NAT_MANIP_SRC) {
819 		__be16 src;
820 
821 		key->ct_state |= OVS_CS_F_SRC_NAT;
822 		if (key->eth.type == htons(ETH_P_IP))
823 			key->ipv4.addr.src = ip_hdr(skb)->saddr;
824 		else if (key->eth.type == htons(ETH_P_IPV6))
825 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
826 			       sizeof(key->ipv6.addr.src));
827 		else
828 			return;
829 
830 		if (key->ip.proto == IPPROTO_UDP)
831 			src = udp_hdr(skb)->source;
832 		else if (key->ip.proto == IPPROTO_TCP)
833 			src = tcp_hdr(skb)->source;
834 		else if (key->ip.proto == IPPROTO_SCTP)
835 			src = sctp_hdr(skb)->source;
836 		else
837 			return;
838 
839 		key->tp.src = src;
840 	} else {
841 		__be16 dst;
842 
843 		key->ct_state |= OVS_CS_F_DST_NAT;
844 		if (key->eth.type == htons(ETH_P_IP))
845 			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
846 		else if (key->eth.type == htons(ETH_P_IPV6))
847 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
848 			       sizeof(key->ipv6.addr.dst));
849 		else
850 			return;
851 
852 		if (key->ip.proto == IPPROTO_UDP)
853 			dst = udp_hdr(skb)->dest;
854 		else if (key->ip.proto == IPPROTO_TCP)
855 			dst = tcp_hdr(skb)->dest;
856 		else if (key->ip.proto == IPPROTO_SCTP)
857 			dst = sctp_hdr(skb)->dest;
858 		else
859 			return;
860 
861 		key->tp.dst = dst;
862 	}
863 }
864 
865 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
866 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
867 		      const struct ovs_conntrack_info *info,
868 		      struct sk_buff *skb, struct nf_conn *ct,
869 		      enum ip_conntrack_info ctinfo)
870 {
871 	enum nf_nat_manip_type maniptype;
872 	int err;
873 
874 	/* Add NAT extension if not confirmed yet. */
875 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
876 		return NF_ACCEPT;   /* Can't NAT. */
877 
878 	/* Determine NAT type.
879 	 * Check if the NAT type can be deduced from the tracked connection.
880 	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
881 	 * when committing.
882 	 */
883 	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
884 	    ct->status & IPS_NAT_MASK &&
885 	    (ctinfo != IP_CT_RELATED || info->commit)) {
886 		/* NAT an established or related connection like before. */
887 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
888 			/* This is the REPLY direction for a connection
889 			 * for which NAT was applied in the forward
890 			 * direction.  Do the reverse NAT.
891 			 */
892 			maniptype = ct->status & IPS_SRC_NAT
893 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
894 		else
895 			maniptype = ct->status & IPS_SRC_NAT
896 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
897 	} else if (info->nat & OVS_CT_SRC_NAT) {
898 		maniptype = NF_NAT_MANIP_SRC;
899 	} else if (info->nat & OVS_CT_DST_NAT) {
900 		maniptype = NF_NAT_MANIP_DST;
901 	} else {
902 		return NF_ACCEPT; /* Connection is not NATed. */
903 	}
904 	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
905 
906 	/* Mark NAT done if successful and update the flow key. */
907 	if (err == NF_ACCEPT)
908 		ovs_nat_update_key(key, skb, maniptype);
909 
910 	return err;
911 }
912 #else /* !CONFIG_NF_NAT */
913 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
914 		      const struct ovs_conntrack_info *info,
915 		      struct sk_buff *skb, struct nf_conn *ct,
916 		      enum ip_conntrack_info ctinfo)
917 {
918 	return NF_ACCEPT;
919 }
920 #endif
921 
922 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
923  * not done already.  Update key with new CT state after passing the packet
924  * through conntrack.
925  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
926  * set to NULL and 0 will be returned.
927  */
928 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
929 			   const struct ovs_conntrack_info *info,
930 			   struct sk_buff *skb)
931 {
932 	/* If we are recirculating packets to match on conntrack fields and
933 	 * committing with a separate conntrack action,  then we don't need to
934 	 * actually run the packet through conntrack twice unless it's for a
935 	 * different zone.
936 	 */
937 	bool cached = skb_nfct_cached(net, key, info, skb);
938 	enum ip_conntrack_info ctinfo;
939 	struct nf_conn *ct;
940 
941 	if (!cached) {
942 		struct nf_hook_state state = {
943 			.hook = NF_INET_PRE_ROUTING,
944 			.pf = info->family,
945 			.net = net,
946 		};
947 		struct nf_conn *tmpl = info->ct;
948 		int err;
949 
950 		/* Associate skb with specified zone. */
951 		if (tmpl) {
952 			if (skb_nfct(skb))
953 				nf_conntrack_put(skb_nfct(skb));
954 			nf_conntrack_get(&tmpl->ct_general);
955 			nf_ct_set(skb, tmpl, IP_CT_NEW);
956 		}
957 
958 		err = nf_conntrack_in(skb, &state);
959 		if (err != NF_ACCEPT)
960 			return -ENOENT;
961 
962 		/* Clear CT state NAT flags to mark that we have not yet done
963 		 * NAT after the nf_conntrack_in() call.  We can actually clear
964 		 * the whole state, as it will be re-initialized below.
965 		 */
966 		key->ct_state = 0;
967 
968 		/* Update the key, but keep the NAT flags. */
969 		ovs_ct_update_key(skb, info, key, true, true);
970 	}
971 
972 	ct = nf_ct_get(skb, &ctinfo);
973 	if (ct) {
974 		/* Packets starting a new connection must be NATted before the
975 		 * helper, so that the helper knows about the NAT.  We enforce
976 		 * this by delaying both NAT and helper calls for unconfirmed
977 		 * connections until the committing CT action.  For later
978 		 * packets NAT and Helper may be called in either order.
979 		 *
980 		 * NAT will be done only if the CT action has NAT, and only
981 		 * once per packet (per zone), as guarded by the NAT bits in
982 		 * the key->ct_state.
983 		 */
984 		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
985 		    (nf_ct_is_confirmed(ct) || info->commit) &&
986 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
987 			return -EINVAL;
988 		}
989 
990 		/* Userspace may decide to perform a ct lookup without a helper
991 		 * specified followed by a (recirculate and) commit with one.
992 		 * Therefore, for unconfirmed connections which we will commit,
993 		 * we need to attach the helper here.
994 		 */
995 		if (!nf_ct_is_confirmed(ct) && info->commit &&
996 		    info->helper && !nfct_help(ct)) {
997 			int err = __nf_ct_try_assign_helper(ct, info->ct,
998 							    GFP_ATOMIC);
999 			if (err)
1000 				return err;
1001 
1002 			/* helper installed, add seqadj if NAT is required */
1003 			if (info->nat && !nfct_seqadj(ct)) {
1004 				if (!nfct_seqadj_ext_add(ct))
1005 					return -EINVAL;
1006 			}
1007 		}
1008 
1009 		/* Call the helper only if:
1010 		 * - nf_conntrack_in() was executed above ("!cached") for a
1011 		 *   confirmed connection, or
1012 		 * - When committing an unconfirmed connection.
1013 		 */
1014 		if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
1015 		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1016 			return -EINVAL;
1017 		}
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 /* Lookup connection and read fields into key. */
1024 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1025 			 const struct ovs_conntrack_info *info,
1026 			 struct sk_buff *skb)
1027 {
1028 	struct nf_conntrack_expect *exp;
1029 
1030 	/* If we pass an expected packet through nf_conntrack_in() the
1031 	 * expectation is typically removed, but the packet could still be
1032 	 * lost in upcall processing.  To prevent this from happening we
1033 	 * perform an explicit expectation lookup.  Expected connections are
1034 	 * always new, and will be passed through conntrack only when they are
1035 	 * committed, as it is OK to remove the expectation at that time.
1036 	 */
1037 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1038 	if (exp) {
1039 		u8 state;
1040 
1041 		/* NOTE: New connections are NATted and Helped only when
1042 		 * committed, so we are not calling into NAT here.
1043 		 */
1044 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1045 		__ovs_ct_update_key(key, state, &info->zone, exp->master);
1046 	} else {
1047 		struct nf_conn *ct;
1048 		int err;
1049 
1050 		err = __ovs_ct_lookup(net, key, info, skb);
1051 		if (err)
1052 			return err;
1053 
1054 		ct = (struct nf_conn *)skb_nfct(skb);
1055 		if (ct)
1056 			nf_ct_deliver_cached_events(ct);
1057 	}
1058 
1059 	return 0;
1060 }
1061 
1062 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1063 {
1064 	size_t i;
1065 
1066 	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1067 		if (labels->ct_labels_32[i])
1068 			return true;
1069 
1070 	return false;
1071 }
1072 
1073 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1074 static struct hlist_head *ct_limit_hash_bucket(
1075 	const struct ovs_ct_limit_info *info, u16 zone)
1076 {
1077 	return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1078 }
1079 
1080 /* Call with ovs_mutex */
1081 static void ct_limit_set(const struct ovs_ct_limit_info *info,
1082 			 struct ovs_ct_limit *new_ct_limit)
1083 {
1084 	struct ovs_ct_limit *ct_limit;
1085 	struct hlist_head *head;
1086 
1087 	head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1088 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1089 		if (ct_limit->zone == new_ct_limit->zone) {
1090 			hlist_replace_rcu(&ct_limit->hlist_node,
1091 					  &new_ct_limit->hlist_node);
1092 			kfree_rcu(ct_limit, rcu);
1093 			return;
1094 		}
1095 	}
1096 
1097 	hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1098 }
1099 
1100 /* Call with ovs_mutex */
1101 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1102 {
1103 	struct ovs_ct_limit *ct_limit;
1104 	struct hlist_head *head;
1105 	struct hlist_node *n;
1106 
1107 	head = ct_limit_hash_bucket(info, zone);
1108 	hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1109 		if (ct_limit->zone == zone) {
1110 			hlist_del_rcu(&ct_limit->hlist_node);
1111 			kfree_rcu(ct_limit, rcu);
1112 			return;
1113 		}
1114 	}
1115 }
1116 
1117 /* Call with RCU read lock */
1118 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1119 {
1120 	struct ovs_ct_limit *ct_limit;
1121 	struct hlist_head *head;
1122 
1123 	head = ct_limit_hash_bucket(info, zone);
1124 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1125 		if (ct_limit->zone == zone)
1126 			return ct_limit->limit;
1127 	}
1128 
1129 	return info->default_limit;
1130 }
1131 
1132 static int ovs_ct_check_limit(struct net *net,
1133 			      const struct ovs_conntrack_info *info,
1134 			      const struct nf_conntrack_tuple *tuple)
1135 {
1136 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1137 	const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1138 	u32 per_zone_limit, connections;
1139 	u32 conncount_key;
1140 
1141 	conncount_key = info->zone.id;
1142 
1143 	per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1144 	if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1145 		return 0;
1146 
1147 	connections = nf_conncount_count(net, ct_limit_info->data,
1148 					 &conncount_key, tuple, &info->zone);
1149 	if (connections > per_zone_limit)
1150 		return -ENOMEM;
1151 
1152 	return 0;
1153 }
1154 #endif
1155 
1156 /* Lookup connection and confirm if unconfirmed. */
1157 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1158 			 const struct ovs_conntrack_info *info,
1159 			 struct sk_buff *skb)
1160 {
1161 	enum ip_conntrack_info ctinfo;
1162 	struct nf_conn *ct;
1163 	int err;
1164 
1165 	err = __ovs_ct_lookup(net, key, info, skb);
1166 	if (err)
1167 		return err;
1168 
1169 	/* The connection could be invalid, in which case this is a no-op.*/
1170 	ct = nf_ct_get(skb, &ctinfo);
1171 	if (!ct)
1172 		return 0;
1173 
1174 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1175 	if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1176 		if (!nf_ct_is_confirmed(ct)) {
1177 			err = ovs_ct_check_limit(net, info,
1178 				&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1179 			if (err) {
1180 				net_warn_ratelimited("openvswitch: zone: %u "
1181 					"exceeds conntrack limit\n",
1182 					info->zone.id);
1183 				return err;
1184 			}
1185 		}
1186 	}
1187 #endif
1188 
1189 	/* Set the conntrack event mask if given.  NEW and DELETE events have
1190 	 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1191 	 * typically would receive many kinds of updates.  Setting the event
1192 	 * mask allows those events to be filtered.  The set event mask will
1193 	 * remain in effect for the lifetime of the connection unless changed
1194 	 * by a further CT action with both the commit flag and the eventmask
1195 	 * option. */
1196 	if (info->have_eventmask) {
1197 		struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1198 
1199 		if (cache)
1200 			cache->ctmask = info->eventmask;
1201 	}
1202 
1203 	/* Apply changes before confirming the connection so that the initial
1204 	 * conntrack NEW netlink event carries the values given in the CT
1205 	 * action.
1206 	 */
1207 	if (info->mark.mask) {
1208 		err = ovs_ct_set_mark(ct, key, info->mark.value,
1209 				      info->mark.mask);
1210 		if (err)
1211 			return err;
1212 	}
1213 	if (!nf_ct_is_confirmed(ct)) {
1214 		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1215 					 &info->labels.mask);
1216 		if (err)
1217 			return err;
1218 	} else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1219 		   labels_nonzero(&info->labels.mask)) {
1220 		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1221 					&info->labels.mask);
1222 		if (err)
1223 			return err;
1224 	}
1225 	/* This will take care of sending queued events even if the connection
1226 	 * is already confirmed.
1227 	 */
1228 	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1229 		return -EINVAL;
1230 
1231 	return 0;
1232 }
1233 
1234 /* Trim the skb to the length specified by the IP/IPv6 header,
1235  * removing any trailing lower-layer padding. This prepares the skb
1236  * for higher-layer processing that assumes skb->len excludes padding
1237  * (such as nf_ip_checksum). The caller needs to pull the skb to the
1238  * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1239  */
1240 static int ovs_skb_network_trim(struct sk_buff *skb)
1241 {
1242 	unsigned int len;
1243 	int err;
1244 
1245 	switch (skb->protocol) {
1246 	case htons(ETH_P_IP):
1247 		len = ntohs(ip_hdr(skb)->tot_len);
1248 		break;
1249 	case htons(ETH_P_IPV6):
1250 		len = sizeof(struct ipv6hdr)
1251 			+ ntohs(ipv6_hdr(skb)->payload_len);
1252 		break;
1253 	default:
1254 		len = skb->len;
1255 	}
1256 
1257 	err = pskb_trim_rcsum(skb, len);
1258 	if (err)
1259 		kfree_skb(skb);
1260 
1261 	return err;
1262 }
1263 
1264 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1265  * value if 'skb' is freed.
1266  */
1267 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1268 		   struct sw_flow_key *key,
1269 		   const struct ovs_conntrack_info *info)
1270 {
1271 	int nh_ofs;
1272 	int err;
1273 
1274 	/* The conntrack module expects to be working at L3. */
1275 	nh_ofs = skb_network_offset(skb);
1276 	skb_pull_rcsum(skb, nh_ofs);
1277 
1278 	err = ovs_skb_network_trim(skb);
1279 	if (err)
1280 		return err;
1281 
1282 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1283 		err = handle_fragments(net, key, info->zone.id, skb);
1284 		if (err)
1285 			return err;
1286 	}
1287 
1288 	if (info->commit)
1289 		err = ovs_ct_commit(net, key, info, skb);
1290 	else
1291 		err = ovs_ct_lookup(net, key, info, skb);
1292 
1293 	skb_push(skb, nh_ofs);
1294 	skb_postpush_rcsum(skb, skb->data, nh_ofs);
1295 	if (err)
1296 		kfree_skb(skb);
1297 	return err;
1298 }
1299 
1300 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1301 {
1302 	if (skb_nfct(skb)) {
1303 		nf_conntrack_put(skb_nfct(skb));
1304 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1305 		ovs_ct_fill_key(skb, key);
1306 	}
1307 
1308 	return 0;
1309 }
1310 
1311 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1312 			     const struct sw_flow_key *key, bool log)
1313 {
1314 	struct nf_conntrack_helper *helper;
1315 	struct nf_conn_help *help;
1316 	int ret = 0;
1317 
1318 	helper = nf_conntrack_helper_try_module_get(name, info->family,
1319 						    key->ip.proto);
1320 	if (!helper) {
1321 		OVS_NLERR(log, "Unknown helper \"%s\"", name);
1322 		return -EINVAL;
1323 	}
1324 
1325 	help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1326 	if (!help) {
1327 		nf_conntrack_helper_put(helper);
1328 		return -ENOMEM;
1329 	}
1330 
1331 #if IS_ENABLED(CONFIG_NF_NAT)
1332 	if (info->nat) {
1333 		ret = nf_nat_helper_try_module_get(name, info->family,
1334 						   key->ip.proto);
1335 		if (ret) {
1336 			nf_conntrack_helper_put(helper);
1337 			OVS_NLERR(log, "Failed to load \"%s\" NAT helper, error: %d",
1338 				  name, ret);
1339 			return ret;
1340 		}
1341 	}
1342 #endif
1343 	rcu_assign_pointer(help->helper, helper);
1344 	info->helper = helper;
1345 	return ret;
1346 }
1347 
1348 #if IS_ENABLED(CONFIG_NF_NAT)
1349 static int parse_nat(const struct nlattr *attr,
1350 		     struct ovs_conntrack_info *info, bool log)
1351 {
1352 	struct nlattr *a;
1353 	int rem;
1354 	bool have_ip_max = false;
1355 	bool have_proto_max = false;
1356 	bool ip_vers = (info->family == NFPROTO_IPV6);
1357 
1358 	nla_for_each_nested(a, attr, rem) {
1359 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1360 			[OVS_NAT_ATTR_SRC] = {0, 0},
1361 			[OVS_NAT_ATTR_DST] = {0, 0},
1362 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1363 						 sizeof(struct in6_addr)},
1364 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1365 						 sizeof(struct in6_addr)},
1366 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1367 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1368 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1369 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1370 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1371 		};
1372 		int type = nla_type(a);
1373 
1374 		if (type > OVS_NAT_ATTR_MAX) {
1375 			OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1376 				  type, OVS_NAT_ATTR_MAX);
1377 			return -EINVAL;
1378 		}
1379 
1380 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1381 			OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1382 				  type, nla_len(a),
1383 				  ovs_nat_attr_lens[type][ip_vers]);
1384 			return -EINVAL;
1385 		}
1386 
1387 		switch (type) {
1388 		case OVS_NAT_ATTR_SRC:
1389 		case OVS_NAT_ATTR_DST:
1390 			if (info->nat) {
1391 				OVS_NLERR(log, "Only one type of NAT may be specified");
1392 				return -ERANGE;
1393 			}
1394 			info->nat |= OVS_CT_NAT;
1395 			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1396 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1397 			break;
1398 
1399 		case OVS_NAT_ATTR_IP_MIN:
1400 			nla_memcpy(&info->range.min_addr, a,
1401 				   sizeof(info->range.min_addr));
1402 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1403 			break;
1404 
1405 		case OVS_NAT_ATTR_IP_MAX:
1406 			have_ip_max = true;
1407 			nla_memcpy(&info->range.max_addr, a,
1408 				   sizeof(info->range.max_addr));
1409 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1410 			break;
1411 
1412 		case OVS_NAT_ATTR_PROTO_MIN:
1413 			info->range.min_proto.all = htons(nla_get_u16(a));
1414 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1415 			break;
1416 
1417 		case OVS_NAT_ATTR_PROTO_MAX:
1418 			have_proto_max = true;
1419 			info->range.max_proto.all = htons(nla_get_u16(a));
1420 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1421 			break;
1422 
1423 		case OVS_NAT_ATTR_PERSISTENT:
1424 			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1425 			break;
1426 
1427 		case OVS_NAT_ATTR_PROTO_HASH:
1428 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1429 			break;
1430 
1431 		case OVS_NAT_ATTR_PROTO_RANDOM:
1432 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1433 			break;
1434 
1435 		default:
1436 			OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1437 			return -EINVAL;
1438 		}
1439 	}
1440 
1441 	if (rem > 0) {
1442 		OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1443 		return -EINVAL;
1444 	}
1445 	if (!info->nat) {
1446 		/* Do not allow flags if no type is given. */
1447 		if (info->range.flags) {
1448 			OVS_NLERR(log,
1449 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1450 				  );
1451 			return -EINVAL;
1452 		}
1453 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1454 	} else if (!info->commit) {
1455 		OVS_NLERR(log,
1456 			  "NAT attributes may be specified only when CT COMMIT flag is also specified."
1457 			  );
1458 		return -EINVAL;
1459 	}
1460 	/* Allow missing IP_MAX. */
1461 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1462 		memcpy(&info->range.max_addr, &info->range.min_addr,
1463 		       sizeof(info->range.max_addr));
1464 	}
1465 	/* Allow missing PROTO_MAX. */
1466 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1467 	    !have_proto_max) {
1468 		info->range.max_proto.all = info->range.min_proto.all;
1469 	}
1470 	return 0;
1471 }
1472 #endif
1473 
1474 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1475 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1476 	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1477 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1478 				    .maxlen = sizeof(u16) },
1479 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1480 				    .maxlen = sizeof(struct md_mark) },
1481 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1482 				    .maxlen = sizeof(struct md_labels) },
1483 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1484 				    .maxlen = NF_CT_HELPER_NAME_LEN },
1485 #if IS_ENABLED(CONFIG_NF_NAT)
1486 	/* NAT length is checked when parsing the nested attributes. */
1487 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1488 #endif
1489 	[OVS_CT_ATTR_EVENTMASK]	= { .minlen = sizeof(u32),
1490 				    .maxlen = sizeof(u32) },
1491 	[OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1492 				  .maxlen = CTNL_TIMEOUT_NAME_MAX },
1493 };
1494 
1495 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1496 		    const char **helper, bool log)
1497 {
1498 	struct nlattr *a;
1499 	int rem;
1500 
1501 	nla_for_each_nested(a, attr, rem) {
1502 		int type = nla_type(a);
1503 		int maxlen;
1504 		int minlen;
1505 
1506 		if (type > OVS_CT_ATTR_MAX) {
1507 			OVS_NLERR(log,
1508 				  "Unknown conntrack attr (type=%d, max=%d)",
1509 				  type, OVS_CT_ATTR_MAX);
1510 			return -EINVAL;
1511 		}
1512 
1513 		maxlen = ovs_ct_attr_lens[type].maxlen;
1514 		minlen = ovs_ct_attr_lens[type].minlen;
1515 		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1516 			OVS_NLERR(log,
1517 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1518 				  type, nla_len(a), maxlen);
1519 			return -EINVAL;
1520 		}
1521 
1522 		switch (type) {
1523 		case OVS_CT_ATTR_FORCE_COMMIT:
1524 			info->force = true;
1525 			/* fall through. */
1526 		case OVS_CT_ATTR_COMMIT:
1527 			info->commit = true;
1528 			break;
1529 #ifdef CONFIG_NF_CONNTRACK_ZONES
1530 		case OVS_CT_ATTR_ZONE:
1531 			info->zone.id = nla_get_u16(a);
1532 			break;
1533 #endif
1534 #ifdef CONFIG_NF_CONNTRACK_MARK
1535 		case OVS_CT_ATTR_MARK: {
1536 			struct md_mark *mark = nla_data(a);
1537 
1538 			if (!mark->mask) {
1539 				OVS_NLERR(log, "ct_mark mask cannot be 0");
1540 				return -EINVAL;
1541 			}
1542 			info->mark = *mark;
1543 			break;
1544 		}
1545 #endif
1546 #ifdef CONFIG_NF_CONNTRACK_LABELS
1547 		case OVS_CT_ATTR_LABELS: {
1548 			struct md_labels *labels = nla_data(a);
1549 
1550 			if (!labels_nonzero(&labels->mask)) {
1551 				OVS_NLERR(log, "ct_labels mask cannot be 0");
1552 				return -EINVAL;
1553 			}
1554 			info->labels = *labels;
1555 			break;
1556 		}
1557 #endif
1558 		case OVS_CT_ATTR_HELPER:
1559 			*helper = nla_data(a);
1560 			if (!memchr(*helper, '\0', nla_len(a))) {
1561 				OVS_NLERR(log, "Invalid conntrack helper");
1562 				return -EINVAL;
1563 			}
1564 			break;
1565 #if IS_ENABLED(CONFIG_NF_NAT)
1566 		case OVS_CT_ATTR_NAT: {
1567 			int err = parse_nat(a, info, log);
1568 
1569 			if (err)
1570 				return err;
1571 			break;
1572 		}
1573 #endif
1574 		case OVS_CT_ATTR_EVENTMASK:
1575 			info->have_eventmask = true;
1576 			info->eventmask = nla_get_u32(a);
1577 			break;
1578 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1579 		case OVS_CT_ATTR_TIMEOUT:
1580 			memcpy(info->timeout, nla_data(a), nla_len(a));
1581 			if (!memchr(info->timeout, '\0', nla_len(a))) {
1582 				OVS_NLERR(log, "Invalid conntrack timeout");
1583 				return -EINVAL;
1584 			}
1585 			break;
1586 #endif
1587 
1588 		default:
1589 			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1590 				  type);
1591 			return -EINVAL;
1592 		}
1593 	}
1594 
1595 #ifdef CONFIG_NF_CONNTRACK_MARK
1596 	if (!info->commit && info->mark.mask) {
1597 		OVS_NLERR(log,
1598 			  "Setting conntrack mark requires 'commit' flag.");
1599 		return -EINVAL;
1600 	}
1601 #endif
1602 #ifdef CONFIG_NF_CONNTRACK_LABELS
1603 	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1604 		OVS_NLERR(log,
1605 			  "Setting conntrack labels requires 'commit' flag.");
1606 		return -EINVAL;
1607 	}
1608 #endif
1609 	if (rem > 0) {
1610 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1611 		return -EINVAL;
1612 	}
1613 
1614 	return 0;
1615 }
1616 
1617 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1618 {
1619 	if (attr == OVS_KEY_ATTR_CT_STATE)
1620 		return true;
1621 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1622 	    attr == OVS_KEY_ATTR_CT_ZONE)
1623 		return true;
1624 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1625 	    attr == OVS_KEY_ATTR_CT_MARK)
1626 		return true;
1627 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1628 	    attr == OVS_KEY_ATTR_CT_LABELS) {
1629 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1630 
1631 		return ovs_net->xt_label;
1632 	}
1633 
1634 	return false;
1635 }
1636 
1637 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1638 		       const struct sw_flow_key *key,
1639 		       struct sw_flow_actions **sfa,  bool log)
1640 {
1641 	struct ovs_conntrack_info ct_info;
1642 	const char *helper = NULL;
1643 	u16 family;
1644 	int err;
1645 
1646 	family = key_to_nfproto(key);
1647 	if (family == NFPROTO_UNSPEC) {
1648 		OVS_NLERR(log, "ct family unspecified");
1649 		return -EINVAL;
1650 	}
1651 
1652 	memset(&ct_info, 0, sizeof(ct_info));
1653 	ct_info.family = family;
1654 
1655 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1656 			NF_CT_DEFAULT_ZONE_DIR, 0);
1657 
1658 	err = parse_ct(attr, &ct_info, &helper, log);
1659 	if (err)
1660 		return err;
1661 
1662 	/* Set up template for tracking connections in specific zones. */
1663 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1664 	if (!ct_info.ct) {
1665 		OVS_NLERR(log, "Failed to allocate conntrack template");
1666 		return -ENOMEM;
1667 	}
1668 
1669 	if (ct_info.timeout[0]) {
1670 		if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1671 				      ct_info.timeout))
1672 			pr_info_ratelimited("Failed to associated timeout "
1673 					    "policy `%s'\n", ct_info.timeout);
1674 		else
1675 			ct_info.nf_ct_timeout = rcu_dereference(
1676 				nf_ct_timeout_find(ct_info.ct)->timeout);
1677 
1678 	}
1679 
1680 	if (helper) {
1681 		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1682 		if (err)
1683 			goto err_free_ct;
1684 	}
1685 
1686 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1687 				 sizeof(ct_info), log);
1688 	if (err)
1689 		goto err_free_ct;
1690 
1691 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1692 	nf_conntrack_get(&ct_info.ct->ct_general);
1693 	return 0;
1694 err_free_ct:
1695 	__ovs_ct_free_action(&ct_info);
1696 	return err;
1697 }
1698 
1699 #if IS_ENABLED(CONFIG_NF_NAT)
1700 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1701 			       struct sk_buff *skb)
1702 {
1703 	struct nlattr *start;
1704 
1705 	start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1706 	if (!start)
1707 		return false;
1708 
1709 	if (info->nat & OVS_CT_SRC_NAT) {
1710 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1711 			return false;
1712 	} else if (info->nat & OVS_CT_DST_NAT) {
1713 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1714 			return false;
1715 	} else {
1716 		goto out;
1717 	}
1718 
1719 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1720 		if (IS_ENABLED(CONFIG_NF_NAT) &&
1721 		    info->family == NFPROTO_IPV4) {
1722 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1723 					    info->range.min_addr.ip) ||
1724 			    (info->range.max_addr.ip
1725 			     != info->range.min_addr.ip &&
1726 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1727 					      info->range.max_addr.ip))))
1728 				return false;
1729 		} else if (IS_ENABLED(CONFIG_IPV6) &&
1730 			   info->family == NFPROTO_IPV6) {
1731 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1732 					     &info->range.min_addr.in6) ||
1733 			    (memcmp(&info->range.max_addr.in6,
1734 				    &info->range.min_addr.in6,
1735 				    sizeof(info->range.max_addr.in6)) &&
1736 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1737 					       &info->range.max_addr.in6))))
1738 				return false;
1739 		} else {
1740 			return false;
1741 		}
1742 	}
1743 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1744 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1745 			 ntohs(info->range.min_proto.all)) ||
1746 	     (info->range.max_proto.all != info->range.min_proto.all &&
1747 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1748 			  ntohs(info->range.max_proto.all)))))
1749 		return false;
1750 
1751 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1752 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1753 		return false;
1754 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1755 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1756 		return false;
1757 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1758 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1759 		return false;
1760 out:
1761 	nla_nest_end(skb, start);
1762 
1763 	return true;
1764 }
1765 #endif
1766 
1767 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1768 			  struct sk_buff *skb)
1769 {
1770 	struct nlattr *start;
1771 
1772 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1773 	if (!start)
1774 		return -EMSGSIZE;
1775 
1776 	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1777 					    ? OVS_CT_ATTR_FORCE_COMMIT
1778 					    : OVS_CT_ATTR_COMMIT))
1779 		return -EMSGSIZE;
1780 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1781 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1782 		return -EMSGSIZE;
1783 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1784 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1785 		    &ct_info->mark))
1786 		return -EMSGSIZE;
1787 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1788 	    labels_nonzero(&ct_info->labels.mask) &&
1789 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1790 		    &ct_info->labels))
1791 		return -EMSGSIZE;
1792 	if (ct_info->helper) {
1793 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1794 				   ct_info->helper->name))
1795 			return -EMSGSIZE;
1796 	}
1797 	if (ct_info->have_eventmask &&
1798 	    nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1799 		return -EMSGSIZE;
1800 	if (ct_info->timeout[0]) {
1801 		if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1802 			return -EMSGSIZE;
1803 	}
1804 
1805 #if IS_ENABLED(CONFIG_NF_NAT)
1806 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1807 		return -EMSGSIZE;
1808 #endif
1809 	nla_nest_end(skb, start);
1810 
1811 	return 0;
1812 }
1813 
1814 void ovs_ct_free_action(const struct nlattr *a)
1815 {
1816 	struct ovs_conntrack_info *ct_info = nla_data(a);
1817 
1818 	__ovs_ct_free_action(ct_info);
1819 }
1820 
1821 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1822 {
1823 	if (ct_info->helper) {
1824 #if IS_ENABLED(CONFIG_NF_NAT)
1825 		if (ct_info->nat)
1826 			nf_nat_helper_put(ct_info->helper);
1827 #endif
1828 		nf_conntrack_helper_put(ct_info->helper);
1829 	}
1830 	if (ct_info->ct) {
1831 		if (ct_info->timeout[0])
1832 			nf_ct_destroy_timeout(ct_info->ct);
1833 		nf_ct_tmpl_free(ct_info->ct);
1834 	}
1835 }
1836 
1837 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1838 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1839 {
1840 	int i, err;
1841 
1842 	ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1843 					 GFP_KERNEL);
1844 	if (!ovs_net->ct_limit_info)
1845 		return -ENOMEM;
1846 
1847 	ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1848 	ovs_net->ct_limit_info->limits =
1849 		kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1850 			      GFP_KERNEL);
1851 	if (!ovs_net->ct_limit_info->limits) {
1852 		kfree(ovs_net->ct_limit_info);
1853 		return -ENOMEM;
1854 	}
1855 
1856 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1857 		INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1858 
1859 	ovs_net->ct_limit_info->data =
1860 		nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1861 
1862 	if (IS_ERR(ovs_net->ct_limit_info->data)) {
1863 		err = PTR_ERR(ovs_net->ct_limit_info->data);
1864 		kfree(ovs_net->ct_limit_info->limits);
1865 		kfree(ovs_net->ct_limit_info);
1866 		pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1867 		return err;
1868 	}
1869 	return 0;
1870 }
1871 
1872 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1873 {
1874 	const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1875 	int i;
1876 
1877 	nf_conncount_destroy(net, NFPROTO_INET, info->data);
1878 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1879 		struct hlist_head *head = &info->limits[i];
1880 		struct ovs_ct_limit *ct_limit;
1881 
1882 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node)
1883 			kfree_rcu(ct_limit, rcu);
1884 	}
1885 	kfree(ovs_net->ct_limit_info->limits);
1886 	kfree(ovs_net->ct_limit_info);
1887 }
1888 
1889 static struct sk_buff *
1890 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1891 			     struct ovs_header **ovs_reply_header)
1892 {
1893 	struct ovs_header *ovs_header = info->userhdr;
1894 	struct sk_buff *skb;
1895 
1896 	skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1897 	if (!skb)
1898 		return ERR_PTR(-ENOMEM);
1899 
1900 	*ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1901 					info->snd_seq,
1902 					&dp_ct_limit_genl_family, 0, cmd);
1903 
1904 	if (!*ovs_reply_header) {
1905 		nlmsg_free(skb);
1906 		return ERR_PTR(-EMSGSIZE);
1907 	}
1908 	(*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1909 
1910 	return skb;
1911 }
1912 
1913 static bool check_zone_id(int zone_id, u16 *pzone)
1914 {
1915 	if (zone_id >= 0 && zone_id <= 65535) {
1916 		*pzone = (u16)zone_id;
1917 		return true;
1918 	}
1919 	return false;
1920 }
1921 
1922 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1923 				       struct ovs_ct_limit_info *info)
1924 {
1925 	struct ovs_zone_limit *zone_limit;
1926 	int rem;
1927 	u16 zone;
1928 
1929 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1930 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1931 
1932 	while (rem >= sizeof(*zone_limit)) {
1933 		if (unlikely(zone_limit->zone_id ==
1934 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1935 			ovs_lock();
1936 			info->default_limit = zone_limit->limit;
1937 			ovs_unlock();
1938 		} else if (unlikely(!check_zone_id(
1939 				zone_limit->zone_id, &zone))) {
1940 			OVS_NLERR(true, "zone id is out of range");
1941 		} else {
1942 			struct ovs_ct_limit *ct_limit;
1943 
1944 			ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1945 			if (!ct_limit)
1946 				return -ENOMEM;
1947 
1948 			ct_limit->zone = zone;
1949 			ct_limit->limit = zone_limit->limit;
1950 
1951 			ovs_lock();
1952 			ct_limit_set(info, ct_limit);
1953 			ovs_unlock();
1954 		}
1955 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1956 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1957 				NLA_ALIGN(sizeof(*zone_limit)));
1958 	}
1959 
1960 	if (rem)
1961 		OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1962 
1963 	return 0;
1964 }
1965 
1966 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1967 				       struct ovs_ct_limit_info *info)
1968 {
1969 	struct ovs_zone_limit *zone_limit;
1970 	int rem;
1971 	u16 zone;
1972 
1973 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1974 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1975 
1976 	while (rem >= sizeof(*zone_limit)) {
1977 		if (unlikely(zone_limit->zone_id ==
1978 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1979 			ovs_lock();
1980 			info->default_limit = OVS_CT_LIMIT_DEFAULT;
1981 			ovs_unlock();
1982 		} else if (unlikely(!check_zone_id(
1983 				zone_limit->zone_id, &zone))) {
1984 			OVS_NLERR(true, "zone id is out of range");
1985 		} else {
1986 			ovs_lock();
1987 			ct_limit_del(info, zone);
1988 			ovs_unlock();
1989 		}
1990 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1991 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1992 				NLA_ALIGN(sizeof(*zone_limit)));
1993 	}
1994 
1995 	if (rem)
1996 		OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
1997 
1998 	return 0;
1999 }
2000 
2001 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
2002 					  struct sk_buff *reply)
2003 {
2004 	struct ovs_zone_limit zone_limit;
2005 	int err;
2006 
2007 	zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE;
2008 	zone_limit.limit = info->default_limit;
2009 	err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2010 	if (err)
2011 		return err;
2012 
2013 	return 0;
2014 }
2015 
2016 static int __ovs_ct_limit_get_zone_limit(struct net *net,
2017 					 struct nf_conncount_data *data,
2018 					 u16 zone_id, u32 limit,
2019 					 struct sk_buff *reply)
2020 {
2021 	struct nf_conntrack_zone ct_zone;
2022 	struct ovs_zone_limit zone_limit;
2023 	u32 conncount_key = zone_id;
2024 
2025 	zone_limit.zone_id = zone_id;
2026 	zone_limit.limit = limit;
2027 	nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
2028 
2029 	zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
2030 					      &ct_zone);
2031 	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2032 }
2033 
2034 static int ovs_ct_limit_get_zone_limit(struct net *net,
2035 				       struct nlattr *nla_zone_limit,
2036 				       struct ovs_ct_limit_info *info,
2037 				       struct sk_buff *reply)
2038 {
2039 	struct ovs_zone_limit *zone_limit;
2040 	int rem, err;
2041 	u32 limit;
2042 	u16 zone;
2043 
2044 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
2045 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2046 
2047 	while (rem >= sizeof(*zone_limit)) {
2048 		if (unlikely(zone_limit->zone_id ==
2049 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2050 			err = ovs_ct_limit_get_default_limit(info, reply);
2051 			if (err)
2052 				return err;
2053 		} else if (unlikely(!check_zone_id(zone_limit->zone_id,
2054 							&zone))) {
2055 			OVS_NLERR(true, "zone id is out of range");
2056 		} else {
2057 			rcu_read_lock();
2058 			limit = ct_limit_get(info, zone);
2059 			rcu_read_unlock();
2060 
2061 			err = __ovs_ct_limit_get_zone_limit(
2062 				net, info->data, zone, limit, reply);
2063 			if (err)
2064 				return err;
2065 		}
2066 		rem -= NLA_ALIGN(sizeof(*zone_limit));
2067 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2068 				NLA_ALIGN(sizeof(*zone_limit)));
2069 	}
2070 
2071 	if (rem)
2072 		OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2073 
2074 	return 0;
2075 }
2076 
2077 static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2078 					   struct ovs_ct_limit_info *info,
2079 					   struct sk_buff *reply)
2080 {
2081 	struct ovs_ct_limit *ct_limit;
2082 	struct hlist_head *head;
2083 	int i, err = 0;
2084 
2085 	err = ovs_ct_limit_get_default_limit(info, reply);
2086 	if (err)
2087 		return err;
2088 
2089 	rcu_read_lock();
2090 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2091 		head = &info->limits[i];
2092 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2093 			err = __ovs_ct_limit_get_zone_limit(net, info->data,
2094 				ct_limit->zone, ct_limit->limit, reply);
2095 			if (err)
2096 				goto exit_err;
2097 		}
2098 	}
2099 
2100 exit_err:
2101 	rcu_read_unlock();
2102 	return err;
2103 }
2104 
2105 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2106 {
2107 	struct nlattr **a = info->attrs;
2108 	struct sk_buff *reply;
2109 	struct ovs_header *ovs_reply_header;
2110 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2111 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2112 	int err;
2113 
2114 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2115 					     &ovs_reply_header);
2116 	if (IS_ERR(reply))
2117 		return PTR_ERR(reply);
2118 
2119 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2120 		err = -EINVAL;
2121 		goto exit_err;
2122 	}
2123 
2124 	err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2125 					  ct_limit_info);
2126 	if (err)
2127 		goto exit_err;
2128 
2129 	static_branch_enable(&ovs_ct_limit_enabled);
2130 
2131 	genlmsg_end(reply, ovs_reply_header);
2132 	return genlmsg_reply(reply, info);
2133 
2134 exit_err:
2135 	nlmsg_free(reply);
2136 	return err;
2137 }
2138 
2139 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2140 {
2141 	struct nlattr **a = info->attrs;
2142 	struct sk_buff *reply;
2143 	struct ovs_header *ovs_reply_header;
2144 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2145 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2146 	int err;
2147 
2148 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2149 					     &ovs_reply_header);
2150 	if (IS_ERR(reply))
2151 		return PTR_ERR(reply);
2152 
2153 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2154 		err = -EINVAL;
2155 		goto exit_err;
2156 	}
2157 
2158 	err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2159 					  ct_limit_info);
2160 	if (err)
2161 		goto exit_err;
2162 
2163 	genlmsg_end(reply, ovs_reply_header);
2164 	return genlmsg_reply(reply, info);
2165 
2166 exit_err:
2167 	nlmsg_free(reply);
2168 	return err;
2169 }
2170 
2171 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2172 {
2173 	struct nlattr **a = info->attrs;
2174 	struct nlattr *nla_reply;
2175 	struct sk_buff *reply;
2176 	struct ovs_header *ovs_reply_header;
2177 	struct net *net = sock_net(skb->sk);
2178 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2179 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2180 	int err;
2181 
2182 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2183 					     &ovs_reply_header);
2184 	if (IS_ERR(reply))
2185 		return PTR_ERR(reply);
2186 
2187 	nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2188 	if (!nla_reply) {
2189 		err = -EMSGSIZE;
2190 		goto exit_err;
2191 	}
2192 
2193 	if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2194 		err = ovs_ct_limit_get_zone_limit(
2195 			net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2196 			reply);
2197 		if (err)
2198 			goto exit_err;
2199 	} else {
2200 		err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2201 						      reply);
2202 		if (err)
2203 			goto exit_err;
2204 	}
2205 
2206 	nla_nest_end(reply, nla_reply);
2207 	genlmsg_end(reply, ovs_reply_header);
2208 	return genlmsg_reply(reply, info);
2209 
2210 exit_err:
2211 	nlmsg_free(reply);
2212 	return err;
2213 }
2214 
2215 static struct genl_ops ct_limit_genl_ops[] = {
2216 	{ .cmd = OVS_CT_LIMIT_CMD_SET,
2217 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2218 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2219 					   * privilege. */
2220 		.doit = ovs_ct_limit_cmd_set,
2221 	},
2222 	{ .cmd = OVS_CT_LIMIT_CMD_DEL,
2223 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2224 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2225 					   * privilege. */
2226 		.doit = ovs_ct_limit_cmd_del,
2227 	},
2228 	{ .cmd = OVS_CT_LIMIT_CMD_GET,
2229 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2230 		.flags = 0,		  /* OK for unprivileged users. */
2231 		.doit = ovs_ct_limit_cmd_get,
2232 	},
2233 };
2234 
2235 static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2236 	.name = OVS_CT_LIMIT_MCGROUP,
2237 };
2238 
2239 struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2240 	.hdrsize = sizeof(struct ovs_header),
2241 	.name = OVS_CT_LIMIT_FAMILY,
2242 	.version = OVS_CT_LIMIT_VERSION,
2243 	.maxattr = OVS_CT_LIMIT_ATTR_MAX,
2244 	.policy = ct_limit_policy,
2245 	.netnsok = true,
2246 	.parallel_ops = true,
2247 	.ops = ct_limit_genl_ops,
2248 	.n_ops = ARRAY_SIZE(ct_limit_genl_ops),
2249 	.mcgrps = &ovs_ct_limit_multicast_group,
2250 	.n_mcgrps = 1,
2251 	.module = THIS_MODULE,
2252 };
2253 #endif
2254 
2255 int ovs_ct_init(struct net *net)
2256 {
2257 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2258 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2259 
2260 	if (nf_connlabels_get(net, n_bits - 1)) {
2261 		ovs_net->xt_label = false;
2262 		OVS_NLERR(true, "Failed to set connlabel length");
2263 	} else {
2264 		ovs_net->xt_label = true;
2265 	}
2266 
2267 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2268 	return ovs_ct_limit_init(net, ovs_net);
2269 #else
2270 	return 0;
2271 #endif
2272 }
2273 
2274 void ovs_ct_exit(struct net *net)
2275 {
2276 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2277 
2278 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2279 	ovs_ct_limit_exit(net, ovs_net);
2280 #endif
2281 
2282 	if (ovs_net->xt_label)
2283 		nf_connlabels_put(net);
2284 }
2285