1 /* 2 * Copyright (c) 2015 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/openvswitch.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/sctp.h> 19 #include <net/ip.h> 20 #include <net/netfilter/nf_conntrack_core.h> 21 #include <net/netfilter/nf_conntrack_helper.h> 22 #include <net/netfilter/nf_conntrack_labels.h> 23 #include <net/netfilter/nf_conntrack_seqadj.h> 24 #include <net/netfilter/nf_conntrack_zones.h> 25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 26 27 #ifdef CONFIG_NF_NAT_NEEDED 28 #include <linux/netfilter/nf_nat.h> 29 #include <net/netfilter/nf_nat_core.h> 30 #include <net/netfilter/nf_nat_l3proto.h> 31 #endif 32 33 #include "datapath.h" 34 #include "conntrack.h" 35 #include "flow.h" 36 #include "flow_netlink.h" 37 38 struct ovs_ct_len_tbl { 39 int maxlen; 40 int minlen; 41 }; 42 43 /* Metadata mark for masked write to conntrack mark */ 44 struct md_mark { 45 u32 value; 46 u32 mask; 47 }; 48 49 /* Metadata label for masked write to conntrack label. */ 50 struct md_labels { 51 struct ovs_key_ct_labels value; 52 struct ovs_key_ct_labels mask; 53 }; 54 55 enum ovs_ct_nat { 56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 59 }; 60 61 /* Conntrack action context for execution. */ 62 struct ovs_conntrack_info { 63 struct nf_conntrack_helper *helper; 64 struct nf_conntrack_zone zone; 65 struct nf_conn *ct; 66 u8 commit : 1; 67 u8 nat : 3; /* enum ovs_ct_nat */ 68 u16 family; 69 struct md_mark mark; 70 struct md_labels labels; 71 #ifdef CONFIG_NF_NAT_NEEDED 72 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */ 73 #endif 74 }; 75 76 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 77 78 static u16 key_to_nfproto(const struct sw_flow_key *key) 79 { 80 switch (ntohs(key->eth.type)) { 81 case ETH_P_IP: 82 return NFPROTO_IPV4; 83 case ETH_P_IPV6: 84 return NFPROTO_IPV6; 85 default: 86 return NFPROTO_UNSPEC; 87 } 88 } 89 90 /* Map SKB connection state into the values used by flow definition. */ 91 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 92 { 93 u8 ct_state = OVS_CS_F_TRACKED; 94 95 switch (ctinfo) { 96 case IP_CT_ESTABLISHED_REPLY: 97 case IP_CT_RELATED_REPLY: 98 ct_state |= OVS_CS_F_REPLY_DIR; 99 break; 100 default: 101 break; 102 } 103 104 switch (ctinfo) { 105 case IP_CT_ESTABLISHED: 106 case IP_CT_ESTABLISHED_REPLY: 107 ct_state |= OVS_CS_F_ESTABLISHED; 108 break; 109 case IP_CT_RELATED: 110 case IP_CT_RELATED_REPLY: 111 ct_state |= OVS_CS_F_RELATED; 112 break; 113 case IP_CT_NEW: 114 ct_state |= OVS_CS_F_NEW; 115 break; 116 default: 117 break; 118 } 119 120 return ct_state; 121 } 122 123 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 124 { 125 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 126 return ct ? ct->mark : 0; 127 #else 128 return 0; 129 #endif 130 } 131 132 static void ovs_ct_get_labels(const struct nf_conn *ct, 133 struct ovs_key_ct_labels *labels) 134 { 135 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; 136 137 if (cl) { 138 size_t len = sizeof(cl->bits); 139 140 if (len > OVS_CT_LABELS_LEN) 141 len = OVS_CT_LABELS_LEN; 142 else if (len < OVS_CT_LABELS_LEN) 143 memset(labels, 0, OVS_CT_LABELS_LEN); 144 memcpy(labels, cl->bits, len); 145 } else { 146 memset(labels, 0, OVS_CT_LABELS_LEN); 147 } 148 } 149 150 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 151 const struct nf_conntrack_zone *zone, 152 const struct nf_conn *ct) 153 { 154 key->ct.state = state; 155 key->ct.zone = zone->id; 156 key->ct.mark = ovs_ct_get_mark(ct); 157 ovs_ct_get_labels(ct, &key->ct.labels); 158 } 159 160 /* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has 161 * previously sent the packet to conntrack via the ct action. If 162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 163 * initialized from the connection status. 164 */ 165 static void ovs_ct_update_key(const struct sk_buff *skb, 166 const struct ovs_conntrack_info *info, 167 struct sw_flow_key *key, bool post_ct, 168 bool keep_nat_flags) 169 { 170 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 171 enum ip_conntrack_info ctinfo; 172 struct nf_conn *ct; 173 u8 state = 0; 174 175 ct = nf_ct_get(skb, &ctinfo); 176 if (ct) { 177 state = ovs_ct_get_state(ctinfo); 178 /* All unconfirmed entries are NEW connections. */ 179 if (!nf_ct_is_confirmed(ct)) 180 state |= OVS_CS_F_NEW; 181 /* OVS persists the related flag for the duration of the 182 * connection. 183 */ 184 if (ct->master) 185 state |= OVS_CS_F_RELATED; 186 if (keep_nat_flags) { 187 state |= key->ct.state & OVS_CS_F_NAT_MASK; 188 } else { 189 if (ct->status & IPS_SRC_NAT) 190 state |= OVS_CS_F_SRC_NAT; 191 if (ct->status & IPS_DST_NAT) 192 state |= OVS_CS_F_DST_NAT; 193 } 194 zone = nf_ct_zone(ct); 195 } else if (post_ct) { 196 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 197 if (info) 198 zone = &info->zone; 199 } 200 __ovs_ct_update_key(key, state, zone, ct); 201 } 202 203 /* This is called to initialize CT key fields possibly coming in from the local 204 * stack. 205 */ 206 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) 207 { 208 ovs_ct_update_key(skb, NULL, key, false, false); 209 } 210 211 int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb) 212 { 213 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state)) 214 return -EMSGSIZE; 215 216 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 217 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone)) 218 return -EMSGSIZE; 219 220 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 221 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark)) 222 return -EMSGSIZE; 223 224 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 225 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels), 226 &key->ct.labels)) 227 return -EMSGSIZE; 228 229 return 0; 230 } 231 232 static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key, 233 u32 ct_mark, u32 mask) 234 { 235 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 236 enum ip_conntrack_info ctinfo; 237 struct nf_conn *ct; 238 u32 new_mark; 239 240 /* The connection could be invalid, in which case set_mark is no-op. */ 241 ct = nf_ct_get(skb, &ctinfo); 242 if (!ct) 243 return 0; 244 245 new_mark = ct_mark | (ct->mark & ~(mask)); 246 if (ct->mark != new_mark) { 247 ct->mark = new_mark; 248 nf_conntrack_event_cache(IPCT_MARK, ct); 249 key->ct.mark = new_mark; 250 } 251 252 return 0; 253 #else 254 return -ENOTSUPP; 255 #endif 256 } 257 258 static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key, 259 const struct ovs_key_ct_labels *labels, 260 const struct ovs_key_ct_labels *mask) 261 { 262 enum ip_conntrack_info ctinfo; 263 struct nf_conn_labels *cl; 264 struct nf_conn *ct; 265 int err; 266 267 /* The connection could be invalid, in which case set_label is no-op.*/ 268 ct = nf_ct_get(skb, &ctinfo); 269 if (!ct) 270 return 0; 271 272 cl = nf_ct_labels_find(ct); 273 if (!cl) { 274 nf_ct_labels_ext_add(ct); 275 cl = nf_ct_labels_find(ct); 276 } 277 if (!cl || sizeof(cl->bits) < OVS_CT_LABELS_LEN) 278 return -ENOSPC; 279 280 err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask, 281 OVS_CT_LABELS_LEN / sizeof(u32)); 282 if (err) 283 return err; 284 285 ovs_ct_get_labels(ct, &key->ct.labels); 286 return 0; 287 } 288 289 /* 'skb' should already be pulled to nh_ofs. */ 290 static int ovs_ct_helper(struct sk_buff *skb, u16 proto) 291 { 292 const struct nf_conntrack_helper *helper; 293 const struct nf_conn_help *help; 294 enum ip_conntrack_info ctinfo; 295 unsigned int protoff; 296 struct nf_conn *ct; 297 int err; 298 299 ct = nf_ct_get(skb, &ctinfo); 300 if (!ct || ctinfo == IP_CT_RELATED_REPLY) 301 return NF_ACCEPT; 302 303 help = nfct_help(ct); 304 if (!help) 305 return NF_ACCEPT; 306 307 helper = rcu_dereference(help->helper); 308 if (!helper) 309 return NF_ACCEPT; 310 311 switch (proto) { 312 case NFPROTO_IPV4: 313 protoff = ip_hdrlen(skb); 314 break; 315 case NFPROTO_IPV6: { 316 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 317 __be16 frag_off; 318 int ofs; 319 320 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, 321 &frag_off); 322 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) { 323 pr_debug("proto header not found\n"); 324 return NF_ACCEPT; 325 } 326 protoff = ofs; 327 break; 328 } 329 default: 330 WARN_ONCE(1, "helper invoked on non-IP family!"); 331 return NF_DROP; 332 } 333 334 err = helper->help(skb, protoff, ct, ctinfo); 335 if (err != NF_ACCEPT) 336 return err; 337 338 /* Adjust seqs after helper. This is needed due to some helpers (e.g., 339 * FTP with NAT) adusting the TCP payload size when mangling IP 340 * addresses and/or port numbers in the text-based control connection. 341 */ 342 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && 343 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) 344 return NF_DROP; 345 return NF_ACCEPT; 346 } 347 348 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 349 * value if 'skb' is freed. 350 */ 351 static int handle_fragments(struct net *net, struct sw_flow_key *key, 352 u16 zone, struct sk_buff *skb) 353 { 354 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 355 int err; 356 357 if (key->eth.type == htons(ETH_P_IP)) { 358 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 359 360 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 361 err = ip_defrag(net, skb, user); 362 if (err) 363 return err; 364 365 ovs_cb.mru = IPCB(skb)->frag_max_size; 366 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 367 } else if (key->eth.type == htons(ETH_P_IPV6)) { 368 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 369 370 skb_orphan(skb); 371 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 372 err = nf_ct_frag6_gather(net, skb, user); 373 if (err) { 374 if (err != -EINPROGRESS) 375 kfree_skb(skb); 376 return err; 377 } 378 379 key->ip.proto = ipv6_hdr(skb)->nexthdr; 380 ovs_cb.mru = IP6CB(skb)->frag_max_size; 381 #endif 382 } else { 383 kfree_skb(skb); 384 return -EPFNOSUPPORT; 385 } 386 387 key->ip.frag = OVS_FRAG_TYPE_NONE; 388 skb_clear_hash(skb); 389 skb->ignore_df = 1; 390 *OVS_CB(skb) = ovs_cb; 391 392 return 0; 393 } 394 395 static struct nf_conntrack_expect * 396 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, 397 u16 proto, const struct sk_buff *skb) 398 { 399 struct nf_conntrack_tuple tuple; 400 401 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) 402 return NULL; 403 return __nf_ct_expect_find(net, zone, &tuple); 404 } 405 406 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 407 static enum ip_conntrack_info 408 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 409 { 410 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 411 412 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 413 return IP_CT_ESTABLISHED_REPLY; 414 /* Once we've had two way comms, always ESTABLISHED. */ 415 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 416 return IP_CT_ESTABLISHED; 417 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 418 return IP_CT_RELATED; 419 return IP_CT_NEW; 420 } 421 422 /* Find an existing connection which this packet belongs to without 423 * re-attributing statistics or modifying the connection state. This allows an 424 * skb->nfct lost due to an upcall to be recovered during actions execution. 425 * 426 * Must be called with rcu_read_lock. 427 * 428 * On success, populates skb->nfct and skb->nfctinfo, and returns the 429 * connection. Returns NULL if there is no existing entry. 430 */ 431 static struct nf_conn * 432 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 433 u8 l3num, struct sk_buff *skb) 434 { 435 struct nf_conntrack_l3proto *l3proto; 436 struct nf_conntrack_l4proto *l4proto; 437 struct nf_conntrack_tuple tuple; 438 struct nf_conntrack_tuple_hash *h; 439 struct nf_conn *ct; 440 unsigned int dataoff; 441 u8 protonum; 442 443 l3proto = __nf_ct_l3proto_find(l3num); 444 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff, 445 &protonum) <= 0) { 446 pr_debug("ovs_ct_find_existing: Can't get protonum\n"); 447 return NULL; 448 } 449 l4proto = __nf_ct_l4proto_find(l3num, protonum); 450 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num, 451 protonum, net, &tuple, l3proto, l4proto)) { 452 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 453 return NULL; 454 } 455 456 /* look for tuple match */ 457 h = nf_conntrack_find_get(net, zone, &tuple); 458 if (!h) 459 return NULL; /* Not found. */ 460 461 ct = nf_ct_tuplehash_to_ctrack(h); 462 463 skb->nfct = &ct->ct_general; 464 skb->nfctinfo = ovs_ct_get_info(h); 465 return ct; 466 } 467 468 /* Determine whether skb->nfct is equal to the result of conntrack lookup. */ 469 static bool skb_nfct_cached(struct net *net, 470 const struct sw_flow_key *key, 471 const struct ovs_conntrack_info *info, 472 struct sk_buff *skb) 473 { 474 enum ip_conntrack_info ctinfo; 475 struct nf_conn *ct; 476 477 ct = nf_ct_get(skb, &ctinfo); 478 /* If no ct, check if we have evidence that an existing conntrack entry 479 * might be found for this skb. This happens when we lose a skb->nfct 480 * due to an upcall. If the connection was not confirmed, it is not 481 * cached and needs to be run through conntrack again. 482 */ 483 if (!ct && key->ct.state & OVS_CS_F_TRACKED && 484 !(key->ct.state & OVS_CS_F_INVALID) && 485 key->ct.zone == info->zone.id) 486 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb); 487 if (!ct) 488 return false; 489 if (!net_eq(net, read_pnet(&ct->ct_net))) 490 return false; 491 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 492 return false; 493 if (info->helper) { 494 struct nf_conn_help *help; 495 496 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 497 if (help && rcu_access_pointer(help->helper) != info->helper) 498 return false; 499 } 500 501 return true; 502 } 503 504 #ifdef CONFIG_NF_NAT_NEEDED 505 /* Modelled after nf_nat_ipv[46]_fn(). 506 * range is only used for new, uninitialized NAT state. 507 * Returns either NF_ACCEPT or NF_DROP. 508 */ 509 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 510 enum ip_conntrack_info ctinfo, 511 const struct nf_nat_range *range, 512 enum nf_nat_manip_type maniptype) 513 { 514 int hooknum, nh_off, err = NF_ACCEPT; 515 516 nh_off = skb_network_offset(skb); 517 skb_pull(skb, nh_off); 518 519 /* See HOOK2MANIP(). */ 520 if (maniptype == NF_NAT_MANIP_SRC) 521 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 522 else 523 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 524 525 switch (ctinfo) { 526 case IP_CT_RELATED: 527 case IP_CT_RELATED_REPLY: 528 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 529 skb->protocol == htons(ETH_P_IP) && 530 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 531 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 532 hooknum)) 533 err = NF_DROP; 534 goto push; 535 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 536 skb->protocol == htons(ETH_P_IPV6)) { 537 __be16 frag_off; 538 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 539 int hdrlen = ipv6_skip_exthdr(skb, 540 sizeof(struct ipv6hdr), 541 &nexthdr, &frag_off); 542 543 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 544 if (!nf_nat_icmpv6_reply_translation(skb, ct, 545 ctinfo, 546 hooknum, 547 hdrlen)) 548 err = NF_DROP; 549 goto push; 550 } 551 } 552 /* Non-ICMP, fall thru to initialize if needed. */ 553 case IP_CT_NEW: 554 /* Seen it before? This can happen for loopback, retrans, 555 * or local packets. 556 */ 557 if (!nf_nat_initialized(ct, maniptype)) { 558 /* Initialize according to the NAT action. */ 559 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 560 /* Action is set up to establish a new 561 * mapping. 562 */ 563 ? nf_nat_setup_info(ct, range, maniptype) 564 : nf_nat_alloc_null_binding(ct, hooknum); 565 if (err != NF_ACCEPT) 566 goto push; 567 } 568 break; 569 570 case IP_CT_ESTABLISHED: 571 case IP_CT_ESTABLISHED_REPLY: 572 break; 573 574 default: 575 err = NF_DROP; 576 goto push; 577 } 578 579 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 580 push: 581 skb_push(skb, nh_off); 582 583 return err; 584 } 585 586 static void ovs_nat_update_key(struct sw_flow_key *key, 587 const struct sk_buff *skb, 588 enum nf_nat_manip_type maniptype) 589 { 590 if (maniptype == NF_NAT_MANIP_SRC) { 591 __be16 src; 592 593 key->ct.state |= OVS_CS_F_SRC_NAT; 594 if (key->eth.type == htons(ETH_P_IP)) 595 key->ipv4.addr.src = ip_hdr(skb)->saddr; 596 else if (key->eth.type == htons(ETH_P_IPV6)) 597 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 598 sizeof(key->ipv6.addr.src)); 599 else 600 return; 601 602 if (key->ip.proto == IPPROTO_UDP) 603 src = udp_hdr(skb)->source; 604 else if (key->ip.proto == IPPROTO_TCP) 605 src = tcp_hdr(skb)->source; 606 else if (key->ip.proto == IPPROTO_SCTP) 607 src = sctp_hdr(skb)->source; 608 else 609 return; 610 611 key->tp.src = src; 612 } else { 613 __be16 dst; 614 615 key->ct.state |= OVS_CS_F_DST_NAT; 616 if (key->eth.type == htons(ETH_P_IP)) 617 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 618 else if (key->eth.type == htons(ETH_P_IPV6)) 619 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 620 sizeof(key->ipv6.addr.dst)); 621 else 622 return; 623 624 if (key->ip.proto == IPPROTO_UDP) 625 dst = udp_hdr(skb)->dest; 626 else if (key->ip.proto == IPPROTO_TCP) 627 dst = tcp_hdr(skb)->dest; 628 else if (key->ip.proto == IPPROTO_SCTP) 629 dst = sctp_hdr(skb)->dest; 630 else 631 return; 632 633 key->tp.dst = dst; 634 } 635 } 636 637 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 638 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 639 const struct ovs_conntrack_info *info, 640 struct sk_buff *skb, struct nf_conn *ct, 641 enum ip_conntrack_info ctinfo) 642 { 643 enum nf_nat_manip_type maniptype; 644 int err; 645 646 if (nf_ct_is_untracked(ct)) { 647 /* A NAT action may only be performed on tracked packets. */ 648 return NF_ACCEPT; 649 } 650 651 /* Add NAT extension if not confirmed yet. */ 652 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 653 return NF_ACCEPT; /* Can't NAT. */ 654 655 /* Determine NAT type. 656 * Check if the NAT type can be deduced from the tracked connection. 657 * Make sure new expected connections (IP_CT_RELATED) are NATted only 658 * when committing. 659 */ 660 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW && 661 ct->status & IPS_NAT_MASK && 662 (ctinfo != IP_CT_RELATED || info->commit)) { 663 /* NAT an established or related connection like before. */ 664 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 665 /* This is the REPLY direction for a connection 666 * for which NAT was applied in the forward 667 * direction. Do the reverse NAT. 668 */ 669 maniptype = ct->status & IPS_SRC_NAT 670 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 671 else 672 maniptype = ct->status & IPS_SRC_NAT 673 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 674 } else if (info->nat & OVS_CT_SRC_NAT) { 675 maniptype = NF_NAT_MANIP_SRC; 676 } else if (info->nat & OVS_CT_DST_NAT) { 677 maniptype = NF_NAT_MANIP_DST; 678 } else { 679 return NF_ACCEPT; /* Connection is not NATed. */ 680 } 681 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype); 682 683 /* Mark NAT done if successful and update the flow key. */ 684 if (err == NF_ACCEPT) 685 ovs_nat_update_key(key, skb, maniptype); 686 687 return err; 688 } 689 #else /* !CONFIG_NF_NAT_NEEDED */ 690 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 691 const struct ovs_conntrack_info *info, 692 struct sk_buff *skb, struct nf_conn *ct, 693 enum ip_conntrack_info ctinfo) 694 { 695 return NF_ACCEPT; 696 } 697 #endif 698 699 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 700 * not done already. Update key with new CT state after passing the packet 701 * through conntrack. 702 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be 703 * set to NULL and 0 will be returned. 704 */ 705 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 706 const struct ovs_conntrack_info *info, 707 struct sk_buff *skb) 708 { 709 /* If we are recirculating packets to match on conntrack fields and 710 * committing with a separate conntrack action, then we don't need to 711 * actually run the packet through conntrack twice unless it's for a 712 * different zone. 713 */ 714 bool cached = skb_nfct_cached(net, key, info, skb); 715 enum ip_conntrack_info ctinfo; 716 struct nf_conn *ct; 717 718 if (!cached) { 719 struct nf_conn *tmpl = info->ct; 720 int err; 721 722 /* Associate skb with specified zone. */ 723 if (tmpl) { 724 if (skb->nfct) 725 nf_conntrack_put(skb->nfct); 726 nf_conntrack_get(&tmpl->ct_general); 727 skb->nfct = &tmpl->ct_general; 728 skb->nfctinfo = IP_CT_NEW; 729 } 730 731 /* Repeat if requested, see nf_iterate(). */ 732 do { 733 err = nf_conntrack_in(net, info->family, 734 NF_INET_PRE_ROUTING, skb); 735 } while (err == NF_REPEAT); 736 737 if (err != NF_ACCEPT) 738 return -ENOENT; 739 740 /* Clear CT state NAT flags to mark that we have not yet done 741 * NAT after the nf_conntrack_in() call. We can actually clear 742 * the whole state, as it will be re-initialized below. 743 */ 744 key->ct.state = 0; 745 746 /* Update the key, but keep the NAT flags. */ 747 ovs_ct_update_key(skb, info, key, true, true); 748 } 749 750 ct = nf_ct_get(skb, &ctinfo); 751 if (ct) { 752 /* Packets starting a new connection must be NATted before the 753 * helper, so that the helper knows about the NAT. We enforce 754 * this by delaying both NAT and helper calls for unconfirmed 755 * connections until the committing CT action. For later 756 * packets NAT and Helper may be called in either order. 757 * 758 * NAT will be done only if the CT action has NAT, and only 759 * once per packet (per zone), as guarded by the NAT bits in 760 * the key->ct.state. 761 */ 762 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) && 763 (nf_ct_is_confirmed(ct) || info->commit) && 764 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 765 return -EINVAL; 766 } 767 768 /* Userspace may decide to perform a ct lookup without a helper 769 * specified followed by a (recirculate and) commit with one. 770 * Therefore, for unconfirmed connections which we will commit, 771 * we need to attach the helper here. 772 */ 773 if (!nf_ct_is_confirmed(ct) && info->commit && 774 info->helper && !nfct_help(ct)) { 775 int err = __nf_ct_try_assign_helper(ct, info->ct, 776 GFP_ATOMIC); 777 if (err) 778 return err; 779 } 780 781 /* Call the helper only if: 782 * - nf_conntrack_in() was executed above ("!cached") for a 783 * confirmed connection, or 784 * - When committing an unconfirmed connection. 785 */ 786 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) && 787 ovs_ct_helper(skb, info->family) != NF_ACCEPT) { 788 return -EINVAL; 789 } 790 } 791 792 return 0; 793 } 794 795 /* Lookup connection and read fields into key. */ 796 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 797 const struct ovs_conntrack_info *info, 798 struct sk_buff *skb) 799 { 800 struct nf_conntrack_expect *exp; 801 802 /* If we pass an expected packet through nf_conntrack_in() the 803 * expectation is typically removed, but the packet could still be 804 * lost in upcall processing. To prevent this from happening we 805 * perform an explicit expectation lookup. Expected connections are 806 * always new, and will be passed through conntrack only when they are 807 * committed, as it is OK to remove the expectation at that time. 808 */ 809 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); 810 if (exp) { 811 u8 state; 812 813 /* NOTE: New connections are NATted and Helped only when 814 * committed, so we are not calling into NAT here. 815 */ 816 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; 817 __ovs_ct_update_key(key, state, &info->zone, exp->master); 818 } else { 819 struct nf_conn *ct; 820 int err; 821 822 err = __ovs_ct_lookup(net, key, info, skb); 823 if (err) 824 return err; 825 826 ct = (struct nf_conn *)skb->nfct; 827 if (ct) 828 nf_ct_deliver_cached_events(ct); 829 } 830 831 return 0; 832 } 833 834 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 835 { 836 size_t i; 837 838 for (i = 0; i < sizeof(*labels); i++) 839 if (labels->ct_labels[i]) 840 return true; 841 842 return false; 843 } 844 845 /* Lookup connection and confirm if unconfirmed. */ 846 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 847 const struct ovs_conntrack_info *info, 848 struct sk_buff *skb) 849 { 850 int err; 851 852 err = __ovs_ct_lookup(net, key, info, skb); 853 if (err) 854 return err; 855 856 /* Apply changes before confirming the connection so that the initial 857 * conntrack NEW netlink event carries the values given in the CT 858 * action. 859 */ 860 if (info->mark.mask) { 861 err = ovs_ct_set_mark(skb, key, info->mark.value, 862 info->mark.mask); 863 if (err) 864 return err; 865 } 866 if (labels_nonzero(&info->labels.mask)) { 867 err = ovs_ct_set_labels(skb, key, &info->labels.value, 868 &info->labels.mask); 869 if (err) 870 return err; 871 } 872 /* This will take care of sending queued events even if the connection 873 * is already confirmed. 874 */ 875 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 876 return -EINVAL; 877 878 return 0; 879 } 880 881 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 882 * value if 'skb' is freed. 883 */ 884 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 885 struct sw_flow_key *key, 886 const struct ovs_conntrack_info *info) 887 { 888 int nh_ofs; 889 int err; 890 891 /* The conntrack module expects to be working at L3. */ 892 nh_ofs = skb_network_offset(skb); 893 skb_pull(skb, nh_ofs); 894 895 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 896 err = handle_fragments(net, key, info->zone.id, skb); 897 if (err) 898 return err; 899 } 900 901 if (info->commit) 902 err = ovs_ct_commit(net, key, info, skb); 903 else 904 err = ovs_ct_lookup(net, key, info, skb); 905 906 skb_push(skb, nh_ofs); 907 if (err) 908 kfree_skb(skb); 909 return err; 910 } 911 912 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, 913 const struct sw_flow_key *key, bool log) 914 { 915 struct nf_conntrack_helper *helper; 916 struct nf_conn_help *help; 917 918 helper = nf_conntrack_helper_try_module_get(name, info->family, 919 key->ip.proto); 920 if (!helper) { 921 OVS_NLERR(log, "Unknown helper \"%s\"", name); 922 return -EINVAL; 923 } 924 925 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL); 926 if (!help) { 927 module_put(helper->me); 928 return -ENOMEM; 929 } 930 931 rcu_assign_pointer(help->helper, helper); 932 info->helper = helper; 933 return 0; 934 } 935 936 #ifdef CONFIG_NF_NAT_NEEDED 937 static int parse_nat(const struct nlattr *attr, 938 struct ovs_conntrack_info *info, bool log) 939 { 940 struct nlattr *a; 941 int rem; 942 bool have_ip_max = false; 943 bool have_proto_max = false; 944 bool ip_vers = (info->family == NFPROTO_IPV6); 945 946 nla_for_each_nested(a, attr, rem) { 947 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 948 [OVS_NAT_ATTR_SRC] = {0, 0}, 949 [OVS_NAT_ATTR_DST] = {0, 0}, 950 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 951 sizeof(struct in6_addr)}, 952 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 953 sizeof(struct in6_addr)}, 954 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 955 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 956 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 957 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 958 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 959 }; 960 int type = nla_type(a); 961 962 if (type > OVS_NAT_ATTR_MAX) { 963 OVS_NLERR(log, 964 "Unknown NAT attribute (type=%d, max=%d).\n", 965 type, OVS_NAT_ATTR_MAX); 966 return -EINVAL; 967 } 968 969 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 970 OVS_NLERR(log, 971 "NAT attribute type %d has unexpected length (%d != %d).\n", 972 type, nla_len(a), 973 ovs_nat_attr_lens[type][ip_vers]); 974 return -EINVAL; 975 } 976 977 switch (type) { 978 case OVS_NAT_ATTR_SRC: 979 case OVS_NAT_ATTR_DST: 980 if (info->nat) { 981 OVS_NLERR(log, 982 "Only one type of NAT may be specified.\n" 983 ); 984 return -ERANGE; 985 } 986 info->nat |= OVS_CT_NAT; 987 info->nat |= ((type == OVS_NAT_ATTR_SRC) 988 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 989 break; 990 991 case OVS_NAT_ATTR_IP_MIN: 992 nla_memcpy(&info->range.min_addr, a, 993 sizeof(info->range.min_addr)); 994 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 995 break; 996 997 case OVS_NAT_ATTR_IP_MAX: 998 have_ip_max = true; 999 nla_memcpy(&info->range.max_addr, a, 1000 sizeof(info->range.max_addr)); 1001 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1002 break; 1003 1004 case OVS_NAT_ATTR_PROTO_MIN: 1005 info->range.min_proto.all = htons(nla_get_u16(a)); 1006 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1007 break; 1008 1009 case OVS_NAT_ATTR_PROTO_MAX: 1010 have_proto_max = true; 1011 info->range.max_proto.all = htons(nla_get_u16(a)); 1012 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1013 break; 1014 1015 case OVS_NAT_ATTR_PERSISTENT: 1016 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 1017 break; 1018 1019 case OVS_NAT_ATTR_PROTO_HASH: 1020 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1021 break; 1022 1023 case OVS_NAT_ATTR_PROTO_RANDOM: 1024 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1025 break; 1026 1027 default: 1028 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type); 1029 return -EINVAL; 1030 } 1031 } 1032 1033 if (rem > 0) { 1034 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem); 1035 return -EINVAL; 1036 } 1037 if (!info->nat) { 1038 /* Do not allow flags if no type is given. */ 1039 if (info->range.flags) { 1040 OVS_NLERR(log, 1041 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n" 1042 ); 1043 return -EINVAL; 1044 } 1045 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1046 } else if (!info->commit) { 1047 OVS_NLERR(log, 1048 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n" 1049 ); 1050 return -EINVAL; 1051 } 1052 /* Allow missing IP_MAX. */ 1053 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1054 memcpy(&info->range.max_addr, &info->range.min_addr, 1055 sizeof(info->range.max_addr)); 1056 } 1057 /* Allow missing PROTO_MAX. */ 1058 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1059 !have_proto_max) { 1060 info->range.max_proto.all = info->range.min_proto.all; 1061 } 1062 return 0; 1063 } 1064 #endif 1065 1066 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1067 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1068 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1069 .maxlen = sizeof(u16) }, 1070 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1071 .maxlen = sizeof(struct md_mark) }, 1072 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1073 .maxlen = sizeof(struct md_labels) }, 1074 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1075 .maxlen = NF_CT_HELPER_NAME_LEN }, 1076 #ifdef CONFIG_NF_NAT_NEEDED 1077 /* NAT length is checked when parsing the nested attributes. */ 1078 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1079 #endif 1080 }; 1081 1082 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1083 const char **helper, bool log) 1084 { 1085 struct nlattr *a; 1086 int rem; 1087 1088 nla_for_each_nested(a, attr, rem) { 1089 int type = nla_type(a); 1090 int maxlen = ovs_ct_attr_lens[type].maxlen; 1091 int minlen = ovs_ct_attr_lens[type].minlen; 1092 1093 if (type > OVS_CT_ATTR_MAX) { 1094 OVS_NLERR(log, 1095 "Unknown conntrack attr (type=%d, max=%d)", 1096 type, OVS_CT_ATTR_MAX); 1097 return -EINVAL; 1098 } 1099 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1100 OVS_NLERR(log, 1101 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1102 type, nla_len(a), maxlen); 1103 return -EINVAL; 1104 } 1105 1106 switch (type) { 1107 case OVS_CT_ATTR_COMMIT: 1108 info->commit = true; 1109 break; 1110 #ifdef CONFIG_NF_CONNTRACK_ZONES 1111 case OVS_CT_ATTR_ZONE: 1112 info->zone.id = nla_get_u16(a); 1113 break; 1114 #endif 1115 #ifdef CONFIG_NF_CONNTRACK_MARK 1116 case OVS_CT_ATTR_MARK: { 1117 struct md_mark *mark = nla_data(a); 1118 1119 if (!mark->mask) { 1120 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1121 return -EINVAL; 1122 } 1123 info->mark = *mark; 1124 break; 1125 } 1126 #endif 1127 #ifdef CONFIG_NF_CONNTRACK_LABELS 1128 case OVS_CT_ATTR_LABELS: { 1129 struct md_labels *labels = nla_data(a); 1130 1131 if (!labels_nonzero(&labels->mask)) { 1132 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1133 return -EINVAL; 1134 } 1135 info->labels = *labels; 1136 break; 1137 } 1138 #endif 1139 case OVS_CT_ATTR_HELPER: 1140 *helper = nla_data(a); 1141 if (!memchr(*helper, '\0', nla_len(a))) { 1142 OVS_NLERR(log, "Invalid conntrack helper"); 1143 return -EINVAL; 1144 } 1145 break; 1146 #ifdef CONFIG_NF_NAT_NEEDED 1147 case OVS_CT_ATTR_NAT: { 1148 int err = parse_nat(a, info, log); 1149 1150 if (err) 1151 return err; 1152 break; 1153 } 1154 #endif 1155 default: 1156 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1157 type); 1158 return -EINVAL; 1159 } 1160 } 1161 1162 #ifdef CONFIG_NF_CONNTRACK_MARK 1163 if (!info->commit && info->mark.mask) { 1164 OVS_NLERR(log, 1165 "Setting conntrack mark requires 'commit' flag."); 1166 return -EINVAL; 1167 } 1168 #endif 1169 #ifdef CONFIG_NF_CONNTRACK_LABELS 1170 if (!info->commit && labels_nonzero(&info->labels.mask)) { 1171 OVS_NLERR(log, 1172 "Setting conntrack labels requires 'commit' flag."); 1173 return -EINVAL; 1174 } 1175 #endif 1176 if (rem > 0) { 1177 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1178 return -EINVAL; 1179 } 1180 1181 return 0; 1182 } 1183 1184 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1185 { 1186 if (attr == OVS_KEY_ATTR_CT_STATE) 1187 return true; 1188 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1189 attr == OVS_KEY_ATTR_CT_ZONE) 1190 return true; 1191 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1192 attr == OVS_KEY_ATTR_CT_MARK) 1193 return true; 1194 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1195 attr == OVS_KEY_ATTR_CT_LABELS) { 1196 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1197 1198 return ovs_net->xt_label; 1199 } 1200 1201 return false; 1202 } 1203 1204 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1205 const struct sw_flow_key *key, 1206 struct sw_flow_actions **sfa, bool log) 1207 { 1208 struct ovs_conntrack_info ct_info; 1209 const char *helper = NULL; 1210 u16 family; 1211 int err; 1212 1213 family = key_to_nfproto(key); 1214 if (family == NFPROTO_UNSPEC) { 1215 OVS_NLERR(log, "ct family unspecified"); 1216 return -EINVAL; 1217 } 1218 1219 memset(&ct_info, 0, sizeof(ct_info)); 1220 ct_info.family = family; 1221 1222 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1223 NF_CT_DEFAULT_ZONE_DIR, 0); 1224 1225 err = parse_ct(attr, &ct_info, &helper, log); 1226 if (err) 1227 return err; 1228 1229 /* Set up template for tracking connections in specific zones. */ 1230 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1231 if (!ct_info.ct) { 1232 OVS_NLERR(log, "Failed to allocate conntrack template"); 1233 return -ENOMEM; 1234 } 1235 1236 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1237 nf_conntrack_get(&ct_info.ct->ct_general); 1238 1239 if (helper) { 1240 err = ovs_ct_add_helper(&ct_info, helper, key, log); 1241 if (err) 1242 goto err_free_ct; 1243 } 1244 1245 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1246 sizeof(ct_info), log); 1247 if (err) 1248 goto err_free_ct; 1249 1250 return 0; 1251 err_free_ct: 1252 __ovs_ct_free_action(&ct_info); 1253 return err; 1254 } 1255 1256 #ifdef CONFIG_NF_NAT_NEEDED 1257 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1258 struct sk_buff *skb) 1259 { 1260 struct nlattr *start; 1261 1262 start = nla_nest_start(skb, OVS_CT_ATTR_NAT); 1263 if (!start) 1264 return false; 1265 1266 if (info->nat & OVS_CT_SRC_NAT) { 1267 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1268 return false; 1269 } else if (info->nat & OVS_CT_DST_NAT) { 1270 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1271 return false; 1272 } else { 1273 goto out; 1274 } 1275 1276 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1277 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 1278 info->family == NFPROTO_IPV4) { 1279 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1280 info->range.min_addr.ip) || 1281 (info->range.max_addr.ip 1282 != info->range.min_addr.ip && 1283 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1284 info->range.max_addr.ip)))) 1285 return false; 1286 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 1287 info->family == NFPROTO_IPV6) { 1288 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1289 &info->range.min_addr.in6) || 1290 (memcmp(&info->range.max_addr.in6, 1291 &info->range.min_addr.in6, 1292 sizeof(info->range.max_addr.in6)) && 1293 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1294 &info->range.max_addr.in6)))) 1295 return false; 1296 } else { 1297 return false; 1298 } 1299 } 1300 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1301 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1302 ntohs(info->range.min_proto.all)) || 1303 (info->range.max_proto.all != info->range.min_proto.all && 1304 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1305 ntohs(info->range.max_proto.all))))) 1306 return false; 1307 1308 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1309 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1310 return false; 1311 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1312 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1313 return false; 1314 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1315 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1316 return false; 1317 out: 1318 nla_nest_end(skb, start); 1319 1320 return true; 1321 } 1322 #endif 1323 1324 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1325 struct sk_buff *skb) 1326 { 1327 struct nlattr *start; 1328 1329 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT); 1330 if (!start) 1331 return -EMSGSIZE; 1332 1333 if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT)) 1334 return -EMSGSIZE; 1335 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1336 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1337 return -EMSGSIZE; 1338 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1339 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1340 &ct_info->mark)) 1341 return -EMSGSIZE; 1342 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1343 labels_nonzero(&ct_info->labels.mask) && 1344 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1345 &ct_info->labels)) 1346 return -EMSGSIZE; 1347 if (ct_info->helper) { 1348 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1349 ct_info->helper->name)) 1350 return -EMSGSIZE; 1351 } 1352 #ifdef CONFIG_NF_NAT_NEEDED 1353 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1354 return -EMSGSIZE; 1355 #endif 1356 nla_nest_end(skb, start); 1357 1358 return 0; 1359 } 1360 1361 void ovs_ct_free_action(const struct nlattr *a) 1362 { 1363 struct ovs_conntrack_info *ct_info = nla_data(a); 1364 1365 __ovs_ct_free_action(ct_info); 1366 } 1367 1368 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1369 { 1370 if (ct_info->helper) 1371 module_put(ct_info->helper->me); 1372 if (ct_info->ct) 1373 nf_ct_tmpl_free(ct_info->ct); 1374 } 1375 1376 void ovs_ct_init(struct net *net) 1377 { 1378 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 1379 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1380 1381 if (nf_connlabels_get(net, n_bits - 1)) { 1382 ovs_net->xt_label = false; 1383 OVS_NLERR(true, "Failed to set connlabel length"); 1384 } else { 1385 ovs_net->xt_label = true; 1386 } 1387 } 1388 1389 void ovs_ct_exit(struct net *net) 1390 { 1391 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1392 1393 if (ovs_net->xt_label) 1394 nf_connlabels_put(net); 1395 } 1396