1 /* 2 * Copyright (c) 2015 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/openvswitch.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/sctp.h> 19 #include <net/ip.h> 20 #include <net/netfilter/nf_conntrack_core.h> 21 #include <net/netfilter/nf_conntrack_helper.h> 22 #include <net/netfilter/nf_conntrack_labels.h> 23 #include <net/netfilter/nf_conntrack_seqadj.h> 24 #include <net/netfilter/nf_conntrack_zones.h> 25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 26 27 #ifdef CONFIG_NF_NAT_NEEDED 28 #include <linux/netfilter/nf_nat.h> 29 #include <net/netfilter/nf_nat_core.h> 30 #include <net/netfilter/nf_nat_l3proto.h> 31 #endif 32 33 #include "datapath.h" 34 #include "conntrack.h" 35 #include "flow.h" 36 #include "flow_netlink.h" 37 38 struct ovs_ct_len_tbl { 39 int maxlen; 40 int minlen; 41 }; 42 43 /* Metadata mark for masked write to conntrack mark */ 44 struct md_mark { 45 u32 value; 46 u32 mask; 47 }; 48 49 /* Metadata label for masked write to conntrack label. */ 50 struct md_labels { 51 struct ovs_key_ct_labels value; 52 struct ovs_key_ct_labels mask; 53 }; 54 55 enum ovs_ct_nat { 56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 59 }; 60 61 /* Conntrack action context for execution. */ 62 struct ovs_conntrack_info { 63 struct nf_conntrack_helper *helper; 64 struct nf_conntrack_zone zone; 65 struct nf_conn *ct; 66 u8 commit : 1; 67 u8 nat : 3; /* enum ovs_ct_nat */ 68 u16 family; 69 struct md_mark mark; 70 struct md_labels labels; 71 #ifdef CONFIG_NF_NAT_NEEDED 72 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */ 73 #endif 74 }; 75 76 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 77 78 static u16 key_to_nfproto(const struct sw_flow_key *key) 79 { 80 switch (ntohs(key->eth.type)) { 81 case ETH_P_IP: 82 return NFPROTO_IPV4; 83 case ETH_P_IPV6: 84 return NFPROTO_IPV6; 85 default: 86 return NFPROTO_UNSPEC; 87 } 88 } 89 90 /* Map SKB connection state into the values used by flow definition. */ 91 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 92 { 93 u8 ct_state = OVS_CS_F_TRACKED; 94 95 switch (ctinfo) { 96 case IP_CT_ESTABLISHED_REPLY: 97 case IP_CT_RELATED_REPLY: 98 ct_state |= OVS_CS_F_REPLY_DIR; 99 break; 100 default: 101 break; 102 } 103 104 switch (ctinfo) { 105 case IP_CT_ESTABLISHED: 106 case IP_CT_ESTABLISHED_REPLY: 107 ct_state |= OVS_CS_F_ESTABLISHED; 108 break; 109 case IP_CT_RELATED: 110 case IP_CT_RELATED_REPLY: 111 ct_state |= OVS_CS_F_RELATED; 112 break; 113 case IP_CT_NEW: 114 ct_state |= OVS_CS_F_NEW; 115 break; 116 default: 117 break; 118 } 119 120 return ct_state; 121 } 122 123 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 124 { 125 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 126 return ct ? ct->mark : 0; 127 #else 128 return 0; 129 #endif 130 } 131 132 static void ovs_ct_get_labels(const struct nf_conn *ct, 133 struct ovs_key_ct_labels *labels) 134 { 135 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; 136 137 if (cl) { 138 size_t len = cl->words * sizeof(long); 139 140 if (len > OVS_CT_LABELS_LEN) 141 len = OVS_CT_LABELS_LEN; 142 else if (len < OVS_CT_LABELS_LEN) 143 memset(labels, 0, OVS_CT_LABELS_LEN); 144 memcpy(labels, cl->bits, len); 145 } else { 146 memset(labels, 0, OVS_CT_LABELS_LEN); 147 } 148 } 149 150 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 151 const struct nf_conntrack_zone *zone, 152 const struct nf_conn *ct) 153 { 154 key->ct.state = state; 155 key->ct.zone = zone->id; 156 key->ct.mark = ovs_ct_get_mark(ct); 157 ovs_ct_get_labels(ct, &key->ct.labels); 158 } 159 160 /* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has 161 * previously sent the packet to conntrack via the ct action. If 162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 163 * initialized from the connection status. 164 */ 165 static void ovs_ct_update_key(const struct sk_buff *skb, 166 const struct ovs_conntrack_info *info, 167 struct sw_flow_key *key, bool post_ct, 168 bool keep_nat_flags) 169 { 170 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 171 enum ip_conntrack_info ctinfo; 172 struct nf_conn *ct; 173 u8 state = 0; 174 175 ct = nf_ct_get(skb, &ctinfo); 176 if (ct) { 177 state = ovs_ct_get_state(ctinfo); 178 /* All unconfirmed entries are NEW connections. */ 179 if (!nf_ct_is_confirmed(ct)) 180 state |= OVS_CS_F_NEW; 181 /* OVS persists the related flag for the duration of the 182 * connection. 183 */ 184 if (ct->master) 185 state |= OVS_CS_F_RELATED; 186 if (keep_nat_flags) { 187 state |= key->ct.state & OVS_CS_F_NAT_MASK; 188 } else { 189 if (ct->status & IPS_SRC_NAT) 190 state |= OVS_CS_F_SRC_NAT; 191 if (ct->status & IPS_DST_NAT) 192 state |= OVS_CS_F_DST_NAT; 193 } 194 zone = nf_ct_zone(ct); 195 } else if (post_ct) { 196 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 197 if (info) 198 zone = &info->zone; 199 } 200 __ovs_ct_update_key(key, state, zone, ct); 201 } 202 203 /* This is called to initialize CT key fields possibly coming in from the local 204 * stack. 205 */ 206 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) 207 { 208 ovs_ct_update_key(skb, NULL, key, false, false); 209 } 210 211 int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb) 212 { 213 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state)) 214 return -EMSGSIZE; 215 216 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 217 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone)) 218 return -EMSGSIZE; 219 220 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 221 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark)) 222 return -EMSGSIZE; 223 224 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 225 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels), 226 &key->ct.labels)) 227 return -EMSGSIZE; 228 229 return 0; 230 } 231 232 static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key, 233 u32 ct_mark, u32 mask) 234 { 235 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 236 enum ip_conntrack_info ctinfo; 237 struct nf_conn *ct; 238 u32 new_mark; 239 240 /* The connection could be invalid, in which case set_mark is no-op. */ 241 ct = nf_ct_get(skb, &ctinfo); 242 if (!ct) 243 return 0; 244 245 new_mark = ct_mark | (ct->mark & ~(mask)); 246 if (ct->mark != new_mark) { 247 ct->mark = new_mark; 248 nf_conntrack_event_cache(IPCT_MARK, ct); 249 key->ct.mark = new_mark; 250 } 251 252 return 0; 253 #else 254 return -ENOTSUPP; 255 #endif 256 } 257 258 static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key, 259 const struct ovs_key_ct_labels *labels, 260 const struct ovs_key_ct_labels *mask) 261 { 262 enum ip_conntrack_info ctinfo; 263 struct nf_conn_labels *cl; 264 struct nf_conn *ct; 265 int err; 266 267 /* The connection could be invalid, in which case set_label is no-op.*/ 268 ct = nf_ct_get(skb, &ctinfo); 269 if (!ct) 270 return 0; 271 272 cl = nf_ct_labels_find(ct); 273 if (!cl) { 274 nf_ct_labels_ext_add(ct); 275 cl = nf_ct_labels_find(ct); 276 } 277 if (!cl || cl->words * sizeof(long) < OVS_CT_LABELS_LEN) 278 return -ENOSPC; 279 280 err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask, 281 OVS_CT_LABELS_LEN / sizeof(u32)); 282 if (err) 283 return err; 284 285 ovs_ct_get_labels(ct, &key->ct.labels); 286 return 0; 287 } 288 289 /* 'skb' should already be pulled to nh_ofs. */ 290 static int ovs_ct_helper(struct sk_buff *skb, u16 proto) 291 { 292 const struct nf_conntrack_helper *helper; 293 const struct nf_conn_help *help; 294 enum ip_conntrack_info ctinfo; 295 unsigned int protoff; 296 struct nf_conn *ct; 297 int err; 298 299 ct = nf_ct_get(skb, &ctinfo); 300 if (!ct || ctinfo == IP_CT_RELATED_REPLY) 301 return NF_ACCEPT; 302 303 help = nfct_help(ct); 304 if (!help) 305 return NF_ACCEPT; 306 307 helper = rcu_dereference(help->helper); 308 if (!helper) 309 return NF_ACCEPT; 310 311 switch (proto) { 312 case NFPROTO_IPV4: 313 protoff = ip_hdrlen(skb); 314 break; 315 case NFPROTO_IPV6: { 316 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 317 __be16 frag_off; 318 int ofs; 319 320 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, 321 &frag_off); 322 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) { 323 pr_debug("proto header not found\n"); 324 return NF_ACCEPT; 325 } 326 protoff = ofs; 327 break; 328 } 329 default: 330 WARN_ONCE(1, "helper invoked on non-IP family!"); 331 return NF_DROP; 332 } 333 334 err = helper->help(skb, protoff, ct, ctinfo); 335 if (err != NF_ACCEPT) 336 return err; 337 338 /* Adjust seqs after helper. This is needed due to some helpers (e.g., 339 * FTP with NAT) adusting the TCP payload size when mangling IP 340 * addresses and/or port numbers in the text-based control connection. 341 */ 342 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && 343 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) 344 return NF_DROP; 345 return NF_ACCEPT; 346 } 347 348 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 349 * value if 'skb' is freed. 350 */ 351 static int handle_fragments(struct net *net, struct sw_flow_key *key, 352 u16 zone, struct sk_buff *skb) 353 { 354 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 355 int err; 356 357 if (key->eth.type == htons(ETH_P_IP)) { 358 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 359 360 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 361 err = ip_defrag(net, skb, user); 362 if (err) 363 return err; 364 365 ovs_cb.mru = IPCB(skb)->frag_max_size; 366 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 367 } else if (key->eth.type == htons(ETH_P_IPV6)) { 368 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 369 370 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 371 err = nf_ct_frag6_gather(net, skb, user); 372 if (err) 373 return err; 374 375 key->ip.proto = ipv6_hdr(skb)->nexthdr; 376 ovs_cb.mru = IP6CB(skb)->frag_max_size; 377 #endif 378 } else { 379 kfree_skb(skb); 380 return -EPFNOSUPPORT; 381 } 382 383 key->ip.frag = OVS_FRAG_TYPE_NONE; 384 skb_clear_hash(skb); 385 skb->ignore_df = 1; 386 *OVS_CB(skb) = ovs_cb; 387 388 return 0; 389 } 390 391 static struct nf_conntrack_expect * 392 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, 393 u16 proto, const struct sk_buff *skb) 394 { 395 struct nf_conntrack_tuple tuple; 396 397 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) 398 return NULL; 399 return __nf_ct_expect_find(net, zone, &tuple); 400 } 401 402 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 403 static enum ip_conntrack_info 404 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 405 { 406 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 407 408 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 409 return IP_CT_ESTABLISHED_REPLY; 410 /* Once we've had two way comms, always ESTABLISHED. */ 411 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 412 return IP_CT_ESTABLISHED; 413 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 414 return IP_CT_RELATED; 415 return IP_CT_NEW; 416 } 417 418 /* Find an existing connection which this packet belongs to without 419 * re-attributing statistics or modifying the connection state. This allows an 420 * skb->nfct lost due to an upcall to be recovered during actions execution. 421 * 422 * Must be called with rcu_read_lock. 423 * 424 * On success, populates skb->nfct and skb->nfctinfo, and returns the 425 * connection. Returns NULL if there is no existing entry. 426 */ 427 static struct nf_conn * 428 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 429 u8 l3num, struct sk_buff *skb) 430 { 431 struct nf_conntrack_l3proto *l3proto; 432 struct nf_conntrack_l4proto *l4proto; 433 struct nf_conntrack_tuple tuple; 434 struct nf_conntrack_tuple_hash *h; 435 enum ip_conntrack_info ctinfo; 436 struct nf_conn *ct; 437 unsigned int dataoff; 438 u8 protonum; 439 440 l3proto = __nf_ct_l3proto_find(l3num); 441 if (!l3proto) { 442 pr_debug("ovs_ct_find_existing: Can't get l3proto\n"); 443 return NULL; 444 } 445 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff, 446 &protonum) <= 0) { 447 pr_debug("ovs_ct_find_existing: Can't get protonum\n"); 448 return NULL; 449 } 450 l4proto = __nf_ct_l4proto_find(l3num, protonum); 451 if (!l4proto) { 452 pr_debug("ovs_ct_find_existing: Can't get l4proto\n"); 453 return NULL; 454 } 455 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num, 456 protonum, net, &tuple, l3proto, l4proto)) { 457 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 458 return NULL; 459 } 460 461 /* look for tuple match */ 462 h = nf_conntrack_find_get(net, zone, &tuple); 463 if (!h) 464 return NULL; /* Not found. */ 465 466 ct = nf_ct_tuplehash_to_ctrack(h); 467 468 ctinfo = ovs_ct_get_info(h); 469 if (ctinfo == IP_CT_NEW) { 470 /* This should not happen. */ 471 WARN_ONCE(1, "ovs_ct_find_existing: new packet for %p\n", ct); 472 } 473 skb->nfct = &ct->ct_general; 474 skb->nfctinfo = ctinfo; 475 return ct; 476 } 477 478 /* Determine whether skb->nfct is equal to the result of conntrack lookup. */ 479 static bool skb_nfct_cached(struct net *net, 480 const struct sw_flow_key *key, 481 const struct ovs_conntrack_info *info, 482 struct sk_buff *skb) 483 { 484 enum ip_conntrack_info ctinfo; 485 struct nf_conn *ct; 486 487 ct = nf_ct_get(skb, &ctinfo); 488 /* If no ct, check if we have evidence that an existing conntrack entry 489 * might be found for this skb. This happens when we lose a skb->nfct 490 * due to an upcall. If the connection was not confirmed, it is not 491 * cached and needs to be run through conntrack again. 492 */ 493 if (!ct && key->ct.state & OVS_CS_F_TRACKED && 494 !(key->ct.state & OVS_CS_F_INVALID) && 495 key->ct.zone == info->zone.id) 496 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb); 497 if (!ct) 498 return false; 499 if (!net_eq(net, read_pnet(&ct->ct_net))) 500 return false; 501 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 502 return false; 503 if (info->helper) { 504 struct nf_conn_help *help; 505 506 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 507 if (help && rcu_access_pointer(help->helper) != info->helper) 508 return false; 509 } 510 511 return true; 512 } 513 514 #ifdef CONFIG_NF_NAT_NEEDED 515 /* Modelled after nf_nat_ipv[46]_fn(). 516 * range is only used for new, uninitialized NAT state. 517 * Returns either NF_ACCEPT or NF_DROP. 518 */ 519 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 520 enum ip_conntrack_info ctinfo, 521 const struct nf_nat_range *range, 522 enum nf_nat_manip_type maniptype) 523 { 524 int hooknum, nh_off, err = NF_ACCEPT; 525 526 nh_off = skb_network_offset(skb); 527 skb_pull(skb, nh_off); 528 529 /* See HOOK2MANIP(). */ 530 if (maniptype == NF_NAT_MANIP_SRC) 531 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 532 else 533 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 534 535 switch (ctinfo) { 536 case IP_CT_RELATED: 537 case IP_CT_RELATED_REPLY: 538 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 539 skb->protocol == htons(ETH_P_IP) && 540 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 541 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 542 hooknum)) 543 err = NF_DROP; 544 goto push; 545 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 546 skb->protocol == htons(ETH_P_IPV6)) { 547 __be16 frag_off; 548 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 549 int hdrlen = ipv6_skip_exthdr(skb, 550 sizeof(struct ipv6hdr), 551 &nexthdr, &frag_off); 552 553 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 554 if (!nf_nat_icmpv6_reply_translation(skb, ct, 555 ctinfo, 556 hooknum, 557 hdrlen)) 558 err = NF_DROP; 559 goto push; 560 } 561 } 562 /* Non-ICMP, fall thru to initialize if needed. */ 563 case IP_CT_NEW: 564 /* Seen it before? This can happen for loopback, retrans, 565 * or local packets. 566 */ 567 if (!nf_nat_initialized(ct, maniptype)) { 568 /* Initialize according to the NAT action. */ 569 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 570 /* Action is set up to establish a new 571 * mapping. 572 */ 573 ? nf_nat_setup_info(ct, range, maniptype) 574 : nf_nat_alloc_null_binding(ct, hooknum); 575 if (err != NF_ACCEPT) 576 goto push; 577 } 578 break; 579 580 case IP_CT_ESTABLISHED: 581 case IP_CT_ESTABLISHED_REPLY: 582 break; 583 584 default: 585 err = NF_DROP; 586 goto push; 587 } 588 589 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 590 push: 591 skb_push(skb, nh_off); 592 593 return err; 594 } 595 596 static void ovs_nat_update_key(struct sw_flow_key *key, 597 const struct sk_buff *skb, 598 enum nf_nat_manip_type maniptype) 599 { 600 if (maniptype == NF_NAT_MANIP_SRC) { 601 __be16 src; 602 603 key->ct.state |= OVS_CS_F_SRC_NAT; 604 if (key->eth.type == htons(ETH_P_IP)) 605 key->ipv4.addr.src = ip_hdr(skb)->saddr; 606 else if (key->eth.type == htons(ETH_P_IPV6)) 607 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 608 sizeof(key->ipv6.addr.src)); 609 else 610 return; 611 612 if (key->ip.proto == IPPROTO_UDP) 613 src = udp_hdr(skb)->source; 614 else if (key->ip.proto == IPPROTO_TCP) 615 src = tcp_hdr(skb)->source; 616 else if (key->ip.proto == IPPROTO_SCTP) 617 src = sctp_hdr(skb)->source; 618 else 619 return; 620 621 key->tp.src = src; 622 } else { 623 __be16 dst; 624 625 key->ct.state |= OVS_CS_F_DST_NAT; 626 if (key->eth.type == htons(ETH_P_IP)) 627 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 628 else if (key->eth.type == htons(ETH_P_IPV6)) 629 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 630 sizeof(key->ipv6.addr.dst)); 631 else 632 return; 633 634 if (key->ip.proto == IPPROTO_UDP) 635 dst = udp_hdr(skb)->dest; 636 else if (key->ip.proto == IPPROTO_TCP) 637 dst = tcp_hdr(skb)->dest; 638 else if (key->ip.proto == IPPROTO_SCTP) 639 dst = sctp_hdr(skb)->dest; 640 else 641 return; 642 643 key->tp.dst = dst; 644 } 645 } 646 647 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 648 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 649 const struct ovs_conntrack_info *info, 650 struct sk_buff *skb, struct nf_conn *ct, 651 enum ip_conntrack_info ctinfo) 652 { 653 enum nf_nat_manip_type maniptype; 654 int err; 655 656 if (nf_ct_is_untracked(ct)) { 657 /* A NAT action may only be performed on tracked packets. */ 658 return NF_ACCEPT; 659 } 660 661 /* Add NAT extension if not confirmed yet. */ 662 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 663 return NF_ACCEPT; /* Can't NAT. */ 664 665 /* Determine NAT type. 666 * Check if the NAT type can be deduced from the tracked connection. 667 * Make sure new expected connections (IP_CT_RELATED) are NATted only 668 * when committing. 669 */ 670 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW && 671 ct->status & IPS_NAT_MASK && 672 (ctinfo != IP_CT_RELATED || info->commit)) { 673 /* NAT an established or related connection like before. */ 674 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 675 /* This is the REPLY direction for a connection 676 * for which NAT was applied in the forward 677 * direction. Do the reverse NAT. 678 */ 679 maniptype = ct->status & IPS_SRC_NAT 680 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 681 else 682 maniptype = ct->status & IPS_SRC_NAT 683 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 684 } else if (info->nat & OVS_CT_SRC_NAT) { 685 maniptype = NF_NAT_MANIP_SRC; 686 } else if (info->nat & OVS_CT_DST_NAT) { 687 maniptype = NF_NAT_MANIP_DST; 688 } else { 689 return NF_ACCEPT; /* Connection is not NATed. */ 690 } 691 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype); 692 693 /* Mark NAT done if successful and update the flow key. */ 694 if (err == NF_ACCEPT) 695 ovs_nat_update_key(key, skb, maniptype); 696 697 return err; 698 } 699 #else /* !CONFIG_NF_NAT_NEEDED */ 700 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 701 const struct ovs_conntrack_info *info, 702 struct sk_buff *skb, struct nf_conn *ct, 703 enum ip_conntrack_info ctinfo) 704 { 705 return NF_ACCEPT; 706 } 707 #endif 708 709 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 710 * not done already. Update key with new CT state after passing the packet 711 * through conntrack. 712 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be 713 * set to NULL and 0 will be returned. 714 */ 715 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 716 const struct ovs_conntrack_info *info, 717 struct sk_buff *skb) 718 { 719 /* If we are recirculating packets to match on conntrack fields and 720 * committing with a separate conntrack action, then we don't need to 721 * actually run the packet through conntrack twice unless it's for a 722 * different zone. 723 */ 724 bool cached = skb_nfct_cached(net, key, info, skb); 725 enum ip_conntrack_info ctinfo; 726 struct nf_conn *ct; 727 728 if (!cached) { 729 struct nf_conn *tmpl = info->ct; 730 int err; 731 732 /* Associate skb with specified zone. */ 733 if (tmpl) { 734 if (skb->nfct) 735 nf_conntrack_put(skb->nfct); 736 nf_conntrack_get(&tmpl->ct_general); 737 skb->nfct = &tmpl->ct_general; 738 skb->nfctinfo = IP_CT_NEW; 739 } 740 741 /* Repeat if requested, see nf_iterate(). */ 742 do { 743 err = nf_conntrack_in(net, info->family, 744 NF_INET_PRE_ROUTING, skb); 745 } while (err == NF_REPEAT); 746 747 if (err != NF_ACCEPT) 748 return -ENOENT; 749 750 /* Clear CT state NAT flags to mark that we have not yet done 751 * NAT after the nf_conntrack_in() call. We can actually clear 752 * the whole state, as it will be re-initialized below. 753 */ 754 key->ct.state = 0; 755 756 /* Update the key, but keep the NAT flags. */ 757 ovs_ct_update_key(skb, info, key, true, true); 758 } 759 760 ct = nf_ct_get(skb, &ctinfo); 761 if (ct) { 762 /* Packets starting a new connection must be NATted before the 763 * helper, so that the helper knows about the NAT. We enforce 764 * this by delaying both NAT and helper calls for unconfirmed 765 * connections until the committing CT action. For later 766 * packets NAT and Helper may be called in either order. 767 * 768 * NAT will be done only if the CT action has NAT, and only 769 * once per packet (per zone), as guarded by the NAT bits in 770 * the key->ct.state. 771 */ 772 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) && 773 (nf_ct_is_confirmed(ct) || info->commit) && 774 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 775 return -EINVAL; 776 } 777 778 /* Call the helper only if: 779 * - nf_conntrack_in() was executed above ("!cached") for a 780 * confirmed connection, or 781 * - When committing an unconfirmed connection. 782 */ 783 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) && 784 ovs_ct_helper(skb, info->family) != NF_ACCEPT) { 785 return -EINVAL; 786 } 787 } 788 789 return 0; 790 } 791 792 /* Lookup connection and read fields into key. */ 793 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 794 const struct ovs_conntrack_info *info, 795 struct sk_buff *skb) 796 { 797 struct nf_conntrack_expect *exp; 798 799 /* If we pass an expected packet through nf_conntrack_in() the 800 * expectation is typically removed, but the packet could still be 801 * lost in upcall processing. To prevent this from happening we 802 * perform an explicit expectation lookup. Expected connections are 803 * always new, and will be passed through conntrack only when they are 804 * committed, as it is OK to remove the expectation at that time. 805 */ 806 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); 807 if (exp) { 808 u8 state; 809 810 /* NOTE: New connections are NATted and Helped only when 811 * committed, so we are not calling into NAT here. 812 */ 813 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; 814 __ovs_ct_update_key(key, state, &info->zone, exp->master); 815 } else 816 return __ovs_ct_lookup(net, key, info, skb); 817 818 return 0; 819 } 820 821 /* Lookup connection and confirm if unconfirmed. */ 822 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 823 const struct ovs_conntrack_info *info, 824 struct sk_buff *skb) 825 { 826 int err; 827 828 err = __ovs_ct_lookup(net, key, info, skb); 829 if (err) 830 return err; 831 /* This is a no-op if the connection has already been confirmed. */ 832 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 833 return -EINVAL; 834 835 return 0; 836 } 837 838 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 839 { 840 size_t i; 841 842 for (i = 0; i < sizeof(*labels); i++) 843 if (labels->ct_labels[i]) 844 return true; 845 846 return false; 847 } 848 849 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 850 * value if 'skb' is freed. 851 */ 852 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 853 struct sw_flow_key *key, 854 const struct ovs_conntrack_info *info) 855 { 856 int nh_ofs; 857 int err; 858 859 /* The conntrack module expects to be working at L3. */ 860 nh_ofs = skb_network_offset(skb); 861 skb_pull(skb, nh_ofs); 862 863 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 864 err = handle_fragments(net, key, info->zone.id, skb); 865 if (err) 866 return err; 867 } 868 869 if (info->commit) 870 err = ovs_ct_commit(net, key, info, skb); 871 else 872 err = ovs_ct_lookup(net, key, info, skb); 873 if (err) 874 goto err; 875 876 if (info->mark.mask) { 877 err = ovs_ct_set_mark(skb, key, info->mark.value, 878 info->mark.mask); 879 if (err) 880 goto err; 881 } 882 if (labels_nonzero(&info->labels.mask)) 883 err = ovs_ct_set_labels(skb, key, &info->labels.value, 884 &info->labels.mask); 885 err: 886 skb_push(skb, nh_ofs); 887 if (err) 888 kfree_skb(skb); 889 return err; 890 } 891 892 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, 893 const struct sw_flow_key *key, bool log) 894 { 895 struct nf_conntrack_helper *helper; 896 struct nf_conn_help *help; 897 898 helper = nf_conntrack_helper_try_module_get(name, info->family, 899 key->ip.proto); 900 if (!helper) { 901 OVS_NLERR(log, "Unknown helper \"%s\"", name); 902 return -EINVAL; 903 } 904 905 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL); 906 if (!help) { 907 module_put(helper->me); 908 return -ENOMEM; 909 } 910 911 rcu_assign_pointer(help->helper, helper); 912 info->helper = helper; 913 return 0; 914 } 915 916 #ifdef CONFIG_NF_NAT_NEEDED 917 static int parse_nat(const struct nlattr *attr, 918 struct ovs_conntrack_info *info, bool log) 919 { 920 struct nlattr *a; 921 int rem; 922 bool have_ip_max = false; 923 bool have_proto_max = false; 924 bool ip_vers = (info->family == NFPROTO_IPV6); 925 926 nla_for_each_nested(a, attr, rem) { 927 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 928 [OVS_NAT_ATTR_SRC] = {0, 0}, 929 [OVS_NAT_ATTR_DST] = {0, 0}, 930 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 931 sizeof(struct in6_addr)}, 932 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 933 sizeof(struct in6_addr)}, 934 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 935 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 936 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 937 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 938 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 939 }; 940 int type = nla_type(a); 941 942 if (type > OVS_NAT_ATTR_MAX) { 943 OVS_NLERR(log, 944 "Unknown NAT attribute (type=%d, max=%d).\n", 945 type, OVS_NAT_ATTR_MAX); 946 return -EINVAL; 947 } 948 949 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 950 OVS_NLERR(log, 951 "NAT attribute type %d has unexpected length (%d != %d).\n", 952 type, nla_len(a), 953 ovs_nat_attr_lens[type][ip_vers]); 954 return -EINVAL; 955 } 956 957 switch (type) { 958 case OVS_NAT_ATTR_SRC: 959 case OVS_NAT_ATTR_DST: 960 if (info->nat) { 961 OVS_NLERR(log, 962 "Only one type of NAT may be specified.\n" 963 ); 964 return -ERANGE; 965 } 966 info->nat |= OVS_CT_NAT; 967 info->nat |= ((type == OVS_NAT_ATTR_SRC) 968 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 969 break; 970 971 case OVS_NAT_ATTR_IP_MIN: 972 nla_memcpy(&info->range.min_addr, a, 973 sizeof(info->range.min_addr)); 974 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 975 break; 976 977 case OVS_NAT_ATTR_IP_MAX: 978 have_ip_max = true; 979 nla_memcpy(&info->range.max_addr, a, 980 sizeof(info->range.max_addr)); 981 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 982 break; 983 984 case OVS_NAT_ATTR_PROTO_MIN: 985 info->range.min_proto.all = htons(nla_get_u16(a)); 986 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 987 break; 988 989 case OVS_NAT_ATTR_PROTO_MAX: 990 have_proto_max = true; 991 info->range.max_proto.all = htons(nla_get_u16(a)); 992 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 993 break; 994 995 case OVS_NAT_ATTR_PERSISTENT: 996 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 997 break; 998 999 case OVS_NAT_ATTR_PROTO_HASH: 1000 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1001 break; 1002 1003 case OVS_NAT_ATTR_PROTO_RANDOM: 1004 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1005 break; 1006 1007 default: 1008 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type); 1009 return -EINVAL; 1010 } 1011 } 1012 1013 if (rem > 0) { 1014 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem); 1015 return -EINVAL; 1016 } 1017 if (!info->nat) { 1018 /* Do not allow flags if no type is given. */ 1019 if (info->range.flags) { 1020 OVS_NLERR(log, 1021 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n" 1022 ); 1023 return -EINVAL; 1024 } 1025 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1026 } else if (!info->commit) { 1027 OVS_NLERR(log, 1028 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n" 1029 ); 1030 return -EINVAL; 1031 } 1032 /* Allow missing IP_MAX. */ 1033 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1034 memcpy(&info->range.max_addr, &info->range.min_addr, 1035 sizeof(info->range.max_addr)); 1036 } 1037 /* Allow missing PROTO_MAX. */ 1038 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1039 !have_proto_max) { 1040 info->range.max_proto.all = info->range.min_proto.all; 1041 } 1042 return 0; 1043 } 1044 #endif 1045 1046 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1047 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1048 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1049 .maxlen = sizeof(u16) }, 1050 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1051 .maxlen = sizeof(struct md_mark) }, 1052 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1053 .maxlen = sizeof(struct md_labels) }, 1054 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1055 .maxlen = NF_CT_HELPER_NAME_LEN }, 1056 #ifdef CONFIG_NF_NAT_NEEDED 1057 /* NAT length is checked when parsing the nested attributes. */ 1058 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1059 #endif 1060 }; 1061 1062 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1063 const char **helper, bool log) 1064 { 1065 struct nlattr *a; 1066 int rem; 1067 1068 nla_for_each_nested(a, attr, rem) { 1069 int type = nla_type(a); 1070 int maxlen = ovs_ct_attr_lens[type].maxlen; 1071 int minlen = ovs_ct_attr_lens[type].minlen; 1072 1073 if (type > OVS_CT_ATTR_MAX) { 1074 OVS_NLERR(log, 1075 "Unknown conntrack attr (type=%d, max=%d)", 1076 type, OVS_CT_ATTR_MAX); 1077 return -EINVAL; 1078 } 1079 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1080 OVS_NLERR(log, 1081 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1082 type, nla_len(a), maxlen); 1083 return -EINVAL; 1084 } 1085 1086 switch (type) { 1087 case OVS_CT_ATTR_COMMIT: 1088 info->commit = true; 1089 break; 1090 #ifdef CONFIG_NF_CONNTRACK_ZONES 1091 case OVS_CT_ATTR_ZONE: 1092 info->zone.id = nla_get_u16(a); 1093 break; 1094 #endif 1095 #ifdef CONFIG_NF_CONNTRACK_MARK 1096 case OVS_CT_ATTR_MARK: { 1097 struct md_mark *mark = nla_data(a); 1098 1099 if (!mark->mask) { 1100 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1101 return -EINVAL; 1102 } 1103 info->mark = *mark; 1104 break; 1105 } 1106 #endif 1107 #ifdef CONFIG_NF_CONNTRACK_LABELS 1108 case OVS_CT_ATTR_LABELS: { 1109 struct md_labels *labels = nla_data(a); 1110 1111 if (!labels_nonzero(&labels->mask)) { 1112 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1113 return -EINVAL; 1114 } 1115 info->labels = *labels; 1116 break; 1117 } 1118 #endif 1119 case OVS_CT_ATTR_HELPER: 1120 *helper = nla_data(a); 1121 if (!memchr(*helper, '\0', nla_len(a))) { 1122 OVS_NLERR(log, "Invalid conntrack helper"); 1123 return -EINVAL; 1124 } 1125 break; 1126 #ifdef CONFIG_NF_NAT_NEEDED 1127 case OVS_CT_ATTR_NAT: { 1128 int err = parse_nat(a, info, log); 1129 1130 if (err) 1131 return err; 1132 break; 1133 } 1134 #endif 1135 default: 1136 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1137 type); 1138 return -EINVAL; 1139 } 1140 } 1141 1142 if (rem > 0) { 1143 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1144 return -EINVAL; 1145 } 1146 1147 return 0; 1148 } 1149 1150 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1151 { 1152 if (attr == OVS_KEY_ATTR_CT_STATE) 1153 return true; 1154 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1155 attr == OVS_KEY_ATTR_CT_ZONE) 1156 return true; 1157 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1158 attr == OVS_KEY_ATTR_CT_MARK) 1159 return true; 1160 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1161 attr == OVS_KEY_ATTR_CT_LABELS) { 1162 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1163 1164 return ovs_net->xt_label; 1165 } 1166 1167 return false; 1168 } 1169 1170 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1171 const struct sw_flow_key *key, 1172 struct sw_flow_actions **sfa, bool log) 1173 { 1174 struct ovs_conntrack_info ct_info; 1175 const char *helper = NULL; 1176 u16 family; 1177 int err; 1178 1179 family = key_to_nfproto(key); 1180 if (family == NFPROTO_UNSPEC) { 1181 OVS_NLERR(log, "ct family unspecified"); 1182 return -EINVAL; 1183 } 1184 1185 memset(&ct_info, 0, sizeof(ct_info)); 1186 ct_info.family = family; 1187 1188 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1189 NF_CT_DEFAULT_ZONE_DIR, 0); 1190 1191 err = parse_ct(attr, &ct_info, &helper, log); 1192 if (err) 1193 return err; 1194 1195 /* Set up template for tracking connections in specific zones. */ 1196 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1197 if (!ct_info.ct) { 1198 OVS_NLERR(log, "Failed to allocate conntrack template"); 1199 return -ENOMEM; 1200 } 1201 1202 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1203 nf_conntrack_get(&ct_info.ct->ct_general); 1204 1205 if (helper) { 1206 err = ovs_ct_add_helper(&ct_info, helper, key, log); 1207 if (err) 1208 goto err_free_ct; 1209 } 1210 1211 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1212 sizeof(ct_info), log); 1213 if (err) 1214 goto err_free_ct; 1215 1216 return 0; 1217 err_free_ct: 1218 __ovs_ct_free_action(&ct_info); 1219 return err; 1220 } 1221 1222 #ifdef CONFIG_NF_NAT_NEEDED 1223 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1224 struct sk_buff *skb) 1225 { 1226 struct nlattr *start; 1227 1228 start = nla_nest_start(skb, OVS_CT_ATTR_NAT); 1229 if (!start) 1230 return false; 1231 1232 if (info->nat & OVS_CT_SRC_NAT) { 1233 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1234 return false; 1235 } else if (info->nat & OVS_CT_DST_NAT) { 1236 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1237 return false; 1238 } else { 1239 goto out; 1240 } 1241 1242 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1243 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && 1244 info->family == NFPROTO_IPV4) { 1245 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1246 info->range.min_addr.ip) || 1247 (info->range.max_addr.ip 1248 != info->range.min_addr.ip && 1249 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1250 info->range.max_addr.ip)))) 1251 return false; 1252 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && 1253 info->family == NFPROTO_IPV6) { 1254 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1255 &info->range.min_addr.in6) || 1256 (memcmp(&info->range.max_addr.in6, 1257 &info->range.min_addr.in6, 1258 sizeof(info->range.max_addr.in6)) && 1259 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1260 &info->range.max_addr.in6)))) 1261 return false; 1262 } else { 1263 return false; 1264 } 1265 } 1266 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1267 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1268 ntohs(info->range.min_proto.all)) || 1269 (info->range.max_proto.all != info->range.min_proto.all && 1270 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1271 ntohs(info->range.max_proto.all))))) 1272 return false; 1273 1274 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1275 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1276 return false; 1277 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1278 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1279 return false; 1280 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1281 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1282 return false; 1283 out: 1284 nla_nest_end(skb, start); 1285 1286 return true; 1287 } 1288 #endif 1289 1290 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1291 struct sk_buff *skb) 1292 { 1293 struct nlattr *start; 1294 1295 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT); 1296 if (!start) 1297 return -EMSGSIZE; 1298 1299 if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT)) 1300 return -EMSGSIZE; 1301 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1302 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1303 return -EMSGSIZE; 1304 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1305 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1306 &ct_info->mark)) 1307 return -EMSGSIZE; 1308 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1309 labels_nonzero(&ct_info->labels.mask) && 1310 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1311 &ct_info->labels)) 1312 return -EMSGSIZE; 1313 if (ct_info->helper) { 1314 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1315 ct_info->helper->name)) 1316 return -EMSGSIZE; 1317 } 1318 #ifdef CONFIG_NF_NAT_NEEDED 1319 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1320 return -EMSGSIZE; 1321 #endif 1322 nla_nest_end(skb, start); 1323 1324 return 0; 1325 } 1326 1327 void ovs_ct_free_action(const struct nlattr *a) 1328 { 1329 struct ovs_conntrack_info *ct_info = nla_data(a); 1330 1331 __ovs_ct_free_action(ct_info); 1332 } 1333 1334 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1335 { 1336 if (ct_info->helper) 1337 module_put(ct_info->helper->me); 1338 if (ct_info->ct) 1339 nf_ct_put(ct_info->ct); 1340 } 1341 1342 void ovs_ct_init(struct net *net) 1343 { 1344 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 1345 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1346 1347 if (nf_connlabels_get(net, n_bits)) { 1348 ovs_net->xt_label = false; 1349 OVS_NLERR(true, "Failed to set connlabel length"); 1350 } else { 1351 ovs_net->xt_label = true; 1352 } 1353 } 1354 1355 void ovs_ct_exit(struct net *net) 1356 { 1357 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1358 1359 if (ovs_net->xt_label) 1360 nf_connlabels_put(net); 1361 } 1362