1 /* 2 * Copyright (c) 2015 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/openvswitch.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/sctp.h> 19 #include <net/ip.h> 20 #include <net/netfilter/nf_conntrack_core.h> 21 #include <net/netfilter/nf_conntrack_helper.h> 22 #include <net/netfilter/nf_conntrack_labels.h> 23 #include <net/netfilter/nf_conntrack_seqadj.h> 24 #include <net/netfilter/nf_conntrack_zones.h> 25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 26 27 #ifdef CONFIG_NF_NAT_NEEDED 28 #include <linux/netfilter/nf_nat.h> 29 #include <net/netfilter/nf_nat_core.h> 30 #include <net/netfilter/nf_nat_l3proto.h> 31 #endif 32 33 #include "datapath.h" 34 #include "conntrack.h" 35 #include "flow.h" 36 #include "flow_netlink.h" 37 38 struct ovs_ct_len_tbl { 39 int maxlen; 40 int minlen; 41 }; 42 43 /* Metadata mark for masked write to conntrack mark */ 44 struct md_mark { 45 u32 value; 46 u32 mask; 47 }; 48 49 /* Metadata label for masked write to conntrack label. */ 50 struct md_labels { 51 struct ovs_key_ct_labels value; 52 struct ovs_key_ct_labels mask; 53 }; 54 55 enum ovs_ct_nat { 56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 59 }; 60 61 /* Conntrack action context for execution. */ 62 struct ovs_conntrack_info { 63 struct nf_conntrack_helper *helper; 64 struct nf_conntrack_zone zone; 65 struct nf_conn *ct; 66 u8 commit : 1; 67 u8 nat : 3; /* enum ovs_ct_nat */ 68 u16 family; 69 struct md_mark mark; 70 struct md_labels labels; 71 #ifdef CONFIG_NF_NAT_NEEDED 72 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */ 73 #endif 74 }; 75 76 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 77 78 static u16 key_to_nfproto(const struct sw_flow_key *key) 79 { 80 switch (ntohs(key->eth.type)) { 81 case ETH_P_IP: 82 return NFPROTO_IPV4; 83 case ETH_P_IPV6: 84 return NFPROTO_IPV6; 85 default: 86 return NFPROTO_UNSPEC; 87 } 88 } 89 90 /* Map SKB connection state into the values used by flow definition. */ 91 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 92 { 93 u8 ct_state = OVS_CS_F_TRACKED; 94 95 switch (ctinfo) { 96 case IP_CT_ESTABLISHED_REPLY: 97 case IP_CT_RELATED_REPLY: 98 ct_state |= OVS_CS_F_REPLY_DIR; 99 break; 100 default: 101 break; 102 } 103 104 switch (ctinfo) { 105 case IP_CT_ESTABLISHED: 106 case IP_CT_ESTABLISHED_REPLY: 107 ct_state |= OVS_CS_F_ESTABLISHED; 108 break; 109 case IP_CT_RELATED: 110 case IP_CT_RELATED_REPLY: 111 ct_state |= OVS_CS_F_RELATED; 112 break; 113 case IP_CT_NEW: 114 ct_state |= OVS_CS_F_NEW; 115 break; 116 default: 117 break; 118 } 119 120 return ct_state; 121 } 122 123 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 124 { 125 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 126 return ct ? ct->mark : 0; 127 #else 128 return 0; 129 #endif 130 } 131 132 static void ovs_ct_get_labels(const struct nf_conn *ct, 133 struct ovs_key_ct_labels *labels) 134 { 135 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; 136 137 if (cl) { 138 size_t len = sizeof(cl->bits); 139 140 if (len > OVS_CT_LABELS_LEN) 141 len = OVS_CT_LABELS_LEN; 142 else if (len < OVS_CT_LABELS_LEN) 143 memset(labels, 0, OVS_CT_LABELS_LEN); 144 memcpy(labels, cl->bits, len); 145 } else { 146 memset(labels, 0, OVS_CT_LABELS_LEN); 147 } 148 } 149 150 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 151 const struct nf_conntrack_zone *zone, 152 const struct nf_conn *ct) 153 { 154 key->ct.state = state; 155 key->ct.zone = zone->id; 156 key->ct.mark = ovs_ct_get_mark(ct); 157 ovs_ct_get_labels(ct, &key->ct.labels); 158 } 159 160 /* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has 161 * previously sent the packet to conntrack via the ct action. If 162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 163 * initialized from the connection status. 164 */ 165 static void ovs_ct_update_key(const struct sk_buff *skb, 166 const struct ovs_conntrack_info *info, 167 struct sw_flow_key *key, bool post_ct, 168 bool keep_nat_flags) 169 { 170 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 171 enum ip_conntrack_info ctinfo; 172 struct nf_conn *ct; 173 u8 state = 0; 174 175 ct = nf_ct_get(skb, &ctinfo); 176 if (ct) { 177 state = ovs_ct_get_state(ctinfo); 178 /* All unconfirmed entries are NEW connections. */ 179 if (!nf_ct_is_confirmed(ct)) 180 state |= OVS_CS_F_NEW; 181 /* OVS persists the related flag for the duration of the 182 * connection. 183 */ 184 if (ct->master) 185 state |= OVS_CS_F_RELATED; 186 if (keep_nat_flags) { 187 state |= key->ct.state & OVS_CS_F_NAT_MASK; 188 } else { 189 if (ct->status & IPS_SRC_NAT) 190 state |= OVS_CS_F_SRC_NAT; 191 if (ct->status & IPS_DST_NAT) 192 state |= OVS_CS_F_DST_NAT; 193 } 194 zone = nf_ct_zone(ct); 195 } else if (post_ct) { 196 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 197 if (info) 198 zone = &info->zone; 199 } 200 __ovs_ct_update_key(key, state, zone, ct); 201 } 202 203 /* This is called to initialize CT key fields possibly coming in from the local 204 * stack. 205 */ 206 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) 207 { 208 ovs_ct_update_key(skb, NULL, key, false, false); 209 } 210 211 int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb) 212 { 213 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state)) 214 return -EMSGSIZE; 215 216 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 217 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone)) 218 return -EMSGSIZE; 219 220 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 221 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark)) 222 return -EMSGSIZE; 223 224 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 225 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels), 226 &key->ct.labels)) 227 return -EMSGSIZE; 228 229 return 0; 230 } 231 232 static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key, 233 u32 ct_mark, u32 mask) 234 { 235 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 236 enum ip_conntrack_info ctinfo; 237 struct nf_conn *ct; 238 u32 new_mark; 239 240 /* The connection could be invalid, in which case set_mark is no-op. */ 241 ct = nf_ct_get(skb, &ctinfo); 242 if (!ct) 243 return 0; 244 245 new_mark = ct_mark | (ct->mark & ~(mask)); 246 if (ct->mark != new_mark) { 247 ct->mark = new_mark; 248 nf_conntrack_event_cache(IPCT_MARK, ct); 249 key->ct.mark = new_mark; 250 } 251 252 return 0; 253 #else 254 return -ENOTSUPP; 255 #endif 256 } 257 258 static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key, 259 const struct ovs_key_ct_labels *labels, 260 const struct ovs_key_ct_labels *mask) 261 { 262 enum ip_conntrack_info ctinfo; 263 struct nf_conn_labels *cl; 264 struct nf_conn *ct; 265 int err; 266 267 /* The connection could be invalid, in which case set_label is no-op.*/ 268 ct = nf_ct_get(skb, &ctinfo); 269 if (!ct) 270 return 0; 271 272 cl = nf_ct_labels_find(ct); 273 if (!cl) { 274 nf_ct_labels_ext_add(ct); 275 cl = nf_ct_labels_find(ct); 276 } 277 if (!cl || sizeof(cl->bits) < OVS_CT_LABELS_LEN) 278 return -ENOSPC; 279 280 err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask, 281 OVS_CT_LABELS_LEN / sizeof(u32)); 282 if (err) 283 return err; 284 285 ovs_ct_get_labels(ct, &key->ct.labels); 286 return 0; 287 } 288 289 /* 'skb' should already be pulled to nh_ofs. */ 290 static int ovs_ct_helper(struct sk_buff *skb, u16 proto) 291 { 292 const struct nf_conntrack_helper *helper; 293 const struct nf_conn_help *help; 294 enum ip_conntrack_info ctinfo; 295 unsigned int protoff; 296 struct nf_conn *ct; 297 int err; 298 299 ct = nf_ct_get(skb, &ctinfo); 300 if (!ct || ctinfo == IP_CT_RELATED_REPLY) 301 return NF_ACCEPT; 302 303 help = nfct_help(ct); 304 if (!help) 305 return NF_ACCEPT; 306 307 helper = rcu_dereference(help->helper); 308 if (!helper) 309 return NF_ACCEPT; 310 311 switch (proto) { 312 case NFPROTO_IPV4: 313 protoff = ip_hdrlen(skb); 314 break; 315 case NFPROTO_IPV6: { 316 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 317 __be16 frag_off; 318 int ofs; 319 320 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, 321 &frag_off); 322 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) { 323 pr_debug("proto header not found\n"); 324 return NF_ACCEPT; 325 } 326 protoff = ofs; 327 break; 328 } 329 default: 330 WARN_ONCE(1, "helper invoked on non-IP family!"); 331 return NF_DROP; 332 } 333 334 err = helper->help(skb, protoff, ct, ctinfo); 335 if (err != NF_ACCEPT) 336 return err; 337 338 /* Adjust seqs after helper. This is needed due to some helpers (e.g., 339 * FTP with NAT) adusting the TCP payload size when mangling IP 340 * addresses and/or port numbers in the text-based control connection. 341 */ 342 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && 343 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) 344 return NF_DROP; 345 return NF_ACCEPT; 346 } 347 348 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 349 * value if 'skb' is freed. 350 */ 351 static int handle_fragments(struct net *net, struct sw_flow_key *key, 352 u16 zone, struct sk_buff *skb) 353 { 354 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 355 int err; 356 357 if (key->eth.type == htons(ETH_P_IP)) { 358 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 359 360 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 361 err = ip_defrag(net, skb, user); 362 if (err) 363 return err; 364 365 ovs_cb.mru = IPCB(skb)->frag_max_size; 366 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 367 } else if (key->eth.type == htons(ETH_P_IPV6)) { 368 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 369 370 skb_orphan(skb); 371 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 372 err = nf_ct_frag6_gather(net, skb, user); 373 if (err) 374 return err; 375 376 key->ip.proto = ipv6_hdr(skb)->nexthdr; 377 ovs_cb.mru = IP6CB(skb)->frag_max_size; 378 #endif 379 } else { 380 kfree_skb(skb); 381 return -EPFNOSUPPORT; 382 } 383 384 key->ip.frag = OVS_FRAG_TYPE_NONE; 385 skb_clear_hash(skb); 386 skb->ignore_df = 1; 387 *OVS_CB(skb) = ovs_cb; 388 389 return 0; 390 } 391 392 static struct nf_conntrack_expect * 393 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, 394 u16 proto, const struct sk_buff *skb) 395 { 396 struct nf_conntrack_tuple tuple; 397 398 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) 399 return NULL; 400 return __nf_ct_expect_find(net, zone, &tuple); 401 } 402 403 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 404 static enum ip_conntrack_info 405 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 406 { 407 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 408 409 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 410 return IP_CT_ESTABLISHED_REPLY; 411 /* Once we've had two way comms, always ESTABLISHED. */ 412 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 413 return IP_CT_ESTABLISHED; 414 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 415 return IP_CT_RELATED; 416 return IP_CT_NEW; 417 } 418 419 /* Find an existing connection which this packet belongs to without 420 * re-attributing statistics or modifying the connection state. This allows an 421 * skb->nfct lost due to an upcall to be recovered during actions execution. 422 * 423 * Must be called with rcu_read_lock. 424 * 425 * On success, populates skb->nfct and skb->nfctinfo, and returns the 426 * connection. Returns NULL if there is no existing entry. 427 */ 428 static struct nf_conn * 429 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 430 u8 l3num, struct sk_buff *skb) 431 { 432 struct nf_conntrack_l3proto *l3proto; 433 struct nf_conntrack_l4proto *l4proto; 434 struct nf_conntrack_tuple tuple; 435 struct nf_conntrack_tuple_hash *h; 436 struct nf_conn *ct; 437 unsigned int dataoff; 438 u8 protonum; 439 440 l3proto = __nf_ct_l3proto_find(l3num); 441 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff, 442 &protonum) <= 0) { 443 pr_debug("ovs_ct_find_existing: Can't get protonum\n"); 444 return NULL; 445 } 446 l4proto = __nf_ct_l4proto_find(l3num, protonum); 447 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num, 448 protonum, net, &tuple, l3proto, l4proto)) { 449 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 450 return NULL; 451 } 452 453 /* look for tuple match */ 454 h = nf_conntrack_find_get(net, zone, &tuple); 455 if (!h) 456 return NULL; /* Not found. */ 457 458 ct = nf_ct_tuplehash_to_ctrack(h); 459 460 skb->nfct = &ct->ct_general; 461 skb->nfctinfo = ovs_ct_get_info(h); 462 return ct; 463 } 464 465 /* Determine whether skb->nfct is equal to the result of conntrack lookup. */ 466 static bool skb_nfct_cached(struct net *net, 467 const struct sw_flow_key *key, 468 const struct ovs_conntrack_info *info, 469 struct sk_buff *skb) 470 { 471 enum ip_conntrack_info ctinfo; 472 struct nf_conn *ct; 473 474 ct = nf_ct_get(skb, &ctinfo); 475 /* If no ct, check if we have evidence that an existing conntrack entry 476 * might be found for this skb. This happens when we lose a skb->nfct 477 * due to an upcall. If the connection was not confirmed, it is not 478 * cached and needs to be run through conntrack again. 479 */ 480 if (!ct && key->ct.state & OVS_CS_F_TRACKED && 481 !(key->ct.state & OVS_CS_F_INVALID) && 482 key->ct.zone == info->zone.id) 483 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb); 484 if (!ct) 485 return false; 486 if (!net_eq(net, read_pnet(&ct->ct_net))) 487 return false; 488 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 489 return false; 490 if (info->helper) { 491 struct nf_conn_help *help; 492 493 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 494 if (help && rcu_access_pointer(help->helper) != info->helper) 495 return false; 496 } 497 498 return true; 499 } 500 501 #ifdef CONFIG_NF_NAT_NEEDED 502 /* Modelled after nf_nat_ipv[46]_fn(). 503 * range is only used for new, uninitialized NAT state. 504 * Returns either NF_ACCEPT or NF_DROP. 505 */ 506 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 507 enum ip_conntrack_info ctinfo, 508 const struct nf_nat_range *range, 509 enum nf_nat_manip_type maniptype) 510 { 511 int hooknum, nh_off, err = NF_ACCEPT; 512 513 nh_off = skb_network_offset(skb); 514 skb_pull(skb, nh_off); 515 516 /* See HOOK2MANIP(). */ 517 if (maniptype == NF_NAT_MANIP_SRC) 518 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 519 else 520 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 521 522 switch (ctinfo) { 523 case IP_CT_RELATED: 524 case IP_CT_RELATED_REPLY: 525 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 526 skb->protocol == htons(ETH_P_IP) && 527 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 528 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 529 hooknum)) 530 err = NF_DROP; 531 goto push; 532 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 533 skb->protocol == htons(ETH_P_IPV6)) { 534 __be16 frag_off; 535 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 536 int hdrlen = ipv6_skip_exthdr(skb, 537 sizeof(struct ipv6hdr), 538 &nexthdr, &frag_off); 539 540 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 541 if (!nf_nat_icmpv6_reply_translation(skb, ct, 542 ctinfo, 543 hooknum, 544 hdrlen)) 545 err = NF_DROP; 546 goto push; 547 } 548 } 549 /* Non-ICMP, fall thru to initialize if needed. */ 550 case IP_CT_NEW: 551 /* Seen it before? This can happen for loopback, retrans, 552 * or local packets. 553 */ 554 if (!nf_nat_initialized(ct, maniptype)) { 555 /* Initialize according to the NAT action. */ 556 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 557 /* Action is set up to establish a new 558 * mapping. 559 */ 560 ? nf_nat_setup_info(ct, range, maniptype) 561 : nf_nat_alloc_null_binding(ct, hooknum); 562 if (err != NF_ACCEPT) 563 goto push; 564 } 565 break; 566 567 case IP_CT_ESTABLISHED: 568 case IP_CT_ESTABLISHED_REPLY: 569 break; 570 571 default: 572 err = NF_DROP; 573 goto push; 574 } 575 576 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 577 push: 578 skb_push(skb, nh_off); 579 580 return err; 581 } 582 583 static void ovs_nat_update_key(struct sw_flow_key *key, 584 const struct sk_buff *skb, 585 enum nf_nat_manip_type maniptype) 586 { 587 if (maniptype == NF_NAT_MANIP_SRC) { 588 __be16 src; 589 590 key->ct.state |= OVS_CS_F_SRC_NAT; 591 if (key->eth.type == htons(ETH_P_IP)) 592 key->ipv4.addr.src = ip_hdr(skb)->saddr; 593 else if (key->eth.type == htons(ETH_P_IPV6)) 594 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 595 sizeof(key->ipv6.addr.src)); 596 else 597 return; 598 599 if (key->ip.proto == IPPROTO_UDP) 600 src = udp_hdr(skb)->source; 601 else if (key->ip.proto == IPPROTO_TCP) 602 src = tcp_hdr(skb)->source; 603 else if (key->ip.proto == IPPROTO_SCTP) 604 src = sctp_hdr(skb)->source; 605 else 606 return; 607 608 key->tp.src = src; 609 } else { 610 __be16 dst; 611 612 key->ct.state |= OVS_CS_F_DST_NAT; 613 if (key->eth.type == htons(ETH_P_IP)) 614 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 615 else if (key->eth.type == htons(ETH_P_IPV6)) 616 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 617 sizeof(key->ipv6.addr.dst)); 618 else 619 return; 620 621 if (key->ip.proto == IPPROTO_UDP) 622 dst = udp_hdr(skb)->dest; 623 else if (key->ip.proto == IPPROTO_TCP) 624 dst = tcp_hdr(skb)->dest; 625 else if (key->ip.proto == IPPROTO_SCTP) 626 dst = sctp_hdr(skb)->dest; 627 else 628 return; 629 630 key->tp.dst = dst; 631 } 632 } 633 634 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 635 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 636 const struct ovs_conntrack_info *info, 637 struct sk_buff *skb, struct nf_conn *ct, 638 enum ip_conntrack_info ctinfo) 639 { 640 enum nf_nat_manip_type maniptype; 641 int err; 642 643 if (nf_ct_is_untracked(ct)) { 644 /* A NAT action may only be performed on tracked packets. */ 645 return NF_ACCEPT; 646 } 647 648 /* Add NAT extension if not confirmed yet. */ 649 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 650 return NF_ACCEPT; /* Can't NAT. */ 651 652 /* Determine NAT type. 653 * Check if the NAT type can be deduced from the tracked connection. 654 * Make sure new expected connections (IP_CT_RELATED) are NATted only 655 * when committing. 656 */ 657 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW && 658 ct->status & IPS_NAT_MASK && 659 (ctinfo != IP_CT_RELATED || info->commit)) { 660 /* NAT an established or related connection like before. */ 661 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 662 /* This is the REPLY direction for a connection 663 * for which NAT was applied in the forward 664 * direction. Do the reverse NAT. 665 */ 666 maniptype = ct->status & IPS_SRC_NAT 667 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 668 else 669 maniptype = ct->status & IPS_SRC_NAT 670 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 671 } else if (info->nat & OVS_CT_SRC_NAT) { 672 maniptype = NF_NAT_MANIP_SRC; 673 } else if (info->nat & OVS_CT_DST_NAT) { 674 maniptype = NF_NAT_MANIP_DST; 675 } else { 676 return NF_ACCEPT; /* Connection is not NATed. */ 677 } 678 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype); 679 680 /* Mark NAT done if successful and update the flow key. */ 681 if (err == NF_ACCEPT) 682 ovs_nat_update_key(key, skb, maniptype); 683 684 return err; 685 } 686 #else /* !CONFIG_NF_NAT_NEEDED */ 687 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 688 const struct ovs_conntrack_info *info, 689 struct sk_buff *skb, struct nf_conn *ct, 690 enum ip_conntrack_info ctinfo) 691 { 692 return NF_ACCEPT; 693 } 694 #endif 695 696 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 697 * not done already. Update key with new CT state after passing the packet 698 * through conntrack. 699 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be 700 * set to NULL and 0 will be returned. 701 */ 702 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 703 const struct ovs_conntrack_info *info, 704 struct sk_buff *skb) 705 { 706 /* If we are recirculating packets to match on conntrack fields and 707 * committing with a separate conntrack action, then we don't need to 708 * actually run the packet through conntrack twice unless it's for a 709 * different zone. 710 */ 711 bool cached = skb_nfct_cached(net, key, info, skb); 712 enum ip_conntrack_info ctinfo; 713 struct nf_conn *ct; 714 715 if (!cached) { 716 struct nf_conn *tmpl = info->ct; 717 int err; 718 719 /* Associate skb with specified zone. */ 720 if (tmpl) { 721 if (skb->nfct) 722 nf_conntrack_put(skb->nfct); 723 nf_conntrack_get(&tmpl->ct_general); 724 skb->nfct = &tmpl->ct_general; 725 skb->nfctinfo = IP_CT_NEW; 726 } 727 728 err = nf_conntrack_in(net, info->family, 729 NF_INET_PRE_ROUTING, skb); 730 if (err != NF_ACCEPT) 731 return -ENOENT; 732 733 /* Clear CT state NAT flags to mark that we have not yet done 734 * NAT after the nf_conntrack_in() call. We can actually clear 735 * the whole state, as it will be re-initialized below. 736 */ 737 key->ct.state = 0; 738 739 /* Update the key, but keep the NAT flags. */ 740 ovs_ct_update_key(skb, info, key, true, true); 741 } 742 743 ct = nf_ct_get(skb, &ctinfo); 744 if (ct) { 745 /* Packets starting a new connection must be NATted before the 746 * helper, so that the helper knows about the NAT. We enforce 747 * this by delaying both NAT and helper calls for unconfirmed 748 * connections until the committing CT action. For later 749 * packets NAT and Helper may be called in either order. 750 * 751 * NAT will be done only if the CT action has NAT, and only 752 * once per packet (per zone), as guarded by the NAT bits in 753 * the key->ct.state. 754 */ 755 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) && 756 (nf_ct_is_confirmed(ct) || info->commit) && 757 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 758 return -EINVAL; 759 } 760 761 /* Userspace may decide to perform a ct lookup without a helper 762 * specified followed by a (recirculate and) commit with one. 763 * Therefore, for unconfirmed connections which we will commit, 764 * we need to attach the helper here. 765 */ 766 if (!nf_ct_is_confirmed(ct) && info->commit && 767 info->helper && !nfct_help(ct)) { 768 int err = __nf_ct_try_assign_helper(ct, info->ct, 769 GFP_ATOMIC); 770 if (err) 771 return err; 772 } 773 774 /* Call the helper only if: 775 * - nf_conntrack_in() was executed above ("!cached") for a 776 * confirmed connection, or 777 * - When committing an unconfirmed connection. 778 */ 779 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) && 780 ovs_ct_helper(skb, info->family) != NF_ACCEPT) { 781 return -EINVAL; 782 } 783 } 784 785 return 0; 786 } 787 788 /* Lookup connection and read fields into key. */ 789 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 790 const struct ovs_conntrack_info *info, 791 struct sk_buff *skb) 792 { 793 struct nf_conntrack_expect *exp; 794 795 /* If we pass an expected packet through nf_conntrack_in() the 796 * expectation is typically removed, but the packet could still be 797 * lost in upcall processing. To prevent this from happening we 798 * perform an explicit expectation lookup. Expected connections are 799 * always new, and will be passed through conntrack only when they are 800 * committed, as it is OK to remove the expectation at that time. 801 */ 802 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); 803 if (exp) { 804 u8 state; 805 806 /* NOTE: New connections are NATted and Helped only when 807 * committed, so we are not calling into NAT here. 808 */ 809 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; 810 __ovs_ct_update_key(key, state, &info->zone, exp->master); 811 } else { 812 struct nf_conn *ct; 813 int err; 814 815 err = __ovs_ct_lookup(net, key, info, skb); 816 if (err) 817 return err; 818 819 ct = (struct nf_conn *)skb->nfct; 820 if (ct) 821 nf_ct_deliver_cached_events(ct); 822 } 823 824 return 0; 825 } 826 827 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 828 { 829 size_t i; 830 831 for (i = 0; i < sizeof(*labels); i++) 832 if (labels->ct_labels[i]) 833 return true; 834 835 return false; 836 } 837 838 /* Lookup connection and confirm if unconfirmed. */ 839 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 840 const struct ovs_conntrack_info *info, 841 struct sk_buff *skb) 842 { 843 int err; 844 845 err = __ovs_ct_lookup(net, key, info, skb); 846 if (err) 847 return err; 848 849 /* Apply changes before confirming the connection so that the initial 850 * conntrack NEW netlink event carries the values given in the CT 851 * action. 852 */ 853 if (info->mark.mask) { 854 err = ovs_ct_set_mark(skb, key, info->mark.value, 855 info->mark.mask); 856 if (err) 857 return err; 858 } 859 if (labels_nonzero(&info->labels.mask)) { 860 err = ovs_ct_set_labels(skb, key, &info->labels.value, 861 &info->labels.mask); 862 if (err) 863 return err; 864 } 865 /* This will take care of sending queued events even if the connection 866 * is already confirmed. 867 */ 868 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 869 return -EINVAL; 870 871 return 0; 872 } 873 874 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 875 * value if 'skb' is freed. 876 */ 877 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 878 struct sw_flow_key *key, 879 const struct ovs_conntrack_info *info) 880 { 881 int nh_ofs; 882 int err; 883 884 /* The conntrack module expects to be working at L3. */ 885 nh_ofs = skb_network_offset(skb); 886 skb_pull(skb, nh_ofs); 887 888 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 889 err = handle_fragments(net, key, info->zone.id, skb); 890 if (err) 891 return err; 892 } 893 894 if (info->commit) 895 err = ovs_ct_commit(net, key, info, skb); 896 else 897 err = ovs_ct_lookup(net, key, info, skb); 898 899 skb_push(skb, nh_ofs); 900 if (err) 901 kfree_skb(skb); 902 return err; 903 } 904 905 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, 906 const struct sw_flow_key *key, bool log) 907 { 908 struct nf_conntrack_helper *helper; 909 struct nf_conn_help *help; 910 911 helper = nf_conntrack_helper_try_module_get(name, info->family, 912 key->ip.proto); 913 if (!helper) { 914 OVS_NLERR(log, "Unknown helper \"%s\"", name); 915 return -EINVAL; 916 } 917 918 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL); 919 if (!help) { 920 module_put(helper->me); 921 return -ENOMEM; 922 } 923 924 rcu_assign_pointer(help->helper, helper); 925 info->helper = helper; 926 return 0; 927 } 928 929 #ifdef CONFIG_NF_NAT_NEEDED 930 static int parse_nat(const struct nlattr *attr, 931 struct ovs_conntrack_info *info, bool log) 932 { 933 struct nlattr *a; 934 int rem; 935 bool have_ip_max = false; 936 bool have_proto_max = false; 937 bool ip_vers = (info->family == NFPROTO_IPV6); 938 939 nla_for_each_nested(a, attr, rem) { 940 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 941 [OVS_NAT_ATTR_SRC] = {0, 0}, 942 [OVS_NAT_ATTR_DST] = {0, 0}, 943 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 944 sizeof(struct in6_addr)}, 945 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 946 sizeof(struct in6_addr)}, 947 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 948 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 949 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 950 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 951 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 952 }; 953 int type = nla_type(a); 954 955 if (type > OVS_NAT_ATTR_MAX) { 956 OVS_NLERR(log, 957 "Unknown NAT attribute (type=%d, max=%d).\n", 958 type, OVS_NAT_ATTR_MAX); 959 return -EINVAL; 960 } 961 962 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 963 OVS_NLERR(log, 964 "NAT attribute type %d has unexpected length (%d != %d).\n", 965 type, nla_len(a), 966 ovs_nat_attr_lens[type][ip_vers]); 967 return -EINVAL; 968 } 969 970 switch (type) { 971 case OVS_NAT_ATTR_SRC: 972 case OVS_NAT_ATTR_DST: 973 if (info->nat) { 974 OVS_NLERR(log, 975 "Only one type of NAT may be specified.\n" 976 ); 977 return -ERANGE; 978 } 979 info->nat |= OVS_CT_NAT; 980 info->nat |= ((type == OVS_NAT_ATTR_SRC) 981 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 982 break; 983 984 case OVS_NAT_ATTR_IP_MIN: 985 nla_memcpy(&info->range.min_addr, a, 986 sizeof(info->range.min_addr)); 987 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 988 break; 989 990 case OVS_NAT_ATTR_IP_MAX: 991 have_ip_max = true; 992 nla_memcpy(&info->range.max_addr, a, 993 sizeof(info->range.max_addr)); 994 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 995 break; 996 997 case OVS_NAT_ATTR_PROTO_MIN: 998 info->range.min_proto.all = htons(nla_get_u16(a)); 999 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1000 break; 1001 1002 case OVS_NAT_ATTR_PROTO_MAX: 1003 have_proto_max = true; 1004 info->range.max_proto.all = htons(nla_get_u16(a)); 1005 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1006 break; 1007 1008 case OVS_NAT_ATTR_PERSISTENT: 1009 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 1010 break; 1011 1012 case OVS_NAT_ATTR_PROTO_HASH: 1013 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1014 break; 1015 1016 case OVS_NAT_ATTR_PROTO_RANDOM: 1017 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1018 break; 1019 1020 default: 1021 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type); 1022 return -EINVAL; 1023 } 1024 } 1025 1026 if (rem > 0) { 1027 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem); 1028 return -EINVAL; 1029 } 1030 if (!info->nat) { 1031 /* Do not allow flags if no type is given. */ 1032 if (info->range.flags) { 1033 OVS_NLERR(log, 1034 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n" 1035 ); 1036 return -EINVAL; 1037 } 1038 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1039 } else if (!info->commit) { 1040 OVS_NLERR(log, 1041 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n" 1042 ); 1043 return -EINVAL; 1044 } 1045 /* Allow missing IP_MAX. */ 1046 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1047 memcpy(&info->range.max_addr, &info->range.min_addr, 1048 sizeof(info->range.max_addr)); 1049 } 1050 /* Allow missing PROTO_MAX. */ 1051 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1052 !have_proto_max) { 1053 info->range.max_proto.all = info->range.min_proto.all; 1054 } 1055 return 0; 1056 } 1057 #endif 1058 1059 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1060 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1061 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1062 .maxlen = sizeof(u16) }, 1063 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1064 .maxlen = sizeof(struct md_mark) }, 1065 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1066 .maxlen = sizeof(struct md_labels) }, 1067 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1068 .maxlen = NF_CT_HELPER_NAME_LEN }, 1069 #ifdef CONFIG_NF_NAT_NEEDED 1070 /* NAT length is checked when parsing the nested attributes. */ 1071 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1072 #endif 1073 }; 1074 1075 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1076 const char **helper, bool log) 1077 { 1078 struct nlattr *a; 1079 int rem; 1080 1081 nla_for_each_nested(a, attr, rem) { 1082 int type = nla_type(a); 1083 int maxlen = ovs_ct_attr_lens[type].maxlen; 1084 int minlen = ovs_ct_attr_lens[type].minlen; 1085 1086 if (type > OVS_CT_ATTR_MAX) { 1087 OVS_NLERR(log, 1088 "Unknown conntrack attr (type=%d, max=%d)", 1089 type, OVS_CT_ATTR_MAX); 1090 return -EINVAL; 1091 } 1092 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1093 OVS_NLERR(log, 1094 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1095 type, nla_len(a), maxlen); 1096 return -EINVAL; 1097 } 1098 1099 switch (type) { 1100 case OVS_CT_ATTR_COMMIT: 1101 info->commit = true; 1102 break; 1103 #ifdef CONFIG_NF_CONNTRACK_ZONES 1104 case OVS_CT_ATTR_ZONE: 1105 info->zone.id = nla_get_u16(a); 1106 break; 1107 #endif 1108 #ifdef CONFIG_NF_CONNTRACK_MARK 1109 case OVS_CT_ATTR_MARK: { 1110 struct md_mark *mark = nla_data(a); 1111 1112 if (!mark->mask) { 1113 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1114 return -EINVAL; 1115 } 1116 info->mark = *mark; 1117 break; 1118 } 1119 #endif 1120 #ifdef CONFIG_NF_CONNTRACK_LABELS 1121 case OVS_CT_ATTR_LABELS: { 1122 struct md_labels *labels = nla_data(a); 1123 1124 if (!labels_nonzero(&labels->mask)) { 1125 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1126 return -EINVAL; 1127 } 1128 info->labels = *labels; 1129 break; 1130 } 1131 #endif 1132 case OVS_CT_ATTR_HELPER: 1133 *helper = nla_data(a); 1134 if (!memchr(*helper, '\0', nla_len(a))) { 1135 OVS_NLERR(log, "Invalid conntrack helper"); 1136 return -EINVAL; 1137 } 1138 break; 1139 #ifdef CONFIG_NF_NAT_NEEDED 1140 case OVS_CT_ATTR_NAT: { 1141 int err = parse_nat(a, info, log); 1142 1143 if (err) 1144 return err; 1145 break; 1146 } 1147 #endif 1148 default: 1149 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1150 type); 1151 return -EINVAL; 1152 } 1153 } 1154 1155 #ifdef CONFIG_NF_CONNTRACK_MARK 1156 if (!info->commit && info->mark.mask) { 1157 OVS_NLERR(log, 1158 "Setting conntrack mark requires 'commit' flag."); 1159 return -EINVAL; 1160 } 1161 #endif 1162 #ifdef CONFIG_NF_CONNTRACK_LABELS 1163 if (!info->commit && labels_nonzero(&info->labels.mask)) { 1164 OVS_NLERR(log, 1165 "Setting conntrack labels requires 'commit' flag."); 1166 return -EINVAL; 1167 } 1168 #endif 1169 if (rem > 0) { 1170 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1171 return -EINVAL; 1172 } 1173 1174 return 0; 1175 } 1176 1177 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1178 { 1179 if (attr == OVS_KEY_ATTR_CT_STATE) 1180 return true; 1181 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1182 attr == OVS_KEY_ATTR_CT_ZONE) 1183 return true; 1184 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1185 attr == OVS_KEY_ATTR_CT_MARK) 1186 return true; 1187 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1188 attr == OVS_KEY_ATTR_CT_LABELS) { 1189 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1190 1191 return ovs_net->xt_label; 1192 } 1193 1194 return false; 1195 } 1196 1197 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1198 const struct sw_flow_key *key, 1199 struct sw_flow_actions **sfa, bool log) 1200 { 1201 struct ovs_conntrack_info ct_info; 1202 const char *helper = NULL; 1203 u16 family; 1204 int err; 1205 1206 family = key_to_nfproto(key); 1207 if (family == NFPROTO_UNSPEC) { 1208 OVS_NLERR(log, "ct family unspecified"); 1209 return -EINVAL; 1210 } 1211 1212 memset(&ct_info, 0, sizeof(ct_info)); 1213 ct_info.family = family; 1214 1215 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1216 NF_CT_DEFAULT_ZONE_DIR, 0); 1217 1218 err = parse_ct(attr, &ct_info, &helper, log); 1219 if (err) 1220 return err; 1221 1222 /* Set up template for tracking connections in specific zones. */ 1223 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1224 if (!ct_info.ct) { 1225 OVS_NLERR(log, "Failed to allocate conntrack template"); 1226 return -ENOMEM; 1227 } 1228 1229 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1230 nf_conntrack_get(&ct_info.ct->ct_general); 1231 1232 if (helper) { 1233 err = ovs_ct_add_helper(&ct_info, helper, key, log); 1234 if (err) 1235 goto err_free_ct; 1236 } 1237 1238 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1239 sizeof(ct_info), log); 1240 if (err) 1241 goto err_free_ct; 1242 1243 return 0; 1244 err_free_ct: 1245 __ovs_ct_free_action(&ct_info); 1246 return err; 1247 } 1248 1249 #ifdef CONFIG_NF_NAT_NEEDED 1250 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1251 struct sk_buff *skb) 1252 { 1253 struct nlattr *start; 1254 1255 start = nla_nest_start(skb, OVS_CT_ATTR_NAT); 1256 if (!start) 1257 return false; 1258 1259 if (info->nat & OVS_CT_SRC_NAT) { 1260 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1261 return false; 1262 } else if (info->nat & OVS_CT_DST_NAT) { 1263 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1264 return false; 1265 } else { 1266 goto out; 1267 } 1268 1269 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1270 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 1271 info->family == NFPROTO_IPV4) { 1272 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1273 info->range.min_addr.ip) || 1274 (info->range.max_addr.ip 1275 != info->range.min_addr.ip && 1276 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1277 info->range.max_addr.ip)))) 1278 return false; 1279 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 1280 info->family == NFPROTO_IPV6) { 1281 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1282 &info->range.min_addr.in6) || 1283 (memcmp(&info->range.max_addr.in6, 1284 &info->range.min_addr.in6, 1285 sizeof(info->range.max_addr.in6)) && 1286 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1287 &info->range.max_addr.in6)))) 1288 return false; 1289 } else { 1290 return false; 1291 } 1292 } 1293 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1294 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1295 ntohs(info->range.min_proto.all)) || 1296 (info->range.max_proto.all != info->range.min_proto.all && 1297 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1298 ntohs(info->range.max_proto.all))))) 1299 return false; 1300 1301 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1302 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1303 return false; 1304 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1305 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1306 return false; 1307 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1308 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1309 return false; 1310 out: 1311 nla_nest_end(skb, start); 1312 1313 return true; 1314 } 1315 #endif 1316 1317 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1318 struct sk_buff *skb) 1319 { 1320 struct nlattr *start; 1321 1322 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT); 1323 if (!start) 1324 return -EMSGSIZE; 1325 1326 if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT)) 1327 return -EMSGSIZE; 1328 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1329 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1330 return -EMSGSIZE; 1331 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1332 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1333 &ct_info->mark)) 1334 return -EMSGSIZE; 1335 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1336 labels_nonzero(&ct_info->labels.mask) && 1337 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1338 &ct_info->labels)) 1339 return -EMSGSIZE; 1340 if (ct_info->helper) { 1341 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1342 ct_info->helper->name)) 1343 return -EMSGSIZE; 1344 } 1345 #ifdef CONFIG_NF_NAT_NEEDED 1346 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1347 return -EMSGSIZE; 1348 #endif 1349 nla_nest_end(skb, start); 1350 1351 return 0; 1352 } 1353 1354 void ovs_ct_free_action(const struct nlattr *a) 1355 { 1356 struct ovs_conntrack_info *ct_info = nla_data(a); 1357 1358 __ovs_ct_free_action(ct_info); 1359 } 1360 1361 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1362 { 1363 if (ct_info->helper) 1364 module_put(ct_info->helper->me); 1365 if (ct_info->ct) 1366 nf_ct_tmpl_free(ct_info->ct); 1367 } 1368 1369 void ovs_ct_init(struct net *net) 1370 { 1371 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 1372 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1373 1374 if (nf_connlabels_get(net, n_bits - 1)) { 1375 ovs_net->xt_label = false; 1376 OVS_NLERR(true, "Failed to set connlabel length"); 1377 } else { 1378 ovs_net->xt_label = true; 1379 } 1380 } 1381 1382 void ovs_ct_exit(struct net *net) 1383 { 1384 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1385 1386 if (ovs_net->xt_label) 1387 nf_connlabels_put(net); 1388 } 1389