1 /* 2 * Copyright (c) 2015 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/openvswitch.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/sctp.h> 19 #include <net/ip.h> 20 #include <net/netfilter/nf_conntrack_core.h> 21 #include <net/netfilter/nf_conntrack_helper.h> 22 #include <net/netfilter/nf_conntrack_labels.h> 23 #include <net/netfilter/nf_conntrack_seqadj.h> 24 #include <net/netfilter/nf_conntrack_zones.h> 25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 26 27 #ifdef CONFIG_NF_NAT_NEEDED 28 #include <linux/netfilter/nf_nat.h> 29 #include <net/netfilter/nf_nat_core.h> 30 #include <net/netfilter/nf_nat_l3proto.h> 31 #endif 32 33 #include "datapath.h" 34 #include "conntrack.h" 35 #include "flow.h" 36 #include "flow_netlink.h" 37 38 struct ovs_ct_len_tbl { 39 int maxlen; 40 int minlen; 41 }; 42 43 /* Metadata mark for masked write to conntrack mark */ 44 struct md_mark { 45 u32 value; 46 u32 mask; 47 }; 48 49 /* Metadata label for masked write to conntrack label. */ 50 struct md_labels { 51 struct ovs_key_ct_labels value; 52 struct ovs_key_ct_labels mask; 53 }; 54 55 enum ovs_ct_nat { 56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 59 }; 60 61 /* Conntrack action context for execution. */ 62 struct ovs_conntrack_info { 63 struct nf_conntrack_helper *helper; 64 struct nf_conntrack_zone zone; 65 struct nf_conn *ct; 66 u8 commit : 1; 67 u8 nat : 3; /* enum ovs_ct_nat */ 68 u16 family; 69 struct md_mark mark; 70 struct md_labels labels; 71 #ifdef CONFIG_NF_NAT_NEEDED 72 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */ 73 #endif 74 }; 75 76 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 77 78 static u16 key_to_nfproto(const struct sw_flow_key *key) 79 { 80 switch (ntohs(key->eth.type)) { 81 case ETH_P_IP: 82 return NFPROTO_IPV4; 83 case ETH_P_IPV6: 84 return NFPROTO_IPV6; 85 default: 86 return NFPROTO_UNSPEC; 87 } 88 } 89 90 /* Map SKB connection state into the values used by flow definition. */ 91 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 92 { 93 u8 ct_state = OVS_CS_F_TRACKED; 94 95 switch (ctinfo) { 96 case IP_CT_ESTABLISHED_REPLY: 97 case IP_CT_RELATED_REPLY: 98 ct_state |= OVS_CS_F_REPLY_DIR; 99 break; 100 default: 101 break; 102 } 103 104 switch (ctinfo) { 105 case IP_CT_ESTABLISHED: 106 case IP_CT_ESTABLISHED_REPLY: 107 ct_state |= OVS_CS_F_ESTABLISHED; 108 break; 109 case IP_CT_RELATED: 110 case IP_CT_RELATED_REPLY: 111 ct_state |= OVS_CS_F_RELATED; 112 break; 113 case IP_CT_NEW: 114 ct_state |= OVS_CS_F_NEW; 115 break; 116 default: 117 break; 118 } 119 120 return ct_state; 121 } 122 123 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 124 { 125 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 126 return ct ? ct->mark : 0; 127 #else 128 return 0; 129 #endif 130 } 131 132 static void ovs_ct_get_labels(const struct nf_conn *ct, 133 struct ovs_key_ct_labels *labels) 134 { 135 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; 136 137 if (cl) { 138 size_t len = cl->words * sizeof(long); 139 140 if (len > OVS_CT_LABELS_LEN) 141 len = OVS_CT_LABELS_LEN; 142 else if (len < OVS_CT_LABELS_LEN) 143 memset(labels, 0, OVS_CT_LABELS_LEN); 144 memcpy(labels, cl->bits, len); 145 } else { 146 memset(labels, 0, OVS_CT_LABELS_LEN); 147 } 148 } 149 150 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 151 const struct nf_conntrack_zone *zone, 152 const struct nf_conn *ct) 153 { 154 key->ct.state = state; 155 key->ct.zone = zone->id; 156 key->ct.mark = ovs_ct_get_mark(ct); 157 ovs_ct_get_labels(ct, &key->ct.labels); 158 } 159 160 /* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has 161 * previously sent the packet to conntrack via the ct action. If 162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 163 * initialized from the connection status. 164 */ 165 static void ovs_ct_update_key(const struct sk_buff *skb, 166 const struct ovs_conntrack_info *info, 167 struct sw_flow_key *key, bool post_ct, 168 bool keep_nat_flags) 169 { 170 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 171 enum ip_conntrack_info ctinfo; 172 struct nf_conn *ct; 173 u8 state = 0; 174 175 ct = nf_ct_get(skb, &ctinfo); 176 if (ct) { 177 state = ovs_ct_get_state(ctinfo); 178 /* All unconfirmed entries are NEW connections. */ 179 if (!nf_ct_is_confirmed(ct)) 180 state |= OVS_CS_F_NEW; 181 /* OVS persists the related flag for the duration of the 182 * connection. 183 */ 184 if (ct->master) 185 state |= OVS_CS_F_RELATED; 186 if (keep_nat_flags) { 187 state |= key->ct.state & OVS_CS_F_NAT_MASK; 188 } else { 189 if (ct->status & IPS_SRC_NAT) 190 state |= OVS_CS_F_SRC_NAT; 191 if (ct->status & IPS_DST_NAT) 192 state |= OVS_CS_F_DST_NAT; 193 } 194 zone = nf_ct_zone(ct); 195 } else if (post_ct) { 196 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 197 if (info) 198 zone = &info->zone; 199 } 200 __ovs_ct_update_key(key, state, zone, ct); 201 } 202 203 /* This is called to initialize CT key fields possibly coming in from the local 204 * stack. 205 */ 206 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) 207 { 208 ovs_ct_update_key(skb, NULL, key, false, false); 209 } 210 211 int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb) 212 { 213 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state)) 214 return -EMSGSIZE; 215 216 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 217 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone)) 218 return -EMSGSIZE; 219 220 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 221 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark)) 222 return -EMSGSIZE; 223 224 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 225 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels), 226 &key->ct.labels)) 227 return -EMSGSIZE; 228 229 return 0; 230 } 231 232 static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key, 233 u32 ct_mark, u32 mask) 234 { 235 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 236 enum ip_conntrack_info ctinfo; 237 struct nf_conn *ct; 238 u32 new_mark; 239 240 /* The connection could be invalid, in which case set_mark is no-op. */ 241 ct = nf_ct_get(skb, &ctinfo); 242 if (!ct) 243 return 0; 244 245 new_mark = ct_mark | (ct->mark & ~(mask)); 246 if (ct->mark != new_mark) { 247 ct->mark = new_mark; 248 nf_conntrack_event_cache(IPCT_MARK, ct); 249 key->ct.mark = new_mark; 250 } 251 252 return 0; 253 #else 254 return -ENOTSUPP; 255 #endif 256 } 257 258 static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key, 259 const struct ovs_key_ct_labels *labels, 260 const struct ovs_key_ct_labels *mask) 261 { 262 enum ip_conntrack_info ctinfo; 263 struct nf_conn_labels *cl; 264 struct nf_conn *ct; 265 int err; 266 267 /* The connection could be invalid, in which case set_label is no-op.*/ 268 ct = nf_ct_get(skb, &ctinfo); 269 if (!ct) 270 return 0; 271 272 cl = nf_ct_labels_find(ct); 273 if (!cl) { 274 nf_ct_labels_ext_add(ct); 275 cl = nf_ct_labels_find(ct); 276 } 277 if (!cl || cl->words * sizeof(long) < OVS_CT_LABELS_LEN) 278 return -ENOSPC; 279 280 err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask, 281 OVS_CT_LABELS_LEN / sizeof(u32)); 282 if (err) 283 return err; 284 285 ovs_ct_get_labels(ct, &key->ct.labels); 286 return 0; 287 } 288 289 /* 'skb' should already be pulled to nh_ofs. */ 290 static int ovs_ct_helper(struct sk_buff *skb, u16 proto) 291 { 292 const struct nf_conntrack_helper *helper; 293 const struct nf_conn_help *help; 294 enum ip_conntrack_info ctinfo; 295 unsigned int protoff; 296 struct nf_conn *ct; 297 int err; 298 299 ct = nf_ct_get(skb, &ctinfo); 300 if (!ct || ctinfo == IP_CT_RELATED_REPLY) 301 return NF_ACCEPT; 302 303 help = nfct_help(ct); 304 if (!help) 305 return NF_ACCEPT; 306 307 helper = rcu_dereference(help->helper); 308 if (!helper) 309 return NF_ACCEPT; 310 311 switch (proto) { 312 case NFPROTO_IPV4: 313 protoff = ip_hdrlen(skb); 314 break; 315 case NFPROTO_IPV6: { 316 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 317 __be16 frag_off; 318 int ofs; 319 320 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, 321 &frag_off); 322 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) { 323 pr_debug("proto header not found\n"); 324 return NF_ACCEPT; 325 } 326 protoff = ofs; 327 break; 328 } 329 default: 330 WARN_ONCE(1, "helper invoked on non-IP family!"); 331 return NF_DROP; 332 } 333 334 err = helper->help(skb, protoff, ct, ctinfo); 335 if (err != NF_ACCEPT) 336 return err; 337 338 /* Adjust seqs after helper. This is needed due to some helpers (e.g., 339 * FTP with NAT) adusting the TCP payload size when mangling IP 340 * addresses and/or port numbers in the text-based control connection. 341 */ 342 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && 343 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) 344 return NF_DROP; 345 return NF_ACCEPT; 346 } 347 348 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 349 * value if 'skb' is freed. 350 */ 351 static int handle_fragments(struct net *net, struct sw_flow_key *key, 352 u16 zone, struct sk_buff *skb) 353 { 354 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 355 int err; 356 357 if (key->eth.type == htons(ETH_P_IP)) { 358 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 359 360 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 361 err = ip_defrag(net, skb, user); 362 if (err) 363 return err; 364 365 ovs_cb.mru = IPCB(skb)->frag_max_size; 366 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 367 } else if (key->eth.type == htons(ETH_P_IPV6)) { 368 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 369 370 skb_orphan(skb); 371 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 372 err = nf_ct_frag6_gather(net, skb, user); 373 if (err) 374 return err; 375 376 key->ip.proto = ipv6_hdr(skb)->nexthdr; 377 ovs_cb.mru = IP6CB(skb)->frag_max_size; 378 #endif 379 } else { 380 kfree_skb(skb); 381 return -EPFNOSUPPORT; 382 } 383 384 key->ip.frag = OVS_FRAG_TYPE_NONE; 385 skb_clear_hash(skb); 386 skb->ignore_df = 1; 387 *OVS_CB(skb) = ovs_cb; 388 389 return 0; 390 } 391 392 static struct nf_conntrack_expect * 393 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, 394 u16 proto, const struct sk_buff *skb) 395 { 396 struct nf_conntrack_tuple tuple; 397 398 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) 399 return NULL; 400 return __nf_ct_expect_find(net, zone, &tuple); 401 } 402 403 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 404 static enum ip_conntrack_info 405 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 406 { 407 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 408 409 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 410 return IP_CT_ESTABLISHED_REPLY; 411 /* Once we've had two way comms, always ESTABLISHED. */ 412 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 413 return IP_CT_ESTABLISHED; 414 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 415 return IP_CT_RELATED; 416 return IP_CT_NEW; 417 } 418 419 /* Find an existing connection which this packet belongs to without 420 * re-attributing statistics or modifying the connection state. This allows an 421 * skb->nfct lost due to an upcall to be recovered during actions execution. 422 * 423 * Must be called with rcu_read_lock. 424 * 425 * On success, populates skb->nfct and skb->nfctinfo, and returns the 426 * connection. Returns NULL if there is no existing entry. 427 */ 428 static struct nf_conn * 429 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 430 u8 l3num, struct sk_buff *skb) 431 { 432 struct nf_conntrack_l3proto *l3proto; 433 struct nf_conntrack_l4proto *l4proto; 434 struct nf_conntrack_tuple tuple; 435 struct nf_conntrack_tuple_hash *h; 436 enum ip_conntrack_info ctinfo; 437 struct nf_conn *ct; 438 unsigned int dataoff; 439 u8 protonum; 440 441 l3proto = __nf_ct_l3proto_find(l3num); 442 if (!l3proto) { 443 pr_debug("ovs_ct_find_existing: Can't get l3proto\n"); 444 return NULL; 445 } 446 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff, 447 &protonum) <= 0) { 448 pr_debug("ovs_ct_find_existing: Can't get protonum\n"); 449 return NULL; 450 } 451 l4proto = __nf_ct_l4proto_find(l3num, protonum); 452 if (!l4proto) { 453 pr_debug("ovs_ct_find_existing: Can't get l4proto\n"); 454 return NULL; 455 } 456 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num, 457 protonum, net, &tuple, l3proto, l4proto)) { 458 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 459 return NULL; 460 } 461 462 /* look for tuple match */ 463 h = nf_conntrack_find_get(net, zone, &tuple); 464 if (!h) 465 return NULL; /* Not found. */ 466 467 ct = nf_ct_tuplehash_to_ctrack(h); 468 469 ctinfo = ovs_ct_get_info(h); 470 if (ctinfo == IP_CT_NEW) { 471 /* This should not happen. */ 472 WARN_ONCE(1, "ovs_ct_find_existing: new packet for %p\n", ct); 473 } 474 skb->nfct = &ct->ct_general; 475 skb->nfctinfo = ctinfo; 476 return ct; 477 } 478 479 /* Determine whether skb->nfct is equal to the result of conntrack lookup. */ 480 static bool skb_nfct_cached(struct net *net, 481 const struct sw_flow_key *key, 482 const struct ovs_conntrack_info *info, 483 struct sk_buff *skb) 484 { 485 enum ip_conntrack_info ctinfo; 486 struct nf_conn *ct; 487 488 ct = nf_ct_get(skb, &ctinfo); 489 /* If no ct, check if we have evidence that an existing conntrack entry 490 * might be found for this skb. This happens when we lose a skb->nfct 491 * due to an upcall. If the connection was not confirmed, it is not 492 * cached and needs to be run through conntrack again. 493 */ 494 if (!ct && key->ct.state & OVS_CS_F_TRACKED && 495 !(key->ct.state & OVS_CS_F_INVALID) && 496 key->ct.zone == info->zone.id) 497 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb); 498 if (!ct) 499 return false; 500 if (!net_eq(net, read_pnet(&ct->ct_net))) 501 return false; 502 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 503 return false; 504 if (info->helper) { 505 struct nf_conn_help *help; 506 507 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 508 if (help && rcu_access_pointer(help->helper) != info->helper) 509 return false; 510 } 511 512 return true; 513 } 514 515 #ifdef CONFIG_NF_NAT_NEEDED 516 /* Modelled after nf_nat_ipv[46]_fn(). 517 * range is only used for new, uninitialized NAT state. 518 * Returns either NF_ACCEPT or NF_DROP. 519 */ 520 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 521 enum ip_conntrack_info ctinfo, 522 const struct nf_nat_range *range, 523 enum nf_nat_manip_type maniptype) 524 { 525 int hooknum, nh_off, err = NF_ACCEPT; 526 527 nh_off = skb_network_offset(skb); 528 skb_pull(skb, nh_off); 529 530 /* See HOOK2MANIP(). */ 531 if (maniptype == NF_NAT_MANIP_SRC) 532 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 533 else 534 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 535 536 switch (ctinfo) { 537 case IP_CT_RELATED: 538 case IP_CT_RELATED_REPLY: 539 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 540 skb->protocol == htons(ETH_P_IP) && 541 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 542 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 543 hooknum)) 544 err = NF_DROP; 545 goto push; 546 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 547 skb->protocol == htons(ETH_P_IPV6)) { 548 __be16 frag_off; 549 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 550 int hdrlen = ipv6_skip_exthdr(skb, 551 sizeof(struct ipv6hdr), 552 &nexthdr, &frag_off); 553 554 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 555 if (!nf_nat_icmpv6_reply_translation(skb, ct, 556 ctinfo, 557 hooknum, 558 hdrlen)) 559 err = NF_DROP; 560 goto push; 561 } 562 } 563 /* Non-ICMP, fall thru to initialize if needed. */ 564 case IP_CT_NEW: 565 /* Seen it before? This can happen for loopback, retrans, 566 * or local packets. 567 */ 568 if (!nf_nat_initialized(ct, maniptype)) { 569 /* Initialize according to the NAT action. */ 570 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 571 /* Action is set up to establish a new 572 * mapping. 573 */ 574 ? nf_nat_setup_info(ct, range, maniptype) 575 : nf_nat_alloc_null_binding(ct, hooknum); 576 if (err != NF_ACCEPT) 577 goto push; 578 } 579 break; 580 581 case IP_CT_ESTABLISHED: 582 case IP_CT_ESTABLISHED_REPLY: 583 break; 584 585 default: 586 err = NF_DROP; 587 goto push; 588 } 589 590 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 591 push: 592 skb_push(skb, nh_off); 593 594 return err; 595 } 596 597 static void ovs_nat_update_key(struct sw_flow_key *key, 598 const struct sk_buff *skb, 599 enum nf_nat_manip_type maniptype) 600 { 601 if (maniptype == NF_NAT_MANIP_SRC) { 602 __be16 src; 603 604 key->ct.state |= OVS_CS_F_SRC_NAT; 605 if (key->eth.type == htons(ETH_P_IP)) 606 key->ipv4.addr.src = ip_hdr(skb)->saddr; 607 else if (key->eth.type == htons(ETH_P_IPV6)) 608 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 609 sizeof(key->ipv6.addr.src)); 610 else 611 return; 612 613 if (key->ip.proto == IPPROTO_UDP) 614 src = udp_hdr(skb)->source; 615 else if (key->ip.proto == IPPROTO_TCP) 616 src = tcp_hdr(skb)->source; 617 else if (key->ip.proto == IPPROTO_SCTP) 618 src = sctp_hdr(skb)->source; 619 else 620 return; 621 622 key->tp.src = src; 623 } else { 624 __be16 dst; 625 626 key->ct.state |= OVS_CS_F_DST_NAT; 627 if (key->eth.type == htons(ETH_P_IP)) 628 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 629 else if (key->eth.type == htons(ETH_P_IPV6)) 630 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 631 sizeof(key->ipv6.addr.dst)); 632 else 633 return; 634 635 if (key->ip.proto == IPPROTO_UDP) 636 dst = udp_hdr(skb)->dest; 637 else if (key->ip.proto == IPPROTO_TCP) 638 dst = tcp_hdr(skb)->dest; 639 else if (key->ip.proto == IPPROTO_SCTP) 640 dst = sctp_hdr(skb)->dest; 641 else 642 return; 643 644 key->tp.dst = dst; 645 } 646 } 647 648 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 649 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 650 const struct ovs_conntrack_info *info, 651 struct sk_buff *skb, struct nf_conn *ct, 652 enum ip_conntrack_info ctinfo) 653 { 654 enum nf_nat_manip_type maniptype; 655 int err; 656 657 if (nf_ct_is_untracked(ct)) { 658 /* A NAT action may only be performed on tracked packets. */ 659 return NF_ACCEPT; 660 } 661 662 /* Add NAT extension if not confirmed yet. */ 663 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 664 return NF_ACCEPT; /* Can't NAT. */ 665 666 /* Determine NAT type. 667 * Check if the NAT type can be deduced from the tracked connection. 668 * Make sure new expected connections (IP_CT_RELATED) are NATted only 669 * when committing. 670 */ 671 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW && 672 ct->status & IPS_NAT_MASK && 673 (ctinfo != IP_CT_RELATED || info->commit)) { 674 /* NAT an established or related connection like before. */ 675 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 676 /* This is the REPLY direction for a connection 677 * for which NAT was applied in the forward 678 * direction. Do the reverse NAT. 679 */ 680 maniptype = ct->status & IPS_SRC_NAT 681 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 682 else 683 maniptype = ct->status & IPS_SRC_NAT 684 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 685 } else if (info->nat & OVS_CT_SRC_NAT) { 686 maniptype = NF_NAT_MANIP_SRC; 687 } else if (info->nat & OVS_CT_DST_NAT) { 688 maniptype = NF_NAT_MANIP_DST; 689 } else { 690 return NF_ACCEPT; /* Connection is not NATed. */ 691 } 692 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype); 693 694 /* Mark NAT done if successful and update the flow key. */ 695 if (err == NF_ACCEPT) 696 ovs_nat_update_key(key, skb, maniptype); 697 698 return err; 699 } 700 #else /* !CONFIG_NF_NAT_NEEDED */ 701 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 702 const struct ovs_conntrack_info *info, 703 struct sk_buff *skb, struct nf_conn *ct, 704 enum ip_conntrack_info ctinfo) 705 { 706 return NF_ACCEPT; 707 } 708 #endif 709 710 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 711 * not done already. Update key with new CT state after passing the packet 712 * through conntrack. 713 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be 714 * set to NULL and 0 will be returned. 715 */ 716 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 717 const struct ovs_conntrack_info *info, 718 struct sk_buff *skb) 719 { 720 /* If we are recirculating packets to match on conntrack fields and 721 * committing with a separate conntrack action, then we don't need to 722 * actually run the packet through conntrack twice unless it's for a 723 * different zone. 724 */ 725 bool cached = skb_nfct_cached(net, key, info, skb); 726 enum ip_conntrack_info ctinfo; 727 struct nf_conn *ct; 728 729 if (!cached) { 730 struct nf_conn *tmpl = info->ct; 731 int err; 732 733 /* Associate skb with specified zone. */ 734 if (tmpl) { 735 if (skb->nfct) 736 nf_conntrack_put(skb->nfct); 737 nf_conntrack_get(&tmpl->ct_general); 738 skb->nfct = &tmpl->ct_general; 739 skb->nfctinfo = IP_CT_NEW; 740 } 741 742 /* Repeat if requested, see nf_iterate(). */ 743 do { 744 err = nf_conntrack_in(net, info->family, 745 NF_INET_PRE_ROUTING, skb); 746 } while (err == NF_REPEAT); 747 748 if (err != NF_ACCEPT) 749 return -ENOENT; 750 751 /* Clear CT state NAT flags to mark that we have not yet done 752 * NAT after the nf_conntrack_in() call. We can actually clear 753 * the whole state, as it will be re-initialized below. 754 */ 755 key->ct.state = 0; 756 757 /* Update the key, but keep the NAT flags. */ 758 ovs_ct_update_key(skb, info, key, true, true); 759 } 760 761 ct = nf_ct_get(skb, &ctinfo); 762 if (ct) { 763 /* Packets starting a new connection must be NATted before the 764 * helper, so that the helper knows about the NAT. We enforce 765 * this by delaying both NAT and helper calls for unconfirmed 766 * connections until the committing CT action. For later 767 * packets NAT and Helper may be called in either order. 768 * 769 * NAT will be done only if the CT action has NAT, and only 770 * once per packet (per zone), as guarded by the NAT bits in 771 * the key->ct.state. 772 */ 773 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) && 774 (nf_ct_is_confirmed(ct) || info->commit) && 775 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 776 return -EINVAL; 777 } 778 779 /* Userspace may decide to perform a ct lookup without a helper 780 * specified followed by a (recirculate and) commit with one. 781 * Therefore, for unconfirmed connections which we will commit, 782 * we need to attach the helper here. 783 */ 784 if (!nf_ct_is_confirmed(ct) && info->commit && 785 info->helper && !nfct_help(ct)) { 786 int err = __nf_ct_try_assign_helper(ct, info->ct, 787 GFP_ATOMIC); 788 if (err) 789 return err; 790 } 791 792 /* Call the helper only if: 793 * - nf_conntrack_in() was executed above ("!cached") for a 794 * confirmed connection, or 795 * - When committing an unconfirmed connection. 796 */ 797 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) && 798 ovs_ct_helper(skb, info->family) != NF_ACCEPT) { 799 return -EINVAL; 800 } 801 } 802 803 return 0; 804 } 805 806 /* Lookup connection and read fields into key. */ 807 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 808 const struct ovs_conntrack_info *info, 809 struct sk_buff *skb) 810 { 811 struct nf_conntrack_expect *exp; 812 813 /* If we pass an expected packet through nf_conntrack_in() the 814 * expectation is typically removed, but the packet could still be 815 * lost in upcall processing. To prevent this from happening we 816 * perform an explicit expectation lookup. Expected connections are 817 * always new, and will be passed through conntrack only when they are 818 * committed, as it is OK to remove the expectation at that time. 819 */ 820 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); 821 if (exp) { 822 u8 state; 823 824 /* NOTE: New connections are NATted and Helped only when 825 * committed, so we are not calling into NAT here. 826 */ 827 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; 828 __ovs_ct_update_key(key, state, &info->zone, exp->master); 829 } else 830 return __ovs_ct_lookup(net, key, info, skb); 831 832 return 0; 833 } 834 835 /* Lookup connection and confirm if unconfirmed. */ 836 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 837 const struct ovs_conntrack_info *info, 838 struct sk_buff *skb) 839 { 840 int err; 841 842 err = __ovs_ct_lookup(net, key, info, skb); 843 if (err) 844 return err; 845 /* This is a no-op if the connection has already been confirmed. */ 846 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 847 return -EINVAL; 848 849 return 0; 850 } 851 852 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 853 { 854 size_t i; 855 856 for (i = 0; i < sizeof(*labels); i++) 857 if (labels->ct_labels[i]) 858 return true; 859 860 return false; 861 } 862 863 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 864 * value if 'skb' is freed. 865 */ 866 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 867 struct sw_flow_key *key, 868 const struct ovs_conntrack_info *info) 869 { 870 int nh_ofs; 871 int err; 872 873 /* The conntrack module expects to be working at L3. */ 874 nh_ofs = skb_network_offset(skb); 875 skb_pull(skb, nh_ofs); 876 877 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 878 err = handle_fragments(net, key, info->zone.id, skb); 879 if (err) 880 return err; 881 } 882 883 if (info->commit) 884 err = ovs_ct_commit(net, key, info, skb); 885 else 886 err = ovs_ct_lookup(net, key, info, skb); 887 if (err) 888 goto err; 889 890 if (info->mark.mask) { 891 err = ovs_ct_set_mark(skb, key, info->mark.value, 892 info->mark.mask); 893 if (err) 894 goto err; 895 } 896 if (labels_nonzero(&info->labels.mask)) 897 err = ovs_ct_set_labels(skb, key, &info->labels.value, 898 &info->labels.mask); 899 err: 900 skb_push(skb, nh_ofs); 901 if (err) 902 kfree_skb(skb); 903 return err; 904 } 905 906 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, 907 const struct sw_flow_key *key, bool log) 908 { 909 struct nf_conntrack_helper *helper; 910 struct nf_conn_help *help; 911 912 helper = nf_conntrack_helper_try_module_get(name, info->family, 913 key->ip.proto); 914 if (!helper) { 915 OVS_NLERR(log, "Unknown helper \"%s\"", name); 916 return -EINVAL; 917 } 918 919 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL); 920 if (!help) { 921 module_put(helper->me); 922 return -ENOMEM; 923 } 924 925 rcu_assign_pointer(help->helper, helper); 926 info->helper = helper; 927 return 0; 928 } 929 930 #ifdef CONFIG_NF_NAT_NEEDED 931 static int parse_nat(const struct nlattr *attr, 932 struct ovs_conntrack_info *info, bool log) 933 { 934 struct nlattr *a; 935 int rem; 936 bool have_ip_max = false; 937 bool have_proto_max = false; 938 bool ip_vers = (info->family == NFPROTO_IPV6); 939 940 nla_for_each_nested(a, attr, rem) { 941 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 942 [OVS_NAT_ATTR_SRC] = {0, 0}, 943 [OVS_NAT_ATTR_DST] = {0, 0}, 944 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 945 sizeof(struct in6_addr)}, 946 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 947 sizeof(struct in6_addr)}, 948 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 949 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 950 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 951 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 952 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 953 }; 954 int type = nla_type(a); 955 956 if (type > OVS_NAT_ATTR_MAX) { 957 OVS_NLERR(log, 958 "Unknown NAT attribute (type=%d, max=%d).\n", 959 type, OVS_NAT_ATTR_MAX); 960 return -EINVAL; 961 } 962 963 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 964 OVS_NLERR(log, 965 "NAT attribute type %d has unexpected length (%d != %d).\n", 966 type, nla_len(a), 967 ovs_nat_attr_lens[type][ip_vers]); 968 return -EINVAL; 969 } 970 971 switch (type) { 972 case OVS_NAT_ATTR_SRC: 973 case OVS_NAT_ATTR_DST: 974 if (info->nat) { 975 OVS_NLERR(log, 976 "Only one type of NAT may be specified.\n" 977 ); 978 return -ERANGE; 979 } 980 info->nat |= OVS_CT_NAT; 981 info->nat |= ((type == OVS_NAT_ATTR_SRC) 982 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 983 break; 984 985 case OVS_NAT_ATTR_IP_MIN: 986 nla_memcpy(&info->range.min_addr, a, 987 sizeof(info->range.min_addr)); 988 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 989 break; 990 991 case OVS_NAT_ATTR_IP_MAX: 992 have_ip_max = true; 993 nla_memcpy(&info->range.max_addr, a, 994 sizeof(info->range.max_addr)); 995 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 996 break; 997 998 case OVS_NAT_ATTR_PROTO_MIN: 999 info->range.min_proto.all = htons(nla_get_u16(a)); 1000 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1001 break; 1002 1003 case OVS_NAT_ATTR_PROTO_MAX: 1004 have_proto_max = true; 1005 info->range.max_proto.all = htons(nla_get_u16(a)); 1006 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1007 break; 1008 1009 case OVS_NAT_ATTR_PERSISTENT: 1010 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 1011 break; 1012 1013 case OVS_NAT_ATTR_PROTO_HASH: 1014 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1015 break; 1016 1017 case OVS_NAT_ATTR_PROTO_RANDOM: 1018 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1019 break; 1020 1021 default: 1022 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type); 1023 return -EINVAL; 1024 } 1025 } 1026 1027 if (rem > 0) { 1028 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem); 1029 return -EINVAL; 1030 } 1031 if (!info->nat) { 1032 /* Do not allow flags if no type is given. */ 1033 if (info->range.flags) { 1034 OVS_NLERR(log, 1035 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n" 1036 ); 1037 return -EINVAL; 1038 } 1039 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1040 } else if (!info->commit) { 1041 OVS_NLERR(log, 1042 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n" 1043 ); 1044 return -EINVAL; 1045 } 1046 /* Allow missing IP_MAX. */ 1047 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1048 memcpy(&info->range.max_addr, &info->range.min_addr, 1049 sizeof(info->range.max_addr)); 1050 } 1051 /* Allow missing PROTO_MAX. */ 1052 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1053 !have_proto_max) { 1054 info->range.max_proto.all = info->range.min_proto.all; 1055 } 1056 return 0; 1057 } 1058 #endif 1059 1060 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1061 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1062 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1063 .maxlen = sizeof(u16) }, 1064 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1065 .maxlen = sizeof(struct md_mark) }, 1066 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1067 .maxlen = sizeof(struct md_labels) }, 1068 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1069 .maxlen = NF_CT_HELPER_NAME_LEN }, 1070 #ifdef CONFIG_NF_NAT_NEEDED 1071 /* NAT length is checked when parsing the nested attributes. */ 1072 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1073 #endif 1074 }; 1075 1076 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1077 const char **helper, bool log) 1078 { 1079 struct nlattr *a; 1080 int rem; 1081 1082 nla_for_each_nested(a, attr, rem) { 1083 int type = nla_type(a); 1084 int maxlen = ovs_ct_attr_lens[type].maxlen; 1085 int minlen = ovs_ct_attr_lens[type].minlen; 1086 1087 if (type > OVS_CT_ATTR_MAX) { 1088 OVS_NLERR(log, 1089 "Unknown conntrack attr (type=%d, max=%d)", 1090 type, OVS_CT_ATTR_MAX); 1091 return -EINVAL; 1092 } 1093 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1094 OVS_NLERR(log, 1095 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1096 type, nla_len(a), maxlen); 1097 return -EINVAL; 1098 } 1099 1100 switch (type) { 1101 case OVS_CT_ATTR_COMMIT: 1102 info->commit = true; 1103 break; 1104 #ifdef CONFIG_NF_CONNTRACK_ZONES 1105 case OVS_CT_ATTR_ZONE: 1106 info->zone.id = nla_get_u16(a); 1107 break; 1108 #endif 1109 #ifdef CONFIG_NF_CONNTRACK_MARK 1110 case OVS_CT_ATTR_MARK: { 1111 struct md_mark *mark = nla_data(a); 1112 1113 if (!mark->mask) { 1114 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1115 return -EINVAL; 1116 } 1117 info->mark = *mark; 1118 break; 1119 } 1120 #endif 1121 #ifdef CONFIG_NF_CONNTRACK_LABELS 1122 case OVS_CT_ATTR_LABELS: { 1123 struct md_labels *labels = nla_data(a); 1124 1125 if (!labels_nonzero(&labels->mask)) { 1126 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1127 return -EINVAL; 1128 } 1129 info->labels = *labels; 1130 break; 1131 } 1132 #endif 1133 case OVS_CT_ATTR_HELPER: 1134 *helper = nla_data(a); 1135 if (!memchr(*helper, '\0', nla_len(a))) { 1136 OVS_NLERR(log, "Invalid conntrack helper"); 1137 return -EINVAL; 1138 } 1139 break; 1140 #ifdef CONFIG_NF_NAT_NEEDED 1141 case OVS_CT_ATTR_NAT: { 1142 int err = parse_nat(a, info, log); 1143 1144 if (err) 1145 return err; 1146 break; 1147 } 1148 #endif 1149 default: 1150 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1151 type); 1152 return -EINVAL; 1153 } 1154 } 1155 1156 if (rem > 0) { 1157 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1158 return -EINVAL; 1159 } 1160 1161 return 0; 1162 } 1163 1164 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1165 { 1166 if (attr == OVS_KEY_ATTR_CT_STATE) 1167 return true; 1168 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1169 attr == OVS_KEY_ATTR_CT_ZONE) 1170 return true; 1171 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1172 attr == OVS_KEY_ATTR_CT_MARK) 1173 return true; 1174 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1175 attr == OVS_KEY_ATTR_CT_LABELS) { 1176 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1177 1178 return ovs_net->xt_label; 1179 } 1180 1181 return false; 1182 } 1183 1184 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1185 const struct sw_flow_key *key, 1186 struct sw_flow_actions **sfa, bool log) 1187 { 1188 struct ovs_conntrack_info ct_info; 1189 const char *helper = NULL; 1190 u16 family; 1191 int err; 1192 1193 family = key_to_nfproto(key); 1194 if (family == NFPROTO_UNSPEC) { 1195 OVS_NLERR(log, "ct family unspecified"); 1196 return -EINVAL; 1197 } 1198 1199 memset(&ct_info, 0, sizeof(ct_info)); 1200 ct_info.family = family; 1201 1202 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1203 NF_CT_DEFAULT_ZONE_DIR, 0); 1204 1205 err = parse_ct(attr, &ct_info, &helper, log); 1206 if (err) 1207 return err; 1208 1209 /* Set up template for tracking connections in specific zones. */ 1210 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1211 if (!ct_info.ct) { 1212 OVS_NLERR(log, "Failed to allocate conntrack template"); 1213 return -ENOMEM; 1214 } 1215 1216 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1217 nf_conntrack_get(&ct_info.ct->ct_general); 1218 1219 if (helper) { 1220 err = ovs_ct_add_helper(&ct_info, helper, key, log); 1221 if (err) 1222 goto err_free_ct; 1223 } 1224 1225 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1226 sizeof(ct_info), log); 1227 if (err) 1228 goto err_free_ct; 1229 1230 return 0; 1231 err_free_ct: 1232 __ovs_ct_free_action(&ct_info); 1233 return err; 1234 } 1235 1236 #ifdef CONFIG_NF_NAT_NEEDED 1237 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1238 struct sk_buff *skb) 1239 { 1240 struct nlattr *start; 1241 1242 start = nla_nest_start(skb, OVS_CT_ATTR_NAT); 1243 if (!start) 1244 return false; 1245 1246 if (info->nat & OVS_CT_SRC_NAT) { 1247 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1248 return false; 1249 } else if (info->nat & OVS_CT_DST_NAT) { 1250 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1251 return false; 1252 } else { 1253 goto out; 1254 } 1255 1256 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1257 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 1258 info->family == NFPROTO_IPV4) { 1259 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1260 info->range.min_addr.ip) || 1261 (info->range.max_addr.ip 1262 != info->range.min_addr.ip && 1263 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1264 info->range.max_addr.ip)))) 1265 return false; 1266 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 1267 info->family == NFPROTO_IPV6) { 1268 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1269 &info->range.min_addr.in6) || 1270 (memcmp(&info->range.max_addr.in6, 1271 &info->range.min_addr.in6, 1272 sizeof(info->range.max_addr.in6)) && 1273 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1274 &info->range.max_addr.in6)))) 1275 return false; 1276 } else { 1277 return false; 1278 } 1279 } 1280 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1281 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1282 ntohs(info->range.min_proto.all)) || 1283 (info->range.max_proto.all != info->range.min_proto.all && 1284 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1285 ntohs(info->range.max_proto.all))))) 1286 return false; 1287 1288 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1289 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1290 return false; 1291 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1292 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1293 return false; 1294 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1295 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1296 return false; 1297 out: 1298 nla_nest_end(skb, start); 1299 1300 return true; 1301 } 1302 #endif 1303 1304 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1305 struct sk_buff *skb) 1306 { 1307 struct nlattr *start; 1308 1309 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT); 1310 if (!start) 1311 return -EMSGSIZE; 1312 1313 if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT)) 1314 return -EMSGSIZE; 1315 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1316 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1317 return -EMSGSIZE; 1318 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1319 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1320 &ct_info->mark)) 1321 return -EMSGSIZE; 1322 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1323 labels_nonzero(&ct_info->labels.mask) && 1324 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1325 &ct_info->labels)) 1326 return -EMSGSIZE; 1327 if (ct_info->helper) { 1328 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1329 ct_info->helper->name)) 1330 return -EMSGSIZE; 1331 } 1332 #ifdef CONFIG_NF_NAT_NEEDED 1333 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1334 return -EMSGSIZE; 1335 #endif 1336 nla_nest_end(skb, start); 1337 1338 return 0; 1339 } 1340 1341 void ovs_ct_free_action(const struct nlattr *a) 1342 { 1343 struct ovs_conntrack_info *ct_info = nla_data(a); 1344 1345 __ovs_ct_free_action(ct_info); 1346 } 1347 1348 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1349 { 1350 if (ct_info->helper) 1351 module_put(ct_info->helper->me); 1352 if (ct_info->ct) 1353 nf_ct_put(ct_info->ct); 1354 } 1355 1356 void ovs_ct_init(struct net *net) 1357 { 1358 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 1359 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1360 1361 if (nf_connlabels_get(net, n_bits)) { 1362 ovs_net->xt_label = false; 1363 OVS_NLERR(true, "Failed to set connlabel length"); 1364 } else { 1365 ovs_net->xt_label = true; 1366 } 1367 } 1368 1369 void ovs_ct_exit(struct net *net) 1370 { 1371 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1372 1373 if (ovs_net->xt_label) 1374 nf_connlabels_put(net); 1375 } 1376